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Abstract

This paper discusses the robusthess and the conutational stability of the

singular value decxmposition algorithm used at the NBER Caruter Research

Cneter. The effect of perturtaticris on input data is explored. Suggestions

are made for using the algorithm to get information about the rank of a

real square or rectangular matrix. The algorithm can also be used to

compute the best approximate solution of linear systerr of equations in the

least squares sense, to solve linear systens of equations with equality

constraints, and to determine dependencies or near dependencies anong the

rows or coLzrns of a matrix.

A copy of the subroutine that is used and sai examples on which it has

been tested axe included in the appendixes.
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The singular value decomposition of a matrix is one of the nost elegant algorithms

in nunerical algebra for exposing quantitative inforntion about the structure of

a system of linear equations. It can be used to get information about the rank of

a square or rectangular matrix, to compute the best approxiiite solution of a

linear system of equations in the least squares sense, to solve systems of linear

equations with equality constraints, and to determine dependencies or near-

dependencies anng the rows or coliiris of a matrix. Occasionally the singular

value decomposition is used in the iterations of linear systems that tend toward

the solution of nonlinear systems of equations. The condition ranther of a matrix

with respect to the solution of a linear system of equations is a by-product of

the singular value decomposition as is the production of the pseudo-inverse and

the solution of homogeneous systems of equations.

The condition nither of a matrix with respect to the solution of a linear

system of equations shows how well the vector x is defined by the transformation

Axb. The condition nunber K(A) of the nonsingular matrix A is the ratio

where and c11 are, respectively, the maxiunun and minimum singular values

of A (i.e., the non-negative square roots of the eigenvalues of ATA where AT denotes

the transpose of A). For example, if K(A)1O6, a perturbation of 2_20 in the ele-

—20 6irents of A can change the computed solution x by a factor of 2 •l0 , that is

to say, even the leading digit may be changed. For a more rigorously detailed

explanation, see [9J.

Nunera1s in square brackets refer to entries in the Pference section, p. 15.



In the discussion that follows, we seek to corrpute directly the best

approximate solution to the possibly over-determined or under-determined

system of equations

Ax b.

Classically, (1) if the data matrix A and the vector b are exact (that

is to say, there is no uncertainty in the data A and b), (2) if the

precision of the arithjitic of the iradhine is such that ATA can be ford

and stored exactly, and (3) if ATA is of full rank, the soli.rtion x could

be obtained from (ATA)IATb. However, given that these three conditions

are seldom attainable in practice, the solution should not be conuted

in this way because of the extra precision that is required. Further!rcre,

unless there is a priori exact information known about the rank of A, the

solution x cannot be obtained from the pseudo-inverse of A with any nre

—2—

The singular value

Frequently a user,

he wants to obtain

from the system of

deconosition is used to obtain this solution.

or a problem originator, poses a problem from which

a solution vector x in the sense of least squares

equations

ATAxATb.

Possibly he thinks the information he needs cones from the solution

x= (ATA) IATb.
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authenticity than fran (ATA)I. That is to say the rank should be detenrilned

during the course of computing the singular value decomposition. Reliable

inforniation about rank deficiency cannot be obtained from triangular

factorization.

Sylvester wrote an article on the singular value decanposition of real

mm matrices in 1889 [10]. Eckert and Young extended the %.ork to general

matrices in 1936 [1]. The definitive paper on calculating the singular

value decomposition was written by Golub and Kahan [2]. Though the paper

was published in 1965, it is fair to say that its use as a robust tool of

mathematical software is recent and, as of now, is not very widespread (see

[L] and [5].
The singular values of the matrix A and the non-negative square roots

of the eigenvalues of the symmetric matrix ATA are mathematically equal,

but may be different computationally. Singular values correct to working

accuracy for the matrix A can often be computed when certain small

elgenvalues cannot be computed for ATA. This fact is not startling. It

is caused by the perturbation of an exact ATA introduced in the multiplication

of AT by A. There are many examples of such matrices, one of which is

illustrated in [9], assuming a 4-deciina1-place machine, as

A 1.005 0.995

L
.995 1.005

having singular values 2.0 and .01. The matrix ATA in '4-decimal arithmetic

is

ATA 2.000 2.000

2.000 2.000



——

with eigenvalues i..0 and 0.0. Attrition in forming ATA has obscured all

information about the smaller singular value.

The subroutine I'1I1'IFIT, using the notation in [2], reduces the system

of equations

Ax b

where A has m rows and n columns (m can be less than, equAl to, or greater

than n) to the form

UEvTxb

T T
giving VxUb.
The columns of V are the orrthonormal eigenvectors of ATA. The transforration

UTb is formed directly -- U is not computed explicitly. The columns

of U are the orthonormal eigenvectors of PAT If one needs the explicit

columns of U he should append the identity matrix to the right-hand side b.

There is no restriction, at the subroutine level, on the number of columns of b;

it can be zero.

The diagonal matrix, E, contains the singular values of A. The

transformations used to obtain the decomposition preserve unitarily invariant

norms, thereby assuring that the norm of Z is that of A. The diagonal

elements of Z, when ordered, are a] a2 � a3 . . . a � 0. MflFIT does

not order the singular values Given information about the certainty of the

data A and b, one can choose the best approxiniatin matrix Ar of full rank

that is nearest, in the norm sense, to the matrix A. From Ar the best

candidate solution x for Axb can be computed. If ar is chosen such that
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a1 � a2
• • > O a2. • a, whereby a1 , . • a

are effectively considered to be zero, the condition number of A is the

a1ratio, — . If the matrix A is equilibrated, i.e., scaled, so that
ar

a1l, Gr should be not less than the square root of the machine precision,
or a constant representing the uncertainty in the data, whichever is larger.

To be arbitrary about the choice of ar relative to a1 is difficult. At the

NEER Conputer Psearch Center we have chosen a rank tolerance equal to the

floating point representation of 2_26, the square root of the machine

precision, 2_52. There is an obvious danger that this range rolerance may be

inadequate for sone problesm. For example suppose that AU z vT such that

1

2
2

2
—26
2

2
26

227

where 2_52 e < 2_26, say.

The arbitrary rank tolerance u1d leave a4 unchanged but set a5 to zero.

Thus Aa would be deemed to have full rank whereas a ncre judicious choice of rank is 3.

This example, though artificial, is given to encc'a all usnc to display
the diagonal matrix, E, to see his Dart icular Drohiem' s distribution of the

a..
1
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Given an appropriate choice of

hAil - llI (z 2)l/2
ir+1

whe indicates the Frobenius no, i.e. lAP ( E
(a1.

)2)112

il,m
j:l,n

Noting tha uTu vTv vvT I and that the pseudo-inverse of E is

the diagonal matrix

a1
1

a2

1
ar

0

0

the pseudo-inverse of A is

A4 v uT.

There is seldom any reason to form a pseudo-inverse explicitly. MINPIT

accumulates Householder transformations to produce a bidiagonal matrix

having the same singular values as A, and continues, by a variant of the

QR algorithm (see [3]), to diagonalize the bidiagonaJL form to give
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T TEVxUb=c
from which

x VZ+C.

Various candidate solutions x can be provided by different choices of a rank

tolerance to fix ar. See [6], chapters 25 and 26.

For suitably chosen ar, consider those columns of V associated with

• . as Vs,, namely the columns of V that span the null space of A. Then

AV 0.

When such columns V exist, they constitute the non-trivial solutions of

the homogenous system of equations

AX 0.

The elements of the columns of V can be inspected to reveal dependencies

or near dependencies among the columns, i.e., the variables of the

coefficient matrix A. Analogously, the columns of U can reveal dependencies

among the equations, e., the rows of A.

In using MINFIT, and providing it to other users, we are concerned with

three distinct but related items, (1) the stability of the algorithm

fran the standpoint of numerical algebra, (2) the robustness of the

mathematical software that inplements the algorithm, and (3) the

documentation that provides information on the use of the mathematical software.

The numerical stability of an algorithm usually means that the solution

that is computed is the exact solution of a neighboring problem and that

the neighboring problem can be defined in the sense of a backward error

analysis. Such analysis for the singular value decomposition has been
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published in [2], [11], [12], and [13]. The singular value decomposition

is stable in the sense that the computation of eigensystems of Hermitiari

matrices is stable. In general, we expect

JJA- UEVTII

HAIl

to be the order of machine precision, as is corroborated for the matrices

in Appendix C. If this criterion should not be net for sane matrix, A,

the authors xuld like to }a-iow about it. For computational convenience we

computed I JAI I - I IUEVTI for the test matrices.
hAil

Robustness of this mathematical software is established to the extent

of exposing test matrices on which the algorittm has performed correctly.

Professor Gene Golub suggested two additional tests. These are

1) Decompose A to give uzvT. Permute a, reform AUVT,

and recompute the decomposition. This gives the

effect of a perturbation on A in the sense that the

resulting decomposition will show a permutation of

the columns of U and V, yet give the same singular

va:Iues of A. As additional tests we have taken ortho-

normal matrices U and V, particular a, formed uvTA

and computed AUVT. Denote the maximum singular value by

and the minimum singular value by nin If emin is

amax

less than the relative machine precision, the computed

°nin may not be less than the relative precision of the

machine on which it is computed, i.e. 2_52 for long
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precision, 220 for short precision, on the IBM 360/370

machines.

2) Calculate the residuals r= Ax—b to observe the error

between the true solution x and the computed solution x.

From Golub' s formulation

CK(A) + CK2(A)
ff-ff

a
in which the condition number K(A)

amjn

The second term on the right-hand side is daminant

for least squares problems. In seeking the candidate

solution of least norm we compute

U K(A)
k

K

HxkH

for different choices of k. We could compute 11k

directly by forming ç and rk. However, taking

advantage of ui I = I lvi 1 it follows that
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/ \1/2i m 2i
21 E C.1

() (k 2\/2' T)

where c uTb. This formulation permits the

appropriate choice of the best approximating matrix

Ar UErVT from the minimum without explicitly

computing the candidate solutions xk. The best approximate

solution is obtained when 11k S minimum.

Frequently the question is raised alxut using

iterative methods for computing the singular value

decomposition. There is an excellent discussion of

such issues in [8] along with suggestions for

constructing matrices with exact singular values.

Informally, we suggest certain guidelines for

using MINFIT. Whenevçr possible one should avoid

forming the product of a matrix by its transpose.

Note that the eigenvalues A and eigerivectors X for the real

syrrinetric matrix eigenproblem

AX = XA

are inunediately available from MINFIT without ever

forming ATA. However, if the original problem is

to obtain the eigensystem of a real symmetric

positive definite, negative definite, or indefinite
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matrix, SYMEIG (see [7]) should be used. One should,

however, be warned that the appearance of zero or

negative elgenvalues for a matrix believed to be

positive definite signals the need to analyze the

original data or the construction of the problem

nre carefully by obtaining the singular value

decomposition of the original data matrix.

MINFIT can be used to obtain the solution

of a linear system of equations. However, if the

matrix of coefficients is ]iown to have full rank, and,

if the condition number of this matrix is small relative

to the uncertainty in the data, one of the matrix

factorization methods should be used. Such matrix

factorization methods are 1) the Choleski factorization,

2) the LU decomposition with partial or complete pivoting

where the elementary transformations have been stabilized

by row and/or coluim- interchanges, arid 3) the orthogonal

factorization with column pivoting. However, such

factorizations cannot be guaranteed to give definitive

information about the condition number of a matrix.

Consider from [lL] the bidiagonal matrix of order 100

r5ol
—l

I .502 —l

.509 —l

.600
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This matrix is extremely ill-conditioned with respect to the solution

of a linear system of equations. Its smallest singular value is approximately

io_22 despite the fact that its smallest eigenvalue is .501. This matrix also

shows that computation of the rllest eigenvalue is limited by the relative

finite precision of the machine on which it is computed. That is to say,

the small singular value, io_22 will appear computationally to be no smaller

than the order of machine precision. This result is not attributable to the

construction of the algorithm, but rather to the finite precision of the

'machine's arithmetic.

We suggest everywhere the use of long precision on the IBM 360/370

machines to compute the solutions of linear systems of equations, eigen-

systems, and the singular value decomposition. Even so, we urge extreme

caution wherever the number of rows, m, or the number of columns, n, of a

matrix is of more than modest size, say 200, if the matrix is dense.
,,

The quantity
A - / should be the order of machine precision.
IIAIIuInax(m,n)

However, the computational algorithms are, in general, 0(n3) or 0(mn2)

processes. We advise a rigorous analysis of the structure of a matrix

of high dinensions before any of the numerical algebra algorithms are used.

See Appendix C for son timing results on random matrices.

The singular values of a matrix can be substantially altered by scaling

the original data matrix as is shown by the examples in Appendix C.

Deliberately, MThFIT does not include scaling of the rows or columns

of the matrix A or right-band sides b. For the best perfonnance of the

algorithm we suggest that columns of A be equili]riated such that the sums

of their elements be as nearly equal as possible. Exact powers of
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16 for the 360/370 machines should be used for scaling factors so that

the data is not perturbed in trailing digits. Row scaling will have the

effect of introducing weights on the data in a least squares problem and

therefore should be done at a user's discretion. An excellent discussion

of scaling is in 16].

Lawson further points out in [6] that it is important to take advantage

of infoniation about the certainty of data. For example, if data is known

to have uncertainty in the third decimal place, that digit and all that

follow are arbitrary. The matrix

11.02 1.09

[1.05 1.01

if uncertain in the third figure could lead to

[1.00
1.00

L
1.00 1.00

The eigenvectors of a syrmietric matrix, and therefore, the singular

vectors U and V from MINFIT are known only to within a constant multiplier

of modulus 1. If anyone should attempt to recompute the results in

Appendix C on a machine .fnose aritblrEtic is different from that of•

the I1vI 360/67 he may observe a change in sign on the columns of U or V.

The Fortran IV subroutine MINFIT, imbedded in TROLL (see [7]), that

forms the singular value decomposition and obtains a best approximate solution

vector x is an adaptation of ANLF233S from the Argonne National Laboratory.

ANLF233S written by Burton Garbow, ANL, is a Fortran IV translation, with

certain modifications, of the Algol 60 procedure MINFIT [3]. We have aunented
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ANLF233S by adding cainnents and producing the numerically

best approxinate solution x based on a particular rank tolerance chosen for

the I1 360/370 long precision arithnetic. The machine epsilon, that is, the

smallest number, c > 0, for which 1 + c > 1 is the floating point representation

of 16_13 = 2_52 for th IRI 360/370 machines. The comments and the Fortran IV

listing of the subroutine used at the Center is given in Appendix A. The

description of the parameters for the TROLL interface is given in Appendix B.

Appendix C contains selected ntrices, computed solutions, and residual

norm checks obtained fr driver programs that use the singular value

decomposition. These results were computed on the IHI 360/67. Comments,

questions, or criticims of this subroutine should be brought to the

attention of the authors of this working paper.
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APPENDIX A: Listing of the Fortren IV Program MINFIT

SUBROUTINE MINFIT(NM,M,N,A,W,IP,B,IERR,RV1,RETX)
C

INTEGER I,J,K,L,M,N,II,IP,I1,KK,Kj,LL,L1,M1,NM,ITS,IERR
REAL*8 A(NM,N),W(N),B(NM,IP),RV1(N)
REAL*8 C,F,G,H, S, X,Y, Z ,EPS,SCALE,MACHP,RKTOL
REAL*8 DSQRT,DMAX1,DABS,DSIGN
LOGICAL RETX

C
C THIS SUBROUTINE DETERMINES, TOWARDS THE SULUTION OF THE LINEAR
C T
C SYSTEM AXB, THE SINGULAR VALUE DECOMPOSITION A=USV OF 4 REAL
C T
C M BY N RECTANGULAR MATRIX, FORMING U B REATHER THAN U, HUUSEHOLDER
C BIDIAGONALIZATION AND A VARIANT OF THE OR ALGORITHM ARE USED.
C THIS SUBROUTINE COMPUTES A CANDIDATE SOLUTION X WHEN THE
C LOGICAL INPUT PARAMETER RETX IS SET .TRUE. THIS CANDIDATE
C SOLUTION IS BASED ON THE RANK TOLERANCE SET TO
C 2.ODO**(—26), THE SQUARE ROOT OF THE MACHINE PRECISION
C 2.ODO**(—52).
C
C ON INPUT:
C
C NM MUST BE SET TO THE ROW DIMENSION OF THE TWO—DIMENSIONAL
C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C DIMENSION STATEMENT. NOTE THAT NM MUST BE AT LEAST
C AS LARGE AS THE MAXIMUM UF M AND N;
C
C M IS THE NUMBER OF ROWS OF A AND B;
C
C N IS THE NUMBER OF COLUMNS OF A AND THE ORDER OF V;
C
C A CONTAINS THE RECTANGULAR COEFFICIENT MATRIX OF THE SYSTEM;
C

C IP IS THE NUMBER OF COLUMNS OF B. IP CAN BE ZERO;
C
C B CONTAINS THE CONSTANT COLUMN MATRIX OF THE SYSTEM
C IF IP IS NOT ZERO. OTHERWISE B IS NOT REFERENCED.
C
C RETX MUST BE SET .TRUE. IF THE CANDIDATE SOLUTION X IS TO
C BE COMPUTED. IF ONLY THE SINGULAR VALUE DECOMPOSITION IS
C DESIRED, SET RETX .FALSE.
C
C
C ON OUTPUT:
C
C A HAS BEEN OVERWRITTEN BY THE MATRIX V (ORTHOGONAL) O THE
C DECOMPOSITION IN ITS FIRST N ROWS AND COLUMNS. IF AN
C ERROR EXIT IS MADE, THE COLUMNS OF V CORRESPONDING TO
C INDICES OF CORRECT SINGULAR VALUES SHOULD BE CORRECT;
C
C W CONTAINS THE N (NON—NEGATIVE) SINGULAR VALUES OF A (THE
C DIAGONAL ELEMENTS OF S). THEY ARE UNORDERED. IF AN
C ERROR EXIT IS MADE, THE SINGULAR VALUES SHOULD BE CORRECT
C FOR INDICES IERR+1,IERR+2,.,,,N;
C
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C T

C B HAS BEEN OVERWRITTEN BY U B. IF AN ERROR EXIT IS MADE,
C T

C THE ROWS OF U B CORRESPONDING IL) INDICES OF CORRECT
C SINGULAR VALUES SHOULD BE CORRECT;
C
C IF RETX IS TRUE, W WILL CONTAIN THE DIAGONAL OF THE PSEUDOINVERSE
C OF THE DIAGONAL MATRIX S. ANY SINGULAR VALUES THAT
C ARE LESS THAN RKTOL TIMES THE LARGEST SINGLUAR VALUE ARE
C SET TO ZERO IN THE PSEUDUINVERSE.
C
C ALSO, THE SOLUTION X IS RETURNED IN B, REPLACING U B.
C
C IERR IS SET TO
C ZERO FOR NORMAL RETURN,
C K IF THE K—TH SINGULAR VALUE HAS NOT BEEN
C DETERMINED AFTER 30 ITERATIONS,
C —1 IF THE MAXIMUM SINGULAR VALUE IS ZERO (INDICATING
C A ZERO A MATRIX ON INPUT). ONLY SET IF
C RETX IS .TRUE..
C
C RV1 IS A TEMPORARY STORAGE ARRAY.
C
C
C
C :::;:::::: MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING
C THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC
C MACHEP = 1b.000**(—13) FOR LONG FORM ARITHMETIC
C

DATA MACHEP/Z3410000000000000/
C :::::::::: RKTOL, FOR THESE APPLICATIONS, IS THE SQUARE
ç ROOTOFMACHEP::::::::::::::

DATA RKTOL/Z3A40000000000000/
C ;:w::::: HOUSEHOLDER REDUCTI[JN TO BIDIAGUNAL FORM ::::::::::

IERR = 0
G = 0.ODO
SCALE = 0.000
X = O.ODO

C

00 300 1= 1, N
L=I+1
RVLII) = SCALE * G

G 0.000
S 0.000
SCALE = O.ODO
IF (I .GT. M) GO TO 210

C
00 120 K I, M

120 SCALE = SCALE + DABS(A(K,I))
C

IF (SCALE .EQ. 0.000) GO TO 210
C

DO 130 K = I, M
A(K,I) = A(K,I) / SCALE

= S + A(K,I)**2
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130 CONTINUE
C

F a A(I,I)
Ga —DSIGN(L)SQRT(S),F)
H a F * G — S

A(I,I) F — G
IF (I .EO. N) GO TO 160

C
00 150 J = L, N

S = 0.000
C

DO 140 K I, M
140 S = S + A(K,I) * A(K,J)

C
F=S/H

C

DO 10 K = I, M
A(K,J) = A(K,J) + F * A(K,I)

150 CONTINUE
C

160 IF (IP .EQ. 0) GO TO 190
C

00 180 J = 1,IP
S = 0.000

C
DO 170 K = I, M

170 S = S + A(K,j) * B(K,J)
C

F=S/H
C

00 180 K = I, M
B(K,J) = B(K,J) + F * A(K,I)

180 CONTINUE
C

190 DO 200 K = I, M
200 A(K,I) SCALE * A(K,I)

C
210 W(I) = SCALE * G

G = 0.000
S = 0.000
SCALE = 0.000
IF (I .GT. M .OR. I .EQ. N) GO TO 290

C
DO 220 K = L, N

220 SCALE = SCALE + DABS(A(I,K))
C

IF (SCALE .EQ. 0.ODO) GO TO 290
C

00 230 K = L, N
A(I,K) = A(I,K) / SCALE
S = S + A(I,K)**2

230 CONTINUE
C

F A(I,L)
G = —DSIGN(DSQRT(S),F)
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H —F *G— S
A(I,L) F — G

C
00 240 K = L, N

240 RV1(K) = A(I,K) / H
C

IF (I .EQ. M) GO TO 270
C

DO 260 J = L, M
S - 0.000

C
DO 250 K = L, N

250 S = S + A(J,K) * A(I,K)
C

00 260 K = L, N

A(J,K) = A(J,K) + S * RV1(K)
260 CONTINUE

C

270 00 280 K z L, N
280 A(I,K) = SCALE * A(I,K)

C
290 X=DMAX1(X,DABS(W(I))+[)AbS(Rv1(j)))
300 CONTINUE

C ::::w::: ACCUMULATION OF RIGHT—HAND TRANSFORMATIONS ::::::::::
C :::::::::: FOR I=N STEP —1 UNTIL 1 DO ——

DO 400 II - 1, N
I = N + 1 — II
IF (I .EQ. N) GO TO 390
IF (G .E0. O.ODO) GO TO 360
H = A(I,L) * G

C
DO 320 J = L, N

320 A(J,I) = A(I,J) / H
C

DO 350 J = L, N
S = 0.ODO

C

DO 340 K L, N
340 S = S + A(I,K) * A(K,J)

C
DO 350 K = L, N

A(K,J) = A(K,J) + S * A(K,I)
350 CONTINUE

C
360 D0380J=L,N

A(I,J) = O.ODO
A(J,I) = O.ODO

380 CONTINUE
C

390 All,!) = 1.000
G = RV1(I)
L=I

400 CONTINUE
C

IF (M .GE. N .OR. IP .E0. 0) GO TO 510
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Ml • M + 1

C
DO 500 I Ml, N

C
00 500 J — 1, IP
B(I,J) = 0.000

500 CONTINUE
C ::::z:::8:DIAGONALIZATIONOFTHEBIDIAGONALFORM::::::::::

510 EPS • MACHEP * X

C :::::::::: FOR K=N STEP —1 UNTIL 1 DO —— ::::::::::
DO 700 KK 1, N

Ki N — KK
K • Ki + 1

ITS = 0
C :::::::::: TEST FOR SPLITTING.
C FOR L=K STEP —1 UNTIL 1 1)1) ——

520 00 530 LL • 1, K
Li = K — LL
L = Li + 1
IF (DABS(RV1(L)) .LE. EPS) GO TO 565

C :::::::::: RV1(i) IS ALWAYS ZEKO, SO THERE IS NO EXIT
C THRUUGH THE BOTTOM UP- THE LUOP :::::::

IF (DABS(W(L1)) .LE. EPS) GO TO 540
530 CONTINUE

C :::::::::: CANCELLATION OF RV1(L) IF L GREATER THAN 1 :::::::
540 C = 0.000

S 1.000
C

DO 560 1 = L, K
F = S * RV1(I)
RV1(I) = C * RVI(I)
IF (DABSIF) .LE. EPS) GO TO 565
G = W(I)
H = DSQRT(F*F+G*G)
W(I) = H
C=G/H
S = —F / H
IF (IP .EQ. 0) GO TO 560

C

DO 550 J = 1, IP
V = B(L1,J)
Z = B(I,J)
B(L1,J) = V * C + Z * 5
B(I,J) = —Y * S + Z * C

550 CONTINUE
C

560 CONTINUE
C ::::::::::TESTFORCONvERGENcE::::::::::

565 Z — W(K)
IF (L .EQ. K) GO TO 650

C :::::::::: SHIFT FROM BOTTOM 2 BY 2 MINOR ::::::::::
IF (ITS .E0. 30) GO TO 1000
ITS = ITS + 1

X = W(L)
Y = W(K1)
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G RV1(K1)
H RV1(K)
F = ((V — Z) * (V + Z) + (G — H) * (G + H)) / (2.ODO * H * Y)
G z DSQRT(F*F+1.000)
F ((X — Z) * (X + Z) + H * (V / (F + USIGN(G,F)) — H)) / X

C ::::::::::NEXTQRTRANSFORMATIUN::::::::::
C = 1.000
S = 1.01)0

C
DO 600 Il = L, Ki

I Ii + 1
G = RV1(I)
V = W(I)
H=S*G
G =C *G
Z = DSQRT(F*F+H*H)
RV1(I1) = Z
C=F/Z
S=H/ZF=X*C+G*S
G = —x * S + G * C

H=V*S
V=Y*c

C

DO 570 J = 1, N
X A(J,I1)
Z = A(J,!)
A(J,I1) = X * C + Z * S

A(J,I) = —x * S + Z * C

570 CONTINUE
C

1 = DSQRT(F*F+H*H)
W(I1) = Z

C :::::::::: ROTATION CAN BE ARBITRARY IF Z IS ZERO ::::::::::
IF (Z .EQ. 0.ODO) GO TO 580
C=F/Z
S=H/Z

580 F=C*G+S*Y
X = —s * G + C * y
IF (IP .EQ. 0) GO TO 600

C
DO 590 J = 1, IP

V = B(I1,J)
Z = B(I,J)
B(I1,J) = V * C + Z * S
B(I,J) = —Y * S + 1 * C

590 CONTINUE
C

600 CONTINUE
C

RV1(L) = 0.000
RV1(K) = F
W(K) = X

GO TO 520
C ::::::::::CONVERGENCE::::::::::



-A7-

650 IF (Z .GE. 0.ODO) GO TO 700
C

W(K) =
C

DO 690 J 1, N
690 A(J,K) = —A(J,K)

C
700 CONTINUE

IF (.NOT. RETX) GO TO 1001
C

Z = O.ODO
DO 750 J = 1, N

X = W(J)
IF (X .LE. 1) GO TO 70
Z=X

750 CONTINUE
IF (Z .E0. 0) GO TO 999

C

DO 800 J = 1, N
X W(J) / Z
IF (X .LE. RKTOL) GO TO 7Y0
W(J) = 1.ODO / W(J)
GO TO 800

790 W(J) = 0.000
800 CONTINUE

C ::::::::::FORMX(RETURNED!NB)::::::::::
DO900J=1,IP

C

DO 810 I = 1, N
RV1(I) = W(I) * B(I,J)

810 CONTINUE
C

DO 890 I = 1, N
C

X = O.ODO
00 850 Ii = 1, N

X = X + A(I,I1) * RV1(I1)
850 CONTINUE

C
B(I,J) = X

C

890 CONTINUE
C

900 CONTINUE
C

GO TO 1001
C :::::::::: ERROR IF MAX SINGULAR VALUE = 0 ::::::::::

999 K=—1
C :::::::::: SET ERROR —— NO CONVERGENCE TO A
C SINGULAR VALUE AFTE( 30 ItERATIONS ::::::::::::

1000 IERR = K

1001 RETURN
C

END



APPENDIX B: TROLL Impleiintatiom of ?T\IFIT and Associated Output

The calling sequence for using the singular value decomposition

within the TROLL envirornnent is considerably different than that for

the Fortran subroutine listed in Appendix A. This is a consequence

of the basic design features of TROLL. However all computations are

actually performed by the routine listed in Appendix A.

The TROLL version of the singular value decomposition is a function

named MINFIT. Since it is a function, it returns a single data file as its

result, and by TROLL convention it may not modify any of its arguments.

The format of the TROLL call to MINFIT is

result = MINFIT (A-matrix <, B-matrix <, code >>)

where the <> indicate optional arguments.

Since we may desire several matrices as output from MThTFIT, the data

file returned as result may be made up of several matrices. The precise
result returned by Mfl\IFIT is controlled by the code parameter as described

in the following table for the linear system:
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A X B whereAUZVT
1mm nxp and W diagonal of

Code B-matrix omitted B-matrix present

.0 illegal X (nxp) (default)

1 V (nxri) (default) V (nxn)

2

3

W (nxl)

.

W (nxl)

T
U B

(U B) 'pxn

The correspondence between the TROLL parameters and the Fortran

parameters is as follows:

Inrniediately prior to TROLL call to Fortran routine

TROlL Fortran parameter

Max (number of rows of A-matrix, NM
number of columns A-matrix)

Number of rows of A-matrix M

Number of columns of A-matrix N

A-matrix A

free storage W

if B-matrix omitted then 0 IP
else number of colunis of B-matrix

not set IERR

free storage RV1

if code 0 or code omitted and B-matrix is
present then .TRUE. else •FALSE.
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After call of Fortran routine

If IERR is not zero then print appropriate error messag; otherwise

Code

0

1

2

3

Fortran variable to be used as result

B (the solution X is formed in B)

A

w

B

.W lxn

{] or if B-matrix was specific [A]mm
B nxp

For more details on the use of the ThOLL function, see [7].

The following output is the result of perfoniiing the TROLL version

of IvNFIT on the Longley data described in Appendix C. Row 1 of the

matrix contains W, rs 2 through 8 contain the V matrix, and row 9 is

(UTb)T.

M161T(IIIMc,,jyx,Iu,1(;i-yy,4)

'}W CIJUIMN I CLI.N ? CI;.IiN 3 CtILIIM'J 4 CULIIMN , 1ILIIMN 6 CtI.IIM 1

1

?I
4
',
6
7
8
9

1 .,371-+06
—?. 3417—h
—?.4376F—04
—9.6034—0l
—7.7734F—04
—6.2675—(J
—?.7M616—t)1
—4.57946—03
—?.5151)6+05

M.39OO+O4
I .u7—o
6. t"6Yf—O4

—. f7M6—0I
I .43'F—0?
I.34??6—O?
Y..991—01
?.08926—0?
4.6093F+04

4.47-+U3
—.731 M—06
—4.'4-—I)4
—?.t1 1-—I)

7.844I—o1
—h• 166-—01
—4.1466—0
—l .S461-—0?
—?.4A3?6+03

1 .4M-+t)3
.16O—6

—1 .43706—03
4.h4—()

—6.18 6,-—u1
—7.854R1-—01

I.8H3F—0?
4.4) -—03
1 .h() 491-+0A

41 .65420fl
—. 1O3M—(4
-1 .044?6—O1
—1 .I0—O3
—1 .7fl4—fl?

S.07??#—03
2.13R16—O?

—4.941?'-—Ol
—1 .773tSE+fli

343?4-—fl4
—t .OflOOF+()

1.fl76—fl',
—4.flR6—)N
—4•,77-—fl7
—l .40946—07

l.0430k—07
' • I 1346—04
1 • 18906+03

3 6'fl4f-+Ofl
3.41 I —)5

—Q.94,4F—(1
1 ."411 F—4
?. '3'I-—fl3
6.06176—04

—l.60."6—03
1 .)4'n-—r)1
?1 0.q'0001



APPENDIX C: Selected Matrices, Computed Soluticris, and Illustrative Examples

This appendix displays a representative sample of matrices on which

the subroutine IT'TFIT has perford satisfactorily. The input matrices

and the output computathns have been retained on magnetic tape. The

format of the printing was chosen for convenience and does not include

the full fifteen decimal place output that was produced by the long

ecisn computation on the machine. If anyone should attempt to reproduce

these results on a machine whose arithmetic or relative precision is different

fran that of the IBM 3 60/67 he may get output that is different from that

which we display. However, such results should be correct to the order

of machine precision on which the computation is perfonned.

Though we include certain matrices of the Hubert senents, we do not

encoage their use as test matrices for software validation. The Hilbert

senents are not representable cactly in a computing machine unless

appropriate multipliers are used to preclude a perturbation on input of the

data. We have used such multipliers.

Other matrices exhibited are a 3x3 matrix that is contrived to display

infor!ation about near dependencies of rows or columns, a test matrix from

[l]* and [2] and a matrix suggested by Ed Kuh. The matrix from [1] is exactly

representable in the machine though it is ill conditioned with respect to

the solution of linear systems of equations. The matrix in [J shows the

dependence of the solution vector x on the rank tolerance that is chosen.

On the output that is displayed, V has its usual meaning, W contains

the unordered singular values fran ML1FIT, P is an integer vector that

indicates the descending order of the singular values, MU contains

for i=l, 2,. . . ,n for each right-hand side and c contains uTb. X contains

the candidate solution of Axb. IERR is the error indicator from MINFTT; it is

non-zero if the computation of any singular value requires more than 30

iterations or if the maximum singular value is zero.

*NmEraJs in square brackets refer to entries in the Reference section, p. C114.
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This 3x3 matrix shows output that indicates rank 2 if the smallest

singular value is treated as zero. Given this interpretation, columns

1 and 2 are linearly dependent. This infotion is contained in column 2

of the V matrix,

A.
4108 1

0.10101 001) 01 (1 • 1009A001) 01 0.98000000 0))
ROW 2 ):

0.10098000 01 0.10104001) 01 0.98000001) 00
ROW 3

0 • 9)4000000 00 I) .9800000)) 1)11 0 • 101 00001) 01

C0?.UMN 1)
0.1000000)) 01 0.0 0.0

(COLUMN 7)
0.0 0.1000000)) 01 0.0

(COLUMN 3)
0.0 0.0 0.1000000)) 01

v=
(COLUMN 1)
—11.57977491) 00 —0 .5793330)1 0>1 —0. 5734230)) 00

CIII. INN 2 I
—0 • 70)401 190 00 0.70619)43)) 00 0.176066 1l)—0
(COLUMN 3)
—0.40393051) 00 —0.4)170101)) 00 11.81925761) 00

8=
0.7990101) 01 0.44980760—03 0. 39948830—tI 1

C.
CtIl_IIMN I

—0.57927491) 00 —0. 70801 191) 0)) —0.40 493051) III)
COLUMN 7

—0.5793311)11 00 (I. 70619831) 0)) —11 • 40701 Iii)) 00
(COLUMN 3)

—0.5734? 11))) 00 (1.1 761)441 0—02 1). 8192576)) 00

I 3 2

Nil.
I COLUMN 1)
0.46(501 51) 02 11.418407601) 01) 11.54410011(1—1)2
CI)I_IJUN 7)
0.461455 11) 02 0.41773891)) 00 11.56945950—02
COlUMN 3)
0.466711))) 02 0.43594980 01) 0.4282218)) 00

IJS 1510 MAC.HSP, X=
C)i(.UMN 1)
0.1118630)) 04 —0.1107352)) 04 —0.10943611) 1)2
CUIJJMN 7)

—0.110735711 04 11.11129911) 1)4 —1). 5471803>) 01
(COLUMN 3)
—0.10943610 02 —11.5471803)) 01 0.16917921) 1)2

((SING RKIUL, X=
(COLUMN 1)

0.1 118631)>) 06 —0.11073521) 04 —0.1094361)1 11
(COLUMN 2)
—0.11073520 04 0.11129910 04 —)).54718031) 01
(COLUMN 3)
—0.1094361)> 02 —0.54718030 01 0.16917921) 02
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The matrix whose data is displayed on the following page was suggested

by Ed Ith. The matrix is 32x10 and has singular values, to 4 decimal places,

4921, '41.89, 30.33, 18.71, 8.573, 2.491,

4.763, 5.532, 6.162, 6.091.

The indicated rank determination is that the matrix is of rank 10

if the data is certain in all digits, of rank 1 if the third digit is

doubtful.

The residual checks for the decomposition are

MAX—ROW—SliM lSjDtJAL = O.18182413271)—14
UCLIDIAN RESIDUAL = U.240?6Y7593D—14
1AX—C(JL—SlJM RtSIDlJAL = O.1378022275D—14

Thuncation of the data to integers 234,231,... 3l1 gives singular values

to 4 decimal places.

'4911, '41.10, 30.07, 18.59, 8.356, 3,403,

6.299, 5.727, 4.963, 5.198
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Data for A Right-hand side B

346.6 Row 32 214.6
342.1 ow_31 216.7
337.9 iow 30 225.0
337.9 228.4
331.2 230.1
326.7 231.0
321.8 230.3
314.5 232.3
312.2 234.6
311.7 237.3
311.6 241.8
307.4 247.7
303.8 252.7
300.8 256.8
294.6 260.4
290.7 262.0
286.4 264.4
283.2 267.5
278.9 272.8
272.6 277.2
266.2 279.3
262.4 283.8
257.3 285.4
254.7 284.5
255.3 287.4
254.0 292.2
253.8 296.2
253.4 304.0
249.2 309.8
245.8 314.8
240.9 316.3
234.4 ow 1 321.1
231.7
231.2
227.9
226.0
220.8
214.7
209.0
201.5
202.2
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The Hubert matrix of order 7, generated in long precision, 7 digits

of which are given for each element, is inexact in the machine.

Its singular values are

0.166088,I) 01 0.27192021)00 0.212875D—O1 0.100R588)—02 0.2R637I)—O4 0.4M5h74S31)—06 0.34937440—08

a=
ROW 1 ): 000.10000000 01 0.50000000 00 0.33333330 00 0.2500000() 00 O.2000000D 00 0.1666667D 00

ROW 2 ):
000.50000000 00 0.33333330 00 0.25000000 00 0.2000000') 00 O.1h666671) 00 0.142R571D 00

ROW 3 ):
000.33333330 00 0.25000000 00 0.20000000 00 0.1,6h6671) 00 0.14285710 00 0.12500000 00

ROW 4 ): 000.25000000 00 0.20000000 00 0.16666670 00 0.1428571') 00 0.12500000 00 0.11111111) 00
( ROW 5 ): •

0.20000000 00 0.16666670 00 0.14285710 00 0.12500000 00 0.11111110 00 0.10000000 00

I ROW 6 I:
0.16666671) 00 0.14285710 00 0.12500000 00 0.11111111) 00 0.11)000001) 00 0.90909090—01

ROW 7 ):
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Multiplication of the Hubert matrix of order 7 by the constant

360360 allows a machine representation that is exact.

Its singular values are

0.59851661) 06 0.97989161) 05 0.76719761) 04 0.36345461) 03 0.10589670 02 0.17501830 00 0.12590610—0?

S

.

4=

I ROW 1 ):

0.36036000 06 0.18018000 06 0.12012000 06 0.9009000)) 05 0.72072000 05 0.60060000 05 0.51480000 05
ROW 2 I:

0.18018000 06 0.12012000 06 0.90090000 05 0.7207200)) 05 0.6006000)) 05 0.51480000 05 0.45045000 05

I ROW 3 I:

0.12012001) 06 0.90090001) 05 0.72072001) 05 0.60060001) 05 0.5148000)) 05 0.45045000 05 0.40040000 05
I ROW 4 ):

0.90090000 Q5 0.72072001) 05 0.60060000 05 0.5148000') 05 0.4504500)) 05 0.40040000 05 0.36036000 05
ROW S I:

0.7207200)) 05 0.60060000 05 0.51480001) 05 0.4504500)) 05 0.4004000)) 05 0.3603600)) 05 0.32760000 05

I ROW 6 ):

0.60060000 05 0.51480000 05 0.45045000 05 0.400400(1') 05 0.3603600)) 05 0.32760001) 05 0.3003000)) 05

I ROW 7

0.51480000
I:
05 0.45045000 05 0.40040001) 05 0.3603600') 05 0.32760000 05

.

0.10030000 05 0.27720001) 05
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The Longley data matrix [3J with its associated output is

8.
(COLUMN 1)
0.60323000 05
0.63761000 05
0.6933100D 05

(ERR • 0

0.61122000 05
0.6601900D 05
0.70S51000 05

0.60171001) 05 0.611870011 (iS 0.63221000 05 0.63639000 05 0.64989000 05
0.67857000 05 0.68169001) 1)5 0.66513000 05 0.6865500)) 05 0.6956400D 05

V.
(COLUMN 1)
—0.2341720D—05
(COLUMN 2)
0.10797810—04
COLUMN 3)

—0.97316110—05
(COLUMN 4)
0.28160440—OS
(COLUMN 5)
—0.5 103 8040—03
(COLUMN 6)
—0.99999990 00
(COLUMN 7)
0.34 180980—04

—0.24375680—03 —0.96034010 00 —0.17733770—02 —0.62675480—02

0.61668600—03 —0.27878070 00 0.10334770—01 0.13421660—01

—0.49653610—03 —0.22179310—02 0.78543941) 00 —0.6186589)) 00

—0.14370220—02 0.46323930—02 —0.61856340 00 —O.7854783D 00

—0.10441850 00 —0.13504740—02 —0.17083690—01 0.80721570—02

0.19307120—04 —0.30687980—07 —0.45777720—06 —0.13094330—06

—0.99453210 00 0.19871480—03 0.230360811—02 O.60617261)—03

—0.27861480 00 —0.45794090—02

0.95997790 00 0.20891970—01

—0.48045890—04 —0.18466820—01

0.188828211—01 0.48025910—02

0.2138102D—01 —0.99412300 00

0.10429930—06 0.51137880—03

—0.16085630—02 0.10439200 00

W.
0.16636680 07

C.
(COLUMN 11

—0.15328510 00
—0. 4 84 652 90—0 1

—0.29740200 00

0.83899620 05 0.34056741) 04 0.15847881) 04 0.41654200 02 0.34322890—03 0.36503800 01

0.45378580 00 0.89857260—01 0.26517570 00 0.30558470 00 0.11393900—01 0.15302070 00
—0.4020948D—02 —0.19433730 00 —0.34302910 00 —U.8976866))—O1 —0.11988820 00 —0.29862080 00
—0.46626980 00

2 3 4 5 7 6

MU.
(COLUMN 1)

0.19577650 20 0.33345700 18 0.66973430 17 0.10643310 17 0.24581320 15 0.42386460 14 0.54338150 11

USING MACHEP, 8.
(COLUMN 1)
—0.3464269D 07 0.13849520 02 —0.35218390—01 —0.20094190 01 —0.10251330 01 —0.52347820—01 O.181994a0 04

USING AKTOI., 8.
(COLUMN 1)

0.23724110—01 —0.53035530 02 0.71033030—01 —0.42355560 00 —0.5715101D 00 —0.41366870 00 0.48394360 02

I ROW 1 I:

0.10000000 01 0.83000000 02 0.23428900 06 0.2356)1000 1)4 0.15900001) 04 0.10760801) 06 0.19470001) ((4
I ROW 2 I:

0.10000000 01 0.88500000 02 0.25942600 04, 0.2325000') (14 0.1456000)) 04 0.1086320)) 06 0.19480001) 04
I ROW' 3 I:

0.10000000 01 0.8820000D 02 0.25805400 06 0.36820001) 1)4 )).1616000)) 04 0.109773(11) 06 0.19490001) 04
I 80W 4 'I:

•

0.10000000 01 0.89500000 02 0.2845990)) 1)6 0.34510000 04 ((.16500001) 04 0.1109290)) 0,5 0.1950000)) (14
I ROW 5 I: .
0.10000000 01 0. 96200001) 02 0.32897501) 06 0.20990001) 1)4 0.3099000(1 04 0.1120750)) 06 0.1951000)) 04
(ROW 6 I:

0.10000000 01 0.98100000 02 0.3469990(1 06 0.1932000') 04 0.3594000)) 04 0.11327(10)) 06 0.1952(10(10 04
I ROW 7 I
0.10000000 01 0.99000000 02 0.3653850)) 06 0.18700000 04 0.3547000)) 04 0.1150940)) 06 0.19530000 04
I ROW 8 I:

•

0.1000000)) 01 0.10000000 03 0.36311200 06 0.35780000 04 0.43500001) 04 0.11621900 06 0.1954000)) 04
I ROW 9 I:

0.10000000 01 0.10120000 03 0.39746900 06 0.29041)001) ((4 l).'4048000)) 04 0.11738800 06 0.1955000)) 04
I NOW 10 I:

0.1000000)) 01 0.10460001) 03 0.41918000 06 0.28220001) 04 0.2857000)) 04 0.1187340)) 06 0.1956(100(1 04
I ROW ii II
0.1000000)) 01 0.10840000 03 0.44276901) 06 0.293601(0)) (4 0.2798000)) 04 0.1204450)) 06 0.1957000)) ((4
I ROW 1? I:
0.10000000 01 0.1108000D 03 0.4445460)) 06 0.468101)01) 04 ((.26370001) 04 0.1219500)) 04, 0.1958000(1 04
I ROW 13 I:

0.1000000)) 01 0.11260000 03 0.4827040006 0.3813000(1 04 0.2552000)) 04 0.12336600 06 0.19590000 04
I ROW 14 I:

0.10000000 01 0.11420001) 03 0.50260101) 04 0.49130001) ((4 0.2514000)) 04 0.12536800 06 0.1960000)) 04
I ROW 15 I:

0.10000000 01 0.11570000 03 0.5181730(1 06 0.4806000!) 04 0.25720001) 04 0.12785200 06 0.1961000D 04
I ROW 16 I:

0.10000000 01 0.11690000 03 0.55489401) 08 0.40071)001) ))4 0.28210000 04 0.13008100 06 0.19620000 04
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The Bauer matrix with its associated output is

ROW I

—0. 74000001)
ROW 2

0.14000000
I ROW 3
0.66000000

ROW 4
—0.1 2000001)
I ROW 5
0.30000000

ROW 6
0.40000000

.W.

0.17383930 03

C.
(COLUMN 1)
—0.11457290 03—0.3566961002 —0.79211710 01
(COLUMN 2)
0.37040050—03 0.16174950—03 —0.31773030—01
(COLUMN 3)
—0.11457260 03 —0.35669450

P. 1 2 3 4 5 6

MU.
(COLUMN 1)
0.55143120 07 0.42339880

(COLUMN 2)
0.73068101) 15 0.14984950

(COLUMN 3)
0.74578680 09 0.57262870

USING MACHEP, 8.
COLUMN 1)

0.10000000 01 0.20000000
(COLUMN 2)
—0.26157640 07 0.2225142))
(COLUMN 3)
—0.26157630 07 0.22251440

USING RKTOL, 8—
(COLUMN 1)
0.10000000 01 0.2000000D
(COLUMN 2)
—0.26157640 07 0.22251421)
(COLUMN 3)
—0.26157630 07 0.22251440

A.

I)? —0.11 000)0)1) 12 —O •4)10)10000 01 —0.8000000!) 0102 0.8000000)) 02 0.18000001)

02 —0.6900000)) 02 0.2100000)) 1? 0.281)001)01) 12 0.0

02 —0. 72000000 02 —0. 50000001) 01 0.7000000) III 0.1(100000)) 0)

02 0.66000001) 02 —0.3000000)) 12 —0.23000001) 0? 0.3000000)) 01

01 0.80000000 01 —0. 7000000)) ii —0.60000001) 1)1 0 • 11)000001) 01

01 —0.12000000 02 0.401)00000 I)) I) .4000001il) 01 0 • I)

—0.6100001)!)

0.52000000

—0.900000011

0? —0.5600000))

02 0.76400001)

1)1 0.70800001)

0.70000001) 01

0.40000000 (11

—0.30000000 01

0.0

0.10000000 01

—0.12000000 0?

0.8421000!) 04

0.84090000 04

02 0.69000001)

03 0.409600!)!)

03 1) .4165000)'

B.
(COLUMN 1)
0.51000000 02

I CDL))MN 7

—0.56000001) 02
(COLUMN 3)
—0.50000000 01

(1)88 • 0

V.
COLUMN 1

0.53159590 00
(COLUMN 2)
—0.62509500 00
(COLUMN 3)
0.33696201) 00
(COLUMN 4)
—0.40A2480 00
(COLUMN 5)
0.21539230 00
(COLUMN 6)
0.76299760—02

02 0.10000001) 02

04 —0.1327600!) 05

04 —0.13266000 05

—0.82429841) 00

—0.2981574)) 00

0. 1042175)) 00

—0.4082483)) 00

0.2325(74)) 00

—0.64905330—02

0.38242860—01

0.62845081) 00

0.65658481) 00

—0.40824830 01)

—0.704591911—01

—0.29192670—01

0.10,76910—01 0.64390190—01

—0.6)9569011—01 0.1049137)7—01

0.17q49251) 00

0.3481670)) 1)0

—O.'i?3)l)901) 0))

—0.408248311 (0)

0.6062083)) 00

0.1949887!) 00

—0 • 2 3501 73!)

—0.41)824831)

—0.6389627))

0 • 60467951)

00 —0.33892800 00

00 —0.40874830 00

00 —0.34469610 00

00 —0.7716144)) 00

.
0.64861870 02 0.10667160 02 0.100000)))) 1)1 0.1752477)) 00 0.47441820—04

—0.4082483)) 00 0.891420800 00 —0.85865440—04

—0.4082483)) 00 —0.19669080 01 —0.16264440 05

02 —0.79529440 01 —0.81649661) 00 —0.10687000 01 —0.16264440 05

07 0.69023290

10 0.43763960

09 0.78558700

06 0.65274640 06

08 0.1433698)) 01

08 0.14337370 01

07 0.32020640 07

15 0.16501570 12

09 0.4323217D 09

01 —0.10000000 01

07 0.1000810D OR

07 0.1000810D 08

01 —0.10000000 01

07 O.1000810D 08

07 0.10008100 08

0 •3013079)7

0.120392 51)

0 •3511 520))

0 • 3000000))

—0.66847850

—0.66847850

0 •30000000

—0.66847850

—0.668478 50

01 —O.4000000D 01

08 —0.2073018D 09

08 —0.20730180 09

01 —0.40000000 01

08 —0.20730180 09

08 —0.20730180 09

—0.12249380—09

0.26453220 09

0.26453220 09

—0.12249380—09

0.26453720 09

0.26453220 09
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The condition number of a nonsingular matrix may be improved by

row or column scaling. The Bauer matrix, scaled as

with singular values

0.29594490 03 0.18165700 03 0.48937800 02 0.12882170 02 O.70Q59950 00 0.13971070—02

4=
I ROW 1 1:

—0.74000000 02 0.80000001) 02 O.3600000u 02 —0.33000000
8IJW 2 ):

02 —0.40000000 02 —0.80000000 02

0.14000000 02 —0.69000001) 02 0.42000000 02 0.84000000 02
ROW 3 ):

0.70000001) 02

0.66000000 02 —0.72000000 02 —0.I000000D 02 0.21000001) 02
I ROW 4 ):

02 0.40000000 02

—0.12000000 02 0.66000000 02 —0.60000000 02 —0.6900000!) 020W 5 ):
02 —0.30000000 02

0.24000000' 02 0.64000001) 02 —0.11200000 03 —0.ThQO0OO) 02I UW 6 ) 0.80000000 02 0.0

0.28000000 02 —0.84000000 02 0.56000001)
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The singular value decomposition provides uzvT as the decomposition

of a matrix A. Given the orthononiial columns U and V one can form another

matrix uzvT for arbitrary E. Using U and V from the inexact Hubert matrix

of order 7, the reformed matrix

03 0.23250410

04 —0.41280010

04 0.25364010

04 —0.58889480

04 0.61996620

04 —0.38558090

03 0.8582491D

03 —0.24893840

04 0.78498420

05 —0.58889481)

05 0.18005690

05 —0.26360291)

05 0.18470440

04 —0.49868680

03 0.1411430

04 —0.67653190

05 0.6799662D

06 —0.26360290

06 0.47139410

06 —0.39302090

05 0.12386200

03 —0.46373310

04 0.29490710

05 —0.38558890

06 0.18470440

06 —0.39302090

06 0.37926500

06 —0.13550680

where the a1 are io8, io_6, 1O, lO, lO and io_2.
The computed a1 from the reformed A are

0.10000000 07 0.10000000 06 0.10000000 05 0.10000000 04 0.10000000 03 0.10000000 01 0.10000000 02

MAX—ROW—SUM RESIDUAL = 0.12283894900—14
EUCLIDEAN RESIDUAL = 0.99904912580—15
MAX—COL—SUM RESIDUAL 0.12263894901)—14

THE REFORMED A
I ROW 1 I:
0.20106490 02
I ROW 2 I:

—0.11191230 0
.1 ROW 3 1:
0.23250410 03
I ROW 4 I:

—0.24893840 03
ROW 5 ):

0.1477433D 03
I ROW 6 I:

—0.46373370 02
I ROW 1 1:
0.60402080 01

—0.1119 1230

0.13209940

—0 .472 8 00 10

0.78498420

—0.67653190

0.294907 10

—0 .5 155 58 10

02 0.60402080 01

04 —0.51555810 03

05 0.85824910 04

06 —0.49868680 05

06 0.1238620!) 06

06 —0.13550680 06

06 0.53689920 05
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However, choosing aj io21, io20, io16, io12, ion, iou, 100 gives

w.
0.10000000 2 0.10000000 21 0.10000000 17 0.2608)441) 08 0.10000011) 13 O.21R9020 08 0.354464650 07

4AX—RUW—SUM 8ESIOUAL • 0.604675626030—16
EUCI.10E*N RESIDUAL 0.4697620457L)—15
4A*—COL—SUM RESIDUAL 0.4045041 f35D—1

The singular values rial1er tn io12 are effected by the order

of machine precision relative to amax

Choosing ai io0, io, io8, l0_12, io6, io20, l0_2 gives

0. 10000110 lii U. 10000001)—Il u. 10000000—07 0.04 1711-12 0.1 1040820—15 1. lM6?77(lU—14, 0.?307j40—l 7

8AX140W—SIIM R4SjIIIi. • (I.1i160610?01)—1'.
EIlClII)iA4 RESIDUAl. 0.681417H41531)—15
8AX—C(IL—Slh., 4,-Silpi • 0.26 1)1071391)—I,
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The order 100 matrix

.501 —l

.502 —l

.600 —l

has a maxinum singular value l.587 arid a miniuim singular value l022.

The minimi.nn singular value computed on the IBM 360/67 is .3 329410 xl05.

Using long precision on the IBM 360/195 at Argonne National Laboratory,

Jack Dongerra computed the same singular values as those from the 67

except for the rniniiinim singular value which was .33292721xl05. The

arithiretic of the 195 is not the sane as that of the 67. Multiplying

this matrix by 1O3 (so that the input was internally representable as

exact integers) gave the smallest singular value .3329095xl012.

Brian Smith suggested riiining this matrix on the 195 using short

precision from which the sn11est singular value was .l287991xl05 and

—2 . 3
.l323073xl0 for the matrix scaled by 10

We have done some -timing tests on the singular value decomposition.

In general, accessing data is more costly than computing the singular value

decomposition, so we u1d expect the use of Fortran H (opt:2) to reduce the

computation times listed below by about 50%. From a Fortran IV G compilation

on the 360 / 67 computer, the computation time for U, V, and using SVD from

[2] on random square matrices of dimension N is as follows:
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.1 Tiji in seconds
5 .0714

10 .14614

20 3.1490

140 25.010
60 79.353

80 185.653

These times were obtained from the interval timer on the 67 which
gives approximate microseconds at 13 microsecond intervals. These
timings were obtained at the NB. Computer Research Center by Harry Bochner.

The time required by ML'JFIT is approximately that of SVD if U, V, and
E are computed. However, in general, U is not needed. The time that is
used to form V, , and UTb is therefore reduced by alinost 50% of the times
listed here.

The time for computation of the singular value decomposition will be
matrix dependent in that fewer iterations may be required when there are
multiplicities or clusters of singular values.
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