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THE SIX  DIMENSIONAL  GAUSS  BONNET INTEGRAND

ALFRED   GRAY1

Abstract. Sufficient conditions are given for a compact 6-

dimensional Kahler manifold with nonnegative (nonpositive)

curvature to have nonnegative (nonpositive) Euler characteristic.

1. Introduction. One of the most important unresolved conjectures in

differential geometry is the following:

(*) Let M be a compact oriented Riemannian manifold of even dimension

n = 2m. If all the sectional curvatures of M are nonnegative then the Euler

characteristic #(M)_0. If all the sectional curvatures of M are nonpositive

then (-l)mx(M)^0.

This conjecture is easy to prove if dim M=2 and has also been proved

in the 4-dimensional case by J. Milnor (see [2] and [3]). In fact if dim M=

4, much weaker assumptions imply %(A/)_0. It suffices to assume that

M has positive Ricci curvature or that M is Kählerian and the holomorphic

sectional curvatures of M all have the same sign (see [2]).

The main line of attack on the conjecture (*) has been to make use of the

Gauss Bonnet formula. This involves estimating the Gauss Bonnet

integrand in terms of sectional curvature. In the 4-dimensional case the

Gauss Bonnet integrand is a quadratic polynomial in 20 variables, but it

is manageable. However, in the general 6-dimensional case the Gauss

Bonnet integrand is a cubic polynomial in 105 variables, and it would be

very tedious just to write it out. See [2] for a discussion of some of the

problems involved in estimating it. It is expedient, therefore, to look at

classes of 6-dimensional Riemannian manifolds for which the Gauss

Bonnet integrand is less formidable.

Let 38. be the vector space of all tensors which satisfy all the identities

of the curvature tensor of a 6-dimensional Riemannian manifold. Then
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88, has dimension 105 and has subspaces 88 e, 88^, and 88kQ¡ where

á?e = {R e 8$ | R is Einstein},

8ik = {R e 88 | R is Kählerian},

J>ke = á?e n J>k.

Here dim ^e=85, dim ^k=36, and dim ^kc=28. The space 8ÎS is still

quite large; however, 88^ and á?ke are small enough for us to say something

about the Gauss Bonnet integrand for curvature operators in these spaces.

In §2 we write down the Gauss Bonnet integrand for 6-dimensional

Kahler manifolds. Then in §3 we generalize a theorem of Bishop and

Goldberg [2] in several ways. In each case we prove that for a curvature

tensor 7? e 8?ke with nonnegative (nonpositive) sectional curvature the

Gauss Bonnet integrand is nonnegative (nonpositive) provided that certain

components of the curvature tensor vanish.

At this point I do not know whether the conjecture (*) is true for

compact 6-dimensional Kahler manifolds, or even Einstein Kahler

manifolds. The evidence so far obtained is the following.

Positive evidence. For all the cases computed so far it turns out that

(*) is true. It is shown in Theorem 2 below that (*) is true provided that

at each point the curvature tensor lies in a certain 14-dimensional sub-

space of the 28-dimensional space 8fke. Thus (*) is not too far from being

settled for compact 6-dimensional Einstein Kahler manifolds.

Negative evidence. There is a great deal of difference between the

4- and 6-dimensional cases. For example nonnegative homomorphic

sectional curvature implies that the Gauss Bonnet integrand is non-

negative in the 4-dimensional case. Bishop and Goldberg [2] have given

an example to show that this is no longer true for 6-dimensional Kahler

manifolds.

It is of course possible that the Gauss Bonnet integrand is negative for

some curvature operator with nonnegative sectional curvature but (*)

is still true. For example, it is not difficult to construct a 4-dimensional

curvature tensor with positive Ricci curvature and negative Gauss Bonnet

integrand. However, a compact 4-dimensional Riemannian manifold

with positive Ricci curvature has positive Euler characteristic.

In this connection the following result of F. Rideau [5] is relevant.

Theorem. Let M be a compact Kahler manifold with positive holo-

morphic bisectional curvature. Ifhp,q(M) denotes the dimension of the space

of harmonic (p,q)-forms, then hv-1(M)=h1'p(M)=0forp>l.

Corollary. If M is a compact 6-dimensional Kahler manifold with

positive holomorphic bisectional curvature then /(M)>0.
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Proof. It is well known (see for example [7]) that for a compact

Kahler manifold with positive Ricci curvature we always have hv-°(M) =

h°-p(M)—0 for/?>0. This fact together with Rideau's result and Poincaré

duality imply that all the odd Betti numbers of M are zero. Hence #(M)>0.

Positive sectional curvature imply positive holomorphic bisectional

curvature. On the other hand in the example of Bishop and Goldberg

cited above the curvature operator has positive holomorphic bisectional

curvature but negative Gauss Bonnet integrand.

2. The Gauss Bonnet integrand of a 6-dimensional Kahler manifold.   In

dimension 6 the Gauss Bonnet formula is

*(M)  - o~l ^123456-Stt2 Jm

Here Qi3 is the curvature form of M. Let

nmi = Q„ A Q,; - OiA. A Q„ + Q„ A Újk.

Then £¿123456 is defined by

^123456 = ^12 A ^3456 "13 ^ '■■'2456 T  "14 *• ^'2356

i215 A ¿¿2346 "I" "ig A ii2345-

Let {ex, ■ ■ ■ , e6} be an orthonormal basis of a tangent space Mm and let

£ denote the curvature operator of M. Then £ is related to the Q^-'s by

the formulas

We also put

^ijklPQTS *^ijkl\*-p'   *"Q'  °T">   "$)•

It is well known that the components of the curvature tensor RUkl

satisfy the Bianchi identity

(1) Piikl + Rkijl + Pjkil — 0-

Furthermore in [4] and [6] it is shown that another "Bianchi" identity

\Z.) ^-ijklpqrs   '    ^-piiklqrs   '    ^-Ipijkqrs    '    '^■klpijqrs "T" ^-jklpiqrs        ^

is satisfied.
The 2-, 4-, and 6-dimensional sectional curvatures are given by the

formulas

*MJ = I^ijij = ^¿ij(ei> ^i)'

K-ijici = Rijkliikl = ^^iikl\ei' ei> ek> el)>

^123456 =   ^^123456(.el) e2i e3> e4> e5> e6j-
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We now specialize to the case of a 6-dimensional Kahler manifold M and

take an orthonormal basis of Mm of the form {ex, Jex, e2, Je2, e3, Je3}

where / denotes the almost complex structure of M. We write ei>—Jei

for z'=l, 2, 3.

It is well known that for a Kahler manifold we have

(3) P-wc'i* — Ri}W

and that (1) and (3) imply

(4) R..*... = K   + K •••

It will be useful to have similar formulas for the Rimvqrs. It is not hard to

see that

\P) *^ijklv*q*r*s* ^■ijkJPfirs'

Then from (2) and (5) we obtain

(6) Rii'ii'u'kk' = Ka'jk + £**•»*•

Using these formulas we derive a formula for the Gauss Bonnet inte-

grand of a 6-dimensional Kahler manifold. First we observe that

3^11*22*33*  =   ^11* A  022*33»  +   Q22. A  0,1*33«  +   ^33* A £¿n«22«

(7) — 2{£i12 A 01233» + 012» A ü12»33« + QX3 A Q1322*

+   013« A  Q13*22*  +  í¿23 A  ^2311*  +   ^23* A  ^23*11*}-

We evaluate each of the differential forms on the right-hand side of (7)

on {ex, ex*, e2, e2*, e3, e3*}. Adding the results and making use of (4) and

(6) we obtain

3^11*22*33* = 3ün*22*33*Oi, ex*, e2, e2*, e3, e3-)

= KXX*K22*33* + K22*KXX*33* + K33'KXX»22*

+ 2{(3K12 + K12*)K33*12 + (KX2 + 3X12.)K33.12.

+ (3KX3 + KX3*)K22'X3 + (KX3 + 3KX3.)K22*X3*

+ (3^23 + ^23*)-Kll*23 + (^23 +  3K23*)KXX'23'}

(8)
+  8{R12i2«J\33*1233*i2*  + Rl313*^22*1322*13',.'

+  ^2323*^11*2311*23*}

— 4{Rn*12R22«33*33»12 +  • • •   +  R33*23*^ll*22*ll*23*}

+  4{(3/?1213 + Rl2*13*)^33*1222*13 + ' " '

"I" (^1323 "t"  3i\1»32*3)/v22*i3ii*23/-
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This is the Gauss Bonnet integrand for a 6-dimensional Kahler

manifold.

3. Sufficient conditions that the Gauss Bonnet integrand be nonnegative

or nonpositive.    We now use (8) to prove (*) in some special cases.

Theorem 1. Let M be a compact 6-dimensional Kahler manifold such

that for each me M the tangent space Mm has an orthonormal basis

{ex, Jex, ez,Je2, e3, Je3} with the following property: the eigenvectors of

Re JeJare e1; Jex, e2, Je2, e3, Je3 (where R denotes the curvature operator of

M). If M has nonnegative (nonpositive) sectional curvature, then

*(M)=0 (X(M)^O).

The hypotheses of the theorem arise from the following considerations.

Choose ex so that £n» is a maximum holomorphic sectional curvature.

Then an orthonormal basis which diagonalizes the symmetric operator

PeijeiJ ¡s °f ine form {ex, Jex, e2,Je2, e3,Je3). The hypotheses of the

theorem imply that this basis also diagonalizes Re2je¡J and RezJeJ.

In [2] Bishop and Goldberg prove that if all the components of the

curvature tensor other than the sectional curvatures vanish, then

K~xx•22*33. =0. Whereas Bishop and Goldberg prove (*) for a certain 9-

dimensional subspace of á?k, Theorem 1 proves (*) for a 18-dimensional

subspace of the 36-dimensional space 38^.

As a consequence of Theorem 1 we shall obtain the following theorem

in which the curvature conditions are more geometric.

Theorem 2. Let M be a compact (¡-dimensional Einstein Kahler mani-

fold. Assume that for each me M the holomorphic sectional curvature

assumes critical values on a triple of mutually orthogonal holomorphic

sections in Mm. If M has nonnegative (nonpositive) sectional curvatures

then *(A/)=0 (x(M)^O).

Proof of Theorem 1.   We have

(9) £n*12 = • • • = £33*23* = 0,

and

(10) £u.23 = • • • = £33.12. = 0.

From (10) it follows that

(11) RiHk = -Rij'ik*   for i, j, k, all different.

Furthermore a calculation shows that

(12) J 3   31 *

= ¿(K{j + Kij')Kikjk      2RiHkRijkj + 2RifikRi*jkj.
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From (8), (9), (10), (11), and (12) we obtain

3^11*22*33*  = ^11*^22*33*  + ^22*^11*33*  + ^33*^11*22*

+ i6KX2 + 2KX2*)K33*X2 +■■■ + i2K23 + 6K23*)KXX*23.

+  8(K1212*K33«1233*12* + Rl3l3*J?22*1322*13*

+   °2323*'Ml*2311*23*)

(13) + 32{(K12 + KX2.)iR2X323 + R¡.323)

+ (^13 + ^13*)(^1232 +  ^1*232)

+ (^23 + -^23*)(^1213 + ^12*13)}

+ 96{— Rl213°1232°1323 + ^12*13^1*232 °1323

+ ^12*13^1232^1*323 + ^1213°1*232^1*323J-

Since M has nonnegative or nonpositive sectional curvatures, \Rijik\ =

\KuKik\112 (see [1]). Hence if M has nonnegative sectional curvature

^12^1323      2RX2X3R1323RX232 + KX3RX232 ^ 0,

(14) ^M2"M323 2K1213K1323K1232 + K23RX2X3 = "'

JM3*M232         2K1213K1323K1232 +  ^23^1213 = **>      ^tC.

From (14) we obtain

(15) 32(Xi2R1323 + J^13^1232 + ^23^1213 — 3Ri213/\i323Rl232) = 0;      etC-

The same argument that proves \RiHk\^iKijKiky12 shows also that

I#33n233*i2*l = (-^33*12^33*i2*)1/2- Hence

8  |Ri2i2*R33*1233*12*l   =  8 \KX2K33*X2KX2*K33'X2'\

(16) = 4(|K12| 1^33*12! + \KXA 1^33*12*1), etc.

Therefore from (13), (15), and (16) we obtain

3-^11*22*33*  = •^ll*-^22*33*  +  K22*KXX*33*  + K33*KXX*22*

+ 2iKx2 + Kx2.)iK33>x2 + K„v)

(17) + 2iKX3 + KX3.)iK22.X3 + X22.13.)

+ 2(^23 + K23*)(KX1'23 + ^11*23*)

= 0,

provided that M has nonnegative sectional curvature. If M has nonposi-

tive sectional curvature a similar argument shows that (17) holds with

the inequalities reversed.    Q.E.D.
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Proof of Theorem 2.    Since M is an Einstein Kahler manifold we

have

0 = Rii*ii + Pj'i'i'i + Pki'ki + Pk'i'k'i

= Ru'ij + Rij'n + Rkk*a       (U.j, k ¥=)■

The hypotheses of Theorem 2 imply that {el5 ex*, e2, e2*, e3, e3*} can be

chosen so that £n*, K22*, and K33* are critical values of the holomorphic

sectional curvature; then £i¿*ií=£i¿»í3-.=0 for all / and j. From (18) it

follows that Ru* jk=Ru» jk*=Q for j?¿k. Thus the hypotheses of Theorem 1

are fulfilled.    Q.E.D.
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