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THE SINGULARH CONTROL PROBLEM WITH
DYNAMIC MEASUREMENT FEEDBACK*

A. A. STOORVOGEL?

Abstract. This paper is concerned with the H problem with measurement feedback. The problem is
to find a dynamic feedback from the measured output to the control input such that the closed-loop system
has an H norm strictly less than some a priori given bound y and such that the closed-loop system is

internally stable. Necessary and sufficient conditions are given under which such a feedback exists. The
only assumption that must be made is that there are no invariant zeros on the imaginary axis for two
subsystems. Contrary to recent publications no assumptions are made on the direct feedthrough matrices
of the plant. It turns out that this problem can be reduced to an almost disturbance decoupling problem
with measurement feedback and internal stability, i.e., the problem in which we can make the H norm

arbitrarily small.

Key words, quadratic matrix inequality, Riccati equation, almost disturbance decoupling, measurement
feedback, internal stability

AMS(MOS) subject classifications. 93B27, 93B50, 93C05, 93C35, 93C45, 93C60

1. Introduction. After the original formulation of the H problem in [22] much
work has been done on the solution of this problem. Initially almost all the work was
done in a mixture of time-domain and frequency-domain techniques (see [1], [4], [5]).
In the last few years two new methods have evolved: the polynomial approach (see
[9]) and a time-domain approach (see [2], [8], [12], [13], [20]).

This paper handles the problem in the time domain. This has the advantage that
we directly obtain an upper bound on the necessary dynamic order of the controller,
namely, the dynamic order of the original plant. A similar result was obtained in [10]
and [11] using frequency domain techniques. Moreover, in our opinion, the results
are more intuitive.

In the above-mentioned literature it was assumed that there are no invariant zeros
on the imaginary axis and that the direct feedthrough matrices of the plant are
nonsingular. In literature two methods have been proposed to tackle theH problem
without these assumptions:

Apply a small perturbation on the output matrices such that these assumptions
are satisfied for the perturbed system. Then solve the H problem for the
perturbed system. If the perturbation satisfies some prerequisites then a control-
ler works for the original system if it works for the perturbed system. However,
we do not know a priori how large the perturbations are allowed to be. Hence
if for a certain perturbation no suitable controller exists, then we are not sure
whether or not a suitable controller exists for a smaller perturbation (see [19]).
Apply a transformation in the frequency domain:

G(s)G(s):=G
l+es]

(e > 0).

If we can find a suitable controller for the original system, then we can find a
controller for the transformed plant for e small enough. Vice versa, if for some
e there exists a suitable controller for the transformed system then the same
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THE SINGULAR H CONTROL PROBLEM 161

controller is a suitable controller for the original system. This approach has the
same disadvantage as the previous one since it is not clear how small we should
choose e. Another problem is that we still must make the assumption that the
transfer matrix from control input to output is left invertible as a rational matrix
(see 15]).

Recently, in the case of state feedback, a method of handling the singularity of
the direct feedthrough matrix (see [18]) without the above-mentioned disadvantages
was proposed. In the present paper we shall develop a method of handling these
singularities in the case of measurement feedback. Our results reduce to the knOwn
results in [2] and [20] in case these singularities do not occur.

The necessary and sufficient conditions under which there exists an internally
stabilizing dynamic compensator which makes the H norm strictly less than some a
priori given bound 3’ are formulated in a way that differs from those found in recent
publications [2], [20]. In these papers the results are formulated in terms of two Riccati
equations. However in the case where there are singularities of the direct feedthrough
matrices, these Riccati equations do not exist. We have two quadratic matrix inequalities
that replace the role of these Riccati equations. The solution of each of these quadratic
matrix inequalities must satisfy rank conditions. Moreover, we have a condition which
couples these two matrix inequalities. The spectral radius of the product of the two
solutions of these matrix inequalities should be smaller than a certain a priori given
upper bound. In the regular case the first rank condition together with the quadratic
matrix inequality reduces to a Riccati equation and the second rank condition guaran-
tees that it is a stabilizing solution of the Riccati equation.

The proof of our main result only uses the result for the state feedbackH control
problem. Our proof will use ideas used in [2] to solve the regular H problem with
measurement feedback but is independent of the results in [2] and is entirely self-
contained.

The outline of the paper is as follows. In 2 we formulate the problem and present
the main result. Moreover, we show that in the regular case and the state feedback
case this result reduces to the known results in [2] and [18], respectively. In 3 it is
shown that the conditions for the existence of a suitable compensator as given in our
main theorem are necessary. It is also shown that the problem of finding such a
compensator is equivalent to finding such a compensator for another system, i.e., it is
shown that any compensator which internally stabilizes this new system and makes
the closed-loop H norm less than 3’ has the same properties when applied to the
original system and vice versa. This new system has some desirable properties and
using these properties in 4, it is shown that for this new system we can even make
theH norm arbitrarily small. In 5 a method for finding the desired compensator is
discussed. We finish in 6 with some concluding remarks. The proofs of 3 are given
in Appendix B since they are rather technical. Appendix A introduces a number of
suitably chosen bases and some of the properties the system matrices have in these
new bases. These will be needed in Appendix B.

2. Problem formulation and main results. We consider the linear, time-invariant,
finite-dimensional system:

(2.1) ;: Cx+ D w,
C2x + D2u,

where x n is the state, u " the control input, w 1 the unknown disturbance,
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162 A.A. STOORVOGEL

y P the measured output, and z q the unknown output to be controlled. A, B,
E, C1, C2, D1, and D2 are matrices of appropriate dimensions. We would like to
minimize the effect of the disturbance w on the output z, using the measured output
y, by finding an appropriate control input u. More precisely, we seek a dynamic
compensator F described by the following equations:

(2.2) "
Kp+ Ly,

tu Mp+ Ny,

such that after applying the feedback u Fy in the system (2.1), the resulting closed-
loop system, whose transfer matrix is denoted by GF, is internally stable and has
minimal H norm, i.e., such that

(2.3) IIG II := sup

is minimized over all possible dynamic feedback laws F that make the closed-loop
system internally stable. Here [M] denotes the largest singular value of the matrix
M. Internally stable means that when w 0 then for every initial state of the system
and controller the state ofthe system and controller in the interconnection both converge
to zero as m. If the controller is given by (2.2) and the system is given by (2.1) this
is equivalent to requiring that the following matrix is asymptotically stable:

LC
Although this is our ultimate goal, in this paper we shall derive necessary and sucient
conditions under which we can find a dynamic feedback law which makes the resulting
H norm of the closed-loop system strictly less than some a priori given bound and
such that the resulting closed-loop system is internally stable.

A central role in our study of the problem above will be played by the quadratic
matrix inequality. For any > 0 and matrix P we define the following matrix:

Tp+PA+CC2+T-2pEETp PB+CD2(2.5) F(P) :=
BTp+DC2 DD2

If F(P) 0, we say P is a solution of the quadratic matrix inequality at T. We also
define a dual version of this quadratic matrix inequality. For any T > 0 and matrix

nxn we define the following matrix:

G(O):=fAQ+QAT +EE T +T-2QCC2o QC+ED(2.)
CQ+DE T DD

If G(Q) 0, we say that Q is a solution of the dual quadratic matrix inequality at
In addition to these two matrices we define two polynomial matrices, whose role is
again completely dual:

(2.7) L(P, s):= [sI A- T2EETp -B],

[sI-A-T-2QCC2](2.8) M( Q, s) :=
-C

We note that Lr(P,.s) is the controllability pencil associated with the system:

(2.9) (A + T-2EE Tp)x + BU,
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THE SINGULAR H CONTROL PROBLEM 163

while Mr(Q, s) is the observability pencil associated with the system:

2 (A + y-2QCf C2)x,
(2.10)

y -ClX.
We define the following two transfer matrices which again play a dual role:

(2.11) G(s) := C2(sI A)-B + D2,

(2.12) H(s) := C,(sI- A)-IE + D1.
In the formulation of our main result we also require the concept of invariant zero of
the system Z (A, B, C, D). These are all s %) such that

(2.13) rank(sI-A -2) <nrmrank (sI-A -2)C C

Here "normrank" denotes the rank of a matrix as a matrix with entries in the field of
rational functions. Moreover let %)+(%), %)-) denote all s %) such that Re s > 0 (Re s
0, Re s < 0). Finally, let p(M) denote the spectral radius of the matrix M. We are now
in the position to formulate our main result.

THEOREM 2.1. Consider the system (2.1). Assume that the systems (A, B, Ce, D)
and (A, E, C1, DI) have no invariant zeros in %)o. Then the following two statements
are equivalent:

(i) There exists a linear, time-invariant, finite-dimensional dynamic compensator F
of the form (2.2) such that by applying u Fy in (2.1) the resulting dosed-loop
system, with transfer matrix GF, is internally stable and hasH norm less than
y, i.e., GII < %

(ii) There existpositive semidefinite solutions P, Q ofthe quadratic matrix inequalities
F(P) >- 0 and G,( Q) >= 0 satisfying p(PQ) < y2, such that the following rank
conditions are satisfied:

(1) rank F(P) normrank G,

(2) rank G(Q) normrank H,

(L(P,s))(3) rank
F(P)

n +normrank G Vs %)U %)+,

(4) rank (Mr(Q, s) G(Q)) n+normrankHVs %)U %)+.

Remarks.
(i) Note that since P >- 0 and Q _-> 0 the matrix PQ has only real and nonnegative

eigenvalues.
(ii) The construction of a dynamic compensator satisfying (i) can be done

according to the method as described in 5. It turns out that it is always possible to
find a compensator of the same dynamic order as the original plant.

(iii) By Corollary A5 we know that a solution P of the quadratic matrix inequality
Fv(P) >= 0 satisfying (1) and (3) is unique. By dualizing Corollary A5 it can also be
shown that a solution Q of the dual quadratic matrix inequality Gv(Q)=> 0 satisfying
(2) and (4) is unique. The existence of P and Q can be checked via a state-space
transformation and investigating a reduced order Riccati equation.

(iv) We shall prove this theorem only for the case 3’ 1. The general result can
then be easily obtained by scaling.

Before we prove this result we look more closely at the result for two special cases.
State feedback: C I, D 0. In this case we have y x, i.e., we know the state

of the system. The first matrix inequality Fv(P)=> 0 together with rank conditions (1)
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164 A.A. STOORVOGEL

and (3) does not depend on C1 or D1 so we cannot expect a simplification there.
However Gv(Q) does get a special form:

(2.14) G(Q)=(AQ+QAT+EET+y-2QCC2Q QO)"Q

Using this special form it can be easily seen that G(Q)_-> 0 if and only if Q 0. For
the rank conditions it is interesting to investigate the normrank of H. We have

(2.15) normrank H normrank (sI- A)-E rank E.

It can be easily checked, by using (2.15), that Q =0 satisfies rank conditions (2) and
(4). The condition p(PQ)< y2 is trivially satisfied when Q=0. We find that in this
case condition (ii) of Theorem 2.1 becomes"

There exists a positive semidefinite solution P of the matrix inequalityF P) >-_ 0 such
that the following two rank conditions are satisfied:
(1) rank F(P) normrank G,

rank (L(P, s)(2)
F(P) ]

n + normrank G Vs cU c+,

which is exactly the result obtained in [18].
Regular case: D surjective and D2 injective. In this case it can be shown, in the

same way as in 18], that F(P)>_-0 together with rank condition (1) is equivalent to
the condition

ATp + PA +CC2+ T-ZPEETp-(PB + CDz)(DfD)-I(BTp + DfC) =0.

The dual version of this proof can be applied to the dual matrix inequality G,(Q)>=0
together with rank condition (2). These conditions turn out to be equivalent to the
condition:

AQ + QAT .qt_ EE T + T-zQCfC:Q QC+ ED)(D1DI )-I( c,Q + D1E T) O.

The two remaining rank conditions (3) and (4) turn out to be equivalent with the
requirement that the following two matrices are asymptotically stable:

A + ]/-2EE Tp B(DfD2)-’(BTp + DC2),
A + T-2QCC2 (QC+ ED)(DD()-1C.

Together with the remaining condition p(PQ)< y, we thus re-obtain exactly the
conditions derived in [2] and [6].

3. Reduction of the original problem to an almost disturbance decoupling problem. In
this section the implication (i)(ii) in Theorem 2.1 will be proven. Moreover, in case
the conditions (ii) of Theorem 2.1 are satisfied, we shall show that the problem of
finding a suitable compensator F for the system (2.1) is equivalent to finding a suitable
compensator F for a new system which has some very nice structural properties. In
the next section theH problem for this new system will be tackled. In the remainder
of this paper we assume y--1. The general result can be easily obtained by scaling.
Define F(P), G(Q), L(P, s), and M(Q, s) to be equal to F(P), G(Q), LI(P, s), and
M Q, s), respectively.

LEMMA 3.1. Assume that (A, B, C2, D) and (A, E, C1, D) have no invariant
zeros on o. Ifthere exists a linear, time-invariant, finite-dimensional dynamic compensator
F such that the resulting closed-loop system is internally stable and has H norm less
than one, then the following two conditions are satisfied:
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THE SINGULAR H CONTROL PROBLEM 165

(i) There exists a solution P >- 0 of the quadratic matrix inequality F(P) >- 0 satisfy-
ing the following two rank conditions:

(1) rank F(P)= normrank G,

(L(P,s))(2) rank
F(P)

=n+normrank G /s

(ii) There exists a solution Q >-0 of the dual quadratic matrix inequality G(Q)>-_ 0
satisfying the following two rank conditions:

(1) rank G(Q) normrank H,
(2) rank(M(Q,s) G(Q))= n+normrank H /s cU

Proof Since there exists an internally stabilizing feedback which makes the H
norm less than one for the problem with measurement feedback there certainly also
exists an internally stabilizing feedback which makes the Hoo norm less than one in
the full information case, i.e., the case where both x and w are known. This implies,
according to [18], that there exists a matrix P satisfying the conditions in (i). By
dualization it can be easily shown that there also exists a matrix Q satisfying the
conditions in (ii). lq

Assume there exist P and Q satisfying the conditions in parts (i) and (ii) of
Lemma 3.1. We make the following factorization of F(P):

(3 1) F(P)--(c2T’p(C2,P- Dp)
DpT ]

where C,p and Dp are matrices of suitable dimensions. This can be done since
F(P) => O. We define the following system:

)p-- (A+EETp)xp + Bup + Ewp,
(3.2) y (G +DP)x+ Dw,

Ze C2,pXp + Dpup.

LEMMA 3.2. Let P satisfy Lemma 3.1(i). Moreover let an arbitrary linear time-
invariant finite-dimensional compensator F be given, described by (2.2). Consider the
following two systems, where the system on the left is the interconnection of (2.1) and
(2.2) and the system on the right is the interconnection of (3.2) and (2.2):

_z w ze I_ we

(3.3) Up

Then the following statements are equivalent:
(i) The system on the left is internally stable and its transfer matrixfrom w to z has

H norm less than one.
(ii) The system on the right is internally stable and its transfer matrix from Wp to

Zp hasH norm less than one.

Proof See appendix B for the proof. [3

If for the original system (2.1) there exists an internally stabilizing, linear, time-

invariant, finite-dimensional compensator such that the resulting closed-loop matrix
has H norm less than one then, by applying Lemma 3.2, we know that the same

compensator is internally stabilizing for the new system (3.2) and yields a closed-loop
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166 A.A. STOORVOGEL

transfer matrix with Hoo norm less than one. Hence if we consider for this new system
the two quadratic matrix inequalities we know from Lemma 3.1 that there exist positive
semidefinite solutions to these inequalities satisfying a number of rank conditions. We
shall now formalize this in the following lemma. Define Ap := (A + EE rp) and C1,p :=
(C1 + DIE rp). Then for arbitrary X and Y in nn we define the following matrices"

r Czp+XEErX XB+Cf,,pDp]AX+XAp+C2,
T DDp(3.4) F(X) :=

BTX+DpC2,p
AeY+ YA+Er + YC,eC eY YC,e+D(3 5 6( :=

C,eY+D r DD
(.6 (x, s := [s a x -1,

[sI-Ap- YCpC2,p](3.7) M(Ks):=
C1,P

Moreover, we define two new transfer matrices:

(3.8) ,(s) := C2,e(sI-Ae)-B + De,
(3.9) /(s) :- C1,p(sI-ap)-lE + D.

LEMMA 3.3. Let P and Q satisfy part (i) and part (ii) in Lemma 3.1, respectively.
Assume (A, B, C2, D2) and (A, E, C, D1) have no invariant zeros on o. Then we
have the following two results"

(i) X := 0 is a solution of the quadratic matrix inequality F(X)>=0 and satisfies
the following two rank conditions"

(1) rank F(X) normrank G,

(2) rank F(X) ]
n+normrank G Vs cU

(ii) There exist a matrix Y satisfying the quadratic matrix inequality G( Y)>-O
together with the following two rank conditions"

(1) rank G(Y) normrank H,
(2) rank (]( Y, s) ((Y)) n + normrank/- ’s U +,
if and only if I- QP is invertible. Moreover, in that case Y := (1- QP)-Q is
the unique solution. This matrix Y is positive semidefinite if and only if

(3.10) p(PQ)<l.

Proof See Appendix B for the proof.
Proof of (i)(ii) in Theorem 2.1. The first part can be obtained directly from

Lemma 3.1. By Lemma 3.2 we know that also for the transformed system Ep there
exists a dynamic compensator which internally stabilizes the system and makes the
Hoo norm less than one. By applying Lemma 3.1 to this new system, this implies that
there exists a matrix Y>-0 satisfying Lemma 3.3(ii). Hence by Lemma 3.3 we have
(3.10) and therefore all the conditions in Theorem 2.1(ii) are satisfied.

In the remainder of this section we assume that the conditions of Theorem 2.1(ii)
are satisfied.

In order to prove the implication (ii) (i) in Theorem 2.1 we transform the system
(3.2) once again. This time, however, we use the dualized version of the original
transformation. By Lemma 3.3 we know Y= (I Qp)-lQ >= 0 satisfies ((Y) ->_ 0. We
factorize G( Y)"

(311) G(Y)=
D,o p,o D
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THE SINGULAR H CONTROL PROBLEM 167

where Ee,o and De,o are matrices of suitable dimensions. We define the following
system:

’P,O AP,QxP,O+ BP, QtIP,O+ Ep,QW,
(3.12) p,o" Yp,o C,pXp,o + Dp,oW,

2p,Q C2,pXp,Q + DpUp,Q,

where

(3.13)

(3.14)

Ap,o := Ap -t- YC,,pC2,p,
Bp,Q := B + YC,pDp.

By applying Lemma 3.3 to the system .,p,Q with the corresponding matrix inequalities
we note that Xp,o := 0 and Yp, := 0 satisfy the matrix inequalities and the corresponding
rank conditions for this new system. It can be shown that this implies that

rank
[
| SI-AP’O -BP’o|\ n+rank (C2,P Dp) /sc l,.J +(3.15)

C,p Dp !
and

By applying Lemma 3.2 and its dualized version the following corollary can be
derived.

COROLLARY 3.4. Let an arbitrary compensator F of the form (2.2) be given. The
following two statements are equivalent:

(i) The compensator F when applied to the system , described by (2.1), is internally
stabilizing and the resulting closed-loop transfer matrix has Ho norm less than one.

(ii) The compensator F when applied to the system p,o, described by (3.12), is

internally stabilizing and the resulting closed-loop transfer matrix has Ho norm less than
one.

In the next section we shall show how to solve the H problem for a system
satisfying the extra conditions (3.15) and (3.16). It turns out that for this new system
we can even make the Hoo norm arbitrarily small.

4. The solution of the almost disturbance decoupling problem. Assume that the
following system is given:

2= Ax+ Bu + Ew
(4.1) " y ClX+ Dlw,

Z C2x -t- D2u

such that the following two conditions are satisfied:

(4.2) (M-A-B) =n+rank(C2 D2) Vsct_J+
C2 D2

and

(4.3)
sI A E

n + rank Vs U
C1 D1 D1

From the previous section we know that if the conditions in part (ii) of Theorem 2.1
are satisfied then it is always possible to transform our system into a new system that
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168 A.A. STOORVOGEL

satisfies the conditions (4.2) and (4.3). Moreover, if a compensator F given by (2.2)
internally stabilizes this new system and makes theH norm of the resulting closed-loop
transfer matrix smaller than one, then it does the same with the closed-loop system
associated with the original system. In fact, we shall prove a stronger result.

THEOREM 4.1. Assume system (4.1) is given satisfying (4.2) and (4.3). Then for
all e > 0 there exists a linear, time-invariant, finite-dimensional dynamic compensator F
such that the closed-loop system is internally stable and hasH norm less than e.

Remark. We note that even if for this new system we can make the H norm
arbitrarily small, for the original system we are only sure that the H norm will be
less than one. It is very well possible that a compensator for the new system yields an

H norm of say 0.0001 while the same compensator makes theH norm of the original
plant only 0.9999.

Before we can prove this result we have to do some preparatory work. We first
have to introduce a number of subspaces from geometric control theory as follows.

DEFINITION 4.2. Assume we have a system

(4.4) E. f: Ax + Bu,
y C2x + D2 u.

We define the strongly controllable subspace -(ci) as the smallest subspace ff ofn
for which there exists a mapping G such that

(4.5) (A+GC2)3-c

(4.6) Im (B + GD2) c -.
We also define the subspace -g(Eei) as the smallest subspace ff ofn for which there
exists a matrix G such that (4.5) and (4.6) are satisfied and, moreover, A+ GC2[n/-
is asymptotically stable. It is well known that these subspaces are well defined in this
way. A system is called strongly controllable if its strongly controllable subspace is
equal to the whole state space.

We also define the dual versions of these subspaces as follows.
DEFINITION 4.3. Assume we have a system

=Ax +Ew,
(4.7) Edi

y ClX + D1 u.

We define the weakly unobservable subspace (.di as the largest subspace V of"for which there exists a mapping F such that

(4.8) (A + EF)Uc ,
(4.9) (C1 + D1F) //’= {0}.

We also define the subspace Cg(-di as the largest subspace V for which there exists
a mapping F such that (4.8) and (4.9) are satisfied and, moreover, A+EFIT/" is
asymptotically stable. It is well known that these subspaces are well defined in this
way. A system is called strongly observable if its weakly unobservable subspace is equal
to {0}.

In order to calculate these subspaces the following lemma will come in handy.
LEMMh 4.4. (Eci) equals the limit of the following sequence of subspaces:

-O(.ci) ".’-- O, ’-iq-l(.ci) ".-" {X En ::]) E -i(.ci) U m such that
(4.10)

x A + Bu andC + D2u 0}.
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THE SINGULAR H CONTROL PROBLEM 169

It is well known (see [16]) that 3-i(ei) (i= 1, 2,...) is a nondecreasing sequence of
subspaces that attains its limit in a finite number of steps. In the same way 7/’(ai) equals
the limit of the following sequence of subspaces"

CO(,di) := rn, i+l(,ai := {X e" ::lt m, such that
(4.11)

Ax +E V(Yd) and Cx + D1 t 0}.

Moreover, ifG is a mapping such that (4.5) and (4.6) are satisfied for --- -() and
if F is a mapping such that (4.8) and (4.9) are satisfied for 7/’= 7/’(Ea), then we have
the following two equalities"

(4.12) -g()=[-(Y)+b(A+GC2)]fq(-(Y)+C im DIA+GC2)
(4.13) 7Cg(Y.d) Y’(d) f3 Tg(A + EF) + < A + EF V(d) f3 E ker D).

Hereb A + GC) denotes the modal subspace of the matrix A + GC with respect to the
closed right halfplane and g(A + EF) denotes the modal subspace of the matrix A + EF
with respect to the open left halfplane. Finally, (A+ EF T’(d) (q E ker D) denotes the
smallest A+EF invariant subspace containing 7/’(d)f-]EkerD1 and (-(a)+
C im D21A+ GC2) denotes the largest A+ GC invariant subspace contained in
-(:e) +C im D.

Proof. The proof is almost entirely well known except possibly (4.12) and (4.13)
in case the D-matrices are unequal to zero. This can be proven by first showing that
there exists a G satisfying (4.5) and (4.6) for which (4.12) holds and after that, showing
that the equality is independent of our particular choice of G satisfying (4.5) and (4.6).
The same can be done for (4.13). Details are left to the reader.

We can express the rank conditions (4.2) and (4.3) in terms of these subspaces
(see [3], [17]) as follows.

LEMMA 4.5. Let system (4.1) be given. The rank condition (4.2) is satisfied if and
only if
(4.14) ///’g (-ci) -t- "("ci) n.
The rank condition (4.3) is satisfied if and only if
(4.15) T’(Y.a,) f’l -g(Za,) {0}.

Here c is given by (4.4) and a is given by (4.7).
Using this we can derive the following lemma.
LEMMA 4.6. Let system (4.1) be given satisfying (4.2) and (4.3). For all e > 0 there

exist mappings F and G such that A + BF and A + GC are asymptotically stable and,
moreover,

(4.16) II( C2 qt.. D2F)(sI A- BF)-llloo < 8

and

(4.17) II(sI-A-GC,)(E + GO1)11o < e.

Proof By Definition 4.3 we know there exists a mapping F such that

(4.18) (A + BF) 7#g() c

(4.19) C2+ D2F)g() {0},

and moreover, A+ B/3I Vg()is asymptotically stable. Define_ the canonical pr.ojection
1-I’"-+ "/Vg(). By (4.19) there exists a mapping C such that C2+D2F= CII.
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170 A.A. STOORVOGEL

Moreover, by (4.18) there exists a mapping such that 1-I(A+BI6)=II. Finally,
define B := lib and the system:

A+ /u,
p+Du.

It can be easily shown by induction using the algorithm (4.10) that -(Zy)=()
for i=0, 1,.... Hence we have

(Xs) n(x)=

This implies that the system (4.20) is strongly controllable.
Define Fo such that ( + D2Fo)Dz 0 and define M such that ker D2 im M. It

can be easily checked that (E) (A + BFo, BM, C + D2Fo, 0). Hence by Theorem
3.36 of {21] we know there exist an F such that

(4.21) II(e +

and such that A + BFo+ BMF is asymptotically stable.
Define F := + (Fo+ M#)H; then

(4.23) n(A +F) (A +Fo+ BMF)n.

It can be easily shown that this implies that A + BF is asymptotically stable. Moreover,
we have

(4.24) C2+ D2F) e

for all > 0. Using (4.24), we find for all s i (use that le’i 1)"

II(C+ D:F)(sI-(A+ BF))-lll (C:+ D:F) e((A+BF)-sI)t dt

o

II(c=+ D2F) eA+F)tlll

This implies (4.16). Therefore F satisfies all the requirements of the lemma. The
existence of a G such that A+ GC is asymptotically stable and such that (4.17) is
satisfied can be obtained by dualization.

We can now prove Theorem 4.1.

Proof of eorem 4.1. Let e > 0. We first choose a mapping F such that

(4.25) I](C+D2)(sI-A-B)-II]<e/3I]][-
and such that A + BF is asymptotically stable. This can be done according to Lemma
4.6. Next choose a mapping G such that

(4.26) ll(sI- A- GC)-( + GD)ll< min {e/31[D2Fll
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THE SINGULAR H CONTROL PROBLEM 171

and such that A+ GC1 is asymptotically stable. Again Lemma 4.6 guarantees the
existence of such a G. We apply the following dynamic feedback compensator to the
system (4.1):

{u Ap + Bu + G( ClP Y),
(4.27) Ev," Fp.

The closed-loop system is given by (where e := x-p):

(4.28) Ncl"
0 A + GCI E +GD

It is clear that this is an internally stabilizing feedback. We now calculate the transfer
matrix from w to z of this system"

C2+ D2F)(sI A BF)-E

C2+ D2F)(sI A BF)-1BF(sI A GC1)-I(E + GO1)

D(sI-A- 6Cl)-1( + D1).

Using (4.25) and (4.26) it can easily be shown that this closed-loop transfer matrix
has H norm less than e. U

We are now able to complete the proof of Theorem 2.1.
Proof of the implication (ii)(i) of eorem 2.1. Since we can transform the

original system into a system satisfying (4.2) and (4.3) we know by Lemma 4.1 that
we can find an internally stabilizing dynamic compensator for this new system which
is such that the closed-loop transfer matrix has H norm less than one. By applying
Corollary 3.4 we know that this compensator F satisfies the requirements in Theorem
2.1(i).

5. The design of an admissible compensator. In this section we shall give a method
to calculate a dynamic compensator F such that the closed-loop system is internally
stable and, moreover, the closed-loop transfer matrix has H norm less than one. We
shall derive this F step by step, using the following conceptual algorithm.

(i) Calculate P and Q satisfying part (ii) of Theorem 2.1. This can, for instance,
be done using Lemma A4. If they do not exist or if p(PQ) 1, then there
does not exist a dynamic feedback satisfying part (i) of Theorem 2.1 and
we stop.

(ii) Perform the factorizations (3.1) and (3.11). We can now construct the system
Ee,o as given by (3.12).

We now start solving the almost disturbance decoupling problem for the system (3.12)
we obtained in step (ii). As in 4 we shall rename our variables and assume that we
have a system in the form (4.1). We set e 1. We have to construct matrices F and G
such that (4.25) and (4.26) are satisfied and, moreover, such that A + BF and A + GC
are asymptotically stable. We shall only discuss the construction of F. The construction
of G can be obtained by dualization.

(iii) Construct g(i) by using Lemma 4.4.
(iv) Construct an F such that (4.18) and (4.19) are satisfied and, moreover, such

that A +B[ g(E) is asymptotically stable.
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172 A.A. STOORVOGEL

(v) Define the canonical projection H" "-* Yt"/T’g(E) and the mappings A,
B, and C satisfying"

(1) rt(a+F)= An,
(2) B := riB,
(3) C+DF CII.

Construct the system as given by (4.20).
(vi) Construct Fo such that (+D2Fo)rD2=O and M such that im/M=

B ker D2. Define the following matrices"
(1) A:=A+BFo,
(2) B := BM,
(3) C := C + D2Fo,

and the system

2 Ax + Bu,
(5.) ,.

z=Cx.

In this way we obtained a strongly controllable system (5.1), for which we have to
find a static feedback F such that the closed-loop system is internally stable and such
that the closed-loop impulse response satisfies the 1 norm bound e/311EII -. We shall
use a method for this which was given in [21].

(vii) We construct a new basis for the state space. We shall construct it by
induction. Choose xl e ker C im B and v such that xl Bye. If x does
not exist go to item (viii). Assume {xl,..., xi} and {v,. z vi} are g,iven.
Denote by 5ei the linear span of {x,..., xi}. If {Axi+im B)fqker C
and im/} (’1 ker owi, then goto ste.p (viii). Otherwise, if (fi.x,2+im
ker d i, then choose v such that Axi + By ker and ,xi + By : bi. Set
Xi+ ,X -["V and Vi+ V. (If (x -[- im/) f3 ker ( 5i, then choose v
such that /}v ker ( and /v 5f. Set xi+ v and vi+ v. Set i:= i+ 1
and repeat this paragraph again.

(viii) Define a*(ker ()= 5i. Define a linear mapping F such that Fx= v, j=
1,. ., and extend it to the whole state space. In [21] it has been shown
that Aa*(ker )+im/= -(-ht)---n. Therefore it is easily seen that we
can extend {x,..., xi} to a basis of" which can be written as

AvBv,
v2,av, av2,

v, Av v, a vj,
where Az +/}F and for those k 1, , j for which r >_- 1 we have

rk--1AFVk, AF BVk ker C.
(ix) We define the following sequence of vectors. For i= 1,. .,j we define:

xi,(n) := I+-Av I)

xi,(n) := I+-A Avxi(n)
n

Xi,r+l(rl) :"- I+- Av AFXir,(n).
n
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THE SINGULAR Ho CONTROL PROBLEM 173

Since Xi,k(n)-Av-lvi as n-o for i= 1,. .,j and k= 1,..., ri+l it can
be easily seen that for n sufficiently large the vectors {Xi,k(n), i= 1," ",j;
k 1,"" ", ri + 1} are linearly independent and hence form a basis of Yt
again Let N be such that for all n > N these vectors indeed form a basis

(x) For all n > N define a linear mapping Fn by

F.x,,(n) := -nv,

PnXi, ri+ gl := n ri+ Vi"

This determines F, u.niquely. Define F, := F + F,. It is shown in [21] that
the spectrum of + BF, is the set {-n}. Moreover, we have

lim e(A+’ll, O.

Choose n such that the impulse response satisfies the required 1 bound
/3IIEII -. This Fn is internally stabilizing and satisfies the 1 bound. Now
we can construct the F we were looking for:

(xi) Define F= F + (Fo+ MFn)II. This F is internally stabilizing and is such that
(4.25) is satisfied.

We construct G by dualizing the construction of F and the required dynamic com-
pensator is finally given by (4.27).

6. Conclusion. In this paper we have given a complete treatment oftheH problem
with measurement feedback without restrictions on the direct feedthrough matrices.
It remains however an open problem how we can treat invariant zeros on the imaginary
axis. Other open problems are the minimally required dynamic order of the controller
and the behaviour of the feedbacks and closed-loop system if we make the bound T
tighter. The latter problem has been investigated previously. It is possible that the
infimum can only be attained by a nonproper controller (see [4]). But using the ideas
of this paper it is perhaps possible to characterize whether or not this problem arises.

Finally, it would be interesting to characterize all solutions. In our opinion it is,
however, in general not possible to obtain a characterization similar to the one obtained
in [2]. This is due to the fact that the so-called central controller can be nonproper.

In our opinion this paper gives support to our claim that the approach to solve
theH problem in the time-domain is a much more intuitive and appealing approach
than the other methods used in recent papers.

Appendix A. A preliminary system transformation. In this section we shall choose
bases in input, output, and state space that will give us much more insight into the
structure of our problem. Although these decompositions are not necessary in the
formulation of the main steps of the proof of Theorem 2.1, the details of the proof
are very much concerned with these decompositions. It will be shown that the matrices
defining our systems in these bases have a very particular structure. For details we
refer to 18]. We shall display this structure by writing down the matrices with respect
to these suitably chosen bases for the input, state, and output spaces.

Our basic tool is the strongly controllable subspace. This subspace has already
been defined in Definition 4.2.
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174 A.A. STOORVOGEL

We shall give one property of the strongly controllable subspace at this point
which will come in handy in the sequel (see [7], [16]).

LEMMA A1. Consider the system (4.4). The system is strongly controllable if and
only if

(A1) (M-A -B)C2 O2

has rank n + rank (C2 D2) for all s cg.
We can now define the bases for the system (2.1) which will be used in the sequel.

It is also possible to define a dual version of this decomposition but we will only need
this one. First choose a basis of the control input space ’. Decompose 1 ?/2
such that 2=ker D2 and -//1 arbitrary. Choose a basis ul, u2,..., u,, ofm such
that ua, u2," ", u is a basis of and u+,. ., u is a basis of.

Next choose an orthonormal basis z, z2," ", Zp f the output space P such that
z,..., z is a basis of im D2 and z+,..., Zp is a basis of (im D). Because this is
an ohonormal basis this basis transformation does not change the norm I[z]].

Finally, we choose a decomposition of the state space "=23 such
that 2 (Eci C im D,23 (Eci) and W arbitrary. We choose a corre-
sponding basis x, x,..., x, such that xa,..., x is a basis of W, X+l,’-’, x is a
basis of W2 and x+,..., x, is a basis of W3.

With respect to these bases the maps B, C, and D have the following form:

(A2) B=(B B), C= d]’ 0

where is inveible. Next, we define a linear mapping Fo" by

(A3) Fo := and hence C+DFo

We have the following propeies of this decomposition which are proven in [18].
LEMMA A2. Let Fo be given by (A3). en we have

(i) (A + BFo)(() C; im D) (),
(ii) im B (N),
(iii) () C; imD ker d.
By applying this lemma we find that the matrices A + BFo, B, C + DFo and Da

with respect to these bases have the following form:

(A4)
A+BFo= A2, A2z l,

A31 A32 A33/] \B31 B32/

C+DFo=( 0 0 0) D2=(2 ).C21 0 C23

We decompose the matrices 1 and E correspondingly:

(A5) C C,l C12 C13), E E2

E3
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THE SINGULAR H CONTROL PROBLEM 175

These matrices turn out to have some nice structural properties, which have been
shown in 18].

LEMMA A3. We have the following properties:
(i) C23 is injective,
(ii) the system

(A6)

is strongly controllable,
(iii) we have

A32 A33/’ B32]’

(A7) normrank G rank (C23 0)0 D2

where G is the transfer matrix defined by G(s) := C2(sI-A)-IB +D2.

We need the following results from 18] which connects the conditions of Theorem
2.1 to the matrices as defined in [A4].

LEMMA A4. Assume penn is symmetric and F(P)>=O. Then we have the
following:

(i) P-()= 0, i.e., in our decomposition P can be written as

(A8) P= 0 0

0 0

(A9)

(ii) IfP has the form (A8), then

R(P1) := P1AI +AP + C1C21 + PI(EIE(- Bll(Iflz)-’BI)P1
-(PIA13 -]- C2 C23)( C3C23)-1(A 13P1T _]_ C3C21 0,

Moreover, R(P1) =0 if and only if rank F(P) normrank G.
(iii) IfR P1) O, then we have

(L(n,s)rank\ F(P)

if and only if
^T,Z(P1) := All +EErp_ BII(D2 D2)-1BP a,3( Cf3C23)-1(Ar13P1 --{- C2C21

is an asymptotically stable matrix. Moreover, in that case also the matrix

All- Bll(lf2)-lB1Pl-A13(C3Cz3)-(Ar3P1 + C2 C21)

is an asymptotically stable matrix.
COROLLARY A5. If there exists a matrix P>= 0 such that F(P)>-0 and moreover:

(i) rank F(P) normrank G,

(ii) rank
F(P) ]

n+normrank (3 Vs co c/,

then this matrix is uniquely defined by the above inequality and the corresponding two
rank conditions.

Proof By Lemma A4 a solution P must be of the form (A8) where P is a solution
of the algebraic Riccati equation R(P1) =0 such that Z(P1) is asymptotically stable.
Denote the Hamiltonian matrix corresponding to this algebraic Riccati equation by
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176 A.A. STOORVOGEL

H; then we have

I

Since a Hamiltonian matrix has the property that
is an eigenvalue of H, we know that an n-dimensional invariant subspace IV of H
such that H[W is asymptotically stable must be unique. This implies that P1 is unique
and hence also P is unique.

Appendix B. Proofs concerning the system transformations. In order to prove
Lemma 3.2 we must first do some preparatory work. We first recall the following lemma
from [2] which we shall use in the sequel.

LEMMA B1. Suppose we have the following interconnection of two systems E and
E2, both described by some state-space representation:

(B1)

Z //3

Assume E1 is internally stable and its transfer matrix Lfrom (w) to () satisfies L-L= I
where L- (s) := Lr(_ s). Moreover, assume that if we decompose L:

(B2) L=:
n21 L22]

compatible with the sizes of w, u, z, and y, we haveL H and lims_. L22(s) 0. Then
the following two statements are equivalent:

(i) The closed-loop system (B 1) is internally stable and its closed-loop transfer matrix
has Hoo norm less than one.

(ii) The system -2 is internally stable and its transfer matrix has Ho norm less than
one.

Proof. This is a well-known result although.written down here in a different way.
Note that if the closed-loop system (B1) is internally stable, then 2 is stabilizable and
detectable. This can be shown either by writing down the closed-loop differential
equation or by noting that an unstable uncontrollable mode in 2 cannot be controlled
by y and hence is still unstable and uncontrollable in the closed-loop system and the
same for an unstable unobservable mode. The result in this form can then be obtained
by using the work in [14].

We shall now assume that we have chosen the bases described in Appendix A.
Let P satisfy the conditions of Lemma 3.1(i). Hence we know P has the form (A8).
It is easily shown that it is sufficient to prove the lemma for one specific choice of C2,p
and Dp. We define the following matrices:

(B3) C2 p :-- ( /2(/f/2)-’B1T1p’ q- Cll C12 C13
\ C23(C3C23)-1 T T(A 13P + C 23 C21 0 C23/
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(B4) De: (=D2).
0

By writing down F(P) in terms of the chosen bases and by using the fact that P1
satisfies the algebraic Riccati equation R(P1) =0 where R(P1) is defined by (A9), it
can be checked after some effort that these matrices indeed satisfy (3.1). We define
the following matrices:

(B5) ^TA := All- A13( C3C23)-l(AP, q- C3C2,)- Bll(D2 D2)-’BP1,

(B6) TC, :- -(D2 )-’BIP1,

(B7) d2 :--- C21 C23 C3 C23)-I(A P, + C 27 C21 ),

(B8) ll := B,l); ’,

(B9) J12 :-" A13(C3C23)-lc3-PCl(I-C23(C3C23)-lc3),

where ? denotes the Moore-Penrose inverse. We now define the following system"

(B10)

We have the following properties of the system Eu.
LEMMA B2. The system Eu is internally stable. Let U denote the transfer matrix of

yEufrom (w) to (z). We have U-U=I where U-(s):= uT(--S). If we decompose U:

Ull U12’(Bll) U:=
O21 U22/

compatible with the sizes ofu, w, Yc, and Zu then we haveU H and lims_ U22(s) 0.

Proof The fact that Eu is internally stable and that U H follows directly
from the fact that , and/ + E1E(P1 are asymptotically stable by Lemma A4(iii). The
fact that lims_, Uz2(S)= 0 can be checked trivially. It can be easily checked using
Lemma A4(ii) that P1 is the controllability gramian of 5;u. Moreover, we have

I (0 0)
+

Er Pl=0"

This can be checked by simply writing out and using the fact that

ker P1 ker (I C23(Cff3C23) -1 Cff3)C21

The result that U--- U I then follows by applying Theorem 5.1 of [5]. 13

Proof of Lemma 3.2. We have our special choice of C2,p and Dp given by (B3)
and (B4). As we have already noted, taking this special choice for Cp and Dp is not

D
o
w

n
lo

ad
ed

 0
5
/2

0
/1

5
 t

o
 1

3
1
.1

5
5
.1

5
1
.1

3
7
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



178 A.A. STOORVOGEL

essential. We shall first compare the following two systems:

(B13)

Z W

/flu

The system on the left is the same as the system on the left in (3.3), and the system
on the right is described by the system (B10) interconnected with the system on the
right in (3.3). We decompose the state of E, x into xl, x2, and x3 according to the
choice of bases described in Appendix A and decompose the state of Zp into X,p,
X2,p, X3,P of corresponding sizes. (Note that E and Ep have the same state space ".)
Writing out all the differential equations using the decompositions of the matrices
given in (A3)-(AS) we find

tg--;;1,Ip tZ -i-/1E 1Tp1 0 OBKMttXu-X1,ptt 0

* A + BNC Xp + E +BND
LC1 p LD

W,

Xu --;;1,P)z (* C2+ D2NC DM) + D2NDIw.

The denotes matrices which are unimportant for this argument. The system on the
right is internally stable if and only if the system described by the above set of equations
is internally stable. If we also derive the system equations for the system on the left
in (B13) we immediately see that, since .+EE(P is asymptotically stable, the system
on the left is internally stable if and only if the system on the right is internally stable.
Moreover, if we take zero initial conditions and both systems have the same input w,
then we have z zc, i.e., the input-output behaviour of both systems are equivalent.
Hence the system on the left has H norm less than one if and only if the system on
the right has H norm less than one.

By Lemma B2 we may apply Lemma B1 to the system on the right in (B13) and
hence we find that the closed-loop system is internally stable and has H norm less
than one if and only if the dashed system is internally stable and has H norm less
than one.

Since the dashed system is exactly the system on the right in (3.3) and the system
on the left in (B13) is exactly equal to the system on the left in (3.3), we have completed
the proof. [3
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We will now prove Lemma 3.3. In fact, we will prove the dual version of this
lemma since this is much more convenient to us. We first factorize G(Q):

(B14) G(Q) := (E D).
D(

2 C2 and B( := B + QCD2 and the system:Define A( := A + QC T

o Ax+ Bouo + Eow
(B15) Eo" Yo= Cxo + Dow

ZQ C2XQ + D2UQ.

By using the well-known facts that F stabilizes Z if and only if Fr stabilizes Zr and
G II GII, we can derive the following dualized version of Lemma 3.2 for this

dual system as follows.
LEMMA B3. Let Q satisfy Lemma 3.1(ii). Moreover, let an arbitrary linear time-

invariantfinite-dimensional compensator F be given, described by (2.2). Let thefollowing
two systems be given where the system on the left is the intereonnection of (2.1) and (2.2)
and the system on the right is the interconnection of (B15) and (2.2).

(B16) yQ

Then the following statements are equivalent:
(i) The system on the left is internally stable and its transfer matrix hasH norm

less than one.
(ii) The system on the right is internally stable and its transfer matrix has Ho norm

less than one.
We now investigate how the matrices appearing in the matrix inequality and the

rank conditions look like for this new system

(B17)

(B18)

(B19)

(B20)

Moreover, we define two new transfer matrices:

(B21) d(s) := C2(si-Ao)-’Bo + D2,

(B22) /-it(s):= Cl(sI-ao)-IEo +Do.

Using these definitions we have the following result.
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LEMMA B4. Let Q satisfy Lemma 3.1(ii). Then Y-O is the unique solution of the
quadratic matrix inequality G(Y) >- 0 satisfying the following rank conditions"

(1) rank t(Y) normrank,
(2) rank (//( Y, s) (Y)) n +normrank/ Vs RLI
Proof. It is trivial to check that ((0)_->0. Moreover, since (0)-G(Q) and

M(0, s) M(Q, s) it remains to show that normrank H -normrank H. We have

(sI-Aonormrank H normrank
C

sI AQ
normrank

-C
normrank (M(Q, s)

EQ) n

DoE DoDS/ n

O(Q))-n

normrank H.

Y is unique by Corollary A5. This is exactly what we had to prove. [3

LEMMA B5. There exists a solution X of the matrix inequality F(X)>= 0 satisfying
the following two rank conditions:

(1) rank F(X) normrank G,

(2) rank(r(X’; ))/(X n + normrank G Vs o(_j c+,

if and only if I- PQ is invertible. Moreover, in that case the solution is unique and is
given by X (I- pQ)-lp. We have X >= 0 if and only if
(B23) p(PQ)<l.

Proof. We first make a transformation on fi(X)"

(B24) F,r(X) := ( Io (I +XQ)F) (X) ( l )I Fo(I+ QX)

=( C+XMX XB )(B25)
ArX + Xfi+ C T

BTx DfD
where

(B26) := A+ BFo+ Q( C2+ D2Fo) r C2+ DzFo),

(B27) C2 :- C+ D2Fo,

(B28) M:=(A+BFo)Q+Q(Aw +FfBT)+EE w+QQ,
and Fo as defined in (A3). We also transform the second matrix appearing in the rank
conditions:

W(X, s):= I (I + XQ)Ff (X) ] Fo(I + QX)
0 I

sI-A-MX -B t,Tx +X, + (J +XMX XB
BTx DfD2
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We have the following equality"

(B29)

(B30)

normrank ( normrank
sI Ao

C2 D2

-BQ
=normrank( QCI f) ( sI D2 ) n

((B31) normrank
sI-A

n normrank G.
C2

Therefore the conditions that X->_ 0 has to satisfy can be reformulated as"

(i) Ftr(X) 0,
(ii) rank Ftr(X) normrank G,
(iii) rank W(X, s)=normrank G+n Vs t.J +.

Moreover, we note that T(A, B, Ce, De) T(A, B, Ce, De). This can be shown by using
the fact that the new system is obtained by a state feedback and an output injection
(note that B B + Q(Ce+ DeFo) TDe) and it is well known that the strongly controllable
subspace is invariant under feedback and output injection. This can easily be shown
using the algorithm (4.10). We now choose the bases from Appendix A. By Lemma
A4(i) we know that if X exists then it will have the form

(B32) X 0

0

for some positive semidefinite matrix X1. Note that there is small difference since M
is not necessarily positive semidefinite, but it can be easily seen from the proof in 18]
that this difference is not important. We use this decomposition for X and the
corresponding decompositions for P and Q:

(B33) P 0 O 021 022 023
0 Q31 Q3e Q33

Together with the decompositions for the other matrices as given in (A4)-(A5) we can
decompose F,.(X) correspondingly:

X111 A-IX, A- GeT1 C2, + X1M11X, 0 X1,3 + 62 623 X,B,, 0

0 0 0 0 0

AXI+CC21 0 CC23 0 0
TBXi 0 0 D2D 0

0 0 0 0 0

where

(B34)

(B35)

(B36)

"11 := All+ 011C1 C21 t_ 013cT23c21,

13 :-- A13 + 0,1 c2T C23 -t- Q13c2T3c23,

M,1 := AllQ1, +A13Q + Q,1AI + Q13A[3 + E1E[

+ Qll c2T1(c21011 + C23Q13) + Q13C3(C21 011 + C23Q13).
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182 A.A. STOORVOGEL

The rank condition rank Ftr(X)--normrank G is, according to Lemma A3(iii),
equivalent with the condition that the rank of the above matrix is equal to the rank
of the submatrix

(B37)
C Ce3 0

o

Therefore the Schur complement with respect to this submatrix should be zero This
implies that if we define

/ (X1):= X,A,1 +AX1 +C C2, -t- X,(M1, BI,(D2 De)-’B)X,

--(X1A13 -- C2T1 C23)( c2T3c23)-’(ATX + CC),

thenX should satisfy R(X1) 0. Moreover, ifwe decompose W(X, s) correspondingly,
then we can show by using elementary row and column operations that for any matrix
X in the form (B32), where X1 satisfies/(X) 0, that for all s , W(X, s) has the
same rank as the following matrix:

(B38)

/ o o o o
* sI-Ae2 -A23 0 -B2

* -A32 si-A33 0

0 0 0 0 0

0 0 0 0 0
0 0 I 0 0

0 0 0 I 0

0 0 0 0 0

where

(B39) Z(X,) := A,, + M1,X1- BI,(D2 De)- 1X1-A13(C3C23)-1(A3Xl-- cT23c21)

The matrix

(B40)
sI A22 -Ae3 -B22}-A32 sI-A33

0 I 32
has full row rank for all s cg by Lemma A3(ii) and Lemma A1. Hence the rank of
the matrix (B38) is n + normrank G for all s / U o if and only if the matrix (X1)
is asymptotically stable. Using this we can now reformulate the conditions thatX => 0
must satisfy:

(i) /(X,) 0,
(ii) (X) is asymptotically stable.

That is, X should be the positive semidefinite stabilizing solution of the algebraic
Riccati equation /(X1)=0. Denote the Hamiltonian corresponding to this ARE by
Hnew. We know that P is the stabilizing solution of the algebraic Riccati equation
R(P) =0 as given by (A9). Denote the Hamiltonian corresponding to this algebraic
Riccati equation by Ho,d. Then it can be checked that

(B41) Ho,d (0 I
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Since P1 is the stabilizing solution of the Riccati equation corresponding to the
Hamiltonian Hold we know that the modal subspace of Hold corresponding to the open
left halfplane is given by

(B42) g(Ho,d) Im
P1

Combining (B41) and (B42), we find

(B43) g(Hew) Im
0 --Q11)(i pII) im (I-QllP1).p1

Therefore we know that there exists a stabilizing solution to the algebraic Riccati
equation R(X) =0 if and only if I-QllP1 is invertible and in that case the solution
is given byX P(I- QlP1)-l. This implies that X P(I- QP)- (I- PQ)-P. The
requirement X >_- 0 is satisfied if and only if p(PQ) < 1, which can be checked straight-
forwardly. This completes the proof.
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