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1 Introduction

Exploring transverse momentum dependent parton distribution functions (TMD PDFs)
has become one of the major research topics in hadron physics in recent years [1]. TMD
PDFs provide three-dimensional (3D) imaging of the nucleon in both the longitudinal and
transverse momentum space, which is one of the scientific pillars at the future Electron-Ion
Collider [2]. Such 3D imaging of the nucleon offers novel insights into the highly nontrivial
non-perturbative QCD dynamics and correlations [3].

Sivers function is one of the most studied TMD PDFs in the community. It describes
the distribution of unpolarized partons inside a transversely polarized nucleon, through a
correlation between the transverse spin of the nucleon and the transverse momentum of
the parton with respect to the nucleon’s moving direction. The Sivers function was first
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introduced by Sivers in 1990s [4, 5] to describe the large single transverse spin asymmetries
observed in single inclusive particle production in hadronic collisions, see e.g. [6, 7]. Since
then, large single spin asymmetries have also been consistently observed in proton-proton
collisions in high energy experiments at the Relativistic Heavy Ion Collider (RHIC) [8–13].
On the theoretical side, understanding the precise origin of such large spin asymmetries has
triggered extensive research in the QCD community [14–22]. The difficulty in understand-
ing such asymmetries for single hadron production (such as pions) in proton-proton colli-
sions lies in the fact that they could receive contributions from many different correlations.
Besides Sivers type correlations, whose collinear version is referred to as the Qiu-Sterman
function [15, 23] in the incoming nucleon, there could also be similar correlations in the
hadronization process when the parton fragments into the hadrons [17, 19, 21, 22, 24].
See [25] for a recent development along this direction.

Simultaneously the Sivers asymmetry has also been studied in semi-inclusive deep
inelastic scattering (SIDIS) by HERMES collaboration at DESY [26, 27], COMPASS col-
laboration at CERN [28, 29], and Jefferson Lab [30]. Because of the semi-inclusive nature
of the process, one can isolate the contribution from the Sivers function via different az-
imuthal angular modulations [31]. One of the remarkable and unique properties of the
Sivers functions is its non-universality nature. For example, based on parity and time-
reversal invariance of QCD, one can show that quark Sivers functions in SIDIS are oppo-
site to those in the Drell-Yan process [32–34]. Such a sign change has been studied and
confirmed experimentally [35–38], though additional work remains to be done to quantify
the change in more details [39].

Sivers effect has been continuously studied in proton-proton collisions at the RHIC.
In order to eliminate the contributions from the spin correlations in the fragmentation
process, the Sivers asymmetry for jet production processes has been explored in the exper-
iment [13, 40, 41]. In particular, back-to-back dijet production in transversely polarized
proton-proton collisions was proposed by Boer and Vogelsang in 2003 as a unique oppor-
tunity at the RHIC [42]. Active investigation has been performed both experimentally [41]
and theoretically [43–45]. On the experimental side, the Sivers asymmetry for dijet pro-
duction was found to be quite small, largely due to the cancellation between u- and d-quark
Sivers functions, which have similar size but opposite sign [25, 46, 47]. On the theoreti-
cal side, dijet production in proton-proton collisions is also subject to TMD factorization
breaking [48, 49]. These have slowed down the efforts in the detailed study of the Sivers
effect in the dijet production.

Recently, there have been renewed experimental and theoretical interests for jet pro-
duction processes. Experimentally, the STAR collaboration at the RHIC is analyzing the
new data for dijet Sivers asymmetry, and is exploring a novel method based on a charge
weighting method in separating the contributions from individual u and d-quark Sivers
functions [50]. The PHENIX collaboration at the RHIC is exploring the TMD factorization
breaking effects via back-to-back dihadron and photon-hadron production in proton-proton
collisions [51, 52]. Theoretically, there have been efforts in performing QCD resummation
in back-to-back dijet [53, 54] and vector boson-jet production [55–57]. At the same time, a
theoretical framework has been developed to study spin asymmetries in specific jet charge
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bin [58], which would facilitate the analysis of the dijet spin asymmetries by the STAR
collaboration. In light of all these activities, we set out to develop a resummation for-
malism for studying the Sivers asymmetry in back-to-back dijet production in transversely
polarized proton-proton collisions. We make predictions for the dijet Sivers asymmetry
in the kinematics relevant to the RHIC energy, to be compared with the experimental
measurement in the near future.

The rest of the paper is organized as follows. In section 2, we summarized the QCD for-
malism for dijet production in both unpolarized and polarized scatterings, and we provide
a few remarks about our formalism. In section 3, we provide a procedure and demonstrate
how to compute the process-dependent polarized hard functions in the color matrix form.
In section 4, we present the renormalization group evolution of all the relevant functions
in our formalism, and we provide the final resummation formula. Section 5 is devoted to
the phenomenological studies, where we make predictions for dijet Sivers asymmetry in the
kinematic region relevant to the experiment at the RHIC. Since we are mainly interested in
the Sivers asymmetry in the forward rapidity region where quark contributions dominate,
we consider only the quark Sivers contribution and neglect the gluon Sivers contribution.
We summarize our paper in section 6.

2 QCD formalism for dijet production

In this paper, we study back-to-back dijet production in transversely polarized proton-
proton collisions in the center-of mass frame,

p(PA, ~S⊥) + p(PB)→ J1(yc, ~P1⊥) + J2(yd, ~P2⊥) +X , (2.1)

where the polarized proton with the momentum PA and the transverse spin ~S⊥ is moving
in the +z-direction, while the unpolarized proton with the momentum PB is moving in
the −z-direction, and we have the center-of-mass energy s = (PA + PB)2. The produced
two jets J1 and J2 have rapidities yc,d and transverse momenta ~P1⊥ and ~P2⊥, respectively.
These jets will be reconstructed via a suitable jet algorithm [59] and in the rest of the
paper, we consider both of them to be anti-kT jets with jet radii R. In order to access
the transverse motion of the partons inside the protons, we concentrate in the back-to-
back region where the transverse momentum imbalance q⊥ is small. Here we define the
average transverse momentum P⊥ of the two jets and the transverse momentum imbalance
~q⊥ as follows

P⊥ = |~P1⊥ − ~P2⊥|/2 , ~q⊥ = ~P1⊥ + ~P2⊥ , (2.2)

where one has q⊥ � P⊥ in the back-to-back region. The production of such back-to-back
dijets is illustrated in figure 1. In the transversely polarized proton-proton collisions, the
transverse spin vector ~S⊥ of the incoming proton and the transverse momentum imbalance
~q⊥ of the two jets will be correlated, as advocated in [42]. This correlation is accounted
for in the Sivers function, which leads to a sin(φq − φS)-azimuthal modulation in the cross
section between φq and φS , the azimuthal angles of ~q⊥ and ~S⊥, respectively. Below we
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Figure 1. Illustration of back-to-back dijet production in transversely polarized proton-proton
collisions: p(PA, ~S⊥) + p(PB) → J1(yc, ~P1⊥) + J2(yd, ~P2⊥) + X. The polarized proton with mo-
mentum PA and transverse spin ~S⊥ is moving in +z-direction, while the unpolarized proton with
momentum PB is moving in −z-direction. We have jet rapidities yc,d and transverse momenta ~P1⊥
and ~P2⊥, respectively. The dijet transverse momentum imbalance is defined as ~q⊥ = ~P1⊥ + ~P2⊥.
Sivers asymmetry is generated due to the correlation between ~S⊥ and ~q⊥.

summarize the factorized formalisms for dijet production in both unpolarized and polarized
proton-proton collisions, and we provide more details for the relevant ingredients in the
next section.

2.1 Dijet unpolarized cross section

In the back-to-back region where q⊥ � P⊥, within the framework of soft-collinear effective
theory (SCET) [60–64], one can write down a factorized form for the unpolarized differential
cross section

dσ

dycdyddP
2
⊥d

2~q⊥
=
∑
abcd

1
16π2ŝ2

1
Ninit

1
1 + δcd

∫
⊥
xaf

unsub
a (xa, ka⊥, µ, ν)xbfunsub

b (xb, ka⊥, µ, ν)

× Tr [Sab→cd(λ⊥, µ, ν) ·Hab→cd(P⊥, µ)] Jc(P⊥R,µ)Scs
c (kc⊥, R, µ)

× Jd(P⊥R,µ)Scs
d (kd⊥, R, µ) , (2.3)

where ŝ = xaxbs is the partonic center-of-mass energy, Ninit is the corresponding spin- and
color-averaged factor for each channel, while 1/(1 + δcd) arises from the symmetry factor
due to identical partons in the final state. We have used the following short-hand notation∫

⊥
=
∫
d2~ka⊥d

2~kb⊥d
2~kc⊥d

2~kd⊥d
2~λ⊥δ

(2)(~ka⊥ + ~kb⊥ + ~kc⊥ + ~kd⊥ + ~λ⊥ − ~q⊥) . (2.4)

In eq. (2.3), funsub
a (xa, ka⊥, µ, ν) and funsub

b (xb, kb⊥, µ, ν) are the so-called unsubtracted
TMD PDFs, which carry the longitudinal momentum fractions xa,b and the transverse
momenta ka⊥ and kb⊥ with respect to their corresponding proton. In our process, we have

xa = P⊥√
s

(eyc + eyd) , xb = P⊥√
s

(
e−yc + e−yd

)
, (2.5)

where yc, yd are the rapidities of the two leading jets.
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After performing Fourier transform for eq. (2.3), we obtain the factorized formula in
the coordinate b-space as follows

dσ

dycdyddP
2
⊥d

2~q⊥
=
∑
abcd

1
16π2ŝ2

1
Ninit

1
1 + δcd

∫
d2~b

(2π)2 e
i~q⊥·~b xaf

unsub
a (xa, b, µ, ν)

× xbf
unsub
b (xb, b, µ, ν) Tr [Sab→cd(b, µ, ν) ·Hab→cd(P⊥, µ)]

× Jc(P⊥R,µ)Scs
c (b, R, µ)Jd(P⊥R,µ)Scs

d (b, R, µ) , (2.6)

where funsub
a (xa, b, µ, ν) and funsub

b (xb, b, µ, ν) are the Fourier transform of
funsub
a (xa, ka⊥, µ, ν) and funsub

b (xb, kb⊥, µ, ν), respectively. On the other hand,
Hab→cd(P⊥, µ) is the hard function, while Sab→cd(b, µ, ν) is a global soft function.
Note that both the hard function Hab→cd and the global soft function Sab→cd are ex-
pressed in the matrix form in the color space and the trace Tr[· · · ] is over the color. Such
factorization of the hard and soft function into matrix form is essential to capture evolution
effects between the hard scale ∼ P⊥ and the imbalance scale ∼ q⊥ [65]. Here µ and ν

denotes renormalization and rapidity scales, separately. The rapidity scale ν arises because
both the TMD PDFs and the global soft functions have rapidity divergence [66, 67], which
are canceled between them as demonstrated below. This cancellation allows us to define
rapidity divergence independent S̃ab→cd(b, µ) by

Sab→cd(b, µ, ν) = S̃ab→cd(b, µ)Sab(b, µ, ν) , (2.7)

where Sab(b, µ, ν) is the standard soft function appearing in usual Drell-Yan and SIDIS
processes. This explicit redefinition allows us to subtract the rapidity divergence from the
unsubtracted TMD PDFs to define the standard TMD PDFs fi(xi, b, µ) that are free of
rapidity divergence as [68]

funsub
a (xa, b, µ, ν) funsub

b (xb, b, µ, ν)Sab(b, µ, ν) = fa(xa, b, µ) fb(xb, b, µ) . (2.8)

Note that the properly-defined TMD PDFs fa(xa, b, µ) and fb(xb, b, µ) are no longer sub-
ject to the rapidity divergence and this is why there are no explicit ν-dependence in the
arguments any more. Such properly-defined unpolarized TMD PDFs are the same as those
probed in the standard SIDIS and Drell-Yan processes.

The jet functions Jc(P⊥R,µ) and Jd(P⊥R,µ) in eq. (2.6) describe the creation of anti-
kT jets from the partons c and d, respectively. Finally, Scs

c (kc⊥, R, µ) and Scs
d (kd⊥, R, µ) are

the collinear-soft functions. They describe soft gluon radiation with separations of order R
along the jet direction, which can resolve the substructure of the jet. If one performs the
integration over the azimuthal angle of the vector ~b, we obtain the following expression

dσ

dycdyddP
2
⊥d

2~q⊥
=
∑
abcd

1
16π2ŝ2

1
Ninit

1
1 + δcd

1
2π

∫ ∞
0

db b J0(q⊥b)xafa(xa, b, µ)xbfb(xb, b, µ)

× Tr
[
S̃ab→cd(b, µ) ·Hab→cd(P⊥, µ)

]
Jc(P⊥R,µ)Scs

c (b, R, µ)Jd(P⊥R,µ)

× Scs
d (b, R, µ) , (2.9)

where J0 is the Bessel function of order zero.
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A few comments are in order. The proof of factorization in SCET involves matching
from QCD to SCET, as well as field redefinitions to decouple fields in different modes. Such
a procedure has become standard once different modes — such as hard, soft, collinear,
collinear-soft modes for dijet production in our case — have been identified. For example,
detailed proof of related factorization was provided in [56] within SCET formalism for
vector boson and jet production in unpolarized proton-proton collisions. The extension
to dijet production is straightforward, and this is how we write down eq. (2.3) for the
unpolarized differential cross section.

It is well-known [48, 49, 69, 70] that the so-called Glauber mode will result in the
TMD factorization breaking contributions to eq. (2.3). In this paper, we write down
a theoretical formalism in eq. (2.6) using SCET with the factorization breaking effects
from the Glauber mode ignored. By careful comparison between the predictions from our
theoretical framework with the precision experimental data in the future, we can probe the
size of the factorization breaking effects. In principle, such effects can be systematically
accounted for in SCET by including explicitly the Glauber mode [71]. How exactly this
works for dijet production remains to be investigated.

2.2 Dijet Sivers asymmetry

In the transversely polarized proton-proton collisions, the Sivers function will lead to a spin
asymmetry in the cross section when one flips the transverse spin of the incoming proton.
We thus define the difference in the cross section as d∆σ(S⊥) = [dσ(S⊥)− dσ(−S⊥)] /2.
One can write down a similar factorized formula for such a spin-dependent differential cross
section following eq. (2.3), and it is given by

d∆σ(S⊥)
dycdyddP

2
⊥d

2~q⊥
=
∑
abcd

1
16π2ŝ2

1
Ninit

1
1 + δcd

∫
⊥

1
M
εαβ S

α
⊥ k

β
a⊥ xaf

⊥a, unsub
1T (xa, ka⊥, µ, ν)

× xbf
unsub
b (xb, ka⊥, µ, ν)Tr

[
Sab→cd(λ⊥, µ, ν) ·HSivers

ab→cd(P⊥, µ)
]

× Jc(P⊥R,µ)Scs
c (kc⊥, R, µ)Jd(P⊥R,µ)Scs

d (kd⊥, R, µ) , (2.10)

where εαβ is a two-dimensional asymmetric tensor with ε12 = +1.
In writing down this spin-dependent formalism, we start from the unpolarized fac-

torized formalism in eq. (2.3) with the replacement of the unpolarized TMD PDF by the
Sivers function following the so-called Trento convention [72],

funsub
a (xa, ka⊥, µ, ν)→ 1

M
εαβ S

α
⊥ k

β
a⊥ f

⊥a, unsub
1T, ab→cd(xa, ka⊥, µ, ν) , (2.11)

where the subscript ab → cd in the Sivers function on the right-hand side represents the
so-called process-dependence of the Sivers function, as discovered by [43–45, 68, 73–75]. It
turns out that one can shift such process-dependence to be included into the hard function,
while changing the Sivers functions in eq. (2.10) to be the same as the one probed in the
SIDIS process. Once this is done, we will have a new hard function HSivers

ab→cd(P⊥, µ), which
would be different from the unpolarized hard function, Hab→cd(P⊥, µ). We explain in
details how we derive the hard functions HSivers

ab→cd for different partonic processes in the
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next section, where we show non-trivial structures are expressed in terms of matrix forms
in the color space. To a large degree, our formalism for the spin-dependent case can be
regarded as an extension of the generalized TMD formalism introduced earlier in [43, 73–
75], but with a matrix form for both hard and soft functions.

In principle, the global soft function Sab→cd(λ⊥, µ, ν) in eq. (2.10) could also be dif-
ferent in the polarized case. In fact, ref. [76] shows in explicit calculations at one-loop
level that soft functions in the polarized case are different from the unpolarized counter-
part beyond leading logarithmic accuracy, which is an indication of TMD factorization
breaking. However, the change in soft function comes from the Glauber gluon which we
ignore as explained above.1 In this respect, our starting point eq. (2.10) will be the best
assumption at hand that takes a factorized form. We show the RG consistency for this fac-
torized form, and we also demonstrate how we derive the process-dependent hard functions
HSivers
ab→cd(P⊥, µ) for the polarized scattering. We leave a detailed study on the numerical

impact of any TMD factorization breaking effects for future investigation.
Performing Fourier transform from the transverse momentum space into the b-space,

we obtain
d∆σ(S⊥)

dycdyddP
2
⊥d

2~q⊥
=
∑
abcd

1
16π2ŝ2

1
Ninit

1
1 + δcd

εαβ S
α
⊥

∫
d2~b

(2π)2 e
i~q⊥·~b xaf

⊥ a(β)
1T (xa, b, µ)

× xbfb(xb, b, µ) Tr
[
S̃ab→cd(b, µ) ·HSivers

ab→cd(P⊥, µ)
]

× Jc(P⊥R,µ)Scs
c (b, R, µ)Jd(P⊥R,µ)Scs

d (b, R, µ) , (2.12)

where we have already used eq. (2.7) to rewrite the unsubtracted unpolarized TMD PDF
and Sivers function in terms of the properly defined versions which are free of rapidity
divergence. Here f⊥ a(β)

1T (xa, b, µ) is the Fourier transform of the Sivers function,

f
⊥ a(β)
1T (xa, b, µ) = 1

M

∫
d2~ka⊥ e

−i~ka⊥·~b kβa⊥f
⊥ a
1T (xa, ka⊥, µ) ,

≡
(
ibβ

2

)
f̂⊥ a1T (xa, b, µ) , (2.13)

where we have used the fact that the integration in the first line would be proportional to
bβ , and we thus factored bβ out explicitly in the second line.2 The remaining part of the
Sivers function is now denoted as f̂⊥ a1T (xa, b, µ). Note that for the same reason as explained
below eq. (2.8), we do not have the rapidity ν-dependence in the above equation. It is also
instructive to emphasize that f̂⊥ a1T (xa, b, µ) follows the same TMD evolution equations as
the unpolarized TMD PDF fa(xa, b, µ), which enables us to evolve the Sivers function from
some initial scale µ0 to the relevant scale µ. On the other hand, at the initial scale µ0,
the unpolarized TMD PDF fa(xa, b, µ0) can be expanded in terms of the collinear PDFs
fa(xa, µ0). At a specific scale µb = b0/b with b0 = 2e−γE , we have

fa(xa, b, µb) =
∫ 1

xa

dx

x
Ca←i

(
xa
x
, µb

)
fi(x, µb) , (2.14)

1We thank J. Gaunt for pointing this out to us.
2To make the matching coefficient normalized to 1 at the lowest order in eq. (2.15), we include the

additional factor of i/2 in eq. (2.13).
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Figure 2. Illustration of first non-global logarithms from quantum correlation of in-jet and out-of-
jet radiation.

where the coefficient Ca←i can be found in e.g. refs. [68, 77]. Likewise, Sivers function
f̂⊥ a1T (xa, b, µ) can be further matched onto the collinear twist-three Qiu-Sterman function
Ta,F (x1, x2, µ). At the scale µb, one has the following expression for quark Sivers functions

f̂⊥ q1T (xa, b, µb) =
∫ 1

xa

dx

x
CTq←q′

(
xa
x
, µb

)
Tq′,F (x, x, µb) , (2.15)

where the matching coefficients at the NLO are given by [78–82]

CTq←q′ (x, µb) = δqq′

[
δ(1− x) + αs(µb)

2π

(
− 1

2Nc

)
(1− x)

]
. (2.16)

We now plug eq. (2.13) into eq. (2.12), and integrate over the azimuthal angle of the vector
~b, we obtain

d∆σ(S⊥)
dycdyddP

2
⊥d

2~q⊥
= sin(φq − φS)

∑
abcd

1
16π2ŝ2

1
Ninit

1
1 + δcd

(
− 1

4π

)∫ ∞
0

db b2 J1(q⊥b)

× xa f̂
⊥ a
1T (xa, b, µ)xb fb(xb, b, µ) Tr

[
S̃ab→cd(b, µ) ·HSivers

ab→cd(P⊥, µ)
]

× Jc(P⊥R,µ)Scs
c (b, R, µ)Jd(P⊥R,µ)Scs

d (b, R, µ) , (2.17)

where J1 is the Bessel function of order one, and we have used the identity

εαβS
α
⊥ q̂

β
⊥ = sin(φq − φS) , (2.18)

with q̂⊥ the unit vector along the direction of the imbalance ~q⊥. In general, the so-called
single spin asymmetry (the Sivers asymmetry) AN for dijet production will be then given by

AN = d∆σ(S⊥)
dycdyddP

2
⊥d

2~q⊥

/
dσ

dycdyddP
2
⊥d

2~q⊥
. (2.19)
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2.3 Remarks

We will provide detailed expressions and discuss the evolution of all the relevant functions
in the next section. Here, let us emphasize the following points on our factorized formalism:

• There will be non-global structures from quantum correlations between in-jet and out-
of-jet radiations: exclusive jet production will be sensitive on the correlation effects
between in-jet and out-of-jet radiations, which is first discovered in [83]. There, it was
shown that non-global logarithms first appear at NNLO order through a correlated
emission from a heavy mass hemisphere to a light mass hemisphere. We observe
similar non-global logarithms first at NNLO through a correlated emission from the
higher scaled in-jet to the lower scaled out-of-jet emission as shown in figure 2, which
is given at NNLO by [84]

−CACa2

(
αs
π

)2 π2

24 ln
2
(
P 2
⊥
µ2
b

)
, (2.20)

where Ca = CF and CA for the quark and gluon jet, respectively. To generalize the
analysis of these non-global logarithms to general resummation order, the factoriza-
tion and resummation formula need to include multi-Wilson-line structures [85, 86].
The multi-Wilson-line formalism then gives rise to the non-linear evolution equa-
tion [87] for non-global logarithms (NGLs) resummation. The TMD factorization
formula including such effects have been given in [56, 88, 89]. Numerically, the
leading-logarithmic NGLs resummation can be solved using parton shower meth-
ods [83, 90–92] or BMS equations [93, 94]. In our phenomenology, we have included
the contributions from leading-logarithmic NGLs as discussed in section 5.

• Our formalism for unpolarized dijet production in eqs. (2.6) is similar to those in [53,
54]. Here, by taking the small-R limit, we refactorize the TMD R-dependence soft
function [53, 54] as the product of the R-independent global TMD soft function and
the R-dependent collinear-soft function [55, 56]. In addition, the R-dependent hard
function in [53, 54] has been further factorized into a R-independent hard function
as above and the jet functions which naturally capture all the R-dependence. In this
regard, the factorized formula presented here is more transparent and intuitive. Such
refactorizations are essential to resum logarithms of R for small radius jets.

• After performing the refactorization mentioned in the above item, both the single
logarithmic anomalous dimensions of the global and collinear-soft function not only
depend on the magnitude |~b| but also the azimuthal angle φb of the vector ~b [55, 56].
Especially, after taking into account QCD evolution effects the φb integral is divergent
in some phase space region. In order to regularize such divergences, we can first
take φb averaging in both the global and collinear-soft function, and then explicit φb
dependence will vanish. Therefore, one can avoid such divergence in the resummation
formula directly. This φb averaging method will not change the RG consistency at
the one-loop order. The other methods to avoid such divergence have been discussed
in [56], and no significant numerical differences are found at the NLL accuracy. The
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xa PA

xb PB P2

P1
xa PA

xb PB P2

P1

Figure 3. Unpolarized scattering amplitudes for the qq → qq subprocess. From left the right, the
scattering amplitude is provided for the t- and u-channel processes.

similar φb averaging methods have also been used in [95–97] to simplify the calculation
of the TMD soft function.

3 Hard functions in unpolarized and polarized scattering

In this section, we derive the hard functions for both unpolarized and polarized scatterings,
i.e. Hab→cd(P⊥, µ) and HSivers

ab→cd(P⊥, µ) in eqs. (2.9) and (2.17), respectively. They are
matrices in the color space. We first review the results for the hard functions Hab→cd in
the unpolarized scattering, which are well-known in the literature, see e.g. refs. [98, 99]. We
then derive the hard function matrices HSivers

ab→cd in the polarized scattering case. These hard
functions properly take into account the process-dependence of the Sivers functions [43–45,
68, 73–75]. To get started, we define the Mandelstam variables for the partonic scattering
process, a(p1) + b(p2)→ c(p3) + d(p4), as follows

ŝ = (p1 + p2)2 = (p3 + p4)2 = 4P 2
⊥ cosh2

(∆y
2

)
= xaxbs , (3.1a)

t̂ = (p1 − p3)2 = (p2 − p4)2 = −2P 2
⊥e
−∆y/2 cosh

(∆y
2

)
, (3.1b)

û = (p1 − p4)2 = (p2 − p3)2 = −2P 2
⊥e

∆y/2 cosh
(∆y

2

)
, (3.1c)

where ∆y = yc−yd is the rapidity difference of the two jets. In the following, the expressions
for the hard functions will be written in terms of these Mandelstam variables.

3.1 Unpolarized hard matrices

3.1.1 Four quark subprocesses

We start with the partonic subprocesses that involve four quarks, such as qq → qq. In
table 1, we organize each of the four quark subprocesses into a color basis. The color
basis operators acting on particles i and j are denoted as Γn,ij which are used to generate
the hard and soft matrices. For the four quark interactions, two operators, n = 1, 2, are
required to span the color space. As seen in the table, this results in 12 total color matrices.
Using the fact that hard function for the unpolarized case is invariant under the charge
conjugation, the bottom row can easily be computed from the top row. Furthermore,
once the hard matrices have been calculated for the first column, crossing symmetry can
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12 → 34 Color Basis 12 → 34 Color Basis 12 → 34 Color Basis
qq′ → qq′ qq̄ → q′q̄′ qq̄′ → q̄′q

qq′ → q′q Γn,31Γn,42 qq̄′ → qq̄′ Γn,21Γn,34 qq̄ → q̄′q′ Γn,41Γn,23

qq′ → qq qq̄ → qq̄ qq̄ → q̄q

q̄q̄′ → q̄q̄′ q̄q → q̄′q′ q̄q′ → q′q̄

q̄q̄′ → q̄′q̄ Γn,13Γn,24 q̄q′ → q̄q′ Γn,12Γn,43 q̄q → q′q̄′ Γn,14Γn,32

q̄q̄′ → q̄q̄ q̄q → q̄q q̄q → qq̄

Table 1. The choice of basis for each of the four quark subprocesses. Γn,ij are operators in color
space which join the fermion lines i and j. For the four quark subprocesses, two operators, Γ1,ij
and Γ2,ij , are required to span the color space.

be applied in order to obtain the hard color matrices for the second and third column.
It is then only necessary to explicitly calculate the hard matrices for the subprocesses
associated with the color basis Γn,31Γn,42. For our calculation, we follow the conventions
used in refs. [98, 99] to choose Γ1,ij = (ta)ij and Γ2,ij = δij , so that the color basis is
spanned by the orthogonal basis

θ1 = (ta)ij(ta)kl , θ2 = δijδkl , (3.2)

θ†1 = (ta)ji(ta)lk , θ†2 = δjiδlk . (3.3)

We note that other bases have been used in the literature [100]. We now explicitly per-
form the calculation for the qq′ → qq′, qq′ → q′q, and qq → qq subprocesses. For these
subprocesses, we can write

M =Mkin
t

(
tb
)

31

(
tb
)

42
+Mkin

u

(
tb
)

32

(
tb
)

41
(3.4)

where we have suppressed the ab → cd subprocess label. The subscript in the M terms
denotes the relevant Mandelstam variable (t̂ or û) for the channel that contributes to the
subprocess as shown in the figure 3. To arrive at this expressions, we have separated the
color parts from the kinematic parts (denoted with the superscript kin). These kinematic
scattering amplitudes are defined by

Mkin
t =


−g

2
s

t̂
ū(P1)γµu(xa PA)ū(P2)γµu(xb PB) ab→ cd = qq′ → qq′

0 for ab→ cd = qq′ → q′q

−g
2
s

t̂
ū(P1)γµu(xa PA)ū(P2)γµu(xb PB) ab→ cd = qq → qq ,

(3.5)

Mkin
u =


0 ab→ cd = qq′ → qq′

−g
2
s

û
ū(P2)γµu(xa PA)ū(P1)γµu(xb PB) for ab→ cd = qq′ → q′q

g2
s

û
ū(P2)γµu(xa PA)ū(P1)γµu(xb PB) ab→ cd = qq → qq .

(3.6)
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We can now decompose these scattering amplitudes in color space as

M =M1 θ1 +M2 θ2 M† =M†1 θ
†
1 +M†2 θ

†
2 , (3.7)

where

M1 =
Tr
[
Mθ†1

]
Tr
[
θ1θ
†
1

] M2 =
Tr
[
Mθ†2

]
Tr
[
θ2θ
†
2

] M†1 =
Tr
[
M†θ1

]
Tr
[
θ1θ
†
1

] M†2 =
Tr
[
M†θ2

]
Tr
[
θ2θ
†
2

] . (3.8)

To obtain the expressions in eq. (3.8), we have exploited the orthogonality of our chosen
color basis in eqs. (3.2) and (3.3). Then we will have |M|2 as

|M|2 = Tr [Hab→cd · Sab→cd] , (3.9)

where the hard matrix is given by

Hab→cd =
[
|M1|2 M1M†2
M2M†1 |M2|2

]
, (3.10)

and the leading order soft matrix as

Sab→cd =

Tr [θ1θ
†
1

]
Tr
[
θ1θ
†
2

]
Tr
[
θ2θ
†
1

]
Tr
[
θ2θ
†
2

] =
[

1
2NcCF 0

0 N2
c

]
. (3.11)

The hard matrices of the four quark processes in Γ31Γ42 color basis in table 1 are given by

Hqq′→qq′ = 8g4
s

(
ŝ2 + û2)
t̂2

[
1 0
0 0

]
, (3.12)

Hqq′→q′q =
8g4
s

(
ŝ2 + t̂2

)
û2C2

A

[
1 −CF
−CF C2

F

]
, (3.13)

Hqq→qq = 8g4
s

t̂2û2N2
c

t̂4 + ŝ2t̂2 − 2Ncŝ
2ût̂+N2

c û
4 +N2

c ŝ
2û2 −CF t̂

(
t̂3 + ŝ2t̂−Ncŝ

2û
)

−CF t̂
(
t̂3 + ŝ2t̂−Ncŝ

2û
)

C2
F t̂

2
(
ŝ2 + t̂2

)  .
(3.14)

We find these results to be consistent with the expressions in [98]. The remaining hard
functions can be obtained from crossing symmetries.

3.1.2 Two quarks and two gluon subprocesses
In table 2, we provide a list of subprocesses involving two quarks and two gluons with the
color basis operators Γabn,ij . For the two quark and two gluon interactions, three operators,
n = 1, 2, 3, are required to span the color space. A convenient choice for the computation
is the set of orthogonal operators (primed),

Γab1,ij
′ = δab

2Nc
δij , Γab2,ij

′ = 1
2d

abctcij , Γab3,ij
′ = 1

2f
abctcij , (3.15)

which has the corresponding orthogonal basis,

θ′1 = δab

2Nc
δij , θ′2 = 1

2d
abctcij , θ′3 = 1

2f
abctcij . (3.16)

At the same time, we find that the final expressions for the hard matrices take a simpler
form when one uses the non-orthogonal basis used in refs. [98–100] by defining the basis
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12 → 34 Basis 12 → 34 Basis 12 → 34 Basis 12 → 34 Basis 12 → 34 Basis 12 → 34 Basis
qq̄ → gg Γabn,21 qg → gq Γabn,41 qg → qg Γabn,31 gq → gq Γabn,42 gq → qg Γabn,32 gg → qq̄ Γabn,43

q̄g → q̄g Γabn,21 q̄g → gq̄ Γabn,41 q̄q → gg Γabn,31 gg → q̄q Γabn,42 gq̄ → q̄g Γabn,32 gq̄ → gq̄ Γabn,43

Table 2. The choice of basis for each of two quark two gluon subprocesses. Three operators
Γab1,ij ,Γab2,ij ,Γab3,ij are required to span the color space for each subprocess.

operators to be (unprimed)

Γab1,ij = (tatb)ij , Γab2,ij = (tbta)ij , Γab3,ij = δijδ
ab . (3.17)

The corresponding basis is given by

θ1 = (tatb)ij , θ2 = (tbta)ij , θ3 = δijδ
ab . (3.18)

We note that the normalization of θ3 in [100] differs from the normalization of refs. [98, 99]
by a factor of 2. For the choice of basis in eq. (3.18), the LO soft matrix is given by

Sab→cd =


Tr
[
θ1θ
†
1

]
Tr
[
θ1θ
†
2

]
Tr
[
θ1θ
†
3

]
Tr
[
θ2θ
†
1

]
Tr
[
θ2θ
†
2

]
Tr
[
θ2θ
†
3

]
Tr
[
θ3θ
†
1

]
Tr
[
θ3θ
†
2

]
Tr
[
θ3θ
†
3

]
 =

NcC
2
F −

CF
2 NcCF

−CF
2 NcC

2
F NcCF

NcCF NcCF 2N2
cCF

 . (3.19)

In order to exploit the orthogonality condition of the primed basis in eq. (3.16), but still
provide a simple expression for the hard matrices using the unprimed basis in eq. (3.18), we
first compute the hard matrices in the primed basis then obtain the results in the unprimed
basis using the relation

Hab→cd = R†H ′
ab→cd R , where R =

 1 1 −1
1 1 1

2Nc 0 0


−1

. (3.20)

We now perform the calculation for the hard matrices for the qq̄ → gg process in the
primed orthogonal basis. The scattering amplitude for this subprocess can be written in
color space as

M = M1θ
′
1 +M2θ

′
2 +M3θ

′
3 M† = M †1θ

′
1
† +M †2θ

′
2
† +M †3θ

′
3
† (3.21)

where

M1 =
Tr
[
Mθ′1

†
]

Tr
[
θ′1θ
′
1
†
] , M2 =

Tr
[
Mθ′2

†
]

Tr
[
θ′2θ
′
2
†
] , M3 =

Tr
[
Mθ′3

†
]

Tr
[
θ′3θ
′
3
†
] , (3.22)

M†1 =
Tr
[
M†θ′1

]
Tr
[
θ′1θ
′
1
†
] , M†2 =

Tr
[
M†θ′2

]
Tr
[
θ′2θ
′
2
†
] , M†3 =

Tr
[
M†θ′3

]
Tr
[
θ′3θ
′
3
†
] . (3.23)

The hard matrix in the primed basis can therefore be computed as

H ′
qq̄→gg =

M1M
†
1 M1M

†
2 M1M

†
3

M2M
†
1 M2M

†
2 M2M

†
3

M3M
†
1 M3M

†
2 M3M

†
3

 . (3.24)
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Finally, we now use eq. (3.20) to obtain the simplified hard functions in the unprimed
basis as

Hqq̄→gg = 8g4
s

(
t̂2 + û2

)
ŝ2


û
t̂

1 0
1 t̂

û 0
0 0 0

 . (3.25)

The hard matrices for other subprocesses involving two quarks and two gluons, such as
qg → qg, can be obtained from this expression using crossing symmetries.

3.1.3 Four gluon subprocesses

For the four gluon subprocesses, gg → gg, we follow the work in refs. [98, 99] to use the
following over-complete basis

θ1 = Tr [ta1ta2ta3ta4 ] , θ2 = Tr [ta1ta2ta4ta3 ] , θ3 = Tr [ta1ta4ta3ta2 ] ,
θ4 = Tr [ta1ta4ta2ta3 ] , θ5 = Tr [ta1ta3ta4ta2 ] , θ6 = Tr [ta1ta3ta2ta4 ] ,
θ7 = Tr [ta1ta4 ]Tr [ta2ta3 ] , θ8 = Tr [ta1ta2 ]Tr [ta3ta4 ] , θ9 = Tr [ta1ta3 ]Tr [ta2ta4 ] .

(3.26)

We note that a six dimensional basis was chosen in [100]. Using this basis in eq. (3.26),
one can show that the hard matrix takes the following form

Hgg→gg =
2g4
s

(
ŝ4 + t̂4 + û4

)
ŝ2û2N2

cC
2
F



1 û
t̂

1 ŝ
t̂

û
t̂

ŝ
t̂

0 0 0
û
t̂
û2

t̂2
û
t̂
ŝû
t̂2

û2

t̂2
ŝû
t̂2

0 0 0
1 û

t̂
1 ŝ

t̂
û
t̂

ŝ
t̂

0 0 0
ŝ
t̂
ŝû
t̂2

ŝ
t̂
ŝ2

t̂2
ŝû
t̂2

ŝ2

t̂2
0 0 0

û
t̂
û2

t̂2
û
t̂
ŝû
t̂2

û2

t̂2
ŝû
t̂2

0 0 0
ŝ
t̂
ŝû
t̂2

ŝ
t̂
ŝ2

t̂2
ŝû
t̂2

ŝ2

t̂2
0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



. (3.27)

The LO soft matrix for this channel is given in appendix C of [99] for this basis as

Sgg→gg = CF
8Nc



a0 b0 c0 b0 b0 b0 d0 d0 −e0
b0 a0 b0 b0 c0 b0 −e0 d0 b0
c0 b0 a0 b0 b0 b0 d0 d0 −e0
b0 b0 b0 a0 b0 c0 d0 −e0 d0
b0 c0 b0 b0 a0 b0 −e0 d0 d0
b0 b0 b0 c0 b0 a0 d0 −e0 d0
d0 −e0 d0 d0 −e0 d0 d0e0 e2

0 e2
0

d0 d0 d0 −e0 d0 −e0 e2
0 d0e0 e2

0
−e0 d0 −e0 d0 d0 d0 e2

0 e2
0 d0e0


, (3.28)

where a0 = N4
c − 3N2

c + 3, b0 = 3−N2
c , c0 = 3 +N2

c , d0 = 2N2
cCF , and e0 = Nc.

– 14 –



J
H
E
P
0
2
(
2
0
2
1
)
0
6
6

3.2 Polarized hard matrices

As we have emphasized in the previous section, Sivers function is non-universal. The well-
known example is the sign change between the Sivers function probed in SIDIS and that
in Drell-Yan (DY) process [32–34],

f
⊥ q(DY)
1T (x, k⊥, µ) = −f⊥ q(SIDIS)

1T (x, k⊥, µ) . (3.29)

Such a sign change can be easily taken care of in describing the Drell-Yan Sivers asymmetry,

d∆σ(S⊥) ∝ f⊥ q(DY)
1T (x, k⊥, µ)H(Q,µ) = f

⊥ q(SIDIS)
1T (x, k⊥, µ)

[
−H(Q,µ)

]
, (3.30)

where H(Q,µ) is the hard function in the Drell-Yan process, and we have applied eq. (3.29)
in the second step. In other words, if we use the SIDIS Sivers function in a Drell-Yan
process, we shift the minus sign (or the process-dependence) into the hard function.

For the partonic subprocesses in the hadronic dijet production, one has much more
complicated process-dependence for the Sivers functions involved. This can be seen from
the highly nontrivial gauge link structure which has been derived in [74] in the definition
of the TMD PDFs. Even in these complicated processes, one can incorporate such process-
dependence of the Sivers functions into modified hard functions as in eq. (3.30) [43–45, 73,
75]. We follow a similar procedure in this section to include this process-dependence of the
Sivers functions into the hard functions in the matrix form.

In figure 4, we demonstrate the factorization between the Sivers function and modified
hard functions. Unlike the unpolarized case, the contributions of the Sivers asymmetry are
given by considering the attachment of an additional collinear (to the incoming hadron)
gluon to three of the external legs. Such a gluon is part of the gauge link in the definition of
the Sivers function, and it is the imaginary part of the Feynman diagram (related to the so-
called soft gluonic pole) that contributes to the process-dependence of the Sivers function.

It is important to note that the additional gluon leads to additional complications so
that naive crossing symmetry cannot be used to relate one hard function to another, as in
the unpolarized case studied above. These complications occur because the contributions
to the Sivers asymmetry are only given by attaching the additional gluon to three of the
four external legs. Furthermore, since the sign of the interaction (imaginary part) with the
external gluon is opposite for quarks and anti-quarks, this sign must also be accounted for
when applying crossing symmetry or charge conjugation.

3.2.1 Four quark subprocesses

As in the unpolarized case, the bases for four quark subprocesses are given in table 1. As
discussed above, one cannot naively apply crossing symmetry to obtain hard matrices of a
general polarized subprocess. For the polarized four quark subprocesses, however, only the
sign of each color factor changes under charge conjugation. Therefore, the hard matrices
for the bottom row of table 1 can be obtained from the results from the top row of this
table with the addition of a minus sign.

To demonstrate how HSivers
ab→cd are derived, we explicitly perform the calculation for

the qq′ → qq′, qq′ → q′q, and qq → qq subprocesses as we did for the unpolarized case.

– 15 –
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PA, ~S⊥

xb PB

P2

P1 =

PA, ~S⊥ xa PA

xb PB

P2

P1

j

×
taj1
CF

PA, ~S⊥

xb PB

P2

P1 =

PA, ~S⊥ xa PA

xb PB

P2

P1

j

×
taj1
CF

PA, ~S⊥

xb PB

P2

P1 =

PA, ~S⊥ xa PA

xb PB

P2

P1

j

×
taj1
CF

Figure 4. A demonstration of the factorization between the Sivers function and the hard function
for qq′ → qq′ subprocess. The red lines indicate the locations of the soft poles while the blue gluon
represents the gauge link which generates the asymmetry.

Afterwards, we provide the expressions for the remaining subprocesses. To start, it is
important to remind ourselves that a non-vanishing Sivers asymmetry requires initial/final
state interactions generating a phase. Because all initial and final partonic states relevant
for dijet production are colored, both initial and final state interactions have to be taken
into account. Such interactions would generate non-trivial gauge link structures, see e.g.
refs. [44, 74, 101]. On the left side of figure 4, as an example, we show all possible diagrams
with one gluon exchange between the remnant of the polarized proton and the qq′ → qq′

hard scattering part, which contribute to the Sivers asymmetry. Now with the presence of
the extra gluon scattering (first order of the gauge link expansion), the diagram at the left
side of the cut will be denoted asMSivers,a

j , while the right side is same as the unpolarized
case denoted asM†. Here a is the color for the attached gluon, j is the color index for the
incoming quark with momentum xaPA on the left side of cut line, while the color index
for the incoming quark on the right side of the cut line is given by 1 like in the previous
section. In contrast to the unpolarized correlation function, quarks j and 1 do not need
to have the same color, because of the presence of the gluon from the gauge link. Now we
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xa PA

xb PB P2

P1

Figure 5. Polarized scattering amplitudes for the qq → qq subprocess. From left the right, the
first three graphs give the scattering amplitude for the t-channel for initial-state, final-state 1,
and final-state 2 interactions. The remaining channels give the contributions for the u-channel for
initial-state, final-state 1, and final-state 2 interactions.

perform the following expansion to obtain the hard matrix |MSivers|2 for the polarized case,

MSivers,a
j M† = |MSivers|2 ta1j , (3.31)

where ta1j will be included into the quark-quark correlator in the polarized proton to become
∼ 〈PS|ψ̄1 n ·Aata1j ψj |PS〉, see e.g. refs. [74, 75, 102]. From eq. (3.31), we thus derive

|MSivers|2 = 1
Tr [tata]M

Sivers,a
j taj1M†

= 1
Nc
· 1
CF
MSivers,a

j taj1M† . (3.32)

At the same time, we use the convention that Ninit in the polarized and unpolarized cases
are the same. Therefore, the factor of 1/Nc in eq. (3.32) is absorbed into Ninit. With that in
mind, to arrive at the correct normalization of the polarized hard function, we thus obtain

|MSivers|2 → 1
CF
MSivers,a

j taj1M† , (3.33)

which is demonstrated on the right-hand side of figure 4.
Now we need to projectMSivers,a

j andM† into the color basis separately. The polarized
scattering amplitudeMSivers,a

j can be written as

MSivers,a
j =Mkin

t

(
tbta

)
42

(
tb
)

3j
+Mkin

t

(
tb
)

42

(
tatb

)
3j

+Mkin
t

(
tatb

)
42

(
tb
)

3j
(3.34)

+Mkin
u

(
tbta

)
32

(
tb
)

4j
+Mkin

u

(
tatb

)
32

(
tb
)

4j
+Mkin

u

(
tb
)

32

(
tatb

)
4j
,
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where Mkin
t and Mkin

u are the same as the expressions in eqs. (3.5) and (3.6). From left
to right on the top line of this expression, these terms give the scattering amplitudes for
the initial-state, final-state 1, and final-state 2 interaction for the t-channel, corresponding
to the first three diagrams of figure 5 in the same order. Likewise from left to right on
the bottom line, the terms give the scattering amplitude for the initial-state, final-state 1,
and final-state 2 interaction for the u-channel, corresponding to the last three diagrams of
figure 5 in the same order. Using the Feynman rules for the gauge link color factors given
in figure 6 of [75], we easily arrive at eq. (3.34) from these diagrams. From the unpolarized
scattering amplitude given in eq. (3.4), we write the conjugate amplitude as

M† =Mkin†
t

(
tb
)

24

(
tb
)

13
+Mkin†

u

(
tb
)

23

(
tb
)

14
. (3.35)

Analogous to the unpolarized scattering amplitude, the scattering amplitude can be de-
composed into the orthogonal basis given in eq. (3.2) as

MSivers,a
j taj1 =MSivers

1 θ1 +MSivers
2 θ2 , (3.36)

M† =M†1θ
†
1 +M†2θ

†
2 , (3.37)

where we have

MSivers
1 =

Tr
[
MSivers,a

j taj1 θ
†
1

]
Tr
[
θ1 θ

†
1

] , MSivers
2 =

Tr
[
MSivers,a

j taj1 θ
†
2

]
Tr
[
θ2 θ

†
2

] , (3.38)

M†1 =
Tr
[
M† θ1

]
Tr
[
θ1 θ

†
1

] , M†2 =
Tr
[
M† θ2

]
Tr
[
θ2 θ

†
2

] . (3.39)

After performing this decomposition, we can now write

|MSivers|2 = Tr
[
HSivers
ab→cd · Sab→cd

]
, (3.40)

where HSivers
ab→cd is given by

HSivers
ab→cd = 1

CF

[
MSivers

1 M †1 MSivers
1 M †2

MSivers
2 M †1 MSivers

2 M †2

]
(3.41)

and S is the same as the unpolarized case.
From these expressions, we can obtain the polarized hard matrices for the qq′ → qq′,

qq′ → q′q, and qq → qq subprocesses as

HSivers
qq′→qq′ = 4g4

s

(
ŝ2 + û2)

t̂2NcCF

[
N2
c − 5 0
2CF 0

]
, (3.42)

HSivers
qq′→q′q = −

4g4
s

(
ŝ2 + t̂2

)
û2N3

cCF

[
N2
c + 3 −

(
N2
c + 3

)
CF

−
(
3−N2

c

)
CF

(
3−N2

c

)
C2
F

]
, (3.43)

HSivers
qq→qq = HSivers

qq′→qq′ + HSivers
qq′→q′q + 4ŝ2g4

s

t̂ûN2
cCF

[
8 −

(
5−N2

c

)
CF

−
(
5−N2

c

)
CF 2C2

F

]
. (3.44)
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Since qq → qq subprocess receives contributions from both t- and u-channels (as well as
their interference), its expression is the most complicated among the three subprocesses
computed. One can show that after performing the trace with the soft color matrix, the
expressions are consistent with the squared amplitude of [75]. The color matrices for the
remaining four quark subprocesses in the top row of table 1 can be computed in the same
spirit and we obtain the following expressions

HSivers
qq̄→q′q̄′ =

4
(
N2
c + 1

)
g4
s

(
t̂2 + û2

)
ŝ2NcCF

[
1 0
0 0

]
, (3.45)

HSivers
qq̄′→qq̄′ = 4g4

s

(
ŝ2 + û2)

t̂2N3
cCF

[
N2
c + 1 −

(
N2
c + 1

)
CF

2NcC
2
F −2NcC

3
F

]
, (3.46)

HSivers
qq̄→qq̄ = HSivers

qq̄→q′q̄′ + HSivers
qq̄′→qq̄′ −

8û2g4
s

ŝt̂N2
cC

2
F

[(
N2
c + 1

)
CF −1

2
(
N2
c + 1

)
C2
F

NcC
3
F 0

]
, (3.47)

HSivers
qq̄′→q̄′q =−

4g4
s

(
ŝ2 + t̂2

)
û2NcCF

[
N2
c − 3 0
2CF 0

]
, (3.48)

HSivers
qq̄→q̄′q′ =

4
(
N2
c + 1

)
g4
s

(
t̂2 + û2

)
ŝ2N3

cCF

[
1 −CF
−CF C2

F

]
, (3.49)

HSivers
qq̄→q̄q = HSivers

qq̄′→q̄′q + HSivers
qq̄→q̄′q′ −

8t̂2g4
s

ŝûN2
cCF

[
2 −1

2
(
3−N2

c

)
CF

−1
2
(
N2
c + 3

)
CF C2

F

]
. (3.50)

After performing charge conjugation, the hard color matrices for the subprocesses in the
bottom row of table 1 can be obtained from these expressions.

3.2.2 Two quarks and two gluon subprocesses

All twelve of the two quark and two gluon subprocesses are given in table 2. As we have
mentioned in section 1, we neglect the gluon Sivers contribution in this paper. This means
that all subprocesses with a gluon incoming from the polarized proton will be neglected.
There are then six remaining subprocesses to compute. However, we find that under charge
conjugation, the polarized hard functions once again only change by an overall minus sign.
Thus, we only need to perform the calculation for three of the hard matrices.

In order to further demonstrate our method for calculating the polarized hard matrices,
we now perform the calculation for the qq̄ → gg subprocess. We then provide the expres-
sions for the remaining hard matrices. For the unpolarized process the scattering amplitude
has three channels. After the addition of the external gluon, there are then nine polarized
process to be considered. At the cross section level, this results in 27 hard interactions
which need to be considered. Despite this complication, we can once again write

|MSivers|2 = 1
CF
MSivers a

j taj1M† . (3.51)

Just like in the unpolarized case, we begin the calculation by decomposing the amplitudes
into the primed basis first. Then to simplify our result, we rotate into the unprimed basis.
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The scattering amplitudes for the process can then be written as

MSivers a
j taj1 =MSivers

1 θ′1 +MSivers
2 θ′2 +MSivers

3 θ′3 , (3.52)

M†i =M†1θ′1
† +M†2θ′2

† +M†3θ′3
†
, (3.53)

where

MSivers
1 =

Tr
[
MSivers,a

j taj1 θ
′
1
†]

Tr
[
θ′1 θ
′
1
†] , MSivers

2 =
Tr
[
MSivers,a

j taj1 θ
′
2
†]

Tr
[
θ′2 θ
′
2
†] , MSivers

3 =
Tr
[
MSivers,a

j taj1 θ
′
3
†]

Tr
[
θ′3 θ
′
3
†] ,

(3.54)

M†1 =
Tr
[
M† θ′1

]
Tr
[
θ′1 θ
′
1
†] , M†2 =

Tr
[
M† θ′2

]
Tr
[
θ′2 θ
′
2
†] , M†3 =

Tr
[
M† θ′3

]
Tr
[
θ′3 θ
′
3
†] . (3.55)

The hard matrix in the primed basis can then be computed as

HSivers
qq̄→gg

′ = 1
CF

M
Sivers
1 M †1 MSivers

1 M †2 MSivers
1 M †3

MSivers
2 M †1 MSivers

2 M †2 MSivers
2 M †3

MSivers
3 M †1 MSivers

3 M †2 MSivers
3 M †3

 . (3.56)

In order to obtain the hard matrix in the unprimed basis we apply the transformation

Hqq̄→gg = R†H ′
qq̄→gg R R =

 1 1 −1
1 1 1

2Nc 0 0


−1

. (3.57)

The final result for all of the two quark and two gluon interactions hard matrices are
given by

HSivers
qq̄→gg = −4g4

s

(
ŝ2 + û2)

ŝt̂2ûNcCF

 2ŝ2NcCF 2ŝûNcCF 0
−ŝû

(
N2
c + 1

)
−û2 (N2

c + 1
)

0
ŝ2Nc ŝûNc 0

 , (3.58)

HSivers
qg→gq =

4g4
s

(
ŝ2 + t̂2

)
ŝt̂û2NcCF

 2ŝ2NcCF 2ŝt̂NcCF 0
−ŝt̂

(
N2
c + 1

)
−t̂2

(
N2
c + 1

)
0

ŝ2Nc ŝt̂Nc 0

 , (3.59)

HSivers
qq̄→gg =

4g4
s

(
t̂2 + û2

)
ŝ2t̂ûNcCF

û
2 (N2

c + 1
)
t̂û
(
N2
c + 1

)
0

t̂û
(
N2
c + 1

)
t̂2
(
N2
c + 1

)
0

ŝûNc ŝt̂Nc 0

 , (3.60)

(3.61)

After performing charge conjugation, the hard color matrices for the remaining subpro-
cesses can be obtained from these expressions.

3.2.3 Simplification in the one-dimensional color space

We note that for processes in which the color space is one dimensional, i.e. single color
basis in the decomposition, such as Drell-Yan, SIDIS, and color singlet boson-jet processes,
the decomposition of scattering amplitude is trivial. We have

M =Mkin θ1 , (3.62)
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whereMkin =Mkin
s +Mkin

t +Mkin
u in general receives contribution from different channels

as above. The kinematic parts can be trivially extracted by

Mkin =
Tr
[
Mθ†1

]
Tr
[
θ1θ
†
1

] , Mkin† =
Tr
[
M†θ1

]
Tr
[
θ1θ
†
1

] . (3.63)

Therefore the unpolarized hard matrices can be constructed simply by3

H =
∣∣∣Mkin

∣∣∣2 [1] , S =
[
Tr
[
θ1θ
†
1

]]
. (3.64)

In these expressions, we have suppressed the subprocess subscript since these expressions
are true for all subprocesses with a one-dimensional color space. The differential cross
section is then given by

|M|2 = Tr [H · S] = Cu
∣∣∣Mkin

∣∣∣2 (3.65)

where in the second line we have defined Cu = Tr
[
θ1θ
†
1

]
. Similarly, for the polarized hard

matrix, we can write

∣∣∣MSivers
∣∣∣2 =

Tr
[
MSivers,ataj1θ

†
1

]
Tr
[
θ1θ
†
1

] = Tr
[
HSivers · S

]
= CSivers

Cu

∣∣∣Mkin
∣∣∣2 , (3.66)

where CSiversMkin = Tr
[
MSivers,ataj1θ

†
1

]
. Therefore, the hard functions of the polarized

and unpolarized scatterings are related by an overall color constant,

HSivers = CSivers

Cu
H . (3.67)

Here, CSivers can further be decomposed into color factors arising from gauge link gluons
interacting with different external colored partons, as seen in [75, 103–105].

3.3 Evolution equations

Hard functions can be related to the Wilson coefficients CΓ
I in the color basis {θI} of

section 3 by HIJ =
∑

ΓC
Γ
I C

Γ∗
J . Here Γ represents different helicity states of the incoming

and outgoing particles. Explicit expressions of the Wilson coefficients at next-to-leading
order can be found in [98, 99], but we do not present them as we are only using the tree-
level hard functions for our study. We do, however, include the renormalization group
(RG) evolution of the hard functions coming from the 1-loop anomalous dimensions. Then
the Wilson coefficients satisfy the RG evolution equations [98, 99, 106, 107]

µ
d

dµ
CΓ
I =

[(
γcusp

cH
2 ln−t̂

µ2 + γH

)
δIJ + γcuspMIJ

]
CΓ
J . (3.68)

3We keep the boldface notations to be consistent, but H and S are just numbers here.
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Here, γcusp = αs
π + · · · is the cusp anomalous dimensions and cH = Ca+Cb+Cc+Cd. The

non-cusp anomalous dimension is defined as

γH = −1
2
(
γaµ [αs(µ)] + γbµ [αs(µ)] + γcµ [αs(µ)] + γdµ [αs(µ)]

)
, (3.69)

where γiµ[αs(µ)] = αs
π γi + · · · , with γq = 3

2CF and γg = β0
2 . Lastly, the matrix M takes

the form

M = −
∑
i<j

Ti · Tj
[
L(sij)− L(t̂)

]
, (3.70)

where s12 = s34 = ŝ, s13 = s24 = t̂, and s14 = s23 = û and

L(t̂) = ln
(
−t̂
µ2

)
, L(û) = ln

(−û
µ2

)
, L(ŝ) = ln

(
ŝ

µ2

)
− iπ . (3.71)

From the RG evolution of the Wilson coefficients given in eq. (3.68), we can arrive at the
RG evolution equations for hard matrix H as

µ
d

dµ
H = ΓH ·H + H · ΓH† , (3.72)

where ΓH is given by

ΓH =
(
γcusp

cH
2 ln−t̂

µ2 + γH

)
I + γcuspM . (3.73)

4 QCD resummation and evolution formalism

In this section, we present the renormalization group (RG) equations for the rest of the key
ingredients in the factorized formalism. These include the TMD PDFs, global soft func-
tions, jet functions, and collinear-soft functions. After presenting their NLO perturbative
results and RG evolution equations, we check the RG consistency. In the end, we present
our resummation formula for dijet production.

4.1 TMDs and global soft functions

The unsubtracted TMD PDFs in the factorized formula in eq. (2.6) describe the radiation
along the incoming beams. They satisfy the RG evolution equations

µ
d

dµ
lnfunsub

i (x, b, µ, ν) = γfi
µ (µ, ν) , (4.1)

ν
d

dν
lnfunsub

i (x, b, µ, ν) = γfi
ν (µ) , (4.2)

where its µ- and ν-anomalous dimensions are given by

γfi
µ (µ, ν) = γcuspCi ln

ν2

x2
iP
−2 + γiµ[αs(µ)] , (4.3)

γfi
ν (µ, ν) = αsCi

π
lnµ

2

µ2
b

. (4.4)
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As we will see in this subsection, the rapidity divergences of the unsubtracted TMDs will
be exactly canceled by the rapidity divergences of the global soft functions, which will allow
us to identify the standard TMDs with subtracted rapidity divergence as in eq. (2.8) above.

Suppressing the label ab → cd for convenience, the global soft functions up to 1-loop
are given by

S(0)(b) = I , (4.5)

Sbare,(1)(b) =
∑
i<j

Ti · Tj I(1)
ij (b) , (4.6)

where [108]

I(1)
12 (b) = αs

2π

[
2
(

2
η

+ lnν
2

µ2

)(
1
ε

+ lnµ
2

µ2
b

)
− 2
ε2

+ ln2µ
2

µ2
b

+ π2

6

]
, (4.7)

I(1)
13 (b) = αs

2π

[(
2
η

+ lnν
2

µ2 − 2yc

)(
1
ε

+ lnµ
2

µ2
b

)
− 2
ε2
− 1
ε
lnµ

2

µ2
b

+ π2

6

]
, (4.8)

I(1)
34 (b) = αs

2π

[
4
(

1
ε

+ lnµ
2

µ2
b

)
ln
(
2 cosh(∆y/2)

)
− 2
ε2
− 2
ε
lnµ

2

µ2
b

− ln2µ
2

µ2
b

+ ∆y2

− 4ln2(2 cosh(∆y/2)
)

+ π2

6

]
, (4.9)

I(1)
14 (b) = I(1)

13 (b)(yc → yd) , I(1)
23 (b) = I(1)

13 (b)(yc → −yc) , I(1)
24 (b) = I(1)

14 (b)(yd → −yd) .
(4.10)

The explicit matrix forms of tree-level soft functions in eq. (4.5) for some color basis {θI}
can be computed as

(I)IJ = θIθ
†
J , (4.11)

which is equivalent to the matrix forms of the LO soft functions found in section 3. The ma-
trix Ti ·Tj of the eq. (4.6) was also computed in the color bases used in section 3 and can be
found in [98, 99]. The renormalized global soft functions satisfy the RG evolution equations

µ
d

dµ
S(b, µ, ν) = ΓS†µ · S + S · ΓSµ , (4.12)

ν
d

dν
S(b, µ, ν) = ΓS†ν · S + S · ΓSν , (4.13)

From eqs. (4.5)–(4.10) and using
∑
i Ti = 0, we then find

ΓSµ =− αs2π

[
Ca

(
ln −t̂
x2
aS

+lnν
2

µ2

)
+Cb

(
ln −t̂
x2
bS

+lnν
2

µ2

)
+(Cc+Cd)

(
ln−t̂
P 2
⊥
−lnµ

2

µ2
b

)]
I

−αs
π

M +αs
π

(T1 ·T2+T3 ·T4) iπ

=− γcusp
2

[
Ca

(
ln −t̂
x2
aS

+lnν
2

µ2

)
+Cb

(
ln −t̂
x2
bS

+lnν
2

µ2

)
+(Cc+Cd)

(
ln−t̂
P 2
⊥
−lnµ

2

µ2
b

)]
I

−γcuspM +γcusp (T1 ·T2+T3 ·T4) iπ , (4.14)

ΓSν =−αs(Ca+Cb)
2π lnµ

2

µ2
b

I , (4.15)
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where M was given in eq. (3.70) and we promoted αs
π → γcusp, which is consistent with

the factorization consistency relation below. Note that eq. (4.14) is strictly real and the
imaginary term ∼ iπ cancels exactly with the imaginary term found in M .

We note that ΓSν ∼ I and that this is expected as the hard functions do not have any
rapidity divergence. Thus, we can write

ν
d

dν
S(b, µ, ν) = ΓS†ν · S + S · ΓSν = −αs(Ca + Cb)

π
lnµ

2

µ2
b

S(b, µ, ν) , (4.16)

which has the same rapidity anomalous dimensions as the back-to-back soft functions
Sab(b, µ, ν) found in standard Drell-Yan and SIDIS process [67]. As expected, the rapidity
divergence of the global soft function S(b, µ, ν) in eq. (4.16) exactly cancels the rapid-
ity anomalous dimensions for the unsubtracted TMDs fa(b, µ, ν) and fb(b, µ, ν) given in
eq. (4.4). Therefore, as discussed in the introduction, we can define S̃(b, µ) absent of the
rapidity divergence such that

S(b, µ, ν) = S̃(b, µ)Sab(b, µ, ν) . (4.17)

Then as in eq. (2.8), Sab(b, µ, ν) is combined with the unsubtracted TMDs to identify
standard TMDs free of the rapidity divergences.

4.2 Jet and collinear-soft functions

Both jet and collinear-soft functions describe the radiation which resolves the produced
jets. The jet functions [109, 110] encode the collinear radiations inside anti-kT jet with
radius R. The NLO expressions are given by

Ji(P⊥R,µ) = 1 + αs
π

[
Ci
4 ln2

(
µ2

P 2
⊥R

2

)
+ γi

2 ln
(

µ2

P 2
⊥R

2

)
+ di

]
, (4.18)

where the algorithmic dependent terms di for anti-kT algorithm are

dq =
(

13
4 −

3π2

8

)
CF , (4.19)

dg =
(

67
18 −

3π2

8

)
CA −

23
36nf . (4.20)

The jet functions satisfy the RG evolution equations

µ
d

dµ
Ji(P⊥R,µ) = γJi

µ (µ)Ji(P⊥R,µ) , (4.21)

where the anomalous dimension is given by

γJi
µ (µ) = γcuspCi ln

(
µ2

P 2
⊥R

2

)
+ γiµ[αs(µ)] . (4.22)
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The collinear-soft functions [55, 56] describe the soft radiation along the jet direction
and resolves the jet cone R. The NLO expressions are given by

S
cs,(1)
i (b, R, µ) = 1− αsCi

4π

[
ln2
(

µ2

µ2
bR

2

)
− π2

6

]
. (4.23)

The collinear-soft functions satisfy the RG evolution equations

µ
d

dµ
Scs
i (b, R, µ) = γcsi

µ (µ)Scs
i (b, R, µ) , (4.24)

where its anomalous dimension takes the form

γcsi
µ (µ) = γcuspCi ln

(
µ2

µ2
bR

2

)
. (4.25)

4.3 RG consistency at 1-loop

With the anomalous dimensions presented for all the ingredients, we now show that our
factorized formula given in eq. (2.6) satisfy the consistency relations for the RG evolutions.
The cancellation of the rapidity divergences was already checked around eq. (4.16). We also
expect µ-divergence of the various functions to cancel and satisfy the consistency equation

µ
d

dµ
ln
(
Tr [S(b, µ, ν) ·H(P⊥, µ)]

)
+ γfa

µ + γfb
µ + γcsc

µ + γcsd
µ + γJc

µ + γJd
µ = 0 . (4.26)

From eqs. (3.72), (3.73), (4.12), (4.14), we immediately find at 1-loop,

µ
d

dµ
ln
(
Tr
[
S(b, µ, ν) ·H(P⊥, µ)

])
=

Tr
[
ΓS†µ · S ·H + S · ΓSµ ·H + S · ΓH ·H + S ·H · ΓH†

]
Tr [S(b, µ, ν) ·H(P⊥, µ)]

= −αs
π

[
Caln

(
ν2

x2
aS

)
+ Cbln

(
ν2

x2
bS

)
− (Cc + Cd)ln

(
P 2
⊥
µ2
b

)]
+ 2γH . (4.27)

One can then easily check from the µ-anomalous dimensions of the other functions given
in eqs. (4.3), (4.22), (4.25) that eq. (4.26) is explicitly satisfied at 1-loop.

4.4 Resummation formula

Based on the above discussions and RG renormalization group methods in SCET, we can
now derive the expression for the all-order resummed result. Explicitly, we calculate the
cross section at the NLL accuracy, where we will use the two-loop cusp and one-loop single
logarithmic anomalous dimension and the matching coefficients are kept at leading order.
On the other hand, the color structures inside the hard and soft function will mix with each
other under the RG evolution, which was first studied in [65]. In this paper, we will apply
the same methods in [98] to solve the RG equations. For the unpolarized cross section, the

– 25 –



J
H
E
P
0
2
(
2
0
2
1
)
0
6
6

resummation formula has the form as follows:

dσ

dycdyddP
2
⊥d

2~q⊥
=
∑
abcd

1
16π2ŝ2

1
Ninit

1
1 + δcd

1
2π

∫ ∞
0

db b J0(q⊥b)xafa(xa, µb∗)xbfb(xb, µb∗)

× exp
{
−
∫ µh

µb∗

dµ

µ

[
γcusp(αs)cH ln |t̂|

µ2 + 2γH(αs)
]}

×
∑
KK′

exp
[
−
∫ µh

µb∗

dµ

µ
γcusp(αs)(λK + λ∗K′)

]
HKK′(P⊥, µh)S̃K′K(b∗, µb∗)

× exp
[
−
∫ µj

µb∗

dµ

µ
γJc
µ (αs)−

∫ µcs

µb∗

dµ

µ
γcsc
µ (αs)

]
U cNG (µcs, µj) Jc(P⊥R,µj)Scs

c (b∗, R, µcs)

× exp
[
−
∫ µj

µb∗

dµ

µ
γJd
µ (αs)−

∫ µcs

µb∗

dµ

µ
γcsd
µ (αs)

]
UdNG (µcs, µj) Jd(P⊥R,µj)Scs

d (b∗, R, µcs)

× exp
[
−SaNP(b,Q0,

√
ŝ)− SbNP(b,Q0,

√
ŝ)
]
, (4.28)

where λK is the eigenvalue of the matrix MIJ in the hard anomalous dimension (3.68) and
HKK′ and S̃K′K are the hard and soft function in the diagonal basis as defined in [98].
In our numerical calculation, we use the LAPACK library [111] to obtain their value at
different phase-space points. We have applied the b∗-prescription to prevent the Landau
pole from being reached in the b-integral. Here, we define b∗ as

b∗ = b/
√

1 + b2/b2max , (4.29)

where bmax is chosen [112] to be 1.5GeV−1. Our perturbative Sudakov factor come from
solving the renormalization group evolution equations for different functions from their
intrinsic scales, which are chosen for the hard, jet and collinear-soft function as

µh =
√
ŝ, µj = P⊥R, µcs = µb∗R. (4.30)

Note that
√
ŝ ∼ P⊥ is completely fixed by the measured quantities yc, yd and P⊥ as seen

from eq. (2.5). Another choice of µh ∼ P⊥ leads to similar numerical results.
The nonperturbative Sudakov factor in eq. (4.28) was fitted to experimental data

in [113]. The extracted functions are given by

Sa,bNP(b,Q0, µ) = gf1 b
2 + g2

2
Ca,b
CF

ln µ

Q0
ln b
b∗
, with gf1 = 0.106, g2 = 0.84, Q2

0 = 2.4 GeV2.

(4.31)

We also incorporate NGLs resummation effects included by the function U c,dNG. In order
to include NGLs resummation effects at NLL accuracy, we also need to consider the extra
one-loop single logarithmic anomalous dimension Γ̂ from the non-linear evolution parts.
However, in [85, 86] this anomalous dimension was shown to cancel between the jet and
collinear-soft function up to two-loop order. The explicit operator-based derivation of RG
consistency including Γ̂ can be found in [56, 89, 114]. In the large Nc limit, the non-linear
evolution equation can be solved using the parton shower algorithm [115]. Especially, at the
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NLL accuracy the evolution is totally determined by the one-loop anomalous dimension Γ̂,
which is equivalent to the one appearing in the light jet mass distribution at the e+e−

collider. Therefore, we can use the same fitting function form given in [83] to capture
NGLs resummation contributions after setting proper initial and final evolution scales. In
our case, these two scales are the jet scale µj and the collinear-soft scale µcs. Explicitly,
the function is

UkNG (µcs, µj) = exp
[
−CACk

π2

3 u
2 1 + (au)2

1 + (bu)c

]
, (4.32)

where the superscript k = q and g denote the (anti-)quark and gluon jet, respectively, and
with Cq = CF and Cg = CA. The parameters a, b and c are fitting parameters which are
given as a = 0.85CA, b = 0.86CA and c = 1.33. The variable u = 1

β0
logαs(µcs)

αs(µj) is the
evolution scale measuring the separation of the scales µcs and µj . As shown in eq. (4.30),
b∗ prescription for µcs keeps u from reaching a nonperturbative scale.

As we have done for the unpolarized cross section, we also derive a similar resummation
formula for the spin-dependent cross section

d∆σ(S⊥)
dycdyddP

2
⊥d

2~q⊥
= sin(φq − φS)

∑
abcd

1
16π2ŝ2

1
Ninit

1
1 + δcd

(
− 1

4π

)∫ ∞
0

db b2 J1(q⊥b)

× xaTa,F (xa, xa, µb∗)xbfb(xb, µb∗) exp
{
−
∫ µh

µb∗

dµ

µ

[
γcusp(αs)cH ln |t̂|

µ2 + 2γH(αs)
]}

×
∑
KK′

exp
[
−
∫ µh

µb∗

dµ

µ
γcusp(αs)(λK + λ∗K′)

]
HKK′(P⊥, µh)S̃K′K(b∗, µb∗)

× exp
[
−
∫ µj

µb∗

dµ

µ
γJc
µ (αs)−

∫ µcs

µb∗

dµ

µ
γcsc
µ (αs)

]
U cNG (µcs, µj) Jc(P⊥R,µj)Scs

c (b∗, R, µcs)

× exp
[
−
∫ µj

µb∗

dµ

µ
γJd
µ (αs)−

∫ µcs

µb∗

dµ

µ
γcsd
µ (αs)

]
UdNG (µcs, µj) Jd(P⊥R,µj)Scs

d (b∗, R, µcs)

× exp
[
−SsNP(b,Q0,

√
ŝ)− SbNP(b,Q0,

√
ŝ)
]
, (4.33)

where at the NLL accuracy we keep the LO matching coefficient in eq. (2.16). It involves
the parametrization for the Sivers function, which depends on the collinear Qiu-Sterman
function Tq,F (xa, xa, µb∗) and a different non-perturbative Sudakov factor SsNP. The rel-
evant parametrization has been determined from a recent global analysis of the Sivers
asymmetry of SIDIS and Drell-Yan processes [116]. The non-perturbative Sudakov factor
is given by

SsNP(b,Q0, µ) = gs1b
2 + g2

2 ln µ

Q0
ln b
b∗
, with gs1 = 0.18. (4.34)

5 Phenomenology

In this section we will present the numerical results using the resummation formula in
eqs. (4.28) and (4.33), where intrinsic scales for the hard, jet and collinear-soft function are
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defined in eq. (4.30). In the numerical study, we will focus on the Sivers asymmetry for the
dijet production at the RHIC with

√
s = 200 GeV, where the jet events are reconstructed

by using anti-kT algorithm with jet radius R = 0.6. The transverse momentum P⊥ and
the rapidity yc,d of jets are

P⊥ > 4 GeV, − 1 < yc,d < 2. (5.1)

For the unpolarized proton, we use the HERAPDF20NLO parton distribution func-
tions [117]. The numerical Bessel transforms in eqs. (4.28) and (4.33) are performed using
the algorithm in [118]. Furthermore, the eq. (2.9) is derived after neglecting the power
corrections from O(q2

⊥/P
2
⊥). In other words, in the large q⊥ region, the full results should

include corrections from the so-called Y -term, which can be obtained from perturbative
QCD calculations [119]. In this paper we focus on the contribution from back-to-back dijet
production. In order to select such kinematics, we require the transverse momentum q⊥ for
the dijet system |q⊥| < qcut

⊥ . In the numerical calculations, we fix the value of qcut
⊥ = 2GeV.

As shown in the figure 1, the transverse-polarized proton moves on +z-direction and
its spin points to +y-direction with φS = π/2. The transverse momentum vector ~q⊥ lies
in the x − y plane, and the Sivers asymmetry is defined as the difference of the events
between q⊥,x > 0 and q⊥,x < 0 hemispheres, that is the same as the measurements by
STAR collaboration [41]. Explicitly, we have

AN (ysum) =

∫ qcut
⊥

0 dq⊥
∫ 2π

0 dφq
∫
dPS d∆σ

dq⊥dφqdycdyddP⊥

[
θ(cosφq)− θ(−cosφq)

]
∫ qcut
⊥

0 dq⊥
∫ 2π

0 dφq
∫
dPS dσ

dq⊥dφqdycdyddP⊥

, (5.2)

with
∫
dPS =

∫
dycdyddP⊥δ(ysum − yc − yd) represents the transverse momenta and ra-

pidities integral for dijets. In the numerator, the φq-integral with θ(cosφq) and θ(−cosφq)
corresponds q⊥,x > 0 and q⊥,x < 0, respectively.

In the figure 6, we show the numerical results of the Sivers asymmetry for dijet pro-
cesses, where we neglect the charm and bottom jet events. The red and blue curves
represent the asymmetry contributed from u- and d-quark Sivers function, respectively.
As is expected, we find that the asymmetry is enhanced in the large ysum region, i.e. the
forward scattering region, due to the larger fractional contribution of Sivers function in the
valence region. Besides, the contributions from u- and d-quark Sivers function are opposite
from each other, which causes a huge cancellation of the asymmetry, as shown by the black
curves in figure 6.

In the calculation, most of the asymmetries come from the partonic scattering process
qg → qg where the initial quark comes from the polarized proton. Especially, the more
forward jet is associated with the parton from the polarized proton moving in the same
direction. Hence, if we can tag parton species initiating the more forward jet, then we can
separate u- and d-quark Sivers functions and avoid the accidental cancellation as shown in
the left plot of figure 6.

In order to achieve jet flavor separation mentioned above, one possible method is
applying the electric charge information of jets, which has been proposed in [50, 58, 120].
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Figure 6. Theoretical predictions of the Sivers asymmetry for dijet production at the RHIC with√
s = 200GeV. In the left plot red and blue curves are the results from u- and d- quark Sivers

function, and the black curve includes all the contributions. In the right plot we show the Sivers
asymmetry distribution within three different jet charge Qκ bins. The red and blue bands indicate
the theoretical uncertainties using the 200 replicas of the quark Sivers function [116]. At each point
in calculation of our theoretical prediction, we retain the middle 68% of the replicas.

In this paper, we will use the standard jet electric charge definition given in [121, 122]

Qκ =
∑
h∈jet

zκhQh , (5.3)

where zh is the transverse momentum ratio between hadrons and the jet. κ is an input
parameter, which is fixed by κ = 0.3 [58] in our calculations. As shown in [58], after
measuring the jet charge information, the theory formula is slightly modified by replacing
the jet function Ji(P⊥R,µ) in eq. (2.17) by the charge-tagged jet function Gi(Qκ, P⊥R,µ) as

d∆σ
dQκd2q⊥

=
∫
dPS Ta,F ⊗ fb ⊗ Tr[H · S]⊗ Scsc ⊗ Scsd

[
Gc Jd θ(yc − yd) + Jc Gd θ(yd − yc)

]
,

(5.4)

with the normalization as
∫∞
−∞ dQκ Gi(Qκ, P⊥R,µ) = Ji(P⊥R,µ) required by the proba-

bility conservation. Here we only replace the more forward jet function with the charge-
tagged jet function, which corresponds to the insertion of the step function. We define the
jet charge bin fraction as

rbin
i =

∫
bin dQκ Gi(Qκ, P⊥R,µ)

Ji(P⊥R,µ) . (5.5)

Then the Sivers asymmetry AN in different jet charge bins is given as, in terms of jet charge
bin fraction

A±,0N =
∑
i=u,d,g,··· r

±,0
i ∆σi

σ
, (5.6)
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u ū d d̄ s s̄ g

r+
i 0.61 0.16 0.15 0.51 0.15 0.50 0.37
r−i 0.10 0.54 0.48 0.14 0.49 0.16 0.37
r0
i 0.29 0.30 0.37 0.35 0.36 0.34 0.26

Table 3. The jet charge bin fractions r±,0i for various jet flavors from Pythia8 simulation, where
the jet charges are defined using all charged-hadrons inside the jet.

where we suppress the phase space integral shown in eq. (5.2). The index i denotes the
parton species initiating the more forward jet. Here we use the same jet charge bins defined
in [58], where +,− and 0 indicate Qκ > 0.25, Qκ < −0.25 and |Qκ| < 0.25 bins, separately.
Such jet charge bin fraction can be fitted from the unpolarized cross section for back-to-
back dijet events at the RHIC. In [50], the authors have shown the preliminary results
from the measurements as κ = 0. In the theory calculation, one can use Monte-Carlo
event generators such as Pythia8 [123] to estimate these numbers. In the table 3 we give
the results of jet charge bin fractions r±,0i for various jet flavors used in our numerical
calculations, where the jet charges are defined using all charged hadrons inside the jet.

In the right plot of figure 6 we show the result of AN within the different jet charge
bins. After selecting the charge of the more forward jet Qκ > 0.25, the contribution
from the u-quark Sivers function is enhanced compared to the case without the jet charge
measurement (the black curve in the left plot). A similar size enhancement from the d-
quark Sivers function is also observed in Qκ < −0.25 charge bin as shown by the blue curve.
Besides, we find the Sivers asymmetries from Qκ > 0.25 bins are positive and Qκ < −0.25
bins are negative, which are consistent with the preliminary STAR measurements [50]. In
the forward region, the Sivers asymmetry can achieve O(0.01%), and size of our calculation
is also around the same order of the data. Furthermore, we have also plotted the theoretical
uncertainty which is related to the extraction of the Sivers function obtained in [116]. To
generate this uncertainty, we have considered the 200 replicas from this reference. For each
replica, we generate our theoretical prediction. We then retain the middle 68% at each
point. We plot the uncertainty as red and blue bands for the positive and negative jet
charge bins in the figure 6, respectively. Taken together, our calculation suggests that the
dijet production at the hadron collider is an important process to extract the information
about the Siver function and deserves further studies on the theoretical framework about
the remarks discussed in 2.3.

6 Conclusions

We study the single spin asymmetries of dijet production in the back-to-back region in
transversely polarized proton-proton collisions. In the back-to-back region, the dijet trans-
verse momentum imbalance q⊥ is much smaller than the transverse momentum P⊥ of the
jets. In this case, the conventional perturbative QCD calculations in the expansion of cou-
pling constant αs generate large logarithms in the form of αns lnm

(
P 2
⊥/q

2
⊥
)
with m ≤ 2n−1,
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which have to be resummed in order to render the convergence of the perturbative com-
putations. We propose a QCD formalism in terms of transverse momentum dependent
(TMD) parton distribution functions for dijet production in both unpolarized and polarized
proton-proton collisions. Such a formalism allows us to resum the aforementioned large log-
arithms, and further takes into account the non-universality or process-dependence of the
Sivers functions in the case of the transversely polarized scattering. It is well-known that
hadronic dijet production in back-to-back region suffers from TMD factorization breaking
effects. Thus, to write down the QCD “seemingly factorized” formalism for resumming
large logarithms mentioned above, we make a couple of approximations. First of all, we
neglect the Glauber mode in the formalism which are known to be the main reason for
the TMD factorization breaking. Secondly, we have assumed that the soft gluon radiation
that is encoded in the global soft function in our formalism is spin-independent, i.e., they
are the same between the unpolarized and polarized scatterings. Since the precise method
for dealing with the TMD factorization breaking effects is still not known, we feel that the
proposed formalism in this paper is a reasonable starting point for further investigation.

With such a formalism at hand, we compute the Sivers asymmetry for the dijet pro-
duction in the kinematic region that is relevant to the proton-proton collisions at the
Relativistic Heavy Ion Collider (RHIC), and find that the spin asymmetry is very small
due to the cancellation between u- and d-quark Sivers functions, which are similar in size
but opposite in sign. However, we find that the individual contribution from u- and d-quark
Sivers functions can lead to an asymmetry of size O(±0.05%) in the forward rapidity region,
which seems feasible at the RHIC. Motivated by this, we compute the Sivers asymmetry
of dijet production in the positive and negative jet charge bins, i.e., when the jet charge
Qκ for the jet with the larger rapidity of two is in the bins Qκ > 0.25 and Qκ < −0.25,
respectively. By selecting the positive (negative) jet charge bin, we enhance the contribu-
tion from u- (d)-quark Sivers function and thus enhance the size of the asymmetry. Our
calculation shows that Sivers asymmetries in such positive (negative) jet charge bins lead to
asymmetries of size O(+0.01%) (O(−0.01%)), respectively. The sign of such asymmetries
seem to be consistent with the preliminary STAR measurements at the RHIC. The size
of our calculations is also around the same order of the experimental data. This give us a
great hope to further investigate the single spin asymmetries for hadronic dijet production
at the RHIC.
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Note added. While this work was being written up, we noticed a similar work [76] ap-
pears on arXiv. The authors investigate process dependent factorization violation from the
soft gluon radiation. Their method is different from our approach. We assume a factorized
form for the spin-dependent cross section, which we demonstrate to be renormalization
group consistent. Within this factorized form, we explicitly calculate the process depen-
dent polarized hard function in the matrix form. Besides, in the numerical calculations we
include quark Sivers functions in all the partonic channels. We believe these two studies
are complementary with each other.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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