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Abstract

We study the empirical measureLAn of the eigenvalues of non-normal
square matrices of the formAn = UnDnVn with Un,Vn independent Haar dis-
tributed on the unitary group andDn real diagonal. We show that when
the empirical measure of the eigenvalues ofDn converges, andDn satisfies
some technical conditions,LAn converges towards a rotationally invariant
measure on the complex plane whose support is a single ring. In particular,
we provide a complete proof of Feinberg-Zee single ring theorem [5]. We
also consider the case whereUn,Vn are independent Haar distributed on the
orthogonal group.

1 The problem

Horn [15] asked the question of describing the eigenvalues of a square matrix with
prescribed singular values. IfA is an×n matrix with singular valuess1 ≥ . . . ≥
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sn ≥ 0 and eigenvaluesλ1, . . . ,λn in decreasing order of absolute values, then the
inequalities

k
∏

j=1

|λ j | ≤
k
∏

j=1

sj , if k < n and
n
∏

j=1

|λ j | =
n
∏

j=1

sj (1)

were shown by Weyl [25] to hold. Horn established that these were all the rela-
tionships between singular values and eigenvalues.

In this paper we study the natural probabilistic version of this problem and
show that for “typical matrices”, the singular values almost determine the eigen-
values. To frame the problem precisely, fixs1 ≥ . . . ≥ sn ≥ 0 and considern×n
matrices with these singular values. They are of the formA = PDQ, whereD is
diagonal with entriessj on the diagonal, andP,Q are arbitrary unitary matrices.

We makeA into a random matrix by choosingP andQ independently from
Haar measure onU(n), the unitary group ofn×n matrices. Letλ1, . . . ,λn be the
(random) eigenvalues ofA. The following natural questions arise.

1. Are there deterministic or random sets{sj}, for which one can find the exact
distribution of{λ j}?

2. Let LS = 1
n

∑n
j=1 δsj andLΛ = 1

n

∑n
j=1 δλ j

denote the empirical measures
of S= {sj} and Λ = {λ j}. SupposeSn are sets of sizen such thatLSn

converges weakly to a probability measureθ supported onR+. Then, does
LΛ converge to a deterministic measureµ on the complex plane? If so, how
is the measureµ determined byθ?

3. For finiten, for fixedS, is LΛ concentratedin the space of probability mea-
sures on the plane?

In this paper, we concentrate on the second question and answer it in the affir-
mative, albeit with some restrictions. In this context, we note that Fyodorov and
Wei [7, Theorem 2.1] gave a formula for the mean eigenvalues density ofA, yet in
terms of a large sum which does not offer an easy handle on asymptotic properties
(see also [6] for the case whereD is a projection). The authors of [7] explicitely
state the second question as an open problem.

Of course, questions 1–3. above are not new, and have been studied in various
formulations. We now describe a partial and necessarily brief history of what is
known concerning questions 1. and 2.; partial results concerning question 3. will
be discussed elsewhere.
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The most famous case of a positive answer to question 1. is theGinibre en-
semble, see [8], and its asymetric variant, see [17]. (There are some pitfalls in the
standard derivation of Ginibre’s result. We refer to [16] for a discussion.) Another
situation is the truncation of random unitary matrices, described in [26].

Concerning question 2., the convergence of the empirical measure of eigen-
values in the Ginibre ensemble (and other ensembles relatedto question 1.) is
easy to deduce from the explicit formula for the joint distribution of eigenvalues.
Generalizations of this convergence in the absence of such explicit formula, for
matrices with iid entries, is covered underGirko’s circular law, which is described
in [9]; the circular law was proved under some conditions in [2] and finally, in full
generality, in [10] and [22]. Such matrices, however, do notpossess the invari-
ance properties discussed in connection of question 2. Thesingle ring theorem
of Feinberg and Zee [5] is, to our knowledge, the first examplewhere a partial
answer to this question is offered. (Various issues of convergence are glossed over
in [5] and, as it turns out, require a significant effort to overcome.) As we will see
in Section 3, the asymptotics of the spectral measure appearing in question 2. are
described by the Brown measure ofR-diagonal operators. (The Brown measure is
a continuous analogue of the spectral distribution of non-normal operators, intro-
duced in [3].)R-diagonal operators were introduced by Nica and Speicher [18] in
the context of free probability; they represent the weak*-limit (or more precisely,
the limit in ∗-moments) of operators of the formUD with U unitary with size
going to infinity andD diagonal, and were intensively studied in the last decade
within the theory of free probability, in particular in connection with the problem
of classifying invariant subspaces [12, 13].

2 Limiting spectral density of a non-normal matrix

Throughout, for a probability measureµ supported onR or onC, we writeGµ for
its Stieltjes transform, that is

Gµ(z) =

∫

µ(dx)
z−x

.

Gµ is analytic off the support ofµ. We letHn denote the Haar measure on the
n-dimensional unitary groupU(n). Let {Pn,Qn}n≥1 denote a sequence of inde-
pendent,Hn-distributed matrices. LetDn denote a sequence of (possibly random)

diagonal matrices with real positive entriesSn = {s(n)
i } on the diagonal, and intro-
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duce theempirical measureof thesymmetrizedversion ofDn as

LSn =
1
2n

n
∑

i=1

[δ
s(n)
i

+δ−s(n)
i

] .

We write GDn for GLSn
. For a measureµ supported onR+, we write µ̃ for its

symmetrized version, that is, for any 0< a < b < ∞,

µ̃([−a,−b]) = µ̃([a,b]) =
1
2

µ([a,b]) .

Let An = PnDnQn, let Λn = {λ(n)
i } denote the set of eigenvalues ofAn, and set

LAn =
1
n

n
∑

i=1

δ
λ(n)

i
.

We refer toLAn as the empirical spectral distribution (ESD) ofAn. Finally, for
any matrixA, we set‖A‖ to denote theℓ2 operator-norm ofA, that is, its largest
singular value.

The main result of this paper is the following.

Theorem 1. Assume{LDn}n converges weakly to a probability measureΘ com-
pactly supported onR+. Assume further

1. There exists a constant M> 0 so that

lim
n→∞

P(‖Dn‖ > M) = 0. (2)

2. There exist a sequence of events{Gn} with P(Gc
n)→ 0 and constantsδ,δ′ >

0 so that for any z∈ C, with σz
n the minimal singular value of zI−An,

E(1Gn1{σz
n<n−δ}(logσz

n)
2) < δ′ . (3)

3. There exist constants K,κ,κ′ > 0 such that, for all n large,

|GΘ̃(z)−GDn(z)| ≤
K

nκℑ(z)
, if ℑ(z) > n−κ′

. (4)

4. There exists a constantκ1 such that

|GΘ̃(z)| ≤ κ1 on C
+ . (5)
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Then the following holds.

a. LAn converges in probability to a limiting measure µA, rotationally invariant
in C.

b. The measure µA possesses a radially-symmetric densityρA with respect to
the Lebesgue measure onC, which is characterized as follows. For z∈ C,
let νz := Θ̃ ⊞ λ|z|, whereλ|z| = 1

2(δ|z| + δ−|z|) is the symmetric Bernoulli
measure with atoms at{−|z|, |z|}, and⊞ denotes free convolution. Then,
ρA(z) = 1

2π∆z(
∫

log|x|dνz(x)), where∆z denotes the Laplacian with respect
to the variable z.

c. The support of µA is a single ring: there exist constants0 ≤ a < b < ∞ so
that

suppµA = {reiθ : a≤ r ≤ b} .

Further, a= 0 if and only if
∫

x−2dΘ(x) = ∞.

See Remark 6 for an explicit characterization of the free convolution appearing
in Theorem 1, and [1, Ch. 5] for general background. A different characterization
of ρA, borrowed from [11], is provided next.

Remark 2. We provide, following [11, Theorem 4.4 and Corollary 4.5], an alter-
native characterization ofρA and its support. Recall thatΘ({0}) = 0 by Assump-
tion 5. LetΘ♯2 denote the push forward ofΘ by the mapz 7→ z2, i.e. Θ♯2 is the
weak limit of{LD2

n
}. Let S denote theS-transform ofΘ♯2 (see [11, Section 2] for

the definition of theS transform of a probability measure onR and its relation to
theR transform). DefineF(t) = S(1/

√
t −1) onD = (0,1]. Then,F mapsD to

the interval

(a,b] = (
1

(
∫

x−2dΘ(x))1/2
,(

∫

x2dΘ(x))1/2] ,

and has an analytic continuation to a neighborhood ofD, andF ′ > 0 onD. Fur-
ther, withρA(reiθ) = ρA(r), it holds that

ρA(r) =

{

1
2πrF ′(F−1(r)) , r ∈ (a,b] ,

0, otherwise.
(6)

Finally, ρA has an analytic continuation to a neighborhood of(a,b].
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Theorem 1 is generalized to the case whereUn,Vn follow the Haar measure on
the orthogonal group in Theorem 16.

As a corollary of Theorem 1, we prove the the Feinberg-Zee “single ring the-
orem”.

Corollary 3. Let V denote a polynomial with positive leading coefficient.Let the
n-by-n complex matrix Xn be distributed according to the law

1
Zn

exp(−ntr V(XX∗))dX ,

where Zn is a normalization constant and dX the Lebesgue measure on n-by-n
complex matrices. Let LXn be the ESD of Xn. Then{LXn}n satisfies the conclusions
of Theorem 1 withΘ the unique minizer of the functional

∫

V(x2)dµ(x)−
∫ ∫

log|x2−y2|dµ(x)dµ(x)

on the set of probability measures µ onR+.

Corollary 3 will follow by checking that the assumptions of Theorem 1 are
satisfied for the spectral decompositionXn = UnDnVn, see Section 6.

The second hypothesis in Theorem 1 may seem difficult to verify in general;
we show in the next corollary that adding a small Gaussian matrix guarantees it.

Corollary 4. Let (Dn)n≥0 be a sequence of matrices satisfying the assumptions
of Theorem 1 except for(3) and assume that‖D−1

n ‖ is uniformly bounded. Let
Nn be a n×n matrix with independent (complex) Gaussian entries of zero mean
and covariance equal identity. Let Un,Vn follow the Haar measure on unitary n×n
matrices. Then, the empirical measure of the eigenvalues ofYn :=UnDnVn+n−γNn

converges weakly in probability to µA as in Theorem 1 for anyγ ∈ (1
2,∞).

Example 5. An exemple of sequence(Dn)n≥0 satisfying the hypotheses of Corol-
lary 4 is given as follows: takeµ a compactly supported probability measure
on R+∗. Assume the inverseF−1 of the distribution functionF(x) = µ([0,x])
is Hölder continuous and thatµ has a uniformly bounded Stieltjes transform on
C+. Then the diagonal matrixDn with entries

sn
i = inf{s : µ([0,s])≥ i

n
}, 1≤ i ≤ n,

satisfies the hypotheses of Corollary 4.
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The main difficulty in studying the ESDLAn is thatAn is not a normal matrix,
that isAnA∗

n 6= A∗
nAn, almost surely. For normal matrices, the limit of ESDs can

be found by the method of moments or by the method of Stieltjes’ transforms.
For non-normal matrices, the only known method of proof is more indirect and
follows an idea of Girko [9] that we describe now (the detailsare a little different
from what is presented in Girko [9] or Bai [2]).

From Green’s formula, for any polynomialP(z) =
∏n

j=1(z−λ j), we have

1
2π

∫

∆ψ(z) log|P(z)|dm(z) =
n
∑

j=1

ψ(λ j), for anyψ ∈C2
c(C) ,

wherem(·) denotes the Lebesgue measure onC. Applied to the characteristic
polynomial ofAn, this gives

∫

ψ(z)dLAn(z) =
1

2πn

∫

C

∆ψ(z) log|det(zI−An)|dm(z)

=
1

4πn

∫

C

∆ψ(z) logdet(zI−An)(zI−An)
∗dm(z) .

It will be convenient for us to introduce the 2n×2n matrix

Hz
n :=

[

0 zI−An

(zI−An)
∗ 0

]

. (7)

It may be checked easily that eigenvalues ofHz
n are the positive and negative of

the singular values ofzI−An. Therefore, if we letνz
n denote the ESD ofHz

n,
∫

1
y−x

dνz
n(x) =

1
2n

tr
(

(y−Hz
n)

−1) ,

then

1
n

logdet(zI−An)(zI−An)
∗ =

1
n

logdet|Hz
n| = 2

∫

R

log|x|dνz
n(x) .

Thus we arrive at the formula

∫

ψ(z)dLAn(z) =
1

2π

∫

C

∆ψ(z)





∫

R

log|x|dνz
n(x)



dm(z). (8)

This is Girko’s formula in a different form and its utility lies in the following
attack on finding the limit ofLAn.
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1. Show that for (Lebesgue almost) everyz∈ C, the measuresνz
n converge

weakly in probability to a measureνz as n → ∞, and identify the limit.
SinceHz

n are Hermitian matrices, there is hope of doing this by Hermitian
techniques.

2. Justify that
∫

log|x|dνz
n(x) →

∫

log|x|dνz(x) for (almost every)z. But for
the fact that “log” is not a bounded function, this would havefollowed from
the weak convergence ofνz

n to νz. As it stands, this is the hardest technical
part of the proof.

3. A standard weak convergence argument is then used in orderto convert the
convergence for (almost every)z of νz

n to a convergence of integrals overz.
Indeed, settingh(z) :=

∫

log|x|dνz(x), we will get from (8) that
∫

ψ(z)dLAn(z) →
1
2π

∫

C

∆ψ(z) h(z)dm(z) . (9)

4. Show thath is smooth enough so that one can integrate the previous equa-
tion by parts to get

∫

ψ(z)dLAn(z) →
1
2π

∫

C

ψ(z) ∆h(z)dm(z) , (10)

which identifies∆h(z) as the density (with respect to Lebesgue measure) of
the limit of LAn.

5. Identify the functionh sufficiently precisely to be able to deduce properties
of ∆h(z). In particular, show thesingle ring phenomenon, which states
that the support of the limiting spectral measure is a singleannulus (the
surprising part being that it cannot consist of several disjoint annuli).

Girko’s equation (8) and these five steps give a general recipe for finding limiting
spectral measures of non-normal random matrices. Whether one can overcome the
technical difficulties depends on the model of random matrixone chooses. For the
model of random matrices with i.i.d. entries having zero mean and finite variance,
this has been achieved in stages by Bai [2], Götze and Tikhomirov [10], Pan and
Zhou [19] and Tao and Vu [22]. While we heavily borrow from that sequence, a
major difficulty in the problem considered here is that no independence between
entries of the matrixAn is present here. Instead, we will rely on properties of the
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Haar measure, and in particular on considerations borrowedfrom free probability
and the so calledSchwinger–Dyson(or master-loop) equations. Such equations
were already the key to obtain fine estimates on the Stieltjestransform of Gaussian
generalized band matrices in [14]. In [4], they were used to study the asymptotics
of matrix models on the unitary group. Our approach combinesideas of [14]
to estimate Stieltjes transform and the necessary adaptations to unitary matrices
as developped in [4]. The main observation is that one can reduce attention to
the study of the ESD of matrices of the form(T +U)(T +U)∗ whereT is real
diagonal andU is Haar distributed. In the limit (i.e., whenT andU are replaced
by operators in aC∗-algebra that are freely independent, withT bounded and self
adjoint andU unitary), the limit ESD has been identified by Haagerup and Larsen
[11]. The Schwinger–Dyson equations give both a characterization of the limit
and, more important to us, a discrete approximation that canbe used to estimate
the discrepancy between the pre-limit ESD and its limit. These estimates play a
crucial role in integrating the singularity of the log in Step two above, but only
once an a-priori (polynomial) estimate on the minimal singular value has been
obtained. The latter is deduced from assumption 3. In the context of the Feinberg–
Zee single ring theorem, the latter assumption holds due to an adaptation of the
analysis of [21].

Notation

We describe our convention concerning constants. Throughout, by the wordcon-
stantwe mean quantities that are independent ofn (or of the complex variables
z, z1). Generic constants denoted by the lettersC,c or R, have values that may
change from line to line, and they may depend on other parameters. Constants
denoted byCi , K, κ andκ′ are fixed and do not change from line to line.

3 An auxiliary problem: evaluation of νz and con-
vergence rates

Recall from the proof sketch described above that we are interested in evaluating
the limit νz of the ESDLz

n of the matrixHz
n, see (7). Note that forz 6= 0, Lz

n is also
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the ESD of the matrix̃Hz
n given by

H̃z
n := |z|

[

0 Wz
n −Dn/|z|

(Wz
n −Dn/|z|)∗ 0

]

=

[

0 Qn

P∗
n 0

][

0 zI−An

zI−A∗
n 0

][

0 Pn

Q∗
n 0

]

=

[

0 Qn

P∗
n 0

]

Hz
n

[

0 Pn

Q∗
n 0

]

, (11)

whereWz
n = zQnPn/|z| is unitary andHn distributed. We are thus led to the study

of the ESD for a sequence of matrices of the form

Yn =

(

0 Bn

B∗
n 0

)

(12)

with Bn = Un+Tn, Tn being a real, diagonal matrix, andUn aHn unitary matrix.
We denote in short

Un =

(

0 Un

0 0

)

, U∗
n =

(

0 0
U∗

n 0

)

, Tn =

(

0 Tn

Tn 0

)

. (13)

3.1 Limit equations

We begin by deriving the limiting Schwinger-Dyson equations for the ESD of
Yn. Throughout this subsection, we consider a non-commutative probability space
(A ,∗,µ) on which variable a variableU lives and whereµ is a tracial state satis-
fying the relationsµ((UU∗−1)2) = 0, µ(Ua) = 0 for a∈ Z\{0}. µ is the unique
non-commutative law of bounded variables which is invariant under unitary con-
juguation, and therefore corresponds to the asymptotics ofthe Haar measure. In
the sequel, 1 will denote the identity inA . We refer to [1, Section 5.2] for defini-
tions.

LetT be a self-adjoint (bounded) element inA , with T freely independent with
U . Recall the non-commutative derivative∂, defined on elements ofC〈T,U,U∗〉
as satisfying the Leibniz rules

∂PQ= ∂P×1⊗Q+P⊗1×∂Q, (14)

∂U = U ⊗1, ∂U∗ = −1⊗U∗, ∂T = 0⊗0.
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(Here,⊗ denotes the tensor product and we writeA⊗B×C⊗D = (AC)⊗ (BD).)
∂ is defined so that for anyB∈ A so thatB∗ = −B, anyP∈ C〈U,U∗,T〉,

P(UeiεB,e−iεBU∗,T) = P(U,U∗,T)+ ε∂P(U,U∗,T)♯B+o(ε) ,

where we used the notationA⊗B♯C = ACB.
By the invariance ofµ under unitary conjuguation, see [24, Proposition 5.17]

or [1, (5.4.31)], we have the Schwinger-Dyson equation

µ⊗µ(∂P) = 0. (15)

We continue to use the notationY, U,U∗ andT in a way similar to (12) and
(13). So, we letY = U+U∗ +T with

U =

(

0 U
0 0

)

, U∗ =

(

0 0
U∗ 0

)

, T =

(

0 T
T 0

)

. (16)

We extendµ to the algebra generated byU,U∗ andT by putting for anyA,B,C,D∈
A ,

µ

((

A B
C D

))

:=
1
2

µ(A)+
1
2

µ(D) .

Observe that this extension is still tracial.
The non-commutative derivative∂ extends naturally to the algebra generated

by the matrix-valuedU,U∗,T, using the Leibniz rule (14) together with the rela-
tions

∂U = U⊗ p, ∂U∗ = −p⊗U∗ , (17)

where we denotedp =

(

0 0
0 1

)

. In the sequel we shall apply∂ to analytic

functions ofU + U∗ andT such as products of Stieltjes functionals of the form
(z−bU−bU∗−aT)−1 with z∈ C\R anda,b∈ R. Such an extension is straight-
forward;∂ continues to satisfy the Leibniz rule and

∂(z−bU−bU∗−aT)−1 =

b(z−bU−bU∗−aT)−1(U⊗ p− p⊗U∗)(z−bU−bU∗−aT)−1
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Introduce the notation, forz1,z2 ∈ C+,

G(z1,z2) = µ
(

(z1−Y)−1(z2−T)−1) ,

GU(z1,z2) = µ
(

U(z1−Y)−1(z2−T)−1) ,

GU(z1) = µ
(

U(z1−Y)−1) ,

GU∗(z1,z2) = µ
(

U∗(z1−Y)−1(z2−T)−1) , (18)

GT(z1,z2) = µ
(

T(z1−Y)−1(z2−T)−1) ,

G(z1) = µ
(

(z1−Y)−1) ,

GT(z2) = µ
(

(z2−T)−1) .

We apply the derivative∂ to the analytic functionP = (z1−Y)−1(z2−T)−1U ,
while noticing that, by (14) and (17),

∂P = P⊗ p+(z1−Y)−1U⊗ pP− (z1−Y)−1p⊗U∗P. (19)

For any smooth functionQ,

µ(U∗QU) = µ((1− p)Q)

due to the traciality ofµandUU∗ = 1−p. Further,Pp= P and thusµ(pP) = µ(P),
and by symmetry (note that(1− p)(z1−Y)−1(z2−T)−1 and p(z1−Y)−1(z2−
T)−1 are given by the same formula up to replacing(U,U∗) by (U∗,U), which
has the same law)

µ((1− p)(z1−Y)−1(z2−T)−1) =
1
2

µ((z1−Y)−1(z2−T)−1) .

The same equality holds without the last factor(z2−T)−1, and so we get from
(19)

1
2

GU(z1,z2) = −GU(z1,z2)GU(z1)+
1
4

G(z1,z2)G(z1) . (20)

Noticing thatGU(z1) is the limit ofz2GU(z1,z2) asz2 → ∞, we find by (20) that

1
2

GU(z1) = −GU(z1)
2+

1
4

G(z1)
2 ,

and therefore, asGU(z1) goes to zero asz1 → ∞,

GU(z1) =
1
2
(−1

2
+

√

1
22 +G(z1)2) =

1
4
(−1+

√

1+4G(z1)2) . (21)
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Here, the choice of the branch of the square root is determined by the expansion
of GU(z) at infinity and the fact that bothG(z) andGU(z) are analytic inC+. This
equation is then true for allz1 ∈ C+.

Moreover, by (20) and (21), we get

GU(z1,z2) =
1
2

G(z1,z2)G(z1)

1+2GU(z1)
=

G(z1,z2)G(z1)

1+
√

1+4G(z1)2
. (22)

(Again, here and in the rest of this subsection, the proper branch of the square root
is determined by analyticity.) LetR denote theR-transform of the Bernoulli law
λ1 := (δ−1 +δ+1)/2, that is,

R(z) =

√
1+4z2−1

2z
=

2z√
1+4z2+1

,

see [1, Definition 5.3.22 and Exercise 5.3.27], so that we have

GU(z1,z2) =
1
2

G(z1,z2)R(G(z1)) . (23)

Repeating the computation withGU∗, we haveGU∗ = GU . Algebraic manipula-
tions yield

GT(z1,z2) = z2G(z1,z2)−G(z1) , (24)

2GU(z1,z2)+GT(z1,z2) = z1G(z1,z2)−GT(z2) . (25)

Therefore, we get by substituting (23) and (24) into (25) that

G(z1,z2)R(G(z1))+z2G(z1,z2)−G(z1) = z1G(z1,z2)−GT(z2) , (26)

which in turns gives, for anyz1,z2 ∈ C+,

G(z1,z2)(R(G(z1))+z2−z1) = G(z1)−GT(z2) . (27)

Thus,
GT(z2) = G(z1) when z2 = z1−R(G(z1)) . (28)

The choice ofz2 as in (28) is allowed for anyz1 ∈ C
+ becauseG : C

+ → C
− and

we can see thatR : C− → C−. Thusℑz2 ≥ ℑz1 > 0, implying that suchz2 belongs
to the domain ofGT .

The relation (28) is the Schwinger-Dyson equation in our setup. It gives an
implicit equation forG(·) in terms ofGT(·). Further, forz with large modulus,
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G(z) is small and thusz 7→ z−R(G(z)) possesses a non-vanishing derivative, and
further is close toz. BecauseGT is analytic in the upper half plane and its deriva-
tive behaves like 1/z2 at infinity, it follows by the implicit function theorem that
(28) uniquely determinesG(·) in a neighborhood of∞. By analyticity, it thus fixes
G(·) in the upper half plane (and in fact, everywhere except in a compact subset
of R), and thus determines uniquely the law ofY.

Remark 6. Let µT denote thespectral measureof T, that is
∫

f dµT = µ( f (T))
for any f ∈Cb(R). We emphasize thatGT is not the Stieltjes transform of the law
of T; rather, it is the Stieltjes transform of the symmetrized version of the law of
T, that is of the probability measure ˜µT . With this convention, (28) is equivalent
to the statement that the law ofY, denotedµY, equals thefree convolutionof µ̃T

andλ1, i.e. µY = µ̃T ⊞λ1, whereλz = (δ−|z|+δ|z|)/2 is the Bernoulli law that puts
mass1

2 at±|z|.

In the next section, we will need the following estimate.

Lemma 7. If |GT(·)| ≤ κ1 onC+ then|G(·)| ≤ κ1 onC+.

Proof Recall that ifz∈ C+ thenG(z) ∈ C− and alsoR(G(z))∈ C− becauseR
mapsC− into C− (regardless of the branch of the square root taken at each point).
Thus,y = z−R(G(z)) ∈ C+. Therefore,|G(z)|= |GT(y)| ≤ κ1.

3.2 Finite n equations and convergence

We next turn to the evaluation of the law ofYn. We assume throughout that the
sequenceTn is uniformly bounded by some constantM, that LTn → µT weakly
in probability, and further that (4) and (5) are satisfied with Tn and the spectral
distribution ofT replacingDn andΘ. Recall first, see [1, (5.4.29)], that by in-
variance of the Haar measure under unitary conjuguation, with P∈ C〈T,U,U∗〉 a
noncommutative polynomial (or a product of Stieltjes functionals),

E[
1
2n

tr⊗ 1
2n

tr(∂P(Tn,Un,U∗
n))] = 0. (29)

This key equality can be proved by noticing that for anyn×n matrix B such that
B∗ = −B, for any(k, ℓ) ∈ [1,n], if we let Un(t) = UnetB and constructUn(t) and
Un

∗(t) with this unitary matrix,

0 = ∂tE[(P(Tn,Un(t),U∗
n(t)))k,ℓ] = E[(∂P(Tn,Un,U∗

n)♯B)k,ℓ] (30)

14



with B =

(

0 0
0 B

)

. Letting ∆(k, ℓ) be then× n matrix so that∆(k, ℓ)i, j =

1i=k1 j=ℓ, we can choose in the last equalityB= ∆(k, ℓ)−∆(ℓ,k) orB= i (∆(k, ℓ)+∆(ℓ,k)).
Summing the two resulting equalities and then summing overk andℓ yields (29).

We denote byGn the quantities as defined in (18), but withE[ 1
2ntr] replacingµ

and the subscriptn attached to all variables, so that for instance

Gn(z) = E[
1
2n

tr
(

(z−Yn)
−1)] .

We get by takingP = (z1−Yn)
−1(z2−Tn)

−1Un that

1
2

Gn
U(z1,z2) = −Gn

U (z1,z2)G
n
U(z1)+

1
4

Gn(z1,z2)G
n(z1)+O(n,z1,z2) , (31)

with

O(n,z1,z2) = E

[

(
1
2n

tr−E[
1
2n

tr])⊗ (
1
2n

tr−E[
1
2n

tr])∂(z1−Yn)
−1(z2−Tn)

−1Un

]

.

Further, by the standard concentration inequality forHn, see [1, Corollary 4.4.31],
for any smooth functionP : U(n) → C,

∣

∣

∣
E

[

(

1
2n

tr(P)−E[
1
2n

tr](P)

)2
]

∣

∣

∣
≤ 1

n2‖P‖2
L , (32)

with ‖P‖L the Lipschitz constant ofP given by

‖P‖L = ‖DP‖∞

if D is the cyclic derivative given byD = m◦ ∂ with m(A⊗B) = BA. Applying
(32) to each term of∂P (recall formula (19)), we get that forℑ(z1) > 0,

|O(n,z1,z2)| ≤
C

n2|ℑ(z2)|ℑ(z1)2(ℑ(z1)∧1)
.

Multiplying by z2 and taking the limit asz2 → ∞ we deduce from (31) that

(Gn(z1))
2 = 2Gn

U(z1)(1+2Gn
U(z1))−O1(n,z1) , (33)

where

O1(n,z1) = 4E

[

(
1
2n

tr−E[
1
2n

tr])⊗ (
1
2n

tr−E[
1
2n

tr])∂(z1−Yn)
−1Un

]

= O

(

1
n2ℑ(z1)2(ℑ(z1)∧1)

)

.
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In particular,

Gn
U(z1) =

1
4
(−1+

√

1+4Gn(z1)2+4O1(n,z1)) , (34)

with again the choice of the square root determined by analyticity.
Recalling that (24) and (25) remain true when we add the subscript n and

combining (31) and (24), we get

Gn(z1,z2)

(

Gn(z1)

(1+2Gn
U(z1))

+z2−z1

)

= Gn(z1)−Gn
T(z2)+ Õ(n,z1,z2) , (35)

with

Õ(n,z1,z2) =
2O(n,z1,z2)

(1+2Gn
U(z1))

.

Hence, if we define

z2 = ψn(z1) := z1−
Gn(z1)

(1+2Gn
U(z1))

, (36)

then
Gn(z1) = Gn

T(z2)+ Õ(n,z1,z2) ,

and therefore
Gn(z1) = Gn

T(ψn(z1))+ Õ(n,z1,ψn(z1)) . (37)

Equation (37) holds at least whenℑz2 > 0 for z2 as in (36). In particular, forℑ(z1)
large (say larger than someM), it holds thatGn(z1) andGn

U (z1) are small, implying
thatz2 is well defined withℑ(z2) > 0. AssumeLTn converges towardsLT so that
Gn

T converges toGT on C+. Then, the limit points of the sequence of uniformly
continuous functions(Gn(z),Gn

U(z)) on {z : ℑz≥ M} satisfy (21) and (28) and
therefore equal(G(z),GU(z)) on {z : ℑz≥ M} by uniqueness of the solutions to
these equations. Hence, takingn→∞ then implies thatGn →G in a neighborhood
in the upper half plane close to∞. SinceGn andG are Stieltjes transforms of
probability measures, we have now shown the following (see Remark 6).

Lemma 8. Assume LTn converges weakly in probability to a compactly supported
probability measure µT . Then, LYn converges weakly, in probability, to µY = µ̃T ⊞

λ1. In particular, if LDn converges weakly in probability to a probability measure
Θ, then for any z∈ C, νz

n converges weakly in probability tõΘ⊞λ|z|.
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(Recall thatΘ̃ is the symmetrized version ofΘ and note that forz= 0, the state-
ment of the lemma is trivial.)

Lemma 8 completes the proof of Step one in our program. To be able to
complete Step two, we need to obtain quantitative information from the (finiten)
Schwinger-Dyson equations (37): our goal is to show that theleft side remains
bounded in a domain of the form{z∈ C+ : ℑz> n−c} for somec > 0. Toward
this end, we will show that in such a region,ψn is analytic,ℑψn(z) > ℑz/2∧C
for some constantC andÕ(n,z1,ψn(z1)) is analytic and bounded there. This will
imply that (37) extends by analyticity to this region, and our assumption on the
boundedness ofGn

T will lead to the conclusion.
As a preliminary step, note thatGn(·) andGn

U(·) are analytic inC+. We have
the following.

Lemma 9. There exist constants C1,C2 such that for all z∈ C+ with ℑ(z) >
C1n−1/3 and all n large, it holds that

|1+2Gn
U(z)| > C2[ℑ(z)3∧1] . (38)

Proof SinceGn
U (z) is asymptotic to 1/zat infinity, we may and will restrict atten-

tion to some fixed ballBR ⊂ C, whose interior contains the support ofY. But

ℑ(Gn(z)) = −ℑ(z)
∫

dµYn(x)
(ℜ(z)−x)2+ℑ(z)2

and therefore, as(ℜ(z)−x)2+ℑ(z)2 ≤ 4R2 for all z,x∈ B(0,R)

|Gn(z)| ≥ |ℑ(Gn(z))| ≥ |ℑ(z)|
4R2 . (39)

Moreover, since|Gn
U(z)| ≤ 1/|ℑ(z)|, for some constantc independent ofn and all

n large, we deduce from (33) that

|Gn(z)|2 ≤ 2|1+2Gn
U(z)|

|ℑ(z)| +
c

n2ℑ(z)2(ℑ(z)∧1)
.

Combining this estimate and (39), we get that

2|1+2Gn
U(z)|

|ℑ(z)| ≥ |ℑ(z)|2
16R4 − c

n2ℑ(z)2(ℑ(z)∧1)
≥ |ℑ(z)|2

32R4 , (40)

as soon asℑ(z) > C1n−1/3 for an appropriateC1, and |z| < R. The conclusion
follows.
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As a consequence of Lemma 9 and the analyticity ofGn andGn
U in C+, we

conclude thatψn is analytic in{z : ℑ(z) > C1n−1/3}, for all n large.
Our next goal is to check the analyticity ofz→ Õ(n,z,ψn(z)) for z∈ C+ with

imaginary part bounded away from 0 by a polynomially decaying (in n) factor.
Toward this end, we now verify thatψn(z) ∈ C+ for z up to a small distance from
the real axis.

Lemma 10.There exists a constantC3 such that ifℑ(z) >C3n−1/4, thenℑ(ψn(z))≥
ℑ(z)/2.

Proof Again, we may and will restrict attention toℑ(z) ≤ R for some fixedR. We
divide the proof to two cases, as follows. Leten = n−1/2, and set∆n = {z∈ C+ :
|Gn(z)+ i/2| ≥ en}.

Then, for anyz∈ ∆n, and whatever choice of branch of the square root made in

(34), if e−1/2
n O1(n,z) is small enough (smaller thanen/2 is fine), then that choice

can be extended to include a neighborhood of the pointw = Gn(z) such that with
this choice, the functionr(w) = 1

4(−1+
√

1+4w2) is Lipschitz in the sense that

|Gn
U(z)− r(Gn(z))| ≤Ce

− 1
2

n O1(n,z) . (41)

On the other hand, again from (34),
∣

∣

∣

∣

Gn(z)
1+2Gn

U(z)
− 2Gn

U(z)

Gn(z)

∣

∣

∣

∣

≤C
|O1(n,z)|

|Gn(z)(1+2Gn
U(z))| .

Combining the last display with the relationR(θ) = 2r(θ)/θ, (41) and (39), one
obtains that forz∈ ∆n,
∣

∣

∣

∣

Gn(z)
1+2Gn

U(z)
−R(Gn(z))

∣

∣

∣

∣

≤
∣

∣

∣

∣

2r(Gn(z))
Gn(z)

− 2Gn
U(z)

Gn(z)

∣

∣

∣

∣

+

∣

∣

∣

∣

Gn(z)
1+2Gn

U(z)
− 2Gn

U(z)

Gn(z)

∣

∣

∣

∣

≤ C
|O1(n,z)|

|Gn(z)(1+2Gn
U(z))| +C

|O1(n,z)|
e

1
2
n |Gn(z)|

≤ C
|O1(n,z)|
e1/2

n |ℑ(z)|
+C

|O1(n,z)|
ℑ(z)4

≤ C
n2|ℑ(z)|4

(

1

e1/2
n

+
1

|ℑ(z)|3

)

≤ C
n2|ℑ(z)|4

(

n1/4 +
1

|ℑ(z)|3
)

. (42)
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Since the above right hand side is smaller thanℑ(z)/2 for ℑ(z) > n−1/4 and
ℑ(R(Gn(z)))≤ 0, we conclude that forz∈ ∆n∩{ℑ(z) > n−1/4}

ℑ
(

Gn(z)
1+2Gn

U(z)

)

≤ 1
2

ℑz

as, regardless of the branch taken in the definition ofR(·), ℑR(Gn(z)) ≤ 0.
On the other hand, whenz∈ C+ \∆n andℑ(z) > n−1/4, then we have from

(34) that

|Gn
U(z)+1/4| ≤ 1

2

√

en + |O1(n,z)| .

Thus, under these conditions,

ℑ
(

Gn(z)
1+2Gn

U(z)

)

= 2ℑGn(z)+ℑ
(

2Gn(z)
1+4(Gn

U(z)+1/4)

)

≤ ℑ(Gn(z))+C
√

en+ |O1(n,z)| ≤ −1
4

+C
√

en + |O1(n,z)|

≤ Cn−1/4 ,

where we finally used that on∆n, Gn(z) is uniformly bounded and so thatℑ(Gn(z))≤
−1/4 for z∈ C+ andn≥ 2. We thus conclude from the last display and (42) the
existence of a constantC3 such that ifℑ(z) > C3n−1/4 then

ℑ(ψn(z)) = ℑ(z)−ℑ
(

Gn(z)
1+2Gn

U(z)

)

≥ ℑ(z)/2,

as claimed.
From Lemma 10 we thus conclude the analyticity ofz→ Õ(n,z,ψn(z)) in

{z : ℑ(z) ≥ C3n−1/4}, and thusGn(z)/(1+ 2Gn
U(z)) is also analytic there. In

particular, the equality (37) extends by analyticity to this region.
We have made all preparatory steps in order to state the main result of this

subsection.

Lemma 11. There exist positive finite constants C6,C7,C8 such that, for n> C6

and all z∈ En := {z : ℑ(z) > n−C7},

|Gn(z)| ≤C8 . (43)

Proof This is immediate from Lemma 9, Lemma 10, the definition ofψn, the
assumption ofGn

T and the equality (37).

19



4 Tail estimates forνz
n

Our goal in this short section is to prove the following proposition.

Proposition 12. (i) Fix z∈ C. Under the assumptions of Theorem 1,

lim
ε↓0

limsup
n→∞

E[1Gn

∫ ε

0
log|x|dνz

n(x)] = 0. (44)

Consequently, for any z∈ C,
∫

log|x|dνz
n(x) →

∫

log|x|dνz(x) , (45)

in probability.
(ii) For any smooth compactly supported deterministic function ϕ onC,

∫

ϕ(z)
∫

log|x|dνz
n(x)dm(z) →

∫

ϕ(z)
∫

log|x|dνz(x)dm(z) , (46)

in probability.

Before bringing the proof of Proposition 12, we recall the following elemen-
tary lemma.

Lemma 13. Let µ be a probability measure onR. For any real y> 0, it holds that

µ((−y,y))≤ 2y|G(iy)| . (47)

Proof We have

−ℑ(G(iy)) =

∫

y
y2+x2µ(dx) ≥

∫ y

−y

y
y2+x2µ(dx) ≥ 1

2y
µ((−y,y)) ,

from which (47) follows.
We can now provide the

Proof of Proposition 12
Let R be large enough so thatBR ⊂ C contains the support ofϕ. Throughout

this proof, we may and will restrict attention toz satisfying|z| ≤ R.
(i) By (3), we can replace the lower limit of integration in (44) with n−δ. Let

Gz
n denote the Stieltjes transform ofE[νz

n]. For z 6= 0, by Lemma 11 and Lemma
7, there exist positive constantsc1(R),c2(R) such that wheneverℑ(u) > n−c1, it
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holds that|Gz
n(u)|< c2. Forz= 0,L0

n is simply the ESD ofDn, once symmetrized,
and henceG0

n is also uniformly bounded by (4) and (5).
Therefore, sinceGz

n is the Stieltjes transform ofE[νz
n], by Lemma 13, for any

y > 0,

E[νz
n((−y,y))] ≤ E[νz

n((−y∨n−c1,y∨n−c1))] ≤ 2c2y∨n−c1 .

Thus, we get that for anyz∈ BR and withα ∈ [1,2],

E[

∫ ε

n−δ
(| logx|)αdνz

n(x)]

≤ E[

∫ n−c1∨δ

n−δ
(| logx|)αdνz

n(x)+

∫ ε

n−c1∨δ
(| logx|)αdνz

n(x)]

≤ ((c1∨δ) logn)αE[νz
n((−n−c1,n−c1))]

+

J
∑

j=0

E[νz
n((−2( j+1)n−c1,2( j+1)n−c1))](log(2 jn−c1))α ,

where 2J−1n−c1 < ε ≤ 2Jn−c1. Note that by Lemma 13 and the estimate onGz
n,

for j ≥ 0,
E[νz

n((−2 jn−c1,2 jn−c1))] ≤ 2 j+1c2n−c1 .

It follows that

E[

∫ ε

n−δ
| logx|αdνz

n(x)] ≤Cε| log(ε)|α , (48)

where the constantC does not depend onz. The estimate (44) follows when
consideringα = 1.

Moreover, by (3), forα < 2,

E[1Gn

∫ n−δ

0
| logx|αdνz

n(x)]

≤ E[1Gnνz
n([−n−δ,n−δ])1{σz

n<n−δ}| logσz
n|α]

≤ E

[

(

νz
n([−n−δ,n−δ])

)
2

2−α
]

2−α
2

E[1Gn1{σz
n<n−δ}| logσz

n|2]
α
2

21



by Hölder’s inequality. The first factor goes to zero because

E

[

(

νz
n([−n−δ,n−δ])

)
2

2−α
]

≤ E
[

νz
n([−n−δ,n−δ])

]

≤ 2c2n−δ.

We thus get (44) from (48). By Chebychev’s inequality, the convergence in expec-
tation implies the convergence in probability and therefore for anyδ,δ′ > 0 there
existsε > 0 small enough so that

lim
n→∞

P(

∫ ε

0
| logx|dνz

n(x) > δ) < δ′

On the other hand,
∫ ∞

ε log|x|dνz
n(x) converges to

∫ ∞
ε log|x|dνz(x) by the weak

convergence ofνz
n to νz in probability for anyε > 0. Hence, we get (45).

(ii) Define the functionsf i
n : BR → R, i = 1,2 by

f 1
n (z) = 1Gn1‖Dn‖≤M

∫ n−δ

0
log(x)dνz

n(x) ,

f 2
n (z) = 1Gn1‖Dn‖≤M

∫ ∞

n−δ
log(x)dνz

n(x) ,

and setfn(z) = f 1
n (z)+ f 2

n (z). Becauseνz
n is supported inBR+M on‖Dn‖ ≤ M, fn

is bounded above. By (48),E[| f 2
n(·)|α] is bounded, uniformly inz∈ BR. On the

other hand, by (3), again uniformly inz, E( f 1
n(z)2) < δ′, and therefore

E
∫

BR

( f 1
n(z))2dm(z) < ∞ .

Thus,E
∫

BR
| fn(z)|2dm(z)< ∞, and in particular, the sequence of random variables

∫

∣

∣

∣
1Gn1‖D‖n≤M

∫

logxdνz
n(x)

∣

∣

∣

2
dm(z)

is bounded in probability. This uniform integrability and the weak convergence
(45) are enough to conclude, using dominated convergence (see [23, Lemma 3.1]
for a similar argument).
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5 Proof of Theorem 1

By Proposition 12, see (46), we have, withh(z) :=
∫

log|x|dνz(x), that for any
smooth compactly supported functionψ onC,

∫

ψ(z)dLAn(z) →
1

2π

∫

C

∆ψ(z) h(z)dm(z) ,

in probability. Since the sequenceLAn is tight, it thus follows that it converges, in
the sense of distribution, to

1
2π

∆zh(z) .

From Remark 2 (based on [11, Corollary 4.5]), we have that thelimit is actually a
function. The statement of the theorem follows.

6 Proof of Corollary 3

We let Xn be as in the statement of the corollary and writeXn = PnDnQn with
Pn,Qn unitary andDn diagonal with entries equal to the singular values{σn

i } of
Xn. Obviously,{Pn,Qn}n≥1 is a sequence of independent,Hn-distributed matrices.
The joint distribution of the entries ofDn possesses a density onRn

+ which is given
by the expression

Z̃n

∏

i< j

|σ2
i −σ2

j |2e−n
Pn

i=1V(σ2
i )
∏

i

σidσi ,

whereZ̃n is a normalization factor, see e.g. [1, Proposition 4.1.3].Therefore, the
squares of the singular values possess the joint density

Ẑn

∏

i< j

|xi −x j |2e−n
Pn

i=1V(xi)
∏

i

dxi ,

on Rn
+. In particular, it falls within the framework treated in [20]. By part (i) of

Theorem 2.1 there, there exist positive constantsM,C11 such thatP(σ1 > M−1)≤
e−C11n , and thus point 1 of the assumptions of Theorem 1 holds. Point 3of the as-
sumptions (withκ < 1/4 andκ′ = 1/2) is an immediate consequence of equation
(2.26) there. Point 4 of the assumptions is an immediate consequence of equation
(2.32) there. Thus, it remains only to check point 2 of the assumptions. Toward
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this end, defineGn = {σn
1 < M +1} and note that we may and will restrict atten-

tion to |z| < M +2 when checking (3). We begin with the following proposition,
due to [21].

Proposition 14. Let A be an arbitrary n-by-n matrix, and let A= A+σN where
N is a matrix with independent (complex) Gaussian entries ofzero mean and unit
variances. Letσn(A) denote the minimal singular value of A. Then, there exists a
constant C12 independent ofA, σ or n such that

P(σn(A) < x) ≤C12
√

n
( x

σ

)2
. (49)

The proof of Proposition 14 is identical to [21, Theorem 3.3], with the required
adaptation in moving from real to complex entries. We omit further details.

On the eventGn, all entries of the matrixXn are bounded by a constant multiple
of

√
n. Let Nn be a Gaussian matrix as in Proposition 14. Withα > 2 a constant

to be determined below, set

G ′
n = {all entries ofn−α/2Nn are bounded by 1} .

Note that becauseα≥ 2, onG ′
n, we have thatσ1(n−αNn)≤ 1. DefineAn = zI−Xn,

Ãn = An +n−αNn1G ′
n

andAn = An+n−αNn. Then, by (49), withσn(An) denoting
the minimal singular value ofAn, we have

P(σn(An) < x;Gn) ≤C12x
2n1/2+2α . (50)

If the estimate (50) concernedAn instead ofAn, it would have been straightforward
to check that point 2 of the assumptions of Theorem 1 holds (with an appropriately
chosenδ, which would depend onα). Our goal is thus to replace, in (50),An by
An, at the expense of not too severe degradation in the right side. This will be
achieved in two steps: first, we will replaceAn by Ãn, and then we will construct
on the same probability space the matrixXn and a matrixYn so thatYn is distributed
like Xn+n−αNn1G ′

n
butP(Yn 6= Xn) is small.

Turning to the construction, observe first that from (50),

P(σn(Ãn) < x;Gn) ≤C12x
2n1/2+2α +P((G ′

n)
c) ≤C12[x

2n1/2+2α +n2e−nα/2] .
(51)

Let X(α)
n = Xn + n−αNn1G ′

n
. Let {θi} and{µi} denote the eigenvalues ofWn =

XnX∗
n and ofW(α)

n = (X(α)
n )(X(α)

n )∗, respectively, arranged in decreasing order.
Note that the density ofXn is of the form

Z−1
n e−ntr(V(xx∗))dx ,
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where the variablex = {xi, j}1≤i, j≤n is matrix valued anddx =
∏

1≤i, j≤ndxi, j ,

while that ofX(α)
n is of the form

Z−1
n EN[e−ntr(V((x+1G ′

n
n−αNn)(x+1G ′

n
n−αNn)

∗))
]dx ,

whereEN denotes expectation with respect to the law ofNn, andZn is the same

in both expressions. Note thatσ1(X
(α)
n ) ∈ [σ1(Xn)−1,σ1(Xn)+1]. BecauseV(·)

is locally Lipschitz, we have that if eitherσ1(Xn) ≤ M +1 or σ1(X
(α)
n ) ≤ M +1,

then there exists a constantC13 independent ofα so that

|tr(V(Wn)−V(W(α)
n ))| ≤

n
∑

i=1

|V(θi)−V(µi)| ≤C13

n
∑

i=1

|θi −µi |

≤ C13n
1/2

(

n
∑

i=1

|θi −µi |2
)

1
2

(52)

≤ C13n
1/2
(

tr((Wn−W(α)
n )2)

)
1
2

≤ C13n
1/2−α1G ′

n
tr((n−α/2Nn)

2)1/2 ≤ nC14−α , (53)

where the Cauchy-Schwarz inequality was used in the third inequality and the
Hoffman-Wielandt inequality in the next (see e.g. [1, Lemma2.1.19]). We em-
phasize that the constantC14 does not depend onα. In particular, ifα > (C14+
1) ∨ 2 we obtain that onGn, the ratio of the functionsfn = e−ntr(V(Wn)) and

gn = e−ntr(V(W(α)
n )) is bounded e.g. by 1+nC14+1−α; in particular, it holds that

P(σ1(X
(α)
n ) < M) ≤ (1+nC14+1−α)P(σ1(Xn) < M)

≤ (1+nC14+1−α)2P(σ1(X
(α)
n ) < M) .

Therefore, the variational distance between the law ofXn conditioned onσ1(Xn) <

M and that ofX(α)
n conditioned onσ1(X

(α)
n ) < M, is bounded by

4nC14+1−α .

It follows that one can construct a matrixYn of law identical to the law ofX(α)
n

conditioned onσ1(Xα
n ) < M, together withXn, on the same probability space so

that
P(Xn 6= Yn;Gn) ≤ 4nC14+1−α ≤ nC15−α .
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Note that this estimate does not depend onz. Combined with (51), we thus deduce
that

P(σn(An) < x;Gn) ≤C12x
2n1/2+2α +nC16−α ≤ nC17x2/3 ,

whereα was chosen as function ofx. This yields immediately point 2 of the
assumptions of Theorem 1, ifδ > 3C17/2.

We have checked now that in the setup of Corollary 3, all the assumptions
of Theorem 1 hold. Applying now the latter theorem completesthe proof of the
corollary.

Remark 15. The proof of Corollary 3 carries over to more general situations;
indeed,V does not need to be a polynomial, it is enough that its growth at infinity
is polynomial and that it is locally Lipschitz, so that the results of [20] still apply.
We omit further details.

7 Proof of Corollary 4

We takeDn satisfying the assumptions of Corollary 4 and considerYn =UnDnVn+
n−γNn, with matrix of singular values̃Dn. Note thatYn = ŨnD̃nṼn with Ũn,Ṽn

following the Haar measure. We first show thatD̃n also satisfies the assumptions
of Theorem 1 whenγ > 1

2, except for the second one. Since the singular values of
Nn follows the joint density of Corollary 3 withV(x) = 1

2x2, it follows from the

previous section thatP(‖n−
1
2 Nn‖ > M) ≤ e−C11n and therefore‖D̃n‖ ≤ ‖Dn‖+

n−γ+ 1
2‖n−

1
2Nn‖ is bounded with overwhelming probability. Moreover, sinceD̃n =

|Dn+n−γU∗
nNnV∗

n |,

∣

∣GDn(z)−GD̃n
(z)
∣

∣≤ E[‖D̃n−Dn‖]
|ℑz|2 ≤ C(‖D−1

n ‖)
|ℑz|2 n

1
2−γ

with C(‖D−1
n ‖) a finite constant depending only on‖D−1

n ‖ which we assumed
bounded. As a consequence, the third condition is satisfied since

∣

∣GΘ̃(z)−GD̃n
(z)
∣

∣≤ C(‖D−1
n ‖)

|ℑz|2 n
1
2−γ +

K
nκ|ℑz| ≤

K′

nγ′|ℑz|

with γ′ = min{κ, 1
2(γ − 1

2)} and ℑz ≥ n−max{1
2(γ− 1

2),κ′}. Hence, the results of
Lemma 11 hold and we need only to check as in Proposition 12 that, if νz

n the
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singular values ofzI−Yn,

In := E[1Gn

∫ n−δ

0
log|x|dνz

n(x)]

vanishes asn goes to infinity for someδ > 0 and some setGn with overwhelming
probability. ButAn = zI−Yn = zI−UnDnVn +n−γÑn with Ñn a Gaussian matrix,
and therefore we can use Proposition 14 to obtain (49) withσ = n−γ, and the
desired estimate onIn.

Proof of Example 5
Indeed, the first and the fourth hypotheses of Theorem 1 are verified sinceµ

is compactly supported and we assumed its symmetrized version has a bounded
Stieltjes transform. For the third, note that ifF−1 is Hölder continuous with index
α,

∣

∣GΘ̃(z)−GDn(z)
∣

∣≤
n
∑

i=1

|sn
i+1−sn

i |
n|ℑz|2 =

n
∑

i=1

|F−1( i+1
n )−F−1( i

n)|
n|ℑz|2 ≤C

n−α

|ℑz|2

where we finally used thatF−1 is Hölder continuous with indexα.

8 Extension to orthogonal conjuguation

In this last section, we generalize Theorem 1 to the case where we conjuguateDn

by orthogonal matrices instead of unitary matrices.

Theorem 16. Let Dn be a sequence of diagonal matrices satisfying the assump-
tions of Theorem 1. Let On,Õn be two n×n independent matrices which follow
the Haar measure on the orthogonal group and set An = OnDnÕn. Then, LAn

converges in probability to the probability measure µA described in Theorem 1.

Proof. To prove the theorem, it is enough, following Section 5, to prove the
analogue of Lemma 11 which in turn is based on the approximateSchwinger-
Dyson equation (35) which is itself a consequence of equation (29) and concen-
tration inequalities. To prove the analogue of (29) whenUn follows the Haar
measure on the orthogonal group, observe that (30) remains true with Bt = −B
which only leaves the choiceB = ∆(k, ℓ)−∆(ℓ,k) possible. However, taking this
choice and summing overk, ℓ, yields, if we denote ˜m(A⊗B) = ABt ,

E[
1
2n

tr⊗ 1
2n

tr(∂P(Tn,Un,U∗
n))] =

1
2n

E[
1
2n

tr((m̃◦∂P)(Tn,Un,U∗
n))].
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The right hand side is small as ˜m◦ ∂P is uniformly bounded. In fact, taking
P = (z1 − Yn)

−1(z2 − Tn)
−1Un, we find thatm̃◦ ∂P is uniformly bounded by

2/(|ℑz2|(|ℑz1| ∧ 1)2) and therefore (31) holds once we add toO(n,z1,z2) the
above right hand side which is at most of order 1/n|ℑz2|(|ℑz1| ∧1)2. Since our
arguments did not require a very fine control on the error term, we see that this
change will not affect them. Since concentration inequalities also hold under the
Haar measure on the orthogonal group, see [1, Theorem 4.4.27] and [1, Corollary
4.4.28], all the proof of Theorem 1 can be adapted to this set up.

Acknowledgments: We thank Greg Anderson for many fruitful and encour-
aging discussions. We thank Yan Fyodorov for pointing out the paper [15].
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