THE SINGULAR VALUE ANALYSIS

IN MATRIX COMPUTATION

Richard Becker*
Neil Kaden*
Virginia Klema:

Working Paper No. 46

COMPUTER RESEARCH CENTER FOR ECONOMICS AND MANAGEMENT SCIENCE National Bureau of Economic Research, Inc. 575 Technology Square Cambridge, Massachusetts 02139

July 1974

Preliminary: not for quotation

NBER working papers are distributed informally and in limited numbers for comments anly. They should not be quoted without written permission.

This report has not undergone the review accorded official NBER publications; in particular, it has not yet been submitted for approval by the Board of Directors.
*NBER Computer Research Center. Research supported in part by National Science Foundation Grant GJ-1154X3 to the National Bureau of Economic Research, Inc.

This paper discusses the robustness and the computational stability of the singular value decomposition algorithm used at the NBER Computer Research Cneter. The effect of perturbations on input data is explored. Suggestions are made for using the algorithm to get information about the rank of a real square or rectangular matrix. The algorithm can also be used to compute the best approximate solution of linear systems of equations in the least squares sense, to solve linear systems of equations with equality constraints, and to determine dependencies or near dependencies among the rows on columns of a matrix.

A copy of the subroutine that is used and some examples on which it has been tested are included in the appendixes.

Contents

The Singular Value Analysis in Matrix Computation 1
References 15
Appendixes
A. Listing of the Fortran IV Program MINFIT Al
B. TROLJ Implementation of MINFIT and Associated Output Bl
C. Selected Matrices, Computed Solutions, and Illustrative Examples Cl

The singular value decomposition of a matrix is one of the most elegant algorithms in numerical algebra for exposing quantitative information about the structure of a system of linear equations. It can be used to get information about the rank of a square or rectangular matrix, to compute the best approximate solution of a linear system of equations in the least squares sense, to solve systems of linear equations with equality constraints, and to determine dependencies or neardependencies among the rows or columns of a matrix. Occasionally the singular value decomposition is used in the iterations of linear systems that tend toward the solution of nonlinear systems of equations. The condition number of a matrix with respect to the solution of a linear system of equations is a by-product of the singular value decomposition as is the production of the pseudo-inverse and the solution of homogeneous systems of equations.

The condition number of a matrix with respect to the solution of a linear system of equations shows how well the vector x is defined by the transformation $A x=b$. The condition number $\kappa(A)$ of the nonsingular matrix A is the ratio $\frac{\sigma_{\max }}{\sigma_{\min }}$ where $\sigma_{\max }$ and $\sigma_{\text {min }}$ are, respectively, the maximum and minimum singular values of A (i.e., the non-negative square roots of the eigenvalues of $A^{T} A$ where A^{T} denotes the transpose of A). For example, if $k(A)=10^{6}$, a perturbation of 2^{-20} in the elements of A can change the computed solution $\hat{\mathrm{x}}$ by a factor of $2^{-20} \cdot 10^{6}$, that is to say, even the leading digit may be changed. For a more rigorously detailed explanation, see [9].*
*Numerals in square brackets refer to entries in the Reference section, p. 15 .

In the discussion that follows, we seek to compute directly the best approximate solution to the possibly over-determined or under-determined system of equations

$$
\mathrm{Ax}=\mathrm{b} .
$$

The singular value decomposition is used to obtain this solution. Frequently a user, or a problem originator, poses a problem from which he wants to obtain a solution vector x in the sense of least squares from the system of equations

$$
A^{T} A x=A^{T} b
$$

Possibly he thinks the information he needs comes from the solution

$$
x=\left(A^{T} A\right)^{I_{A}}{ }^{T} b
$$

Classically, (1) if the data matrix A and the vector b are exact (that is to say, there is no uncertainty in the data A and b), (2) if the precision of the arithmetic of the machine is such that $A^{T} A$ can be formed and stored exactly, and (3) if $A^{T} A$ is of full rank, the solution x could be obtained from $\left(A^{T} A\right)_{A}{ }^{T}$ b. However, given that these three conditions are seldom attainable in practice, the solution should not be computed in this way because of the extra precision that is required. Furthermore, unless there is a priori exact information known about the rank of A, the solution x cannot be obtained from the pseudo-inverse of A with any more
authenticity than from $\left(A^{T} A\right)^{I}$. That is to say the rank should be determined during the course of computing the singular value decomposition. Reliable information about rank deficiency cannot be obtained from triangular factorization.

Sylvester wrote an article on the singular value decomposition of real nxn matrices in 1889 [10]. Eckert and Young extended the work to general matrices in 1936 [1]. The definitive paper on calculating the singular value decomposition was written by Golub and Kahan [2]. Though the paper was published in 1965, it is fair to say that its use as a robust tool of mathematical software is recent and, as of now, is not very widespread (see [4] and [5]).

The singular values of the matrix A and the non-negative square roots of the eigenvalues of the symmetric matrix $A{ }^{T} A$ are mathematically equal, but may be different computationally. Singular values correct to working accuracy for the matrix A can often be computed when certain small eigenvalues cannot be computed for $A^{T} A$. This fact is not startling. It is caused by the perturbation of an exact $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ introduced in the multiplication of A^{T} by A. There are many examples of such matrices, one of which is illustrated in [9], assuming a 4-decimal-place machine, as

$$
A=\left[\begin{array}{ll}
1.005 & 0.995 \\
.995 & 1.005
\end{array}\right]
$$

having singular values 2.0 and .01 . The matrix $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ in 4 -decimal arithmetic is

$$
A^{T} A=\left[\begin{array}{ll}
2.000 & 2.000 \\
2.000 & 2.000
\end{array}\right]
$$

with eigenvalues 4.0 and 0.0 . Attrition in forming $A^{T} A$ has obscured all information about the smaller singular value.

The subroutine MINFIT, using the notation in [2], reduces the system of equations

$$
A x=b
$$

where A has m rows and n columns (m can be less than, equal to, or greater than n) to the form

$$
\begin{array}{ll}
\mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}} \mathrm{x}=\mathrm{b} \\
\text { giving } & \Sigma \mathrm{V}^{\mathrm{T}} \mathrm{x}=\mathrm{U}^{\mathrm{T}} \mathrm{~b} .
\end{array}
$$

The columns of V are the orthonormal eigenvectors of $A^{T} A$. The transformation $U^{T} \mathrm{~b}$ is formed directly -- U is not computed explicitly. The columns of U are the orthonormal eigenvectors of $A A^{T}$. If one needs the explicit columns of U he should append the identity matrix I_{m} to the right-hand side b. There is no restriction, at the subroutine level, on the number of columns of b; it can be zero.

The diagonal matrix, Σ, contains the singular values of A. The transformations used to obtain the decomposition preserve unitarily invariant norms, thereby assuring that the norm of Σ is that of A. The diagonal elements of Σ, when ordered, are $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} . . \geq \sigma_{n} \geq 0$. MINFIT does not order the singular values, Given information about the certainty of the data A and b, one can choose the best approximating matrix A_{r} of full rank that is nearest, in the norm sense, to the matrix A. From A_{r} the best candidate solution x for $\mathrm{Ax}=\mathrm{b}$ can be computed. If σ_{r} is chosen such that
$\sigma_{1} \geq \sigma_{2} \cdot \cdot \geq \sigma_{r}>0, \sigma_{r+1} \geq \sigma_{r+2} \cdot \cdots \geq \sigma_{n}$, whereby $\sigma_{r+1}, \cdots, \sigma_{n}$ are effectively considered to be zero, the condition number of A is the ratio, $\frac{\sigma_{1}}{\sigma_{r}}$. If the matrix A is equilibrated, i.e., scaled, so that $\sigma_{1}=1, \sigma_{r}$ should be not less than the square root of the machine precision, or a constant representing the uncertainty in the data, whichever is larger. To be arbitrary about the choice of σ_{r} relative to σ_{1} is difficult. At the NBER Computer Research Center we have chosen a rank tolerance equal to the floating point representation of 2^{-26}, the square root of the machine precision, 2^{-52}. There is an obvious danger that this range rolerance may be inadequate for some problesm. For example suppose that $A=U \Sigma V^{T}$ such that

$$
\Sigma=\left[\begin{array}{lllllll}
1 & & & & & & \\
& 2^{-2} & & & & & \\
& & 2^{-3} & & & \\
& & & 2^{-26} & + & \varepsilon & \\
& & & & 2^{-26} & \\
& & & & & 2^{-27} \\
& & & & & & \\
& & & & & & \\
& & & & & & \\
& & & & & &
\end{array}\right]
$$

where $2^{-52} \leq \varepsilon<2^{-26}$, say.

The arbitrary rank tolerance would leave σ_{4} unchanged but set σ_{5} to zero. Thus A_{L} would be deemed to have full rank whereas a more judicious choice of rank is 3 . This example, though artificial, is given to encomage all usens to display the diagonal matrix, Σ, to see his particular problem's distribution of the σ_{i}.

Given an appropriate choice of σ_{r}

$$
\left\|A\left|\mid-\left\|A_{r}\right\| \leq \sum_{i=r+1}^{n}\left(\sigma_{i}\right)^{2}\right)^{1 / 2}\right.
$$

where $||\cdot||$ indicates the Frobenius norm, i.e. $||A||=\left(\sum_{\substack{i=1, m \\ j=1, n}}\left(a_{i j}\right)^{2}\right)^{1 / 2}$.
Noting that $U^{T} U=V^{T} V=V V^{T}=I_{n}$ and that the pseudo-inverse of Σ is the diagonal matrix
the pseudo-inverse of A is

$$
A^{+}=V \Sigma^{+} U^{T}
$$

There is seldom any reason to form a pseudo-inverse explicitly. MINFIT accumulates Householder transformations to produce a bidiagonal matrix having the same singular values as A, and continues, by a variant of the QR algorithm (see [3]), to diagonalize the bidiagonal form to give

$$
\Sigma V^{T} x=U^{T} b=c
$$

from which

$$
x=V \Sigma^{+} c .
$$

Various candidate solutions x can be provided by different choices of a rank tolerance to fix σ_{r}. See [6], chapters 25 and 26.

For suitably chosen σ_{r}, consider those columns of V associated with $\sigma_{r+1}, \sigma_{r+\eta}, \ldots \sigma_{n}$ as V_{v}, namely the columns of V that span the null space of A. Then

$$
A V_{v}=0 .
$$

When such columns V_{v} exist, they constitute the non-trivial solutions of the homogenous system of equations

$$
A X=0 .
$$

The elements of the columns of V can be inspected to reveal dependencies or near dependencies among the columns, i.e., the variables of the coefficient matrix A. Analogously, the columns of U can reveal dependencies among the equations, i.e., the rows of A.

In using MINFIT, and providing it to other users, we are concerned with three distinct but related itens, (1) the stability of the algorithm from the standpoint of numerical algebra, (2) the robustness of the mathematical software that implements the algorithm, and (3) the documentation that provides information on the use of the mathematical software.

The numerical stability of an algorithm usually means that the solution that is computed is the exact solution of a neighboring problem and that the neighboring problem can be defined in the sense of a backward error analysis. Such analysis for the singular value decomposition has been
published in [2], [11], [12], and [13]. The singular value decomposition is stable in the sense that the computation of eigensystems of Hermitian matrices is stable. In general, we expect

$$
\frac{\left\|\mathrm{A}-U \Sigma \mathrm{~V}^{\mathrm{T}}\right\|}{\|\mathrm{A}\|}
$$

to be the order of machine precision, as is corroborated for the matrices in Appendix C. If this criterion should not be met for some matrix, A, the authors would like to know about it. For computational convenience we computed $\frac{\| A\rfloor-\left\|U \Sigma V^{T}\right\|}{\|A\|}$ for the test matrices.

Robustness of this mathematical software is established to the extent of exposing test matrices on which the algorithm has performed correctly. Professor Gene Golub suggested two additional tests. These are

1) Decompose A to give $U \Sigma V^{T}$. Permute σ_{i}, reform $A=U \Sigma V^{T}$, and recompute the decomposition. This gives the effect of a perturbation on A in the sense that the resulting decomposition will show a permutation of the columns of U and V, yet give the same singular values of A. As additional tests we have taken orthonormal matrices U and V, particular σ_{i}, formed $U\left(\Sigma V^{T}\right)=A$ and computed $A=U \Sigma V^{T}$. Denote the maximum singular value by $\sigma_{\max }$ and the minimum singular value by $\sigma_{\min }$. If $\frac{\sigma_{\min }}{\sigma_{\max }}$ is
less than the relative machine precision, the computed $\sigma_{\min }$ may not be less than the relative precision of the machine on which it is computed, i.e. 2^{-52} for long
precision, 2^{-20} for short precision, on the IBM 360/370 machines.
2) Calculate the residuals $r=A x-b$ to observe the error between the true solution x and the computed solution $\hat{\mathrm{x}}$. From Golub's formulation

$$
\frac{\|x-\hat{x}\|}{\|x\|} \leq \varepsilon_{\kappa}(A)+\varepsilon_{k}{ }^{2}(A) \quad \frac{\|r\|}{\|\hat{x}\|}
$$

in which the condition number $k(A)=\frac{\sigma_{\max }}{\sigma_{\min }}$.
The second term on the right-hand side is dominant for least squares problems. In seeking the candidate solution \hat{x}_{k} of least norm we compute

$$
\mu_{k}=k^{2}\left(A_{k}\right) \frac{\left\|_{k}^{r}\right\|}{\left\|\hat{x}_{k}\right\|}
$$

for different choices of k. We could compute μ_{k} directly by foming \hat{x}_{k} and r_{k}. However, taking advantage of $\|\mathrm{U}\|=\|\mathrm{V}\|=1$ it follows that

$$
\left.\mu_{k}=\left(\frac{\sigma_{1}}{\sigma_{k}}\right)^{2} \frac{\left(\begin{array}{cc}
m & c^{2} \\
\sum_{i=k+1} & i_{i}
\end{array} \sum_{i=1}^{k}\right.}{\sum_{i}^{2}} \frac{c_{i}^{2}}{\sigma_{i}}\right)^{1 / 2}
$$

where $c=U^{T} b$. This formulation permits the appropriate choice of the best approximating matrix $A_{r}=U \Sigma_{r} V^{T}$ from the minimum u_{r} without explicitly computing the candidate solutions \hat{x}_{k}. The best approxinate solution is obtained when μ_{k} is minimum.

Frequently the question is raised about using iterative methods for computing the singular value decomposition. There is an excellent discussion of such issues in [8] along with suggestions for constructing matrices with exact singular values.

Informally, we suggest certain guidelines for using MINFIT. Whenever possible one should avoid forming the product of a matrix by its transpose. Note that the eigenvalues Λ and eigenvectors X for the real symmetric matrix eigenproblem

$$
A X=X \Lambda
$$

are inmediately available from MINFIT without ever forming $A^{T} A$. However, if the original problem is to obtain the eigensystem of a real symmetric positive definite, negative definite, or indefinite
matrix, SYMEIG (see [7]) should be used. One should, however, be warned that the appearance of zero or negative eigenvalues for a matrix believed to be positive definite signals the need to analyze the original data or the construction of the problem more carefully by obtaining the singular value decomposition of the original data matrix.

MINFIT can be used to obtain the solution of a linear system of equations. However, if the matrix of coefficients is known to have full rank, and, if the condition number of this matrix is small relative to the uncertainty in the data, one of the matrix factorization methods should be used. Such matrix factorization methods are 1) the Choleski factorization, 2) the LU decomposition with partial or complete pivoting where the elementary transformations have been stabilized by row and/or column interchanges, and 3) the orthogonal factorization with column pivoting. However, such factorizations cannot be guaranteed to give definitive information about the condition number of a matrix. Consider from [14] the bidiagonal matrix of order 100 $\left[\begin{array}{ll}.501 & -1\end{array}\right.$.502 -1

This matrix is extremely ill-conditioned with respect to the solution of a linear system of equations. Its smallest singular value is approximately 10^{-22} despite the fact that its smallest eigenvalue is .501 . This matrix also shows that computation of the smallest eigenvalue is limited by the relative finite precision of the machine on which it is computed. That is to say, the small singular value, 10^{-22} will appear computationally to be no smaller than the order of machine precision. This result is not attributable to the construction of the algorithm, but rather to the finite precision of the 'machine's arithmetic.

We suggest everywhere the use of long precision on the IBM 360/370 machines to compute the solutions of linear systems of equations, eigensystems, and the singular value decomposition. Even so, we urge extreme caution wherever the number of rows, m, or the number of columns, n, of a matrix is of more than modest size, say 200 , if the matrix is dense. The quantity $\frac{\left\|A-U\left(\Sigma V^{T}\right)\right\|}{\|A\| \cdot \max (m, n)}$ should be the order of machine precision. However, the computational algorithms are, in general, $O\left(n^{3}\right)$ or $O\left(\mathrm{mn}^{2}\right)$ processes. We advise a rigorous analysis of the structure of a matrix of high dimensions before any of the numerical algebra algorithms are used. See Appendix C for some timing results on random matrices.

The singular values of a matrix can be substantially altered by scaling the original data matrix as is shown by the examples in Appendix C. Deliberately, MINFIT does not include scaling of the rows or columns of the matrix A or right-hand sides b. For the best performance of the algorithm we suggest that columns of A be equilibriated such that the sums of their elements be as nearly equal as possible. Exact powers of

16 for the $360 / 370$ machines should be used for scaling factors so that the data is not perturbed in trailing digits. Row scaling will have the effect of introducing weights on the data in a least squares problem and therefore should be done at a user's discretion. An excellent discussion of scaling is in [6].

Lawson further points out in [6] that it is important to take advantage of information about the certainty of data. For example, if data is known to have uncertainty in the third decimal place, that digit and all that follow are arbitrary. The matrix

$$
\left[\begin{array}{ll}
1.02 & 1.09 \\
1.05 & 1.01
\end{array}\right]
$$

if uncertain in the third figure could lead to

$$
\left[\begin{array}{ll}
1.00 & 1.00 \\
1.00 & 1.00
\end{array}\right] .
$$

The eigenvectors of a symmetric matrix, and therefore, the singular vectors U and V from MINFIT are known only to within a constant multiplier of modulus 1 . If anyone should attempt to recompute the results in Appendix C on a machine whose arithmetic is different from that of the IBM $360 / 67$ he may observe a change in sign on the columns of U or V.

The Fortran IV subroutine MINFIT, imbedded in TROL (see [7]), that forms the singular value decomposition and obtains a best approximate solution vector x is an adaptation of ANLF233S from the Argonne National Laboratory. ANLF233S written by Burton Garbow, ANL, is a Fortran IV translation, with certain modifications, of the Algol 60 procedure MINFIT [3]. We have augnented

ANLF233S by adding comments and producing the numerically best approximate solution x based on a particular rank tolerance chosen for the IBM 360/370 long precision arithmetic. The machine epsilon, that is, the smallest number, $\varepsilon>0$, for which $1+\varepsilon>1$ is the floating point representation of $16^{-13}=2^{-52}$ for the IBM $360 / 370$ machines. The comments and the Fortran IV listing of the subroutine used at the Center is given in Appendix A. The description of the parameters for the TROLL interface is given in Appendix B. Appendix C contains selected matrices, conputed solutions, and residual norm checks obtained from driver programs that use the singular value decomposition. These results were computed on the IBM 360/67. Comments, questions, or criticims of this subroutine should be brought to the attention of the authors of this working paper.

References

1. Eckert, C., and Young, G. (1936) "The Approximation of One Matrix by Another of Lower Rank," Psychometrika 1, 211-218.
2. Golub, G. and Kahan, W., "Calculating the Singular Values and Pseudo-inverse of a Matrix," in J. SIAM. Numer. Anal. SER B 2, 205-224 (1965).
3. Golub, G. H. and Reinsch, C., "Singular Value Decomposition and Least Squares Solutions," in J. H. Wilkinson and C. Reinsch (eds.) Handbook for Automatic Computation, Volume II: Linear Algebra, Springer Verlag, 134-151 (1971); prepublished in Numer. Math. 14, 403-420 (1970).
4. Hanson, R. and Lawson, C. L., "Extensions and Applications of the Householder Algorithm for Solving Linear Least Squares Problems," Mathematics of Computation, vol. 23, no. 108, 787-812 (1969).
5. Lawson, C. L. "Applications of Singular Value Analysis" in John Rice (ed.), Mathematical Software, Academic Press, Chapter 25 (1971).
6. Lawson, C. L., and Hanson, R. J., Solving Least Squares Problems, Prentice-Hall, (1974).
7. National Bureau of Economic Research, TROLL Experimental Programs: Numerical Methods, (1974).
8. Soderstrom, Torsten and Stewart, G. W., "On the Numerical Properties of an Iterative Method for Computing the Moore-Penrose Generalized Inverse, SIAM J. Numer. Anal Vol. 11, No. 1 (1974), 61-74.
9. Stewart, G. W., Introduction to Matrix Computations, Academic Press, 380-387 (1973).
10. Sylvester, J. J., Messenger of Math 19, 42 (1889).
11. Wedin, Per-Ake, "Perturbation Bounds in Connection with Singular Value Decomposition," BIT 12 (1972), 99-111.
12. Wedin, Per-Ake, "Perturbation Theory for Pseudo-Inverses," BIT 13 (1973), 217-232.
13. Wedin, Per-Ake, "On the Almost Rank Deficient Case of the Least Squares Problem," BIT (1973) 344-354.
14. Wilkinson, J. H., The Algebraic Eigenvalue Problem, Clarendon Press (1965), 195.

APPENDIX A: Listing of the Fortran IV Program MINFIT

SUBROUTINE MINFIT(NM,M,N,A,W,IP,B,IERR,RVI,RETX)

```
INTEGER I,J,K,L,M,N,II,IP,II,KK,KI,LL,LI,MI,NM,ITS,IERR
REAL*8 A(NM,N),W(N),B(NM,IP),RVI(N)
REAL*8 C,F,G,H,S,X,Y,Z,EPS,SCALE,MACHEP,RKTOL
REAL*8 DSQRT, DMAXI,DABS,OSIGN
LOGICAL RETX
```

this subroutine determines, tuwarus the sulution of the linear
T
system axab, the singular value decomposition a =usv of a real
T
m by n rectangular matrix, forming u b reather than u. huuseholder
BIDIAGONALIZATION ANU A VARIANT OF THE QR ALGORITHM ARE USED.
this subroutine computes a candidate sulution x when the
logical input parameter retx is set otrue. this candidate
solution is based on the rank tolerance set to
2.000** (-26), the SQuare root of the machine precision
2.000** (-ち2).
ON INPUT:
nm must be set to the row dimension of the two-dimensional
array parameters as declared in the calling program
dimension statement. note that nm must be at least
as large as the maximum uf mand n;
m is the number of ruws uf a and b;
n is the number of columns of a and the order of v;
a Contains the rectangular cuefficient matrix of the system;
ip is the number of columns of b. ip Can be zero;
b Contalns the constant column matrix of the system
IF IP IS NOT ZERD. OTHERWISE B IS NOT REFERENCED.
retx must be set. true. if the candidate solution x is to
be computed. if only the singular value decompoisition is
desired, SET RETX .false.
ON OUTPUT:

A has been overwritten by the matrix v (orthogonal) of the DECOMPOSITION IN ITS FIRST N ROWS AND COLUMNS. IF AN ERROR EXIT IS maUE, the COLUMNS of v CORRESPONOING to indices of correct singular values should be currect;

W Contains the n (non-negative) singular values of a (the diagonal elements of si. they are unurdered. if an error exit is made, the singular values should be correct FOR INDICES IERR +1, IERR $+2, \ldots, \ldots$;

C C C C

```
                    T
```

 T
 B HAS BEEN UVERWRITTEN BY U B. IF AN ERROR EXIT IS MADE,
 B HAS BEEN UVERWRITTEN BY U B. IF AN ERROR EXIT IS MADE,
 T
 T
 THE ROWS UF U B CORRESPONDING TU INDICES OF CORRECT
 THE ROWS UF U B CORRESPONDING TU INDICES OF CORRECT
 SINGULAR VALUES SHOULD BE CORRECT;
 SINGULAR VALUES SHOULD BE CORRECT;
 IF RETX IS TRUE, W WILL CONTAIN THE DIAGONAL OF THE PSEUDOINVERSE
 IF RETX IS TRUE, W WILL CONTAIN THE DIAGONAL OF THE PSEUDOINVERSE
 OF THE DIAGONAL MATRIX S. ANY SINGULAR VALUES THAT
 OF THE DIAGONAL MATRIX S. ANY SINGULAR VALUES THAT
 ARE LESS THAN RKTOL TIMES THE LARGEST SINGLUAR VALUE ARE
 ARE LESS THAN RKTOL TIMES THE LARGEST SINGLUAR VALUE ARE
 SET TO ZERO IN THE PSEUDOINVERSE.
 SET TO ZERO IN THE PSEUDOINVERSE.
 ALSO, THE SOLUTIUN X IS RETURNED IN B, REPLACING U B.
 ALSO, THE SOLUTIUN X IS RETURNED IN B, REPLACING U B.
 IERR IS SET TO
 IERR IS SET TO
 ZERO FOR NORMAL RETURN,
 ZERO FOR NORMAL RETURN,
 K IF THE K-TH SINGULAR VAlUE HAS NOT BEEN
 K IF THE K-TH SINGULAR VAlUE HAS NOT BEEN
 DETERMINED AFTER 30 ITERATIONS,
 DETERMINED AFTER 30 ITERATIONS,
 -1 IF THE MAXIMUM SINGULAR VALUE IS ZERO IINDICATING
 -1 IF THE MAXIMUM SINGULAR VALUE IS ZERO IINDICATING
 A ZERO A MATRIX ON INPUT). UNLY SET IF
 A ZERO A MATRIX ON INPUT). UNLY SET IF
 RETX IS .TRUE..
 RETX IS .TRUE..
 RVI IS A TEMPORARY STORAGE ARRAY.
 RVI IS A TEMPORARY STORAGE ARRAY.
 :::::::::: MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING
 :::::::::: MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING
 THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC
 THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC
 MACHEP = 16.ODO**(-13) FOR LONG FORM ARITHMETIC
 MACHEP = 16.ODO**(-13) FOR LONG FORM ARITHMETIC
 ON S360 :::::::::::::
 ON S360 :::::::::::::
 DATA MACHEP/Z3410000000000000/
DATA MACHEP/Z3410000000000000/
:::::::::: RKTOL, FOR THESE APPLICATIONS, IS THE SQUARE
:::::::::: RKTOL, FOR THESE APPLICATIONS, IS THE SQUARE
ROOT OF MACHEP ::::::::::::::
ROOT OF MACHEP ::::::::::::::
DATA RKTOL/Z3A40000000000000/
DATA RKTOL/Z3A40000000000000/
:::::::::: HOUSEHOLDER REDUCTION TO BIDIAGUNAL FORM ::::::::::
:::::::::: HOUSEHOLDER REDUCTION TO BIDIAGUNAL FORM ::::::::::
IERR = O
IERR = O
G = 0.ODO
G = 0.ODO
SCALE = 0.ODO
SCALE = 0.ODO
X = O.ODO
X = O.ODO
00 300 I = 1,N
00 300 I = 1,N
L = I + l
L = I + l
RVI(I)=SCALE*G
RVI(I)=SCALE*G
G=0.0D0
G=0.0D0
S = 0.000
S = 0.000
SCALE = 0.0DO
SCALE = 0.0DO
IF (I .GT. M) GO TO 210
IF (I .GT. M) GO TO 210
DO 120 K = I, M
DO 120 K = I, M
SCALE = SCALE + DABS(AlK,I))
SCALE = SCALE + DABS(AlK,I))
IF (SCALE .EQ. O.0DO) GO TO 210
IF (SCALE .EQ. O.0DO) GO TO 210
DO 130 K = I, M
DO 130 K = I, M
A(K,I) = A(K,I) / SCALE
A(K,I) = A(K,I) / SCALE
S = S + A(K,1)**2

```
        S = S + A(K,1)**2
```

```
    130 CONTINUE
C
        F=A(I,I)
        G=-DSIGN(DSORT(S),F)
        H=F*G-S
        A(I,I)=F-G
        IF (I .EQ. NI GO TO 160
C
        DO 150 J = L. N
        S = 0.000
C
    140 DO 140 K=I,M
C
C
    F}=S/
    DO 150 K = I, M
                        A(K,J)=A(K,J) + F*A(K,I)
    CONT INUE
C
    160 IF (IP .EQ. O) GU TO 190
C
        DO 180 J = 1,IP
            S = 0.000
C
        DO 170 K = I, M
    170 S =S + A(K,I) * B(K,J)
C
    F=S/H
C
        OU 180 K = I, M
        B(K,J)=B(K,J) + F & A K,I)
    180 CONTINUE
C
    190 DO 200 K = I , M
    200 A(K,I) = SCALE * A(K,I)
C
    210 W(I) = SCALE *G
        G = O.ODO
        S = 0.000
        SCALE = 0.000
        IF (I .GT. M .OR. I .EQ. N) GO TO 290
C
    220 SCALE = SCALE + DABS(A(I,K))
C
C
    230
C
    IF (SCALE .EQ. O.ODO) GO TO 290
    UU 230 K = L,N
        A(I,K)=A(I,K)/ SCALE
        S = S + A(I,K)**2
    CONTINUE
    F=A(I,L)
    G=-DSIGN(DSQRT(S),F)
```

```
        \(H=F * G-S\)
        \(A(I, L)=F-G\)
C
    240 RVI(K) \(=A(I, K) / H\)
C
C
C
    250
C
    260
C
    270 DU \(280 \mathrm{~K}=\mathrm{L}, \mathrm{N}\)
    280 A(I,K) \(=\) SCALE \(* A(I, K)\)
C
    \(290 \quad x=\) DMAXI(X,DABS(W) I) )+DABS(RVI(I)))
    300 CONTINUE
```



```
    DO 400 II \(=1\). \(N\)
    \(I=N+1-I I\)
    IF (I •EQ. N) GO TO 390
    IF (G .EQ. O.ODO) GO TU 360
    \(H=A(I, L) * G\)
C
    320 A(J,I) = AlI.J) / H
C
c
    \(340 \quad S=S+A(I, K) * A(K, J)\)
C
        DO \(350 \mathrm{~K}=\mathrm{L}, \mathrm{N}\)
                        \(A(K, J)=A(K, J)+S * A(K, I)\)
    CONTINUE
C
    360 DO \(380 \mathrm{~J}=\mathrm{L}, \mathrm{N}\)
            \(A(I, J)=0.000\)
            \(A(J, I)=0.000\)
    CONTINUE
C
    \(390 \mathrm{~A}(\mathrm{I}, \mathrm{I})=1.000\)
            \(G=\operatorname{RVI}(I)\)
            \(L=I\)
    400 CONTINUE
    IF (M.GE. N.OR. IP.EQ. O) GO TO 510
```

c
C

```
C
C
        DO 500 J = 1, IP
        B(I,J)=0.0DO
    500 CONTINUE
C :&:: : : : : : DIAGONALIZATION OF THE BIDIAGONAL FORM ::::::::::
    510 EPS = MACHEP * X
C :::::8:::: FOR K=N STEP - U UNTIL 1 DO -- :::::::::::
    DO 700 KK = 1, N
        Kl=N - KK
        K=Kl + 1
    ITS = 0
C :::::::::: TEST FOR SPLITTING.
C FOR L=K STEP -1 UNTIL 1 UO -- :::::::::::
    520. DO 530 LL = 1, K
        Ll=K - LL
        L=LL + L
        IF (DABS(RVI(L)) .LE. EPS) GO TO 565
C ::::::: :: : RVI(l) IS ALWAYS ZERO, SO THERE IS NO EXIT
C THRUUGH THE BUTTUM UF THE LOOP ::::::::::::
        IF (DABS(W(LI)).LE.EPS) GO TO 540
    530 CONTINUE
C :::::::::: CANCELLATION OF RVI(L) IF L GREATER THAN l ::::::::::
    540 C = 0.0DO
    S =1.000
C
    DO 560 1 = L,K
        F=S*RVI(I)
        RVI(I) = C* RVI(I)
        IF (DABS(F) .LE. EPS) GO TO 565
        G =W(I)
        H=DSQRT(F*F+G*G)
        W(I) = H
        C=G/H
        S = -F/H
        IF (IP .EQ. O) GO TO 560
C
        DO 550 J = 1. IP
            Y = B(LI,J)
                Z = B(I,J)
                B(LI,J)=Y*C + Z * S
                B(I,J) = -Y*S + Z*C
    550
C
    560 CONT INUE
C :::::8:::: TEST FOR CONVERGENCE ::::::::::
    565 Z =W(K)
    IF (L .EQ.K) GO TO 650
C :::::::::: SHIFT FROM BOTTUM 2 BY 2 MINOR ::::::::::
    IF (ITS .EQ. 30) GO TO 1000
    ITS = ITS + I
        X=W(L)
        Y}=W(Kl
```

```
    G=RVI(Kl)
    H=RVI(K)
    F=((Y-Z)*(Y+Z)+(G-H)*(G+H))/(2.000*H*Y)
    G = DSORT(F*F+1.000)
    F=((X-Z)*(X + Z) + H*(Y/ (F + USIGN(G,F)) - H)) / X
C :::8:::::: NEXT QR TRANSFORMATIUN ::::::::::
    C = 1.000
    S = 1.000
C
    DO 600 11 = L, K1
        I=11 + 1
        G = RVI(I)
        Y = W(I)
        H=S *G
        G=C*G
        Z = OSQRT(F*F+H*H)
        RV1(II)=Z
        C=F/Z
        S = H/Z
        F=X*C+G*S
        G = -X * S +G*C
        H=Y*S
        Y=Y*C
C
    5 7 0
C
        Z= DSQRT(F*F+H*H)
        W(II) = Z
C :::::::::: ROTATION CAN BE ARBITRARY IF Z IS ZERO ::::::::::
        IF (Z .EQ. O.ODO) GO TO 580
        C=F/2
        S=H/Z
        F=C*G*S*Y
        X=-S*G + C*Y
        IF (IP .EQ. O) GO TO 600
C
    DO 590 J = 1. IP
            Y = B(II,J)
            Z = B(I,J)
            B(Il,J) = Y * C + Z * S
            B(I,J)=-Y*S + Z*C
        CONTINUE
C
    600 CONTINUE
C
    RVI(L) = 0.000
    RVl(K)=F
    W(K) = X
    GO TO 520
C ::::::::::: CONVERGENCE :::::::::::
```

```
    650 IF (2.GE. O.ODO) GO TO 700
C :8:8:::::: W(K) IS MADE NON-NEGATIVE ::::::::::
C
    690 A(J,K)=-A(J,K)
C
    700 CONT INUE
        IF (.NOT. RETX) GO TO 1001
C :::::::::: FIND MAXIMUM ELEMENT OF W ::::::::::
    z=0.000
    DO 750 J = 1,N
        X=W(J)
        IF (X .LE. Z) GO TO 750
        z=x
    750 CONTINUE
        IF (Z .EQ. O) GO TO 999
        :::::::::: FORM PSEUUO INVERSE UF DIAG(W) :::::::::::
    00 800 J = 1, N
        X = W(J) / Z
        IF (X .LE. RKTOL) GO TO 7YO
        W(J) = 1.0DO / W(J)
        GO TO 800
    790
        W(J)=0.000
    800 CONT INUE
C :::::::::: FORM X (RETURNED IN B) :::::::::::
    DO 900 J = l, IP
C
        DO 810 I = I,N
                RVI(I) = W(I) * B(I,J)
    810 CONTINUE
C
C
    DO 890 1 = 1,N
                x = 0.000
                00 850 I1 = 1,N
                X=X+A(I,II)*RVI(II)
    850 CONTINUE
C
C
    890 CONTINUE
C
    900 CONTINUE
C
    GO TU 1001
C :::::::::: ERROR IF MAX SINGULAR VALUE = 0 ::::::::::
    999 K= -1
    :::::::::: SET ERROR -- NO CONVERGENCE TO A
C SINGULAR VALUE AFTER 30 ITERATIONS ::::::::::::
    1000 IERR = K
    1001 RETURN
C :::::::::: LAST CARD OF MINFIT ::::::::::
    END
```


APPENDIX B: TROL Implementation of MINFIT and Associated Output

The calling sequence for using the singular value decomposition within the TROLL environment is considerably different than that for the Fortran subroutine listed in Appendix A. This is a consequence of the basic design features of TROLL. However all computations are actually performed by the routine listed in Appendix A.

The TROL version of the singular value decomposition is a function named MINFIT. Since it is a function, it returns a single data file as its result, and by TROLL convention it may not modify any of its arguments. The format of the TROLL call to MINFIT is

```
result = MINFIT (A-matrix <, B-matrix <, code >>)
```

where the <> indicate optional arguments.
Since we may desire several matrices as output from MINFIT, the data file returned as result may be made up of several matrices. The precise result returned by MINFIT is controlled by the code parameter as described in the following table for the linear system:

A	$X=B$
$\operatorname{m\times n}$	where $A=U C V^{T}$
and $W=$ diagonal of Σ	

Code	B-matrix omitted	B-matrix present
0	illegal	X (nxp) (default)
1	V (nxn) (default)	V (nxn)
2	W (nxl)	W (nxl)
3	illegal	$\mathrm{U}^{T} \mathrm{~B}(\mathrm{nxp})$
4	$\left[\begin{array}{l}W \\ V\end{array}\right]\binom{1 \times n}{n \times n}$	$\left[\begin{array}{c}W \\ V \\ \left(U^{T} B\right)^{T}\end{array}\right]\left(\begin{array}{c}1 \times n \\ n \times n \\ p \times n\end{array}\right)$

The correspondence between the TROL parameters and the Fortran parameters is as follows:

Immediately prior to TROLL call to Fortran routine

TROL
Max (number of rows of A-matrix, number of column A-matrix)

Number of nows of A-matrix M

Number of columns of A-matrix N

A-matrix A
free storage W
if B-matrix omitted then $0 \quad$ IP else number of columns of B-matrix
not set
IERR
free storage
RV1
if code $=0$ or code omitted and B-matrix is RETX present then .TRUE. else. FALSE.

NM
not set

IER

Fortran parameter pent then

If IERR is not zero then print appropriate error message，otherwise

Code Fortran variable to be used as result
0
B（the solution X is formed in B ）
1 A
2 W
3 B

4
\(\left[\begin{array}{l}W

A\end{array}\right]\)| $l \mathrm{xn}$ |
| :--- |
| $n \times m$ | or if B－matrix was specific \(\left[\begin{array}{c}W

A

B\end{array}\right]\)| $l \times n$ |
| :--- |
| $n \times n$ |
| $n \times p$ |

For more details on the use of the TROLL function，see［7］．
The following output is the result of performing the TROL version of MINFIT on the Longley data described in Appendix C．Row 1 of the matrix contains W ，rows 2 through 8 contain the V matrix，and row 9 is $\left(U^{T} b\right)^{T}$ ．

RUW	CIJLIJMN 1	CHLIMA？	Cllighina 3	C．HLIMN 4	CILIIMN 5	rriciomn h	C．1I．HMA 7
	1．6の37ト＋0h	9． $3400 \mathrm{~F}+04$	4．40ッフト＋ 0 （13	1．\dagger ¢4 4 ＋+103	41.654700	3．4．3つ1F－n4	3．Ah $24 F+00$
	－P．3417E－06	1．1）7ナんだ0）	－4．7316F゙ー（1）		－－103日ヶ－14	－1．0n＠nfono	3．41H1F－へ5
	－2．4376F－014	A．1 AnYF－04	－4．4大ら4ト－114	－1．4370F－03	－1．0447F－01	1．43n7F－On	－4．44っ3F－111
	－9．6034F－01	－2．1ヶ7カF－01	－2．2174ド－1）．		－1．3ち0ちF－03	－3．ПGMHF－OK	1．4471F－n4
	－7．7734F－03	1．1073的F－02	7． H．344r－01 $^{\text {a }}$		－1．70R4t－n7	－4．677MF－O7	2． 2114 ¢ト－ 133
	－6．2675F－0．3	1．34うつF－012	－h．18h大ヶー011	－7．154RF－01	8．072 2F－03	－1．3n44F－077	A． CH 17F－ 174
	－7．7861F－111	Y． 4 ¢44t－01	－4．804 6 （t－05	1． RH － 3 F－0？	2．1381F－0？	1．$\cap 43$ กt－n7	－1．AONAF－ 3
	－4．5794F－03	2． 1 HY2F－02	－1．84大7F－U2		－4．4412r－n1	？．113 1 F－ก）4	1．1） $34+$－ 1
	$-2.5750 F+05$	4． A （1） 4 3F．+04		1．60 $24 t+103$	－1．773AE＋O 3	1．184OF＋03	$210.4400 \cap$

APPENDIX C: Selected Matrices, Computed Solutions, and Illustrative Examples

This appendix displays a representative sample of matrices on which the subroutine MINFIT has performed satisfactorily. The input matrices and the output computations have been retained on magnetic tape. The format of the printing was chosen for convenience and does not include the full fifteen decimal place output that was produced by the long precision computation on the machine. If anyone should attempt to reproduce these results on a machine whose arithmetic or relative precision is different from that of the IBM $360 / 67$ he may get output that is different from that which we display. However, such results should be correct to the onder of machine precision on which the computation is performed.

Though we include certain matrices of the Hilbert segments, we do not encoumage their use as test matrices for software validation. The Hilbert segments are not representable exactly in a computing machine unless appropriate multipliers are used to preclude a perturbation on input of the data. We have used such multipliers.

Other matrices exhibited are a 3×3 matrix that is contrived to display information about near dependencies of rows or columns, a test matrix from [1]* and [2] and a matrix suggested by Ed Kuh. The matrix from [1] is exactly representable in the machine though it is ill conditioned with respect to the solution of linear systems of equations. The matrix in [3] shows the dependence of the solution vector x on the rank tolerance that is chosen.

On the output that is displayed, V has its usual meaning, W contains the unordered singular values from MINFIT, P is an integer vector that indicates the descending order of the singular values, MU contains μ_{i} for $i=1,2, \ldots, n$ for each right-hand side and C contains $U^{T} b$. X contains the candidate solution of $A x=b$. IERR is the error indicator from MINFIT; it is non-zero if the computation of any singular value requires more than 30 iterations or if the maximum singular value is zero.
*Numerals in square brackets refer to entries in the Reference section, p. Cl4.

This 3×3 matrix shows output that indicates rank 2 if the smallest singular value is treated as zero．Given this interpretation，columns 1 and 2 are linearly dependent．This information is contained in column 2 of the V matrix．

A＝				
（ ROW 1 ）：				
0.1010100001	$0.10098001)$	01	0.48000000	00
（ HOW 2 ）：				
0.1009800001	0.101040013	01	0.980000013	00
（ HOW 3 ）：				
0.9800000000	$0.98000001)$	00	0.10100000	01
H＊				
（COI．UMN 1）				
0.1000000001	0.0		0.0	
（CIJUMN ？）				
0.0	0.10000000	01	0.0	
（COLIJMN 3）				
0.0	0.0		0.100000010	
IEKR＝0				
$V=$				
（COI．UMN 1）				
－0．579？7490） 00	－0．57933300	00	－0．57342301）	00
（CII．1MA 2 ）				
－0．70801140 00	0.706198311		$0.17604610-$	112
（CIILUMN 3）				
－0．40393051） 00	－0．40701011	00	0.819257610	00
$W=$				
0.7990101001	（1．444R0761）－6．3		（1．34448431）－01	
$\Gamma_{1}=$				
（C）（1I．JMN i）				
－0．5797．7491） 00	－1）．7（1801195）	00	－0．40343051）	OU
（C）ILUMN 7 ）				
－0．57933．00 00	0．70614＊31）	（II）	-3.40701010	00
（COLIJMN 3）				
－0．57347300 00	$0.176(1461)-$	02	（3．H142b761）	00

M（1）$=$
（CIT．JMN 1 ）

$0.46145511) 02 \quad 0.8773891000 \quad 0.56445951 J-0$ ？
$($ C．IIIUMN 3 ）
0.46 大刀 11110020.43594980000 .4282218000

USING RK「UI＿， $\mathrm{X}=$					
（CIJLJMN	l）				
$0.1118630104-0.1107352004-0.10443611)$ U2					
（COLUMN 2）					
－0．11073520 $040.1112991004-10.54718031) 01$					
（COLIJMN	$3)$				
－0．1094361	1102	－0．54718030	01	0.16917920	

The matrix whose data is displayed on the following page was suggested by Ed Kuh. The matrix is 32×10 and has singular values, to 4 decimal places,

$$
\begin{aligned}
& 4921,41.89,30.33,18.71,8.573,2.491, \\
& 4.763,5.532,6.162,6.091 .
\end{aligned}
$$

The indicated rank determination is that the matrix is of rank 10 if the data is certain in all digits, of rank 1 if the thind digit is doubtful.

The residual checks for the decomposition are

```
MAX-RUW-SUM RESIDIJAI. =
EUCIIDIAN RESIDUAI =
MAX-COI-SIJM RESIDUAL = 0.1378022275D-14
```

Truncation of the data to integers $234,231, \ldots, 311$ gives singular values to 4 decimal places.

$$
\begin{aligned}
& 4911,41.10,30.07,18.59,8.356,3.403, \\
& 6.299,5.727,4.963,5.198
\end{aligned}
$$

Data for A

$34 \overline{6.6}$	Row 32	
342.1		Row 31
337.9		Row 30
337.9		
331.2		
326.7		
321.8		
314.5		
312.2		
311.7		
311.6		
307.4		
303.8		
300.8		
294.6		
290.7		
286.4		
283.2		
278.9		
272.6		
266.2		
262.4		
257.3		
254.7		
255.3		
254.0		
253.8		
253.4		
249.2		
245.8		
240.9		
234.4	Row 1	
231.7		
231.2		
227.9		
226.0		
220.8		
214.7		
209.0		
201.5		
202.2		

Right-hand side B

214.6
216.7
225.0
228.4
230.1
231.0
230.3
232.3
234.6
237.3
241.8
247.7
252.7
256.8
260.4
262.0
264.4
267.5
272.8
277.2
279.3
283.8
285.4
284.5
287.4
292.2
296.2
304.0
309.8
314.8
316.3
321.1

The Hilbert matrix of order 7, generated in long precision, 7 digits

 of which are given for each element, is inexact in the machine.

Its singular values are

$w=$

Multiplication of the Hilbert matrix of order 7 by the constant 360360 allows a machine representation that is exact.

Its singular values are $w=$ $0.59851860060 .97989160050 .76719761040 .36345481030 .10589670020 .17501830000 .12590610-07$

The Longley data matrix [3] with its associated output is

The Bauer matrix with its associated output is

1 RUW 1):										
-0.74000000	02	0.80000000	02	0.14000000	12	-0.11000000	02	-0.400000000	01	-0.H00nonn	
1 ROW 2	18										
0.14000000 1 RUW 3	02	-0.69000000)	02	$0.21000001)$	1)	U. 2 20000001	12	0.0		0.70000800	
$\begin{aligned} & 1 \mathrm{RUW} \\ & 0.66000000^{3} \end{aligned}$	$\begin{aligned} & 1: \\ & 02 \end{aligned}$	-0.72000000	02	-0.50000000	01	0.70000000	01	$0.10000001)$	01	0.40000000	01
1 ROW 4	1:										
-0.12000000	02	0.66000000	02	-0.30000000	02	-0.230000001)	02	0, 300000010	01	-0.30000000	01
(ROw 5	1:										
0.30000000	01	0.80000000	01	-0.70000000	$山 1$	-0.400000001	01	0.110000000	01	0.0	
1 RUW 6	1:										
0.40000000	01	-0.12000000	02	0.40000000	01	$0.40000001)$	01	0.11		0.10000000	

$C=$
(COIUMN 1)
 (COI.UMN 2)
$0.37040050-030.16174950-03-0.31773030-01-0.40424831000-0.1966908001-0.1626444005$ (COIJMN 31

(COLUMN 1)										
0.5514312007	0.42339880	07	0.3202064 D	07	0.30130790	07	0.69023290	06	0.65274640	06
(COI_UMN 2)										
0.2306810015	0.14984950	15	0.16501570	12	0.12039250	10	0.43763960	OR	0.14336980	01
(CII.UMN 3)										
0.7457868009	0.57262870	09	0.43232170	09	0.35115200	09	0.78558700	08	0.14337370	01

The condition number of a nonsingular matrix may be improved by row or column scaling. The Bauer matrix, scaled as

```
    A=
    ( RIJW 1 ):
-0.74000000 02 0.80000000 02 0.36000000 02 -0.33000000 02 -0.40000000 02 -0.80000000 02
    0.14000000 02-0.69000000 02 0.42000000 02 0.84000000 02 0.0 0.70000000) 02
    ( ROW 3 ): 0.70000000)
    0.6G00000D 02 -0.7200000D 02 -0.10000000 02 0.21000000002 0.10000000 02 0.40000000 02
-0.12000000 02 0.66000000 02 -0.60000000 02 -0.69000000 02 0.30000000 02 -0.30000000 02
    0.24000000 02 0.64000000 02 -0.11200000 113-0.46000000 02 0.80000000 02 0.0
    1 4uW 6 J: 0. %0000000 02 0.0
    0.28000000 02-0.84000000 02 0.56000000 02 0.44000000 02 0.0 0.70000000) 02
```

 with singular values
 \(w=\)
 \(0.29594490030 .18165700 \quad 030.48937800 \quad 02 \quad 0.128\) R2170 \(020.7095995000 \quad 0.13971070-02\)
 The singular value decomposition provides $U \Sigma V^{T}$ as the decomposition of a matrix A. Given the orthonormal columns U and V one can form another matrix $U \Sigma V^{T}$ for arbitrary Σ. Using U and V from the inexact Hilbert matrix of order 7, the reformed matrix

```
    THE REFURMEO A *
    1 ROW 1 1:
    0.20106490 02 -0.11191230 03. 0.23250410 03 -0.24893840 03 0.14774330 03 -0.46373370 02 0.60402080 01
    ( RUW 2 1:
-0.11191230 03 0.13209940 04 -0.47280010 04 0.78498420 04 -0.67653190 04 0.29490710 04 -0.51555810 03
    1 RuW 3 1:
    0.23250410 03 -0.47280010 04 0.25364010 05 -0.58889480 05 0.67996620 05 -0.38558890 05 0.85824910 04 
```



```
(ROW 5 ): 
    0.14774330 03 -0.67653190 04 0.67996620 05 -0.26360290 06 0.47139410 06 -0.39302090 06 0.12386200 06
    1 ROW 6 1:
```



```
    | ROW 7 1:
    0.60402080 01 -0.51555810 03 0.85824910 04 -0.49868680 05 0.12386200 06 -0.13550680 06 0.53689920 05
```

where the σ_{i} are $10^{-8}, 10^{-7}, 10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}$ and 10^{-2}.
The computed σ_{i} from the reformed A are
$\begin{array}{lllllllllllllllllll}W=10000000 & 07 & 0.10000000 & 06 & 0.10000000 & 05 & 0.10000000 & 04 & 0.10000000 & 03 & 0.10000000 & 01 & 0.10000000 & 02\end{array}$

```
MAX-ROW-SUM RESIDUAL = 0.12283R9490D-14
EUCLIDEAN RESIDUAL = 0.9990491258D-15
```

MAX-COL-SUM RESIDUAL $=0.12283894900-14$

However, choosing $\sigma_{i}=10^{24}, 10^{20}, 10^{16}, 10^{12}, 10^{8}, 10^{4}, 10^{0}$ gives $W=$

MAX-ROW-SUM RESIOUAL
0.60675624030-15

EUCIIDEAN RESIDHAL $=0.46976204570-15$
MAX-CDL-SUM RESIUUAL $=0.0 .40450411350-15$

The singular values smaller than 10^{12} are effected by the order of machine precision relative to $\sigma_{\text {max }}$.

Choosing $\sigma_{i}=10^{0}, 10^{-4}, 10^{-8}, 10^{-12}, 10^{-16}, 10^{-20}, 10^{-24}$ gives
$w=$

The order 100 matrix

has a maximum singular value ~ 1.587 and a minimum singular value $\sim 10^{-22}$. The minimum singular value computed on the IBM $360 / 67$ is $.3329410 \times 10^{-15}$. Using long precision on the IBM 360/195 at Argonne National Laboratory, Jack Dongerra computed the same singular values as those from the 67 except for the minimm singular value which was . 33292721×10^{-15}. The arithmetic of the 195 is not the same as that of the 67. Multiplying this matrix by 10^{3} (so that the input was intemally representable as exact integers) gave the smallest singular value $.33294095 \times 10^{-12}$. Brian Smith suggested mmning this matrix on the 195 using short precision from which the smallest singular value was . 1287991×10^{-5} and $.13423073 \times 10^{-2}$ for the matrix scaled by 10^{3}.

We have done some timing tests on the singular value decomposition. In general, accessing data is more costly than computing the singular value decomposition, so we would expect the use of Fortran H (opt=2) to reduce the computation times listed below by about 50\%. From a Fortran IV G compilation on the $360 / 67$ computer, the computation time for U, V, and Σ using SVD from [2] on random square matrices of dimension N is as follows:

N	Time in seconds
5	.074
10	.464
20	3.490
40	25.010
60	79.353
80	185.653

These times were obtained from the interval timer on the 67 which gives approximate microseconds at 13 microsecond intervals. These timings were obtained at the NBER Computer Research Center by Harry Bochner.

The time required by MINFIT is approximately that of SVD if U, V, and Σ are computed. However, in general, U is not needed. The time that is used to form V, Σ, and $U^{T} b$ is therefore reduced by almost 50% of the times listed here.

The time for computation of the singular value decomposition will be matrix dependent in that fewer iterations may be required when there are multiplicities or clusters of singular values.

References

1. Bauer, F. L., "Elimination with Weighted Row Combinations for Solving Linear Equations and Least Squares Problems," in J. H. Wilkinson and C. Reinsch (eds.) Handbook for Automatic Computation, Volume II: Linear Algebra, Springer Verlag, 7, 338-352 (1965).
2. Golub, G. H. and Reinsch, C., "Singular Value Decomposition and Least Squares Solutions," in J. H. Wilkinson and C. Reinsch (eds.) Handbook for Automatic Computation, Volume II: Linear Algebra, Springer Verlag, 134-151 (1971); prepublished in Numer. Math. 14, 403-420 (1970).
3. Longley, James W., "An Appraisal of Least Squares Programs for the Electronic Computer from the Point of View of the User," JASA 62, 819-841, 1967.
