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Abstract

The singular value decomposition has been extensivelv used

for the analysis ofthe kinematic and dynamic characteristics

ofrobotic manipulators. Due to a reputation for being nu

mericallyexpensive to compute, however, it has nul been

usedfor real-time applications. This work illustrates a for
mulation for the singular value decomposition that takes

advantage ofthe nature ofrobotics matrix calculations to ob

tain a computationally feasible algorithm, Several applica

tions, including the control ojredundant manipulators and

the optimization ofdexterity, are discussed. A detailed illus

tration ofthe use ofthe singular value decomposition to deal

with the general problem ofsingularities is also presented.

.1. Introduction

In recent years the singular value decomposition

(SYD) has become a popular tool for analyzing the

kinematic and dynamic properties of robotic manipu

lators (Yoshikawa 1985a; Yoshikawa 1985b). It plays

a particularly prominent role with regard to redundant

manipulators, both in terms of analyzing thesignifi

cance of the extra degrees of freedom (Klein and

Huang 1983) and in specifying a side criterion that

can be optimized using these redundant degrees of

freedom. In many cases, these side criteria are some

quantitative measure of the qualitative concept of
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dexterity. Most of the dexterity measures proposed are

some function of the singular values of the Jacobian

matrix. The most common of these is perhaps the

manipulability measure proposed by Yoshikawa

( 1984) that is defined as the square root of the deter

minant of the matrix Ji T, which is simply the product

of the singular values of J. Other proposed measures

include the trace of the above matrix (Baillieul 1987),

the minimum singular value of the Jacobian (Klein

and Blaho 1987), the compatibility index (Chiu 1987),

and isotropy (all equal singular values; Salisbury and

Craig 1982).

While all of the above measures have a physical

significance and justification for their use, the key

point here is that they are all closely linked to the

SVD. Yet in spite of this fact, the full decomposition

is usually limited to the analysis of manipulator con

figurations and is not considered for implementation

in on-line control. This is exemplified by the popular

ity of the manipulability measure, since its major jus

tifications are that it is numerically simple to compute

and that its zeros coincide with the singularities of the

Jacobian. The implication is that one would really like

information about singularities; however, that would

require calculation of the SVD, which has a reputation

for being numerically expensive to compute. Unfortu

nately, the determinant gives no information about

the absolute proximity to singularities, since the mini

mum singular value is the only reliable measure of

this quantity. In addition, the calculation of the matrix

product JJ T squares the condition number, which

reduces the accuracy of the result

This work is concerned with demonstrating that,

with the right formulation, the SVD is computation

ally feasible for use in real-time control. Traditionally,

the computation of the SVD of an arbitrary matrix is

an iterative procedure, so that the exact number of
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computations cannot be known a priori. However, the

control of robotic systems is not based on the solution

of arbitrary matrix equations but quite frequently

involves the solution of equations based on the Jaco

bian matrix. The current Jacobian for a system can be

regarded as a perturbation of a previously known ma

trix for which perturbation bounds on the singular

values and singular vectors can be established. It will

be shown how this knowledge of the previous state can

be exploited during the current computation of the

SVD in order to reduce the overall computational

burden. The above point will be emphasized in this

work, which illustrates a computational scheme capa

ble of calculating the SVD of the Jacobian for use in

real-time control "ofmanipulators. The implications of

such an algorithm for several applications, including

the utilization of redundancy and the optimization of

manipulator dexterity, are then discussed. A detailed

examination of the advantages of using the SVD for

dealing with manipulator singularities is illustrated

through computer simulations of a PUMA robot,

using both rate and acceleration control.

2. Overview of SVD Algorithms

The Golub-Reinsch algorithm is generally regarded

as the most efficient and numerically stable technique

for computing the SVD of an arbitrary matrix. How

ever, there are two aspects of the algorithm that make

it less attractive for the problem at hand. The first

relates to the fact that the first step in the algorithm

requires a fixed computation to bidiagonalize the given

matrix so that a slightly perturbed matrix must still

undergo this operation. The second aspect relates to

the relatively serial nature of the technique, thus mak

ing it difficult to utilize parallel computing structures.

For these reasons, the Golub-Reinsch algorithm will

not be considered as the basis for implementing a

real-time SVD algorithm. The following algorithm,

based exclusively on Givens rotations, is more suited

to take advantage of incremental perturbations and

parallel architectures.

2.2. Algorithms Based on Givens Rotations

Gi vens rotations are orthogonal transformations of the

form

where all other elements not shown are zero. This

transformation can be geometrically interpreted as a

plane rotation of () in the i-j plane. These transforma

tions are also known as Jacobi rotations since they

were first described by Jacobi (1846). In contrast to

Householder reflections, Givens rotations only affect

two rows or columns of the matrix with which they

2.1. The Golub-Reinsch Algorithm

The most popular technique for computing the SVD

was first proposed in Golub and Kahan (1965) with

source code published in Businger and Golub (1969).

It is now commonly referred to as the Golub-Reinsch

algorithm (Golub and Reinsch 1970) and is available

in many linear algebra software packages such as

EISPACK, LINPACK, and IMSL. This algorithm is

composed of two distinct steps, namely, transforming

the given matrix into bidiagonal form using a series of

Householder transformations and then applying an

iterative procedure designed to use orthogonal trans

formations to produce bidiagonal matrices that are

successively more diagonal. The procedure used is a

variant of the QR algorithm (Watkins 1982), with

origin shifts designed to improve the convergence

properties (Stewart 1970).

Q=

cos (8)

sin (8)

-sin (8)

cos (0)

j

j

(1)
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The terms in the Givens rotation matrix to achieve

orthogonality can be computed by using the formulas

given in Nash (1979), which are based on the quantities

each of which is designed to orthogonalize two col

umns. Considering the current ith andjth columns of

A, multiplication by a Givens rotation results in the

new columns, a. and s; given by

The constraint that these columns be orthogonal re

sults in

are multiplied, a property that is useful when designing

parallel computing structures based on this transfor

mation. One popular application of Givens rotations is

.for the computation of the QR decomposition. While

this requires 2mn 2
- 2n 3/3 floating-point operations

as compared to mn 2
- n3/3 floating point operations

for the Householder version of the QR decomposition

(Golub and Van Loan 1983), the Givens rotations can

bedone in parallel and can therefore be computed in

O(ln) units of time with an appropriately connected

array of O(n 2
) processors (Luk 1986a).

The most important property of Givens rotations

for the problem at hand is their ability to orthogonalize

the two rows or col umns on which they operate. This

forms the basis of an SVD algorithm that relies solely

on Givens rotations (Hestenes 1958; Nash 1975). In

particular, consider an orthogonal matrix V, composed

of successive Givens rotations, such that

a( = 8. cos (0) + 8J sin (fJ)

a; = aj cos (0) - a, sin (0).

aiTa; = 0 = alaj[cos2 (0) - sin2(8)]
-l- (a;a j - ara.) sin (8) cos (8).

(7)

(8)

(9)

AV=B (2) (10)

where the columns of B are orthogonal. If the columns

of B are orthogonal, then it can be written as the prod- .

uct of an orthogonal matrix U and a diagonal matrix D

(11)

(12)

B=UD

by letting the columns of U be equal to normalized

versions of the columns of B,

(3) so that for q ~ 0

COS(O)=~v+q and sin(O)= p(O) (13)
2v v cos

(4)

and defining the diagonal elements of D to be equal to

the norm of the columns of B

and for q > 0

Sin(O)=Sgn(p)~V~q and COS(O)=vsi:(O) (14)

where

(5)

By substituting (3) into (2) and solving for A, one obtains

if p2=:O

if p < O·
( 15)

which is the SVD ofA.

The critical step in the above procedure for calculat

ing the SVD is determining the orthogonal mtrix V

that will orthogonalize the columns of A. This matrix

is usually formed as' a product of Givens rotations,

A = UDVT (6) The two sets of formulas are given so that ill-condi

tioned equations resulting from the subtraction of

nearly equal numbers can always be avoided.

The preceding discussion shows how to determine a

single Givens rotation that will orthogonalize two

columns of a given matrix. It still needs to be shown

how the matrix V can be computed from these ele-
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mentary rotations. If the Givens rotation to orthogo
nalize columns i and j is denoted by Vi), then the
product of a set of n(n - 1)/2 rotations denoted by

2.3. Pertubation Bounds on the Singular Value
Decomposition

The algorithm for computing the SVD using Givens
rotations outlined above uses successive sweeps in
order to make the columns of a matrix more orthogo
nal. The more orthogonal the columns are to begin
with, the fewer the number of sweeps required for
convergence. If one considers the current manipulator
Jacobian to be a pertubation of the previous Jacobian

( 16)

is referred to as a sweep (Golub and Van Loan 1983).
Unfortunately, a single sweep will not, in general,
orthogonalize all of the columns of a matrix, since
subsequent rotations can destroy the orthogonality
produced by previous ones. However, the procedure
can be shown to converge (Nash 1975) so that V can
be obtained from

J(t + Llt) = J(t) + M(t),

the SVD of which is known and given by

(19)

where the number of sweeps I is not known a priori.
Convergence ( } ~ the algorithm is based on completing
an entire sweep with all of the columns being orthogo
nal. Orthogonality is measured by the parameter a
defined as

then the matrix J(l + L1t)V(t) will have nearly ortho
gonal columns, provided the perturbation M(t) is
small relative to J(t). The foundation of the above lies
in the fundamentally well-behaved nature of the SVD
of a matrix. The perturbation bounds on singular
values are very well known and easy to show (For
sythe, Malcolm, and Moler 1977):

I

V= Il VA
k-l

(a Ta )2a= j j

(ara,)(aTaJ)

( 17)

( 18)

J(t) = U(t)D(t)VT(t), (20)

(21)

dropping below a preset threshold. If for two columns
a is below the threshold, then the rotation is not per
formed.

The above algorithm, by virtue of being composed
exclusively of Givens rotations, can be highly parallel
ized, a task that has already been performed for imple
mentation on the ILLIAC·IV (Luk 1980). Architec
tures specifically designed for this algorithm. have also
been proposed (Luk 1986b, Schimmel andLuk 1986)
and can operate at about 2fn2 units of time per sweep
for an n X n matrix wherefis the time required for a
floating-point multiply and add. It has been shown
that the number of sweeps required in the above algo
rithm is approximately log, n. In the following sec
tions it will be shown how perturbation bounds on the
singular values and vectors of the Jacobian can be
incorporated into this algorithm in order to reduce the
number of sweeps required as well as the computa
tional complexity of each sweep.

66

The perturbation bounds on the rotation of subspaces
defined by singular vectors are not as widely known
but are also well behaved (Davis and Kahan 1970;
Wedin 1972).

3. Implementation of a Real-Time
SVD Algorithm

The implementation of the SVD algorithm using
Givens rotations and the subsequent refinements were
all done in PASCAL on a VAX 785. Substantial test
ing for a variety of trajectories using a simulation of
the PUMA robot have been conducted. Three repre
sentative examples are given in Figures 1, 2, and 3,
illustrating the starting configuration of the PUMA
robot, the desired end-effector trajectory, and the sin-
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Fig. 1. Initial configuration

and desired end-effector

positions for trajectory A,

along with the singular

values ofthe Jacobian for

each point along this trajec

tory.

Fig. 2. Initial configuration

and desired end-effector

positions for trajectory B

along with the singular

values ofthe Jacobian for

each point along this trajec

tory.

Trajectory B

Singular Values

L-- ...-;:II........... ~ 0.0

,.-- -., 2.2

Singular Values

'_____----------.- --' 0.0

p==='---=::::::::=------==============1 2.3

Trajectory A

gular values of the Jacobian computed for each point

along the trajectory. As can be seen from the singular

value plots, these examples all pass near singularities

at the midpoint of their trajectories. These singularities

are the well-known wrist, shoulder, and elbow singu

larities that occur in trajectories A, B, and C, respec

tively. Trajectory C is unique in that it approaches a

triple singularity at its midpoint. These examples have

been chosen to illustrate the advantages of having the

SVD available during the control of a manipulator,

since conventional algorithms provide unsatisfactory

performance near singular configurations.

In order to illustrate the computational require

ments of the basic algorithm, which does not use pre

vious information, and to provide a basis for compari

son with the modified algorithm, data on the number

of sweeps and plane rotations required to reach con

vergence is presented in Table 1. Figure 4 shows a plot

of these quantities for trajectory B as a representative

example. The number of sweeps is the actual number

of sweeps in which rotations are performed and does

not include the final sweep in which all the columns

are checked and determined to be orthogonal. The

maximum number of rotations per sweep is 15 since

the Jacobian in this case is a 6 X 6 matrix. Note that

the computational expense is fairly uniform over var

ious configurations of the manipulator, with the slight
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Fig. 3. Initial configuration
and desired end-effector
positionsfor trajectoryC
along with the singular
valuesofthe Jacobianfor
each point along this trajec
tory.

Singular Values

r------------------------" 2.7

~
~ __ ~ ; . ; ; . . . . . _ . ----' 0.0

Trajectory C

variation in the total number of rotations primarily
introduced by the final sweep before convergence.

3.1. Incorporating the Previous SVD

The above experimental data backed by the analytical
results pertaining to the perturbation bounds on the

68

Table 1. Summary of the Computational Requirements
for Computing the SVD Using Givens Rotations and
No Previous Information

Rotations Sweeps

Trajectory Min. Max. Avg. Min. Max. Avg.

A~ 39 52 45.7 3 4 3.63
B 35 56 44.9 3 4 3.24
C 32 45 40.2 3 3 3.00

Total 32 56 43.6 3 4 3.29

rotation of singular vectors seems to indicate that the
majority of the computation involved in calculating
the SVD is redundant over a given trajectory. Each
time the SVD is computed, the columns are orthogo
nalized by building the matrix V from scratch. If, on
the other hand, the value of V(t + ~t) is initialized to
V(t), then a substantial portion ofthe work required
to compute the current SVD can be eliminated. The
results of using this past information in the SVD cal
culation are presented in Table 2, which illustrates the
dramatic reduction in computational expense. The
number of rotations is down by about a factor of three
to approximately 15, with convergence obtained in
virtually one sweep. The nearly uniform requirement
of one sweep for convergence suggests removing tL.. ~
iterative nature of the algorithm by fixing the number
of sweeps at one. This provides the additional compu
tational advantage of removing convergence tests.

There will still exist cases where a single sweep will
not result in convergence, thus introducing error into
the calculated SYD. A graph of this error for SVD
calculations along trajectory B is presented in Figure
5. Only data for trajectory B is plotted, since the S\'r;
calculations along both trajectories A and Conly rc
quire a maximum of one sweep for convergence. Sev
eral error measures have been computed in order to
differentiate the type of error and its source. The sin
gular value error, denoted here by aerr , is a measure of
the error between the calculated singular values, a.;
and the actual singular values, a; (computed using the
Golub-Reinsch algorithm in the IMSL package), de-
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Fig. 4. The number ofsweeps

and rotations required to

compute the SVD ofthe Ja

cobian along trajectory B.

SVO Computations Table 2. Computational Requirements for Computing
7 the SVD Using the Previous Estimate of the Matrix VNumber of Sweeps

Rotations Sweeps

Trajectory Min. Max. Avg. Min. Max. Avg.

A 14 15 ~'14.975 1 1.00
0 B 14 17 14.970 2 1.07100

Total Rotations C 13 15 14.831 1 1.00

which is the normalized error in using the computed

SVD as a representation for the Jacobian.

where the spectral norm is used (Lawson and Hanson

1974). Finally, the error in the Jacobian, denoted by

Je" , is computed using

The first point to note about the error terms plotted

in Figure 5 isthat they are all very small in magni

tude, with a maximum on the order 0£0.01%. The

second important characteristic is the fundamental

difference between the monotonically increasing error

of the input singular vectors, singular values, and the

Jacobian, as compared to the error plot of the output

singular vectors. The monotonically increasing error in

the input singular vectors is a result of compounding

the roundoff error of previous computations by initial

izing V to its value from the previous computation

interval. This error in V is in turn responsible for the

error in the singular values and the Jacobian. This

error, however, is not carried over into the output sin

gular vectors due to the fundamental difference in the

way that they are computed. While V is computed as a

product of successive plane rotations, U is computed

by normalization of the orthogonal columns of B (see

eq. (4)). Therefore, since the compounded error in V

does not affect the orthogonality of the columns of B,

the error in U is not monotonically increasing, but

results from the additional sweep that would be re

quired for convergence. Analysis of the sweep data

shows that the two peaks in the output singular vector

error correspond to those Jacobians that required two

sweeps in order to orthogonalize their columns. It is

important to note, however, that this error is subse

quently reduced to its previous small value.

The monotonically increasing error due to using the

previous V matrix is still of some concern. While the

magnitude of this error is small for this trajectory, it

will grow without bound. Note that for repetitive tasks

in conservative systems this is not a problem; when

the manipulator returns to its initial starting configu

ration, the true SVD is assumed to be known, and V

(25)

(22)

TrajeCtory B

J =IIJ-UDVTII
err 11/11 '

L-- ~ - _ - - - - - - - - ' 0

6

aerr = L (aa; - Gc)2.

i-I

and

fined by the equation

The error in the input and output singular vectors,

denoted by Ve" and VerT' respectively, is computed

using the equations
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Fig. 5. Error in computation

ofthe SVD introduced from

incorporatingthe previous V

matrix and using 'a single

sweep.

Fig. 6. The singular values

ofthe Jacobianfor each

point along trajectory B

along with the maximum

magnitude ofthe plane rota

tion requiredduring the
computation ofthe SVD.

SVO Error Singular Values

.... ..... L-- - - . ; : ; ; " , - - - = : : : ; ~ ~ ~ _ ___' 0.0

,.- --, 10.71

,....--__-'--- -, 2.2

Singular Values

Output Singular Vectors

Using V only

- Alternating U and V

.....

Input Singular Vectors

....

...........................................................................
............... 0

"..-- ---, 0.020/0

~ ----, 0.01%

Maximum Plana Rotation (sine)

Jacobian

.....
........

...........

....
~ ....oIoIIiIIIoaI- O

Trajec10ry B Trajectory B

can be reset. For arbitrary open trajectories,. however,

this will not be the case. A simple solution would be to

periodically recompute the SVD with V reset to I;

however, this will take between three and four sweeps

and result in a nonuniform computation time inter

val. Fortunately, there is an alternative technique that

takes advantage of the contrast between the error in
computing Vand U. Since U is not corrupted by com

pounded error, it can be used to reset V by carrying

out the plane rotations on the rows instead of the col
umns of J. Thus if U TJ = B where the rows ofBare
orthogonal, then B = D V T where the rows of V Tare

normalized rows of B, so that once again J = UDV T.

Since V has now been computed by the normalization

of orthogonal rows, it is not affected by the com

pounded error in the previous V. By alternating this

procedure each interval, applying plane rotations first

from the right on the columns of J and the next time

from the left on the rows, one can effectively eliminate

the buildup of error along the trajectory. A plot of the

SVD error terms for trajectory B using this technique
is given in Figure 5. As expected, the monotonically

increasing error in the input singular vectors has been

eliminated and is therefore also no longer reflected in
the computed singular values or in Jerr. The error
terms are now all of the same form, with peaks at those
configurations where two sweeps would be required to

orthogonalize the rows or columns of the Jacobian.
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3.2. Small Angle Approximations

A further reduction in the computational complexity

of the equations for computing the SVD can be gained

by examining the nature of the plane rotations re

quired. A plot of the maximum rotation angle required

during the computation of the SVD of the Jacobian

for each point along trajectory B is presented in Figure

6. Note that for the majority of the trajectory the max

imum rotation angle is very small; however, there

exist three peaks, two of which are very sharp. From

comparing the position of these peaks to the spacing of

the singular values also presented in Figure 6, it is

clear that very large rotations are required when there

is a crossing of adjacent singular values. By comparing

the position of the second two peaks in Figure 6 with

those in the error plots of the singular vectors in Figure

5, one can see that they coincide. Thus the large angles

in the plane rotations result in an extra sweep being

required for the algorithm to converge, thus introduc

ing the error. It may at first seem curious that the

largest of the peaks, the first, does not produce any

peak in the error plot. The reason for this apparent

anomaly is that a large rotation angle is a necessary but

not a sufficient condition to require an additional

sweep. From examining the spacing of the singular

values at the position of the first peak, one can see that

the two equal singular values, a4 and as, are separated

from the remaining singular values. This implies that

the large rotation required is restricted to the plane

defined by their associated singular vectors and can

therefore be successfully completed within a single

sweep. In contrast, the final two peaks that result from

the crossing of singular values a3 with a4 and as with

a6' respectively, occur at a point where these four

singular values are closely spaced. This results in a

greater interaction between plane rotations, therefore

creating the necessity of an additional sweep for con

vergence and introducing error into the single sweep

approximation.

Since the maximum plane rotations required during

the algorithm are very small in magnitude outside of a

few isolated peaks, a small angle approximation is

useful in reducing the computational effort required in

computing the SVD. The plane rotation required to

orthogonalize two vectors a, and QJ is obtained by

Fig. 7. .A graph ofthe plane

rotation angle required to

orthogonalize t}VO vectors

versus the relative length of

the vectors. This function is

plotted for various values of

the angle between the two

vectors.

Rotation Angle to Orthogonalize Vectors

r-----------------.....""".,._ 45

0.5

Degrees

~ : : : : : : . _ - - = = = = = = = = = = = - - - - - ~ = : : : : : : = - - - . J 0
1.0

Vector Norm Ratio

satisfying eq. (9). By applying the double angle for

muIas, the above equation can be solved for lJ resulting

in

Dividing both the numerator and the denominator of

the right hand side of eq. (26) by lIajl12 results in the

still exact equation

(27)

where ¢ is the angle between 3. and a j • This form of

the equation makes.explicit the dependence of the

plane rotation angle on both the non-orthogonality

of the two vectors involved as well as their relative

length. A plot of the required plane rotation to ortho

gonalize two vectors versus their relative lengths for

various values of cos (¢) is given in Figure 7.

One interesting point about the graph in Figure 7 is

that when the two vectors are of equal length they will

be orthogonalized by a rotation of 45 degrees regard

less of the angle between them. The most important

point in terms of using a small angle approximation,
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however, is that for nearly orthogonal vectors the rota

tion angle will be small, except when there are nearly

equal singular values. Using the previous estimate of

the Sy'D to pre-orthogonalize the current Jacobian

guarantees that this will be true. Therefore, if the two

vectors 8. and 8j are not equal in length, then () will be

small. For small () the approximations

cos (8) = 1 and sin (8) = 8 (28)

are valid. The advantages of using this approximation

are two-fold. First, the solution of eq. (26) is vastly

simplified to

Fig. 8. Error in computation

ofthe SVD introduced from

using a small angle approxi

mation.

SVD Error

.--- ----, 1%

Singular Values

1
Input Singular Vectors

(29)

1 1

so that the expensive computations of eqs. (12) - ( 14)

are no longer required. Second, the calculations to

compute the results of this plane rotation previously

required two floating point multiplies and one addition

per element. By using this small angle approximation,

eqs. (7) and (8) now become

Output Singular Vectors

which still only require one floating point multiply

and addition per element.

Simulation results showing the error in the com-

so that the number of floating point multiplies re

quired has been cut in half. One must still consider,

however, the case where the two vectors are of nearly

equal length (i.e., nearly equal singular values). As

discussed above, under these circumstances not only is

the small angle approximation not valid, but the angle

of rotation is at its maximum value of 45 0 • Fortu

nately, the cosine and the sine of 45 0 are equal, so that

the reduction in floating point multiplies can still be

achieved. Therefore, ifll8,11 = lIajll then

cos (0) = sin (8) = 12/2

and eqs. (7) and (8) become

72

(30)

(31)

(32)

"- -....- ~O

r---------------------, 10/0
Jacobian

'--- ..-....010...- .....-..-- ---....0

Trajectory B

puted SVD using the small angle approximations dis

cussed above are presented for trajectory B in Figure

8. Trajectory B is presented as an example, since it

represents the worst case of the three trajectories. The

form of the error terms now more closely reflects the

plot of Figure 6, since approximations for large rota

tions will always introduce error regardless of whether

they are restricted to a single plane. The peak errors

are all well within 1%, with nominal values at around

0.001%. The peak values simply reflect the inherently

ill-conditioned nature of trying to define singular vec

tors for nearly equal singular values. The small angle

approximation primarily introduces error to the norm
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of the rows and columns of the rotation matrix but

not to their orthogonality. Thus a renormalization of

the resultant rotation matrix significantly reduces the

errors introduced by the small angle approximation.

While this degree of accuracy should be sufficient for

most applications, it is important to note that manipu

lator configurations that produce peaks in the error

terms are easily identified by examining the spacing of

the singular values. Therefore, the small angle approx

imations can be abandoned when there are closely

spaced singular values, thus obtaining an even higher

degree of accuracy while retaining the computational

advantages of the approximation throughout the rest

of the trajectory.

3.3. Numerical Evaluation

tions. As mentioned above, several proposed dexterity

measures are closely linked to the singular values and

vectors of the Jacobian. Thus the kinematic and static

force capabilities of the current manipulator configu

ration can be compared to the requirements of an

assigned task. Inconsistencies between the physical ca

pabilities of the manipulator and the assigned task can

be addressed by the manipulator itself by determining

a more suitable configuration. This results in more

autonomous behavior, which can be utilized for both

automated motion planning and work-cell design as

well as for the operation of robotic manipulators in

unstructured environments.

Real-time computation of the SVD also enhances

the utilization of redundancy in robotic systems. In

terms of the resolved motion rate control formulation

(Whitney 1969),

one of the most common techniques for using the

redundant degrees of freedom within the system is to

use the projection operator formulation proposed in

Liegeois (1977)

where J+ is the pseudoinverse ofJ and z is an arbitrary

vector in iJ space. This formulation has been used to

optimize a number of secondary criteria under the

constraint of a specified end-effector trajectory includ

ing joint availability, torque minimization (Holler

bach and Suh 1987), and obstacle avoidance (Macie

jewski and Klein 1985; Nakamura, Hanafusa, and

Yoshikawa 1987). With the complete SVD available,

the projection operation becomes trivial, since the

singular vectors VI for r > i ~ n specify an orthonormal

basis for the null space. Thus the relative advantages

of using the homogeneous solution for alternate sec

ondary criteria can be easily evaluated.

The remainder of this work will consider the appli

cation of the real-time SVD algorithm to the funda

mental problem of singular configurations. With the

exception of Cartesian positioning robots, all articu

lated manipulators can be shown to possess singular

configurations that limit the effective number of inde

pendent degrees of freedom (Baker and Wampler

A test was performed to evaluate the actual CPU time

needed to compute the SVD of the Jacobian matrix

for a six-degree-of-freedom manipulator. The algo

rithm using small angle approximations and the pre

vious estimate of the singular vectors, coded in

PASCAL and executed on a VAX785 computer, re

quired 5.13 ms. In comparison, the execution time for

the unmodified algorithm (without small angle ap

proximations or the use of previous estimates) required

an average of 27.2 ms for a typical Jacobian. This

figure is comparable to the time required by the

Golub-Reinsch algorithm in the IMSL package

(32.3 ms). These figures, however, do not reflect the

advantage of the algorithm in terms of its parallelism,

since they are coded and executed on a serial machine.

By using a simple mesh connection of processing ele

ments capable of executing an addition or multiplica

tion, the planerotations can be computed in parallel.

Such architectures suggest that a computation time of

well within I ms are easily achievable (Luk 1986b;

Schimmel and Luk 1986).

4. Applications

The ability to calculate the SVD of the Jacobian in

real time has a. number of possible different applica-

Maciejewski and Klein
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Equation (38) is the nonlinear equation in it that must

be solved in order to find the optimal solution when

118(A)1I = Bmax • An efficient technique for doing so is to

use Newton's method, which requires the derivative of

eq. (38) with respect to the damping factor, as dis

cussed in Lawson and Hanson (1974).

The above technique was implemented in a simu

lation of the PUMA robot for the three trajectories

presented in Figures 1, 2, and 3. As mentioned pre

viously, these trajectories are chosen to go through

singular configuration in order to illustrate the proper

ties of the damped least-squares solution. The results

which defines the end-effector tracking accuracy under

the constraint 11011 ~ 8max where Omax is the physical

limit on the manipulator's joint velocity. The desired

solution can therefore be obtained by using the

damped least-squares solution for an appropriate value

of the damping factor. Intuitively, if the value ofll811

for which the residual is equal to zero is less than 8max ,

then A= 0; otherwise it would take on the value that

results in 11011 = Bmax • In physical terms, if the joint

velocity that exactly tracks the desired end-effector tra

jectory is physically achievable, then it should be used;

otherwise the optimal solution requires that the joint

velocity norm be at its limit.

Thedamped least-squares solution of eq. (33), which

will be denoted by 8(A) in order to denote its explicit

dependence on the damping factor, is given by

(39)

(38)

(37)

(36)

. T·
Xj=Ui X •

n

J= L GjU1V(

i-I

where

where

is the SVD of the Jacobian. The solution norm is,

therefore, given by

(35)

This solution is guaranteed to be the minimal residual

solution over all solutions of equal or smaller norms.

Unfortunately, the norm of the solution cannot be

determined a priori for a given damping factor.

The specification of the problem one would like to

solve is the minimization of the residual IIi - J811,

4.1. Damped Least-Squares Solutions

The effects of singularities are frequently presented

with respect to the resolved motion rate control for

mulation given in eq. (33). Singularities are identified

bya mathematical change of rank in J, which physi

cally represents the inability of the manipulator to

achieve an arbitrary end-effector velocity. For these

cases, inverses are not defined, and even pseudoinverse

solutions such as eq. (34) are unsatisfactory since there

is an undesirable discontinuity at the singularity that

can result in oscillations and unacceptably high joint

velocities. These difficulties are not unique to the re

solved motion rate formulation but are an inherent

part of the transformation between Cartesian and joint

space.

A general approach to resolving the discontinuity

at singular configurations and maintaining a well

conditioned formulation that results in physically

meaningful joint velocities is to use the damped least..

squares formulation independently proposed in Naka

muraand Hanafusa (1986) and Wampler (1986). The

damped least-squares solution of eq. (33) is the solu

tion that minimizes the sum IIi - JOII + AIIOII so that

the end-effector tracking error is weighted against the

norm of the joint velocity by using A, also known as

the damping factor. This solution is typically obtained

by solving an equation of the form

)987). A considerable amount of effort (Asada and

Cro Granito 1985; Aboaf and Paul 1987; Dubey and

Luh 1987; Mayorga and Wong 1987; Sampei and

Furuta 1987) has been devoted to either avoiding or

dealing with operations at singularities due to the high

joint velocities and spurious motions that can result.
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Fig. 9. The norm ofthe

end-effector velocity tracking

error and the joint angle

velocity for trajectory A and

C using the damped least

squares solution.

Trajectory C

the maximum allowable value. This prevents the spur

ious motions that are typical of manipulators passing

through singular configurations using other methods of

inverse kinematics. Thus the solutions are physically

meaningful even near singular configurations, and,

in fact, they result in the minimum amount of end

effector tracking error. This error can actually be zero

if the commanded end-effector velocity does not have

a component in the direction of the singular vectors

associated with the small singular values (notice the

notch in Fig. 9). This, in fact, is the advantage of hav

ing the complete SVD available instead of only lim

ited information on singularities. It should be noted

that.. as a result of passing through a singular configu

ration.. it is possible for the manipulator to switch

solution branches (for example, going from an elbow

up to an elbow-down configuration).

Norm of
End effector velocity error

~ --:- ....., 1.5

Damped Least Squares

~ --'- .-Io- ....I 0.0
,.....- __. 0.01

~------- ....l 0.00

Norm of
Joint angle velocity .

,.....- __. 2.0

Trajectory A

~ ....I 0.00

4.2. A Continuous Version of the Truncated SVD

Solution

The use of damped least squares provides the optimal

solution for tracking a given end-effector trajectory

under the physical constraints on the joint motions.

While this solution is optimal, it may be undesirable to

implement due to the iterative nature of calculating

the appropriate damping factor A. It can be shown that

the characteristics of the damped least-squares solu

tion are very similar to those obtained using the trun

cated SVD solution. The truncated SVD solution ofa

linear system of equations described by eq. (33), de

noted here by 11k
), is defined as

Norm of
Joint angle vejocity

Norm of
End effector velocity error

'-- - - o l ~ _ ___Io.. ....l 0.0
,.....- __. 0.01

of the simulation, both the end-effector velocity track

ing error and joint angle velocity norm, are plotted for

the three trajectories in Figures 9 and 10. The maxi

mum joint velocity norm 0m.ax was set at 0.009 radians

per computation interval for all three trajectories. The

end-effector tracking error is zero at all points along

the trajectory, except where the Jacobian becomes

nearly singular and the desired end-effector velocity

has a component in the direction of the lost degrees of

freedom..At these points the characteristic jump in the

joint velocity is observed but is effectively clamped at

(40)

where k is an integer less than or equal to the rank r.

The truncated SVD reduces the solution norm by

removing all components of the solution that corre

spond to small singular values while retaining all of

those associated with larger singular values. The pa

rameter k is used to define small and large such that a,
for i ~ k are large, and a, for i > k are considered

small. It can be shown that iJ<k) is the minimum resid-
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Fig. 10. The norm ofthe

end-effector velocity tracking

error, joint velocity, and joint

accelerations for trajectory B

using the damped least

squares solution at the veloc

ity level.

Norm of
Joint angle velocity

since singular vectors are mutually orthogonal unit

vectors.

The advantages of using this form of a solution are

that, when the SVD is available, it is extremely easy to

compute. The norms of the truncated singular value

solutions I/0<i)1I, obtained from eq. (40), are computed

as i is incremented until either i is equal to the rank or

the norm is greater than Omax. The latter case is the

one of interest since it represents reaching the physical

constraint on the joint velocity. In this case k is now

known namely i-I, and the desired quantity (c - k)

for whi~h II 8<C)Iiis equal to «: can be easily obtained

from (42). This value is then used to obtain the con

tinuous truncated singular value solution defined by

(41). An implementation of this algorithm was use~ to

simulate control of a PUMA robot for the three trajec

tories presented above. In all three cases the resultant

joint trajectories were within 1% of those obtained

using the damped least-squares solution. A detailed

error analysis of the difference between the continuous

truncated ·SVD solution and the damped least-squares

, solution can be found in Maciejewski (1987).

Norm of
End effector velocity error

_----------------:----, 0.5

L g:~o

Damped Least Squares

Norm 01
Joint angle acceleration

IA
Trajectory B

4.3. Resolved Acceleration Control

The above sections have discussed howto deal with

hard constraints on the joint angle velocities in the

presence of singularities by removing those compo

nents associated with small singular values. In many

practical cases, however, the joint accelerations will be

the limiting factor. The same techniques are equally

applicable, since resolved acceleration control (Luh,

Walker, and Paul 1980) still requires a solution based

on some sort of inverse of the Jacobian. This is easily

seen by differentiating eq. (33) to obtain

ual solution for all (} in the k-dimensional subspace

spanned by VI for i ~ k (Marquardt 1970). For cases

where (Jk ~ O'k+l and Afalls between the two largely

separated singular values Uk and ak+l, the results for

the two types of solutions will be approximately the

same. By modifying the truncated SVD to be continu

ous instead of a stepwise function of k, a solution that

is virtually identical to the damped least-squares solu

tion can be obtained. This type of solution will be

denoted 8<c) and is defined by .

• k Xi (c - k)Xk+l (41)
(J(c) = L - VI + Vk+l

i-I a i Gk+l Jjj + jiJ = i. (43)

where c is a real number less than or equal to the rank,

and k is the greatest integer less than or equal to c.

The norm of this type of solution is given by

(42)

Thus for a given state of the manipulator, the joint

accelerations required to achieve a desired end-effector

acceleration can be computed. These joint accelera

tions can become infinite in the presence of singular

ities so that once again a practical solution is to mini

mize the residual IIi - (J8 + j8~1 under the constraint
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Fig. 11. The norm ofthe

end-effector velocity and ac

celeration tracking error and

joint angle velocity and

acceleration norms for tra

jectory B using the damped

least-squares solution for

resolved acceleration control.

Norm of end effector
Velocity errorfor

Norm of
Joint angle acceleration

~ - - - - - - = = = = = = = ~ ~ _ = = = = = _ __.......!..__ ~ O

r--------------------., 0.001

Norm of
Joint angle velocity

~ ....-:=====::...._~======:::::.._ __ ~ O
.------- _.., 0.05

Trajectory B

5. Conclusions

The conclusions of the work presented here can be

divided into those relating to calculation of the SVD

in real time and those pertaining to the advantages of

having the SVD of the Jacobian available for the con

trol of robotic manipulators. With regard to the first

Damped Least Squares

minimum achievable for the given physical limit on

the acceleration of the manipulator.

~ ____'O

Norm of end effector
Acceleration error

,..- ---, 2.0

~ ~ L . . . I o - ___....___O___L..J....--IO

r----------------------, 1.0

of physically achievable accelerations defined by 11811 ~
8max • As an example, consider the use of velocity con

trol for tracking trajectory B given in Figure 10. A plot

of the joint accelerations required to maintain the

desired velocities is also given in this figure. The form

of the joint acceleration norm is typical in that a very

large spike is located at the singularity, with two

smaller peaks on either side. Note that this type of

behavior is not immediately apparent if one considers

simply differentiating the norm of the joint velocities,

but it becomes clear after considering the effect of

passing through a singularity..In particular, the first

acceleration peak is a result of the joints accelerating

to match the large velocity required due to the compo

nent that is in the direction associated with the small

singular value. The acceleration then goes to zero

since the hard constraint on the velocities limits the

effect of this singular component. As the manipulator

passes through the singularity, however, the compo

nent along the small singular value switches sign so

that those joints required to match it must decelerate

to zero and then accelerate in the opposite direction,

thus resulting in the large spike in the acceleration

curve. There is no spike in the velocity curve at this

point, since the velocity constraint is still in effect, but

it is now limiting the velocity in the other direction.

The final peak in the acceleration is then the result of

leaving the singular region so that the joints deceler

ate, since large velocities are not required outside of

singular regions.

In order to obtain an optimum solution in the pres

ence of hard constraints on the joint accelerations, the
continuous truncated SVD technique was applied to

the solution of eq. (43). The resulting joint velocities

and accelerations along with the end-effector tracking

errors are presented in Figure 11. As expected, the

end-effector acceleration tracking error is zero, except

near the singularities, where the hard constraint on the

acceleration is encountered. This constant limit on the

acceleration results in the triangular shape of the joint

velocity curves, which alternate between acceleration

and deceleration. Imposing such an acceleration con

straint effectively increases the region in which the

effect of the singularity is felt. This results in an end

effector velocity tracking error that is non-zero for a

larger portion of the trajectory around the two singular

configurations. This tracking error, however, is the
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point, the major advantage of the implementation of

the SVD algorithm presented here is that by using the

known SVD ofa previous Jacobian, the computa

tional" effort of calculating the SVD of the current Ja

cobian can be greatly reduced. By applying the rota

tion implied by the previously known singular vectors,

a nearly orthogonal matrix results, which will typically

converge in a single sweep. This fact alone reduces the

computation time by greater than a factor of three,

since it has been shown that the original algorithm will

require between three and four sweeps to converge. In
addition, the computation time is now known a priori,

also removing the need for convergence tests. The

potential difficulty of accumulating the error of pre

vious computations is removed by alternating the use

of the input and output singular vectors with which to

apply the rotations. This modification, while improv

ing the error characteristics, does not affect the com

putational requirements. Finally, by taking advantage

of small angle approximations, the number of floating

point multiplications required in the plane rotations is

cut in half, with the total number of floating point

operations cut by athird,

The availability of a computationally efficient algo

rithm for computing the SVD of the Jacobian results

in a large number of potential applications, including

the real-time evaluation of dexterity and utilization of

redundant degrees of freedom. This work illustrates

the application of the SVD to the fundamental prob

lem of dealing with singularities. The optimal solution

to the damped least-squares formulation can be easily

and efficiently obtained when the SVD is available.

Furthermore, it has been shown how a continuous

form of the truncated SVD solution can be used in

place of the damped least-squares solution. The use of

this formulation at either the velocity or acceleration

level allows operation through singular configurations

without violating physical constraints or generating

spurious motions.
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