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1. Introduction. In this paper we give a consideration on singularity and
nonsingularity relations between two infinite direct product measures. In
statistical asymptotic theory the concept of singularity is closely related to the
existence of consistent sequence of test procedures. L. Shepp [4] considered
such a problem in the case where Pt, the component distribution with a location
parameter t of the product measure, has a constant carrier and the Fisher's in-
formation number exists and is finite. Later L. LeCam [3] extended the result
of L. Shepp to the case where Pt satisfy the quadratic mean differentiability
conditions. Our purpose is to seek conditions under which given two product
measures are singular, when the components Pt do not necessarily satisfy such
regular conditions.

In Section 2 we introduce new quantities / and /, and using them condi-
tions of singularity are described. Section 3 is devoted to the proof of the
quantity / being an extension of the Fisher's information number. In Section
4 we consider the relation between the concept of nonsingularity and that of
contiguity which was introduced in L. LeCam [2]. Two examples not satisfy-
ing the usual conditions are given in Section 5.

2. The condition of singularity. Let Θ be an open set containing zero.
For each ί G θ let Pt be a probability measure on a certain σ-field SI of subsets of
a set X. Let (XN, SP) be the Cartesian product of countably many copies of

(X, St). Let Qo= ft PS" (direct product), P<0»=P0 ( ί = l , 2, ...) and
ί=-l

CO

Qic= ΐίPh f ° r π={hιy h2, •••). We say that Qo and Q* are singular if there
ί—1 *

exists a set B in %N such that Q0(B)=0 and Qηe(B)=ί. In this section conditions
are given to the sequence π for which Qo and Q* are singular. Let H={h; h^

0, A G Θ , P O and Ph are not singular.} and H= f[Ha\ HCO=H ( i=l, 2, —).
ί=-l

In the following the lower-case letters h with or without suffixes always mean
the elements taken from the set H. Throughout this paper the following assump-
tions (A-l) and (A-2) will be made.

(A-l) {Pt\ /Gθ} is dominated by a σ-finite measure μ on X
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We denote by f(x, t) the density of Pt relative to μ and define a function X(xy h)
as follows.

(2.1) X(x,h) = \f(x,h)lf(x,O)]-l if /(*,

= 0 if /(*,

(A-2) X(x, h)->0 in probability for P o as h-*0.

We define

(2.2)

S. Kakutani [1] gave useful criteria for determining singularity or equivalence
(i.e. absolutely continuous with each other) of infinite product measures. As
the proofs of Theorem 2, 3 and 4 lean heavily on his result, we now quote a ver-
sion of it without proof.

Theorem 1. (Kakutani). Let π=(hίy h2, •••) be an element of H. (1) Qo

and Qv are singular if andonlyif Π p(h;)=0. (2) If P o and Ph. are equivalent for

every i, then Qo and Q^ are equivalent if and only if Π p(A, ) > 0 .

Proposition 1. Under our assumptions (A-l) and (A-2) we have

(2.3) lim P(h) = 1 .

Proof. Let g(xy h) be a function such that g(x, h)=l or 0 according as
IX(x, h)I ̂  1 or IX(χ, h)| > 1. Obviously we have \g(x, h)-X(x, h)\^\ for all
x^X, a n d ^ , h)X{x, h)^0 in probability for P o as h-+0. From the Lebesgue's
convergence theorem we have

(2.4)

This implies (2.3). This completes the proof of the proposition.

From this proposition it follows that for any sufficiently small neighbor-
hood U of zero we have C/(Ί[O, oo)cίfand inf {p(h); h<EΞ Un [0, oo)}>0. We
denote by Γ the class of functions γ(#, h) satisfying the following conditions

(Γ-l) 0^γ(tf, h)^\ for all h and all

(Γ-2) y(x, h)-+\ in probability for P o as h->0 .

(Γ-3) Tnere exists 0 < M < o o and 0 < δ < o o such that \X(x, h)γ(x, h)\^

for P0-almost all x^X for every h satisfying OSh^S.
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Let Φ be the class of strictly monotone increasing continuous functions φ
from [0, oo) to [0, oo) satisfying 0(O)=O. For each γ e Γ and each ^ G Φ we
define

7(7, φ) = limsup (l//*2)( [X(x, φ-\h))]2

Ύ(x, φ'\h))dP0

7(7, φ) = liminf (l/* )( [X(x, φ-χh))]'γ(x, φ-\h))dP0

(2.5) " ) x

φ,h)=l-\ 7(x,h)dPh

Theorem 2. (1) If there exist γ G Γ and ^ E Φ such that /(γ, 0)<oo,
lim sup a(y, h)l[φ(h)]2 < oo and lim sup /8(γ, A)/[^(A)]2 < oo, then QQ and Q* are not

h0 Λ*0

singular for any 7rG/7 satisfying Σ φih^f < oo. (2) If there exist γ E Γ an d φ^Φ

such that 0</(γ, 0)^°°, ίÂ n β 0

 β ^ β* are singular for any π^H satisfying

1h
1 = 1

Proof. First we prove the part (1) of the theorem. Let

7(7, h) = \ [X(x, h)Yv(x, h)dP0, and

(2-6) ,

P*(A) = \χ\A*> h)f(x> 0)]1/2Ύ(x, h)dμ

then we have

(2.7) 7(7, h) ^ \ [(f(x, h)lf(x, 0ψ°-iγΎ(x, h)dP0
J X

= 2 - α ( γ , h)-β(y, A)-2p*(A).

Since p(h)^>p*(h) we have from (2.7)

(2.8) p(Λ)2>l-(l/2){α(7, h)+β(y, h)+J(y, h)} .

Using the inequality

(2.9) 1— tf^exp (—2x) (for sufficiently small x^O)

we have for every integer n^\ and every sufficiently small hly h2, •••,

(2.10) Π p^O^expt-ί Σ α(7, K)+ ± β(Ύy h<)

On the other hand /(y, 0)< oo implies
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for every n^> 1 and every sufficiently small hly h2, •••, hn.
According to Theorem 1 our result follows from (2.10) and (2.11).

Next we prove the part (2) of the theorem. It is easy to see that

(2.12) J{Ύ, h)<LL \χ[(f(x, h)lf(x, 0ψ°-lfdPo

^2L[l-p(h)] (L=2M+i)

where M is a constant appeared in (Γ—3). Hence it follows that

(2.13) p(/0^1-(l/2)./(γ (A)L-\

By the inequality

(2.14) 1—x^exp (—x) (for every x)

we have for every n ^ 1 and every hly h2y •••, hny

(1.15) Π p(A,)^exp [-(1/2L){ ±J(y, A,)}] .
ί = l ί = l

On the other hand 7(γ, φ)>0 implies

(2.16) ±

for every n^l and every sufficiently small hly h2, •••, hn.
Again by Theorem 1 we have the desired result from (2.15) and (2.16). This
completes the proof of the theorem.

The following theorem shows that for somewhat restricted class {Pt; ί e θ }
the converse of Theorem 2 is also true.

Theorem 3. Let φ be an element of Φ. (1) If Qo and Q« are not singular

for any π^H satisfying § Φ(hiY< °°> then /(γ, φ)< oo for any γ E Γ . (2) If Qo

^ CO

and Qit are singular for any π^H satisfying 2 Φ(h i)
2=ooy then 0</(γ, ^ ) ^

1 = 1

for any γ G Γ satisfying

(2.17) lim α(7, h)/[φ(h)Y = lim /3(7, A)/[0(A)]2 = 0 .
* > 0 A>0

Proof. To prove this theorem we shall use an analogous method to that
employed in L. Shepp [4]. First we prove the part (1). Suppose that
/(γ, φ)=oo for some γ G Γ . Then we can choose a sequence {t^dH such that

(2.18) 0<#f,)2£(l/2)' and J(y,

for every ί = l , 2, •••. For each i let r, be the integer such that
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(2.19) r,.2' [φ(ί I.)]2<l^(r, +l)2'[ ί4(ί i)]2.

Define h{=tk if jk-\^i<jk where j1=r1 and y*=r1+^2H Yru (^^2). It is
_ _ CO Cβ

easy to see that π=(hιy h2y « )e£?, 2φ(A, )2<oo and Σ / ( γ , h^)=oo. From

(2.15) it follows that

(2.20) Πp(*,) = 0.

Hence <20 and Q* are singular. This proves the part (1).
Next we show the part (2). Suppose that there exists γ e Γ such that

(2.21) lim α(γ, h)/[φ(h)Y = lim /3(γ, λ)/[φ(A)]2 = 0 ,
A->0 A->0

and that /(γ, φ)=0. Then we can choose a sequence {t^dH such that

(2.22) 0<0(^(1/2) ' , J(Ύ,

and β(Ύ, ti

for every / = 1 , 2, •••. Let 7Γ= (Ao A2)
#") be a sequence constructed from

by the same method as employed in previous section. Then we have

(2.23) Σ/(γ , h,)< oo, g α(γ, A,)< oo, f ] y9(γ, A,.)<oo and that
i=l i=Ί 1=1

From the inequality (2.10) we have

(2.24) Π P ( A , ) > 0 .

Hence Qo and ^ are not singular. This completes the proof of the part (2).

3. The quantity 7. In the following proposition we shall show that the
quantity / defined in (2.5) includes the concept of the usual Fisher's information
number. Let Y(xyh) be a function defined by

(3.1) Y(x, h) = [/•(*, /*)//(*, 0)] 1 ' 2-1 if /(*, 0)>0

= 0 otherwise.

Define γ 0 G Γ and ^ 0 G Φ a s follows.

(3.2) yo(x,h)=l if |-Y(*,A)|^l

= 0 otherwise.

φo(h) = h.
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Proposition 2. Suppose that Y(x, h) is quadratic mean differentίable at h=0

with a derivative V i.e.,

(3.3) litn (1/A2)( [Y(x, h)-(ll2)hV]2dP0 = 0 .

Then we have

(3.4) /(70 > φ0) = /(70, φ0) = ί V2dP0<oo.
j x

Proof. From the quadratic mean differentiability of Y(x, h) it follows that

(3.5) lim {\jh?)\ [Y(x, h)-(\β)hVf[Y{x, A)+2J2

7o(x, h)dP0 = 0 .
Λ->0 JX

By the Lebesgue's dominated convergence theorem we have from (3.5)

(3.6) lim (l//z2)( [X(χ, h)-hV]2y0(x, h)dP0 = 0 .
A->0 JX

Thus we have

(3.7) lim (1/A2)( [X(x, h)]2

Ύo(xy h)dP0 = ( V2dP0.

This concludes the proof of the proposition.

4. The concept of contiguity and that of nonsingularity. In this

section we shall show that the two concepts of nonsingularity and contiguity coin-

cide with each other. For each integer n^l let 3lM= Π 5lCt), SIα )=Sl, Qon=

Π P$\ PIT=PO ( i = l , 2, - ) and Q+%n= Π Phi for ^=(A n A2, ...).

Theorem 4. Let π be an element of H. (1) If {Q0>n} and {Q*ttt} are con-

tiguous, then QQ and O* are nonsίngular. (2) If each Ph. is equivalent to Po, then

the converse of (1) is also true.

Proof. First we prove the part (1). Assume that {QOjn} and {Q« n} are

contiguous, and that

(4.1) Πp(A,) = 0.

Let Λn be the logarithm of the likelihood ratio of Q* n to QOtft. By Theorem 1

in L. LeCam [2] we can find a subsequence {n'}(Z{n} such that the distribution

of ΛΛ/ under PQ n, converges weakly to a distribution L[Λ], and furthermore

(4.2) ί i eχp(Λ)rfL[Λ] = l .
J R

Let 6 be any positive number. For the £ there exists α > 0 which is a continuity
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point of L[A] such that

(4.3) ( εxp[A/2]dL[A]^S.
J lΔl>β

From (4.1) and (4.3) we have

(4.4) f exp [Λ/2]</L[Λ]^lim f exp [An^2]dPoy+S = S .

Thus we have

(4.5) Jβiexp[Λ/2]JL[Λ] = 0.

But this does not occur, since L[A] is a probability distribution on R1. Therefore

we have

(4.6) Πp(A,)>0

Hence Qo and Q* are nonsingular.

Next we prove the part (2). Let Qo and Q^ are nonsingular. Then by

Theorem 1 Qo and Q# are equivalent. Therefore for any sequence {Bn} satisfying

Bwe§tΛand QQ >w(lϊrt)->Oasw->oo, we have Q^n(Bn)^O as n->ooy and vice versa.

Thus {Qotn} a n ( i {Q«,Λ a r e contiguous. This concludes the proof of the

proposition.

From Theorem 2, 3 and 4 we have the following result.

Corollary. Let π = (h19 h2, •••) be an element of H. Suppose that Pty / E θ

are absolutely continuous with each other, and that there exist γ G Γ and φ e Φ such

that

(4.7)

lim a(φ, h)l[φ{h)Y = lim β(Ύ, A)/[φ(A)]2 - 0 .
A>0 A>0

Then {QOin} and {Q*,n\ are contiguous if and only if π satisfies 2 φ(htf<oo.

Finally we remark that all the same results as stated in this paper hold if we

take an arbitrarily fixed ί e θ instead of zero and if H'={h h ̂  0, θ+h e Θ, Pθ and

Pθ+h are not singular.} or H"={h; /?^0, (9+Aeθ, Pθ and Pθ+h are not singular.}

instead of H. In this paper the parameter space Θ is restricted to a subset of

real line. It seems to the auther that an extension to a multidimensional case

of Θ is easy.

5. Examples. In this section we shall give some examples which do not

satisfy the usual conditions.

EXAMPLE 1. Let X = θ = R1. Let Pt be the distributions having the
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following densities relative to the Lebesgue measure.

(5.1) /(*,*) = [ i - l * - * l ] + .

Define y(x9 h) as follows.

(5.2) 7(*,A)=1 if 1/7/1 ^ I/A

= 0 otherwise,

where f means the ordinary differential (which exists for almost all Λ I G I ) of/
with respect to t at *=0. Let φ(h)=(h2. |logΛ|)1/2 for OrgA^exp [-(1/2)],=
[(1/2)exp [-(l/2)]A]^for exp [-(1/2)]<A<2. We then haveγeΓand φ e Φ ,
and that 7(γ, φ)=/(γ, Φ)=2. Since α(<y, h)=2h2 and β(γ, h)=h2β for

[—(1/2)], it follows that

(5.3) lim a(Ύ, h)/[φ(h)]2 = lim /3(γ, h)/[φ(h)]2 = 0 .
Λ->0 Λ->0

Thus, according to Theorem 2, for any sequence π=(hlf h2y •••) satisfying
O ^ A ^ e x p [—(1/2)] ( i = l , 2, •••) Qo and ^ are singular if and only if

EXAMPLE 2. Let X=R1, Θ = (0, oo), and let ( JGΘ be any fixed number.
Let Pt be the uniform distribution on (0, i). Define y(xf h)=ί and φ(h)=
(—h)1/2 for any h satisfying —θ<h<0. Then we have α(γ, h)=β(y, A)=0 and

, h)=(—h)l(θ+h). Hence it follows that

(5.4) lim α ( r , A)/[φ(A)]2 = lim /3(γ, A)/[φ(A)]2 = 0 ,
A->0,A<0 A->0,A<0

7(<y, φ) = 7(7, φ) = 1/(9 .

Thus for any sequence π=(hίy h2, •••) of nonpositive numbers ζ)0 and Q* are
CO

singular if and only if 2 (—Aί)=oo.
= l

On the other hand, for any A>0 let γ(x, A)=l, φx{h)=h and φ2(k)=h1/2.
Then we have

lim /3(γ, A)/[φ,(A)]1 = 0 (*=1,2)
A->0,A>0

(5.5) 7(7, φ.) = 7(7, ΦO = l/^2, lim
A-> 0,A>0

7(7, φθ = 7(7, φ.) = 0, lim «(7,
A->0,A>0

Hence it follows that for a sequence π—(hu hz, •••) of nonnegative numbers ζ)0

CO OO

and Q* are singular if 2 (A, )2 = ©o, and g 0 and ^ are nonsingular if 5] A, < oo.
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