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1 Introduction

In recent years, considerable progress has been made in the study of relativistic scattering

amplitudes in gauge theory and gravity. A growing set of computational tools, including

unitarity [1, 2], BCFW recursion [3–6], BCJ duality [7, 8], and symbol calculus [9–13], has

facilitated many impressive perturbative calculations at weak coupling. The AdS/CFT

correspondence has provided access to the new, previously inaccessible frontier of strong

coupling [14]. The theory that has reaped the most benefit from these advances is, arguably,

maximally supersymmetric N = 4 Yang-Mills theory, specifically in the planar limit of a

large number of colors. Indeed, N = 4 super-Yang-Mills theory provides an excellent

laboratory for the AdS/CFT correspondence, as well as for the structure of gauge theory

amplitudes in general.

One of the reasons for the relative simplicity of N = 4 super-Yang-Mills theory is its

high degree of symmetry. The extended supersymmetry puts strong constraints on the

form of scattering amplitudes, and it guarantees a conformal symmetry in position space.

Recently, an additional conformal symmetry was found in the planar theory [14–20]. It acts

on a set of dual variables, xi, which are related to the external momenta kµi by ki = xi−xi+1.

At tree level, this dual conformal symmetry can be extended to a dual super-conformal

symmetry [21] and even combined with the original conformal symmetry into an infinite-

dimensional Yangian symmetry [22]. At loop level, the dual conformal symmetry is broken

by infrared divergences. According to the Wilson-loop/amplitude duality [14, 17, 18], these

infrared divergences can be understood as ultraviolet divergences of particular polygonal
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Wilson loops. In this context, the breaking of dual conformal symmetry is governed by an

anomalous Ward identity [20, 23]. For maximally-helicity violating (MHV) amplitudes, a

solution to the Ward identity may be written as,

AMHV
n = ABDS

n × exp(Rn), (1.1)

where ABDS
n is an all-loop, all-multiplicity ansatz proposed by Bern, Dixon, and

Smirnov [24], and Rn is a dual-conformally invariant function referred to as the remainder

function [25, 26].

Dual conformal invariance provides a strong constraint on the form of Rn. For example,

it is impossible to construct a non-trivial dual-conformally invariant function with fewer

than six external momenta. As a result, R4 = R5 = 0, and, consequently, the four- and

five-point scattering amplitudes are equal to the BDS ansatz. At six points, there are three

independent invariant cross ratios built from distances x2ij in the dual space,

u1 =
x213x

2
46

x214x
2
36

=
s12s45
s123s345

, u2 =
x224x

2
15

x225x
2
14

=
s23s56
s234s456

, u3 =
x235x

2
26

x236x
2
25

=
s34s61
s345s561

. (1.2)

Dual conformal invariance restricts R6 to be a function of these variables only, i.e. R6 =

R6(u1, u2, u3). This function is not arbitrary since, among other conditions, it must be

totally symmetric under permutations of the ui and vanish in the collinear limit [25].

In the absence of an explicit computation, it remained a possibility that R6 = 0, despite

the fact that all known symmetries allow for a non-zero function R6(u1, u2, u3). However, a

series of calculations have since been performed and they showed definitively that R6 6= 0.

The first evidence of a non-vanishing remainder function came from an analysis at

strong coupling, where a deviation from the BDS ansatz was found for a large number of

gluons [19]. Shortly afterwards, a computation of the hexagonal light-like Wilson loop at

two loops indicated a breakdown of either the BDS ansatz or the amplitude/Wilson loop

duality for six gluons [27]. The multi-Regge limits of 2 → 4 gluon scattering amplitudes

at two loops suggested that it was the BDS ansatz that required corrections [28]. Nu-

merical evidence at specific kinematic points showed definitively that R6 was non-zero at

two loops [25, 26], and an explicit calculation of R6 at two loops for general kinematics

eventually followed [29, 30]. Interestingly, the calculation for general kinematics was actu-

ally performed in a quasi-multi-Regge limit; the full kinematic dependence could then be

inferred because this type of Regge limit does not modify the analytic dependence of the

remainder function on the ui.

Even beyond the two-loop remainder function, the limit of multi-Regge kinematics

(MRK) has received considerable attention in the context of N = 4 super-Yang Mills

theory [28, 31–43]. One reason for this is that multi-leg scattering amplitudes become con-

siderably simpler in MRK while still maintaining a non-trivial analytic structure. Taking

the multi-Regge limit at six points, for example, essentially reduces the amplitude to a

function of just two variables, w and w∗, which are complex conjugates of each other. This

latter point has proved particularly important in describing the relevant function space

in this limit. In fact, it has been argued recently [42] that the function space is spanned
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by the set of single-valued harmonic polylogarithms (SVHPLs) introduced by Brown [44].

These functions will play a prominent role in the remainder of this article.

The MRK limit of 2 → 4 scattering is characterized by the condition that the outgoing

particles are widely separated in rapidity while having comparable transverse momenta.

In terms of the cross ratios ui, the limit is approached by sending one of the ui, say u1,

to unity, while letting the other two cross ratios vanish at the same rate that u1 → 1, i.e.

u2 = x(1−u1) and u3 = y(1−u1) for two fixed variables x and y. Actually, this prescription

produces the Euclidean version of the MRK limit in which the six-point remainder function

vanishes [45–47]. To reach the Minkowski version, which is relevant for 2 → 4 scattering,

u1 must be analytically continued around the origin, u1 → e−2πi|u1|, before taking the

limit. The remainder function may then be expanded around u1 = 1 and the coefficients

of this expansion are functions of only two variables, x and y. The variables w and w∗

mentioned previously are related to x and y by [35, 36],

x ≡ 1

(1 + w)(1 + w∗)
, y ≡ ww∗

(1 + w)(1 + w∗)
. (1.3)

Neglecting terms that vanish like powers of 1 − u1, the expansion of the remainder

function may be written as,1

RMHV
6 |MRK = 2πi

∞
∑

ℓ=2

ℓ−1
∑

n=0

aℓ logn(1− u1)
[

g(ℓ)n (w,w∗) + 2πi h(ℓ)n (w,w∗)
]

, (1.4)

where the coupling constant for planar N = 4 super-Yang-Mills theory is a = g2Nc/(8π
2).

This expansion is organized hierarchically into the leading-logarithmic approximation

(LLA) with n = ℓ − 1, the next-to-leading-logarithmic approximation (NLLA) with

n = ℓ− 2, and in general the NkLL terms with n = ℓ− k − 1. In this article, we study the

leading-logarithmic approximation, for which we may rewrite eq. (1.4) as,

RMHV
6 |LLA =

2πi

log(1− u1)

∞
∑

ℓ=2

ηℓ g
(ℓ)
ℓ−1(w,w

∗) , (1.5)

where we have identified η = a log(1−u1) as the relevant expansion parameter. In LLA, the

real part of R6 vanishes, so hℓℓ−1(w,w
∗) is absent in eq. (1.5). Expressions for g

(ℓ)
ℓ−1(w,w

∗)

have been given in the literature for two, three [35], and recently up to ten [42] loops.

An all-orders integral-sum representation for RMHV
6 |LLA was presented in ref. [35] and

was generalized to the NMHV helicity configuration in ref. [41]. (The MHV case was

extended to NLLA in ref. [38].) The formula may be understood as an inverse Fourier-

Mellin transform from a space of moments labeled by (ν, n) to the space of kinematic

variables (w,w∗). In the moment space, R6|LLA(ν, n) assumes a simple factorized form

and may be written succinctly to all loop orders in terms of polygamma functions. This

structure is obscured in (w,w∗) space, as the inverse Fourier-Mellin transform generates

complicated combinations of polylogarithmic functions. Nevertheless, these complicated

expressions should bear the mark of their simple ancestry. In this article, we expose this

1We follow the conventions of ref. [37].
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inherited structure by presenting an explicit all-orders formula forR6|LLA directly in (w,w∗)

space.

We do not present a proof of this formula, but we do test its validity using several

non-trivial consistency checks. For example, our result agrees with the integral formula

mentioned above through at least 14 loops. In ref. [41], Lipatov, Prygarin, and Schnitzer

give a simple differential equation linking the MHV and NMHV helicity configurations,

w∗ ∂

∂w∗
RMHV

6 |LLA = w
∂

∂w
RNMHV

6 |LLA , (1.6)

which is also obeyed by our formula. In the near-collinear limit, we find agreement with the

all-orders double-leading-logarithmic approximation of Bartels, Lipatov, and Prygarin [48].

This article is organized as follows. In section 2, we review the aspects of multi-

Regge kinematics relevant to six-particle scattering and recall the integral formulas for

R6|LLA in the MHV and NMHV helicity configurations. The construction and properties of

single-valued harmonic polylogarithms are reviewed in section 3. An all-orders expression

for R6|LLA is presented in terms of these functions in section 4. After verifying several

consistency conditions of this formula, we examine its near-collinear limit in section 5.

Section 6 offers some concluding remarks and prospects for future work.

2 The six-point remainder function in multi-Regge kinematics

We consider the six-gluon scattering process g3g6 → g1g5g4g2 where the momenta are taken

to be outgoing and the gluons are labeled cyclically in the clockwise direction. The limit of

multi-Regge kinematics is defined by the condition that the produced gluons are strongly

ordered in rapidity while having comparable transverse momenta,

y1 ≫ y5 ≫ y4 ≫ y2 , |p1⊥| ≃ |p5⊥| ≃ |p4⊥| ≃ |p2⊥| . (2.1)

In the Euclidean region, this limit is equivalent to the hierarchy of scales,

s12 ≫ s345, s456 ≫ s34, s45 , s56 ≫ s23, s61, s234, (2.2)

which leads to the limiting behavior of the cross ratios (1.2),

1− u1, u2, u3 ∼ 0 , (2.3)

subject to the constraint that the following ratios are held fixed,

x ≡ u2
1− u1

= O(1) and y ≡ u3
1− u1

= O(1) . (2.4)

Unitarity restricts the branch cuts of physical quantities like the remainder function

R6(u1, u2, u3) to appear in physical channels. In terms of the cross ratios ui, this re-

quirement implies that all branch points occur when a cross ratio vanishes or approaches

infinity. If we re-express the two real variables x and y by a single complex variable w,

x ≡ 1

(1 + w)(1 + w∗)
and y ≡ ww∗

(1 + w)(1 + w∗)
, (2.5)
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then the equivalent statement in MRK is that any function of (w,w∗) must be single-valued

in the complex w plane.

In the Euclidean region, the remainder function actually vanishes in the multi-Regge

limit. To obtain a non-vanishing result, we must consider a physical region in which one of

the cross ratios acquires a phase [28]. One such region corresponds to the 2 → 4 scattering

process described above. It can be reached by flipping the signs of s12 and s45, or, in terms

of the cross ratios, by rotating u1 around the origin,

u1 → e−2πi |u1| . (2.6)

In the course of this analytic continuation, we pick up the discontinuity across a Mandel-

stam cut [28, 33]. The six-point remainder function can then be expanded in the form

given in eq. (1.4),

RMHV
6 |MRK = 2πi

∞
∑

ℓ=2

ℓ−1
∑

n=0

aℓ logn(1− u1)
[

g(ℓ)n (w,w∗) + 2πi h(ℓ)n (w,w∗)
]

. (2.7)

The large logarithms log(1 − u1) organize this expansion into the leading-logarithmic ap-

proximation (LLA) with n = ℓ−1, the next-to-leading-logarithmic approximation (NLLA)

with n = ℓ− 2, and in general the the NkLL terms with n = ℓ− k − 1.

In refs. [35, 38] an all-loop integral formula for RMHV
6 |MRK was presented for LLA and

NLLA,2

eR+iπδ|MRK = cosπωab

+ i
a

2

∞
∑

n=−∞

(−1)n
( w

w∗

)n
2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν ΦReg(ν, n)

(

− 1√
u2 u3

)ω(ν,n)

.

(2.8)

Here, ω(ν, n) is the BFKL eigenvalue and ΦReg(ν, n) is the regularized impact factor. They

may be expanded perturbatively,

ω(ν, n) = −a
(

Eν,n + aE(1)
ν,n + a2E(2)

ν,n +O(a3)
)

,

ΦReg(ν, n) = 1 + aΦ
(1)
Reg(ν, n) + a2Φ

(2)
Reg(ν, n) + a3Φ

(3)
Reg(ν, n) +O(a4) .

(2.9)

The leading-order eigenvalue, Eν,n, was given in ref. [31] and may be written in terms of

the digamma function ψ(z) = d
dz log Γ(z),

Eν,n = −1

2

|n|
ν2 + n2

4

+ ψ

(

1 + iν +
|n|
2

)

+ ψ

(

1− iν +
|n|
2

)

− 2ψ(1) . (2.10)

In this article, we will only need the leading-order terms, but, remarkably, the higher-

order corrections listed in (2.9) may also be expressed in terms of the ψ function and its

derivatives [38, 42].

2There is a difference in conventions regarding the definition of the remainder function. What we call

R is called log(R) in refs. [35, 38]. Apart from the zeroth order term, this distinction has no effect on LLA

terms. The first place it makes a difference is at four loops in NLLA, in the real part.
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Returning to (2.8), the remaining functions are,

ωab =
1

8
γK(a) log

u3
u2

=
1

8
γK(a) log |w|2 ,

δ =
1

8
γK(a) log (xy) =

1

8
γK(a) log

|w|2
|1 + w|4 ,

(2.11)

and the cusp anomalous dimension, which is known to all orders in perturbation theory [49],

γK(a) =
∞
∑

ℓ=1

γ
(ℓ)
K aℓ = 4 a− 4 ζ2 a

2 + 22 ζ4 a
3 − (2192 ζ6 + 4 ζ23 ) a

4 + · · · . (2.12)

In addition, there is an ambiguity regarding the Riemann sheet of the exponential factor

on the right-hand side of (2.8). We resolve this ambiguity with the identification,

(

− 1√
u2 u3

)ω(ν,n)

→ e−iπω(ν,n)

(

1

1− u1

|1 + w|2
|w|

)ω(ν,n)

. (2.13)

The iπ factor in the right-hand side of eq. (2.13) generates the real parts h
(ℓ)
n in eq. (2.7).

For example, at LLA and NLLA, the following relations [42] are satisfied,3

h
(ℓ)
ℓ−1(w,w

∗) = 0 ,

h
(ℓ)
ℓ−2(w,w

∗) =
ℓ− 1

2
g
(ℓ)
ℓ−1(w,w

∗) +
1

16
γ
(1)
K g

(ℓ−1)
ℓ−2 (w,w∗) log

|1 + w|4
|w|2

− 1

2

ℓ−2
∑

k=2

g
(k)
k−1g

(ℓ−k)
ℓ−k−1 , ℓ > 2,

(2.14)

where γ
(1)
K = 4 from eq. (2.12). Making use of eq. (1.5), we present an alternate form of

these identities which will be useful later,

Re
(

RMHV
6 |NLLA

)

=
2πi

log(1− u1)

(

1

2
η2

∂

∂η

1

η
+
γ
(1)
K

16
η log

|1 + w|4
|w|2

)

RMHV
6 |LLA

+
2π2

log2(1− u1)
η2g

(2)
1 (w,w∗)− 1

2

(

RMHV
6 |LLA

)2
.

(2.15)

The term proportional to g
(2)
1 (w,w∗) addresses the special case of ℓ = 2 in eq. (2.14).

In what follows, we will focus on the leading-logarithmic approximation of (2.8), which

takes the form,

RMHV
6 |LLA = i

a

2

∞
∑

n=−∞

(−1)n
∫ +∞

−∞

dν wiν+n/2w∗iν−n/2

(iν + n
2 )(−iν + n

2 )

[

(1− u1)
aEν,n − 1

]

. (2.16)

The ν-integral may be evaluated by closing the contour and summing residues.4 To perform

the resulting double sums, one may apply the summation algorithms of ref. [50], although

3Note that the sum over k in the formula for h
(ℓ)
ℓ−2 would not have been present if we had used the

convention for R in refs. [35, 38].
4For the special case of n = 0, our prescription is to take half the residue at ν = 0.
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this approach is computationally challenging for high loop orders. Alternatively, an ansatz

for the result may be expanded around |w| = 0 and matched term-by-term to the truncated

double sum. The latter method requires knowledge of the complete set of functions that

might arise in this context. In ref. [42], it was argued that the single-valued harmonic

polylogarithms (SVHPLs) completely characterize this function space, and, using these

functions, eq. (2.16) was evaluated through ten loops.

So far we have only discussed the MHV helicity configuration. We now turn to the

only other independent helicity configuration at six points, the NMHV configuration. In

MRK, the MHV and NMHV tree amplitudes are equal [41, 51]. It is natural, therefore, to

define an NMHV remainder function, analogous to eq. (1.1),

ANMHV
6 |MRK = ABDS

6 × exp(RNMHV) . (2.17)

In ref. [41], it was argued that the effect of changing the helicity of one of the positive-

helicity gluons5 was equivalent to changing the impact factor for that gluon by means of

the following replacement,
1

−iν + n
2

→ − 1

iν + n
2

. (2.18)

Referring to eq. (2.16), this replacement leads to an integral formula for RNMHV
6 |LLA,

RNMHV
6 |LLA = − ia

2

∞
∑

n=−∞

(−1)n
∫ +∞

−∞

dν wiν+n/2w∗iν−n/2

(iν + n
2 )

2

[

(1− u1)
aEν,n − 1

]

. (2.19)

Following refs. [41] and [42], we can extract a simple rational prefactor and write eq. (2.19)

in a manifestly inversion-symmetric form,

RNMHV
6 |LLA =

2πi

log(1− u1)

∞
∑

ℓ=2

ηℓ

1 + w∗
f (ℓ)(w,w∗) +

{

(w,w∗) ↔
(

1

w
,
1

w∗

)}

, (2.20)

for some single-valued functions f (ℓ)(w,w∗). It is possible to obtain expressions for

f (ℓ)(w,w∗) directly from eq. (2.19) by means of the truncated series approach outlined

above, for example. A simpler method is to make use of the following differential equation,

which may be deduced by comparing the two expressions (2.16) and (2.19),

w∗ ∂

∂w∗
RMHV

6 |LLA = w
∂

∂w
RNMHV

6 |LLA . (2.21)

In principle, solving this equation requires the difficult step of fixing the constants of

integration in such a way that single-valuedness is preserved. As discussed in ref. [42], this

step becomes trivial when working in the space of SVHPLs, which are the subject of the

next section.

5Up to power-suppressed terms, helicity must be conserved along high-energy lines, so the helicity flip

must occur on one of the lower-energy legs, 4 or 5.
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3 Review of single-valued harmonic polylogarithms

Harmonic polylogarithms (HPLs) [52] are a class of generalized polylogarithmic functions

that finds frequent application in multi-loop calculations. The HPLs are functions of a

single complex variable, z, which will be related to the kinematic variable w by z = −w.
We will continue to use z throughout this section in order to make contact with the existing

mathematical literature. In general, the HPLs have branch cuts that originate at z = −1,

z = 0, or z = 1. In the present application, we will consider the restricted class of HPLs6

whose branch points are either z = 0 or z = 1. To construct them, consider the set X∗ of

all words w formed from the letters x0 and x1, together with e, the empty word.7 Then,

for each w ∈ X∗, define a function Hw(z) which obeys the differential equations,

∂

∂z
Hx0w(z) =

Hw(z)

z
and

∂

∂z
Hx1w(z) =

Hw(z)

1− z
, (3.1)

subject to the following conditions,

He(z) = 1, Hxn
0
(z) =

1

n!
logn z, and lim

z→0
Hw 6=xn

0
(z) = 0 . (3.2)

There is a unique family of solutions to these equations, and it defines the HPLs. For

w 6= xn0 , they can be written as iterated integrals,

Hx0w(z) =

∫ z

0
dz′

Hw(z
′)

z′
and Hx1w =

∫ z

0
dz′

Hw(z
′)

1− z′
. (3.3)

The structure of the iterated integrals endows the HPLs with an important property: they

form a shuffle algebra. The shuffle relations can be written as,

Hw1(z)Hw2(z) =
∑

w∈w1Xw2

Hw(z) , (3.4)

where w1Xw2 is the set of mergers of the sequences w1 and w2 that preserve their relative

ordering. The shuffle algebra may be used to remove all zeros from the right of an index

vector in favor of some explicit logarithms. For example, it is easy to obtain the following

formula for HPLs with a single x1,

Hxn
0 x1xm

0
=

m
∑

j=0

(−1)j

(m− j)!

(

n+ j

j

)

Hm−j
x0

H
xn+j
0 x1

. (3.5)

After removing all right-most zeros, the Taylor expansions around z = 0 are particularly

simple and involve only a special class of harmonic numbers [52],

Hm1,...,mk
(z) =

∞
∑

l=1

zl

lm1
Zm2,...,mk

(l − 1) , mi > 0 , (3.6)

6In the mathematical literature, these functions are sometimes referred to as multiple polylogarithms in

one variable. With a small abuse of notation, we will continue to use the term “HPL” to refer to this

restricted set of functions.
7Context should distinguish the word w from the kinematic variable with the same name.
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where Zm1,...,mk
(n) are Euler-Zagier sums [53, 54], defined recursively by

Z(n) = 1 and Zm1,...,mk
(n) =

n
∑

l=1

1

lm1
Zm2,...,mk

(l − 1) . (3.7)

Note that the indexing of the weight vectors m1, . . . ,mk in eqs. (3.6) and (3.7) is in the

collapsed notation in which a subscript m denotes m− 1 zeros followed by a single 1.

The HPLs are multi-valued functions; nevertheless, it is possible to build specific com-

binations such that the branch cuts cancel and the result is single-valued. An algorithm

that explicitly constructs these combinations was presented in ref. [44] and reviewed in

ref. [42]. Here we provide a very brief description.

The SVHPLs Lw(z) are generated by the series,

L(z) = LX(z)L̃Y (z̄) ≡
∑

w∈X∗

Lw(z)w , (3.8)

where,

LX(z) =
∑

w∈X∗

Hw(z)w , L̃Y (z̄) =
∑

w∈Y ∗

Hφ(w)(z̄)w̃ . (3.9)

Here ∼ : X∗ → X∗ is the operation that reverses words, φ : Y ∗ → X∗ is the map that

renames y to x, and Y ∗ is the set of words in {y0, y1}, which are defined by the relations,

y0 = x0

Z̃(y0, y1)y1Z̃(y0, y1)
−1 = Z(x0, x1)

−1x1Z(x0, x1),
(3.10)

where Z(x0, x1) is a generating function of multiple zeta values,

Z(x0, x1) =
∑

w∈X∗

ζ(w)w. (3.11)

The ζ(w) are regularized by the shuffle algebra and obey ζ(w 6= x1) = Hw(1) and ζ(x1) = 0.

Alternatively, one may formally define these functions as solutions to simple differential

equations, i.e. the Lw(z) are the unique single-valued linear combinations of functions

Hw1(z)Hw2(z̄) that obey the differential equations [44],

∂

∂z
Lx0w(z) =

Lw(z)

z
and

∂

∂z
Lx1w(z) =

Lw(z)

1− z
, (3.12)

subject to the conditions,

Le(z) = 1 , Lxn
0
(z) =

1

n!
logn |z|2 and lim

z→0
Lw 6=xn

0
(z) = 0 . (3.13)

The SVHPLs also obey differential equations in z̄. Both sets of equations are represented

nicely in terms of the generating function (3.8),

∂

∂z
L(z) =

(

x0
z

+
x1

1− z

)

L(z) and
∂

∂z̄
L(z) = L(z)

(

y0
z̄

+
y1

1− z̄

)

. (3.14)
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We close this section by providing expressions for the low-weight SVHPLs. In terms

of the ordinary HPLs, Hw ≡ Hw(z) and Hw ≡ Hw(z̄), the SVHPLs of weight one are,

L0(z) = H0 +H0 , L1(z) = H1 +H1, (3.15)

the SVHPLs of weight two are,

L0,0(z) = H0,0 +H0,0 +H0H0 ,

L0,1(z) = H0,1 +H1,0 +H0H1 ,

L1,0(z) = H1,0 +H0,1 +H1H0 ,

L1,1(z) = H1,1 +H1,1 +H1H1 ,

(3.16)

and the SVHPLs of weight three are,

L0,0,0(z) = H0,0,0 +H0,0,0 +H0,0H0 +H0H0,0 ,

L0,0,1(z) = H0,0,1 +H1,0,0 +H0,0H1 +H0H1,0 ,

L0,1,0(z) = H0,1,0 +H0,1,0 +H0,1H0 +H0H0,1 ,

L0,1,1(z) = H0,1,1 +H1,1,0 +H0,1H1 +H0H1,1 ,

L1,0,0(z) = H1,0,0 +H0,0,1 +H1,0H0 +H1H0,0 ,

L1,0,1(z) = H1,0,1 +H1,0,1 +H1,0H1 +H1H1,0 ,

L1,1,0(z) = H1,1,0 +H0,1,1 +H1,1H0 +H1H0,1 ,

L1,1,1(z) = H1,1,1 +H1,1,1 +H1,1H1 +H1H1,1 .

(3.17)

4 Six-point remainder function in MRK and LLA

The SVHPLs introduced in the previous section provide a convenient basis of functions to

describe the six-point remainder function in MRK. In ref. [42], these functions were used

to express the result through ten loops in LLA and through nine loops in NLLA. Here we

use the SVHPLs to present a formula in LLA to all loop orders.

4.1 The all-orders formula

Recall from the previous section that we defined X∗ to be the set of all words w in the

letters x0 and x1 together with the empty word e. Let C〈X〉 be the complex vector space

generated by X∗ and let C〈L〉 be the complex vector space spanned by the SVHPLs, Lw

with w ∈ X∗. Denote by C〈X〉[[η]] and C〈L〉[[η]] the rings of formal power series in the

variable η = a log(1 − u1) with coefficients in C〈X〉 and C〈L〉, respectively. There is a

natural map, ρ, which sends words to the corresponding SVHPLs,

ρ : C〈X〉[[η]] → C〈L〉[[η]]
w 7→ Lw .

(4.1)
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Using these ingredients, we propose the following formulas for the MHV and NMHV re-

mainder functions in MRK and LLA,

RMHV
6 |LLA =

2πi

log(1− u1)
ρ
(

XZMHV − 1

2
x1η
)

, (4.2)

RNMHV
6 |LLA =

2πi

log(1− u1)

1

1 + w∗
ρ
(

x0XZNMHV
)

+

{

(w,w∗) ↔
(

1

w
,
1

w∗

)}

, (4.3)

where the formal power series X ,Z(N)MHV ∈ C〈X〉[[η]] are,

X = e
1
2
x0η

[

1− x1

(

ex0η − 1

x0

)]−1

,

ZMHV =
1

2

∞
∑

k=1

(

x1

k−1
∑

n=0

(−1)nxk−n−1
0

n
∑

m=0

22m−k+1

(k −m− 1)!
Z(n,m)

)

ηk ,

ZNMHV =
1

2

∞
∑

k=2

(

x1

k−2
∑

n=0

(−1)nxk−n−2
0

n
∑

m=0

22m−k+1

(k −m− 1)!
Z(n,m)

)

ηk .

(4.4)

Here, the Z(n,m) are particular combinations of ζ values of uniform weight n. They are

related to partial Bell polynomials, and are generated by the series,

exp

[

y
∞
∑

k=1

ζ2k+1x
2k+1

]

≡
∞
∑

n=0

∞
∑

m=0

Z(n,m)xnym . (4.5)

An explicit formula is,

Z(n,m) =
∑

β∈P (n,m)

∏

i

(ζ2i+1)
βi

βi!
, (4.6)

where P (n,m) is the set of n-tuples of non-negative integers that sum to m, such that the

product of ζ values has weight n,

P (n,m) =

{

{β1, · · · , βn}
∣

∣

∣
βi ∈ N0,

n
∑

i=1

βi = m,
n
∑

i=1

(2i+ 1)βi = n

}

. (4.7)

Similarly, an expression for the kth term of X can be given as,

X =
∞
∑

k=0





k
∑

n=0

xk−n
0

2k−n (k − n)!

∑

α∈Q(n)

∏

j

x1x
αj−1
0

αj !



 ηk , (4.8)

where Q(n) is the set of integer compositions of n,

Q(n) =

{

{α1, α2, · · · , αm}
∣

∣

∣αi ∈ Z
+,

m
∑

i=1

αi = n

}

. (4.9)

Excluding the one-loop term in eq. (4.2), the arguments of the ρ functions factorize

into the product of a ζ-free function, X , and a ζ-containing function, Z(N)MHV. The ζ-free
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function is simpler and its first few terms read,

X = 1 +

(

1

2
x0 + x1

)

η +

(

1

8
x20 +

1

2
x0x1 +

1

2
x1x0 + x21

)

η2

+

(

1

48
x30+

1

8
x20x1+

1

4
x0x1x0+

1

2
x0x

2
1+

1

6
x1x

2
0+

1

2
x1x0x1+

1

2
x21x0+x

3
1

)

η3+· · · .

(4.10)

The ζ-containing functions are slightly more complicated. Their first few terms are,

ZMHV =
1

2
x1 η +

1

4
x1x0 η

2 +
1

16
x1x

2
0 η

3 +

(

1

96
x1x

3
0 −

1

8
ζ3 x1

)

η4 + · · · ,

ZNMHV =
1

4
x1 η

2 +
1

16
x1x0 η

3 +
1

96
x1x

2
0 η

4 +

(

1

768
x1x

3
0 −

1

48
ζ3 x1

)

η5 + · · · .
(4.11)

Using eqs. (4.10) and (4.11), one may easily extract g
(ℓ)
ℓ−1 for ℓ = 1, 2, 3, 4 (cf. eqs. (1.5)

and (4.2)). The one loop term vanishes, g
(1)
0 = 0, and the other functions read,

g
(2)
1 =

1

4
L0,1 +

1

4
L1,0 +

1

2
L1,1 ,

g
(3)
2 =

1

16
L0,0,1 +

1

8
L0,1,0 +

1

4
L0,1,1 +

1

16
L1,0,0 +

1

4
L1,0,1 +

1

4
L1,1,0 +

1

2
L1,1,1 ,

g
(4)
3 =

1

96
L0,0,0,1 +

1

32
L0,0,1,0 +

1

16
L0,0,1,1 +

1

32
L0,1,0,0 +

1

8
L0,1,0,1 +

1

8
L0,1,1,0

+
1

4
L0,1,1,1 +

1

96
L1,0,0,0 +

1

12
L1,0,0,1 +

1

8
L1,0,1,0 +

1

4
L1,0,1,1 +

1

16
L1,1,0,0

+
1

4
L1,1,0,1 +

1

4
L1,1,1,0 +

1

2
L1,1,1,1 −

1

8
ζ3 L1 .

(4.12)

Similarly, one may extract the first few f (ℓ) (cf. eqs. (2.20) and (4.3)), finding f (1) = 0 and,

f (2) =
1

4
L0,1 ,

f (3) =
1

8
L0,0,1 +

1

16
L0,1,0 +

1

4
L0,1,1 ,

f (4) =
1

32
L0,0,0,1+

1

32
L0,0,1,0+

1

8
L0,0,1,1+

1

96
L0,1,0,0+

1

8
L0,1,0,1+

1

16
L0,1,1,0+

1

4
L0,1,1,1 ,

f (5) =
1

192
L0,0,0,0,1 +

1

128
L0,0,0,1,0 +

1

32
L0,0,0,1,1 +

1

192
L0,0,1,0,0 +

1

16
L0,0,1,0,1

+
1

32
L0,0,1,1,0 +

1

8
L0,0,1,1,1 +

1

768
L0,1,0,0,0 +

1

24
L0,1,0,0,1 +

1

32
L0,1,0,1,0

+
1

8
L0,1,0,1,1 +

1

96
L0,1,1,0,0 +

1

8
L0,1,1,0,1 +

1

16
L0,1,1,1,0 +

1

4
L0,1,1,1,1 −

1

48
ζ3 L0,1 .

(4.13)

We do not offer a proof that eqs. (4.2) and (4.3) are valid to all orders in perturbation

theory. One may easily check that their expansions through low loop orders, as determined

by eqs. (4.12) and (4.13), match the known results [35, 42]. It is also straightforward to

extend the above calculations to ten loops and confirm that the results are in agreement

– 12 –



J
H
E
P
0
1
(
2
0
1
3
)
0
5
9

with those of ref. [42]. Moreover, we have verified that the truncated series expansion of

eq. (4.2) as |w| → 0 agrees with that of eq. (2.16) through 14 loops.

A comparison through such a high loop order is important in order to confirm the

absence of multiple zeta values with depth larger than one (hereafter simply “MZVs”).

To see why these MZVs should be absent, consider performing the sum of residues in

eq. (2.16). Transcendental constants can only arise from the evaluation the ψ function and

its derivatives at integer values. The latter are given in terms of rational numbers (Euler-

Zagier sums) and ordinary ζ values. Therefore, it is impossible for the series expansion of

eq. (2.16) to contain MZVs.

On the other hand, we would naively expect MZVs to appear in the series expansion of

eq. (4.2) at 12 loops and beyond. This expectation is due to the fact that, for high weights,

the y alphabet of eq. (3.10) contains MZVs, and, starting at weight 12, these MZVs begin

appearing explicitly in the definitions of the SVHPLs. In order for eq. (4.2) to agree

with eq. (2.16), all the MZVs must conspire to cancel in the particular linear combination

of SVHPLs that appears in (4.2). We find that this cancellation indeed occurs, at least

through 14 loops. It would be interesting to understand the mechanism of this cancellation,

but we postpone this study to future work.

4.2 Consistency of the MHV and NMHV formulas

The MHV and NMHV remainder functions are related by the differential equation (2.21),

w∗ ∂

∂w∗
RMHV

6 |LLA = w
∂

∂w
RNMHV

6 |LLA . (4.14)

Recalling that (w,w∗) = (−z,−z̄), it is straightforward to use the formulas (3.14) to check

that eqs. (4.2) and (4.3) obey this differential equation. To see how this works, consider

eq. (4.2), which we write as,

RMHV
6 |LLA =

2πi

log(1− u1)
ρ
[

g0(x0, x1)x0 + g1(x0, x1)x1

]

, (4.15)

for some functions g0(x0, x1) and g1(x0, x1) which can be easily read off from eq. (4.2).

The w∗ derivative acts on SVHPLs by clipping off the last index and multiplying by 1/w∗

if that index was an x0 or by −1/(1 + w∗) if it was an x1. There are also corrections due

to the y alphabet at higher weights. Importantly, y0 = x0, so these corrections only affect

the terms with a prefactor 1/(1 + w∗). This observation allows us to write,

w∗ ∂

∂w∗
RMHV

6 |LLA =
2πi

log(1− u1)
ρ
[

g0(x0, x1)−
w∗

1 + w∗
ĝ1(x0, x1)

]

=
2πi

log(1−u1)
ρ
[ 1

1+w∗
g0(x0, x1)+

1

1+1/w∗

(

g0(x0, x1)−ĝ1(x0, x1)
)]

.

(4.16)

Due to the complicated expression for y1, it is difficult to obtain an explicit formula

for ĝ1(x0, x1). Thankfully, we may employ a symmetry argument to avoid calculating

it directly. Referring to eq. (2.16), RMHV
6 |LLA has manifest symmetry under inversion

– 13 –



J
H
E
P
0
1
(
2
0
1
3
)
0
5
9

(w,w∗) ↔ (1/w, 1/w∗), or, equivalently, (ν, n) ↔ (−ν,−n). The differential operator

w∗ ∂w∗ flips the parity, so eq. (4.16) should be odd under inversion. Since the two rational

prefactors on the second line of eq. (4.16) map into one another under inversion, we can

infer that their coefficients must be related,8

g0

(

1

w
,
1

w∗

)

= −g0(w,w∗) + ĝ1(w,w
∗) , (4.17)

where g0(w,w
∗) = ρ(g0(x0, x1)) and ĝ1(w,w

∗) = ρ(ĝ1(x0, x1)). It is easy to check that this

identity is satisfied for low loop orders.9

Using these symmetry properties, we can write,

w∗ ∂

∂w∗
RMHV

6 |LLA =
2πi

log(1− u1)

1

1 + w∗
ρ
[

g0(x0, x1)
]

−
{

(w,w∗) ↔
(

1

w
,
1

w∗

)}

.

(4.18)

Turning to the right-hand side of eq. (4.14), we observe that the differential operator w ∂w
acts on eq. (4.3) by removing the leading x0 and flipping the sign of the second term,

w
∂

∂w
RNMHV

6 |LLA =
2πi

log(1− u1)

1

1 + w∗
ρ
[

XZNMHV
]

−
{

(w,w∗) ↔
(

1

w
,
1

w∗

)}

. (4.19)

Comparing eq. (4.18) and eq. (4.19), we see that eq. (4.14) is satisfied if g0(x0, x1) =

XZNMHV. To verify that this is true, we must extract g0(x0, x1) from RMHV
6 |LLA. To this

end, collect all terms in the argument of ρ with at least one trailing x0 and remove that

x0. This procedure gives,

g0(x0, x1) =
1

2
X

∞
∑

k=2

(

x1

k−2
∑

n=0

(−1)nxk−n−2
0

n
∑

m=0

22m−k+1

(k −m− 1)!
Z(n,m)

)

ηk

= XZNMHV ,

(4.20)

so we conclude that eq. (4.14) is indeed satisfied.

5 Collinear limit

In the previous section, we proposed an all-orders formula for the MHV and NMHV re-

mainder functions in MRK. The expressions are effectively functions of two variables, w

and w∗. The single-valuedness condition allows for these functions to be expressed in a

compact way, but the result is still somewhat difficult to manipulate.

In this section, we study a simpler kinematical configuration: the collinear corner of

MRK phase space. To reach this configuration, we begin in multi-Regge kinematics and

then take legs 1 and 6 to be nearly collinear. In terms of the cross ratios ui, this limit is

1− u1, u2, u3 ∼ 0 , x ≡ u2
1− u1

= O(1) , y ≡ u3
1− u1

∼ 0 , (5.1)

8ρ does not generate any rational functions which might allow these terms to mix together.
9A general proof would be tantamount to showing that eq. (4.2) is symmetric under inversion. The latter

seems to require another intricate cancellation of multiple zeta values. We postpone this investigation to

future work.
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or, in terms of the (w,w∗) variables, it is equivalent to,

1− u1 ∼ 0 , |w| ∼ 0 , w ∼ w∗ . (5.2)

As we approach the collinear limit, the remainder function can be expanded in pow-

ers of w, w∗, and log |w|. The leading power-law behavior is proportional to (w + w∗).

Neglecting terms that are suppressed by further powers of |w|, the result is effectively a

function of a single variable, ξ = η log |w| = a log(1 − u1) log |w|, and is simple enough to

be computed explicitly, as we show in the following subsections.

5.1 MHV

In the MHV helicity configuration, the remainder function is symmetric under conjugation

w ↔ w∗. It also vanishes in the strict collinear limit. These conditions suggest a convenient

form for the expansion in the near-collinear limit,

RMHV
6 |LLA, coll. =

2πi

log(1− u1)
(w + w∗)

∞
∑

k=0

ηk+1 rMHV
k

(

η log |w|
)

, (5.3)

for some functions rMHV
k that are analytic in a neighborhood of the origin. We have

neglected further power-suppressed terms, i.e. terms quadratic or higher in w or w∗. The

index k labels the degree to which rMHV
k is subleading in log |w|. For example, the leading

logarithms are collected in rMHV
0 , the next-to-leading logarithms are collected in rMHV

1 , etc.

Starting from eq. (4.2), it is possible to obtain an explicit formula for rMHV
k . To begin,

we note that it is sufficient to restrict our attention to the terms proportional to w — the

conjugation symmetry guarantees that they are equal to the terms proportional to w∗. The

main observation is that only a subset of terms in eq. (4.2) contributes to the power series

expansion at order w. It turns out that the relevant subset is simply the set of SVHPLs

with a single x1 in the weight vector. Roughly speaking, each additional x1 implies another

integration by 1/(1 + w), which increases the leading power by one.

The equivalent statement is not true for w∗, i.e. SVHPLs with an arbitrary number of

x1’s contribute to the power series expansion at order w∗. This asymmetry can be traced to

the differences between the x and y alphabets: referring to eq. (3.9), the x alphabet indexes

the HPLs with argument w and the y alphabet indexes the HPLs with argument w∗.

We are therefore led to consider the terms in eq. (4.2) with exactly one x1. Eq. (4.4)

shows that these terms may be obtained by dropping all x1’s from X ,

RMHV
6 |LLA, coll. =

2πi

log(1− u1)
ρ
(

e
1
2
x0ηZMHV − 1

2
x1η
)

. (5.4)

Since no ζ terms appear in SVHPLs with a single x1, it is straightforward to express them

in terms of HPLS,

Lxn
0 x1xm

0
=

n
∑

j=0

1

j!
Hj

x0
H

xm
0 x1x

n−j
0

+
m
∑

j=0

1

j!
H

xn
0 x1x

m−j
0

H
j
x0
. (5.5)
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Here we have simplified the notation by defining Hm ≡ Hm(−w) and Hm = Hm(−w∗).

Next, we recall eq. (3.5), in which we used the shuffle algebra to expose the explicit loga-

rithms,

Hxn
0 x1xm

0
=

m
∑

j=0

(−1)j

(m− j)!

(

n+ j

j

)

Hm−j
x0

H
xn+j
0 x1

. (5.6)

Finally, eqs. (3.6) and (3.7) implies that the series expansions for small w have leading

term,

Hxk
0x1

(−w) = −w +O(w2) . (5.7)

Combining eqs. (5.4)–(5.7) and applying some hypergeometric function identities, we

arrive at an explicit formula for rMHV
k ,

rMHV
k (x) =

1

2
δ0,k +

k
∑

n=0

n
∑

m=0

2k−n−m
∑

j=k−m

(−2)2m+j−k−1

(m+ j − k)!
Z(n,m)xm−k+j/2 P

(k−j−n,k−j−m)
j

(

0
)

Ij
(

2
√
x
)

.

(5.8)

In this expression, the Ij are modified Bessel functions and the P
(a,b)
j are Jacobi polyno-

mials, which can be defined for non-negative integers j by the generating function,

∞
∑

j=0

P
(a,b)
j (z) tj = 2a+b

(

1−t+
√

t2 − 2tz + 1
)−a(

1+t+
√

t2 − 2tz + 1
)−b(√

t2 − 2tz + 1
)−1

.

(5.9)

It is easy to extract the first few terms,

rMHV
0 (x) =

1

2

[

1− I0
(

2
√
x
)]

,

rMHV
1 (x) = −1

4
I2
(

2
√
x
)

, (5.10)

rMHV
2 (x) =

1

4x
I2
(

2
√
x
)

− 1

16
I4
(

2
√
x
)

.

The leading term, rMHV
0 , corresponds to the double-leading-logarithmic approximation

(DLLA) of ref. [48],

RMHV
6 |DLLA = iπ a (w + w∗)

[

1− I0

(

2
√

η log |w|
)]

, (5.11)

and is in agreement with the results of that reference.

Only for k > 2 do ζ values begin to appear in rMHV
k . Moreover, modified Bessel

functions with odd indices only appear in the ζ-containing terms. To see this, notice that

the ζ-free terms of eq. (5.8) arise from the boundary of the sum with n = m = 0, in which

case a = b = k − j in eq. (5.9). When a = b, P a,b
j (0) = 0 for odd j since eq. (5.9) reduces

to a function of t2 in this case. It follows that the ζ-free pieces of rMHV
k have no modified

Bessel functions with odd indices.

Equations (5.3) and (5.8) provide an explicit formula for the six-point remainder func-

tion in the near-collinear limit of the LL approximation of MRK. If the sum in eq. (5.3)
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Figure 1. The MHV remainder function in the near-collinear limit of the LL approximation of

MRK. It has been rescaled by an exponential damping factor. See eq. (5.12).

converges sufficiently quickly, then it should be possible to evaluate the function numer-

ically by truncating the sum at a finite value of k, kmax. A numerical analysis indicates

that for |w| < 1 and η . 20, kmax ≃ 100 is adequate to ensure convergence.

The numerical analysis also indicates that RMHV
6 |LLA, coll. increases exponentially as a

function of η, and that the extent of this increase depends strongly on the value of log |w|.
We find empirically that the rescaled function

R̂MHV
6 |LLA, coll. = exp

(

− η
4
√

− log |w|

)

log(1− u1)

2πi (w + w∗)
RMHV

6 |LLA, coll. (5.12)

attains reasonable uniformity in the region 0 < η < 10 and −40 < log |w| < 0. This

particular rescaling carries no special significance, as alternatives are possible and may be

more appropriate in different regions. In eq. (5.12) we have also divided by the overall

prefactor of eq. (5.3) so that R̂MHV
6 |LLA, coll. is truly a function of the two variables η and

log |w|. The results are displayed in figure 1.

5.2 NMHV

A similar analysis can be performed for the NMHV helicity configuration. The situation

is slightly more complicated in this case because the NMHV remainder function is not

symmetric under conjugation w ↔ w∗. One consequence is that its expansion in the
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collinear limit requires two sequences of functions, which we choose to parameterize by

rNMHV
k and r̃NMHV

k ,

RNMHV
6 |LLA, coll. =

2πi

log(1− u1)

[

(w + w∗)
∞
∑

k=0

ηk+2 rNMHV
k

(

η log |w|
)

+ w∗
∞
∑

k=0

ηk r̃NMHV
k

(

η log |w|
)

]

.

(5.13)

Contributions to the power series at order w arise from the first term of eq. (4.3) (the second

term has an overall factor of w∗), and, as in the MHV case, only from the subset of SVHPLs

with a single x1 in the weight vector. It is therefore possible to reuse eqs. (5.5)–(5.7) and

obtain an explicit formula for the coefficient of w, rNMHV
k . The result is,

rNMHV
k (x) =

k
∑

n=0

n
∑

m=0

2k−n−m
∑

j=k−m

(−2)2m+j−k

(m+ j − k)!
Z(n,m)xm−k+(j−1)/2 P

(k−j−n−1,k−j−m−1)
j+2

(

0
)

Ij+1

(

2
√
x
)

.

(5.14)

The first few terms are

rNMHV
0 (x) = − 1

4
√
x
I1(2

√
x) ,

rNMHV
1 (x) = − 1

8
√
x
I3(2

√
x) ,

rNMHV
2 (x) =

3

16x3/2
I3(2

√
x)− 1

32
√
x
I5(2

√
x) .

(5.15)

As previously mentioned, it is not so straightforward to extract the coefficient of w∗

in this way. We can instead make progress by exploiting the differential equation (2.21).

In terms of the functions rMHV
k , rNMHV

k , and r̃NMHV
k , the equations read,

∂xr
MHV
k (x) = 2 rNMHV

k (x) + ∂xr
NMHV
k−1 (x)

∂xr̃
NMHV
k (x) = 2 rMHV

k (x) + 2 rNMHV
k−1 (x) .

(5.16)

The first of these equations is automatically satisfied and confirms the consistency of

eq. (5.8) and eq. (5.14). The second equation determines r̃NMHV
k up to a constant of

integration which can be determined by examining the n = −1 term of eq. (2.19). The

solution is,

r̃NMHV
k (x) =

x δ0,k−
k
∑

n=0

n
∑

m=0

2k−n−m
∑

j=k−m

(−2)2m+j−k

(m+j−k)! Z(n,m)xm−k+(j+1)/2 P
(k−j−n,k−j−m)
j

(

0
)

Ij−1

(

2
√
x
)

.

(5.17)
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The first few terms are

r̃NMHV
0 (x) = x−√

x I1
(

2
√
x
)

,

r̃NMHV
1 (x) = −1

2

√
x I1

(

2
√
x
)

,

r̃NMHV
2 (x) =

1

2
√
x
I1
(

2
√
x
)

− 1

8

√
x I3

(

2
√
x
)

.

(5.18)

Modified Bessel functions with even indices only appear in the ζ-containing terms of rNMHV
k

and r̃NMHV
k . The explanation of this fact is the same as in the MHV case, except that the

parity is flipped due to the shifts of the indices of the modified Bessel functions in eq. (5.14)

and eq. (5.17).

5.3 The real part of the MHV remainder function in NLLA

As described in section 2, the real part of the MHV remainder function in NLLA is related

to its imaginary part in LLA. In the collinear limit, the relation (2.15) may be written as,

Re
(

RMHV
6 |NLLA, coll.

)

=
2πi

log(1− u1)

(

1

2
η2

∂

∂η

1

η
− 1

2
η log |w|

)

RMHV
6 |LLA, coll.

− π2

log2(1− u1)
η2 log |w| .

(5.19)

Since RMHV
6 |LLA vanishes like (w + w∗) in the strict collinear limit, the quadratic term

(RMHV
6 |LLA)2 in eq. (2.15) only contributes to further power-suppressed terms in the near-

collinear limit and is therefore omitted from eq. (5.19).10 We may write eq. (5.19) as,

Re
(

RMHV
6 |NLLA, coll.

)

= − 4π2

log2(1− u1)
(w + w∗)

∞
∑

k=0

ηk+1qk
(

η log |w|
)

, (5.20)

where,

qk(x) =
1

4
x δ0,k +

1

2
(k − x) rMHV

k

(

x
)

+
1

2
x∂xr

MHV
k

(

x
)

. (5.21)

The leading term, q0, corresponds to the real part of the next-to-double-leading-logarithmic

approximation (NDLLA) of ref. [48]. Our results agree11 with that reference and read,

Re
(

RMHV
6 |NDLLA

)

=

π2 (w + w∗) η

log2(1− u1)

[

−η log |w|I0
(

2
√

η log |w|
)

+
√

η log |w| I1
(

2
√

η log |w|
)]

.
(5.22)

6 Conclusions

In this article, we studied the six-point amplitude of planar N = 4 super-Yang-Mills

theory in the leading-logarithmic approximation of multi-Regge kinematics. In this limit,

10As a consequence, eq. (5.19) does not depend on the conventions used to define R, i.e. the equation is

equally valid if R is replaced by exp(R).
11The agreement requires a few typos to be corrected in eq. (A.16) of ref. [48].
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the remainder function assumes a particularly simple form, which we exposed to all loop

orders in terms of the single-valued harmonic polylogarithms introduced by Brown. The

SVHPLs provide a natural basis of functions for the remainder function in MRK because the

single-valuedness condition maps nicely onto a physical constraint imposed by unitarity.

Previously, these functions had been used to calculate the remainder function in LLA

through ten loops. In this work, we extended these results to all loop orders.

In MRK, the tree amplitudes in the MHV and NMHV helicity configurations are

identical. This observation motivates the definition of an NMHV remainder function in

analogy with the MHV case. We examined both remainder functions in this article, and

proposed all-order formulas for each case. In fact, these formulas are related: as described

in ref. [41], the two remainder functions are linked by a simple differential equation. We

employed this differential equation to verify the consistency of our results.

We also investigated the behavior of our formulas in the near-collinear limit of MRK.

The additional large logarithms that arise in this limit impose a hierarchical organization

of the resulting expansions. We derived explicit all-orders expressions for the terms of this

logarithmic expansion. The results are given in terms of modified Bessel functions.

We did not provide a proof of the all-orders result, but we verified that it agrees

through 14 loops with an integral formula of Lipatov and Prygarin. The agreement of

these formulas at 12 loops and beyond requires an intricate cancellation of multiple zeta

values. It would be interesting to understand the mechanism of this cancellation. There

are several other potential directions for future research. For example, in refs. [55–57],

Alday, Gaiotto, Maldacena, Sever, and Vieira performed an OPE analysis of hexagonal

Wilson loops which in principle should provide additional cross-checks of our results. It

should also be possible to study the all-orders formula as a function of the coupling and,

in particular, to examine its strong-coupling expansion. We have begun this study in the

collinear limit and presented our initial results in figure 1. A first attempt to compare the

six-point remainder function in MRK at strong and weak coupling was made by Bartels,

Kotanski, and Schomerus [34]. Further analysis of our all-orders formula should allow for

an important comparison with this string-theoretic calculation.

Acknowledgments

I am grateful to Lance Dixon and Claude Duhr for many helpful discussions and comments

on the manuscript. This research was supported by the US Department of Energy under

contract DE–AC02–76SF00515.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.

References

[1] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory

amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226]

[INSPIRE].

– 20 –

http://dx.doi.org/10.1016/0550-3213(94)90179-1
http://arxiv.org/abs/hep-ph/9403226
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9403226


J
H
E
P
0
1
(
2
0
1
3
)
0
5
9

[2] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes

into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

[3] R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons,

Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].

[4] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in

Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

[5] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The All-Loop

Integrand For Scattering Amplitudes in Planar N = 4 SYM, JHEP 01 (2011) 041

[arXiv:1008.2958] [INSPIRE].

[6] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar

Scattering Amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].

[7] Z. Bern, J. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes,

Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

[8] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double

Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

[9] K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. (1977) 83 831.

[10] F.C.S. Brown, Multiple zeta values and periods of moduli spaces M0,n, math/0606419.

[11] A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238.

[12] A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for

Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703]

[INSPIRE].

[13] C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic

functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].

[14] L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling,

JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].

[15] J. Drummond, J. Henn, V. Smirnov and E. Sokatchev, Magic identities for conformal

four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].

[16] Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar

Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills

Theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].

[17] G. Korchemsky, J. Drummond and E. Sokatchev, Conformal properties of four-gluon planar

amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].

[18] A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills

and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].

[19] L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT,

JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].

[20] J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Conformal Ward identities for

Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337

[arXiv:0712.1223] [INSPIRE].

[21] J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Dual superconformal symmetry of

scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317

[arXiv:0807.1095] [INSPIRE].

– 21 –

http://dx.doi.org/10.1016/0550-3213(94)00488-Z
http://arxiv.org/abs/hep-ph/9409265
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9409265
http://dx.doi.org/10.1016/j.nuclphysb.2005.02.030
http://arxiv.org/abs/hep-th/0412308
http://inspirehep.net/search?p=find+EPRINT+hep-th/0412308
http://dx.doi.org/10.1103/PhysRevLett.94.181602
http://arxiv.org/abs/hep-th/0501052
http://inspirehep.net/search?p=find+EPRINT+hep-th/0501052
http://dx.doi.org/10.1007/JHEP01(2011)041
http://arxiv.org/abs/1008.2958
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2958
http://dx.doi.org/10.1007/JHEP06(2012)125
http://arxiv.org/abs/1012.6032
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.6032
http://dx.doi.org/10.1103/PhysRevD.78.085011
http://arxiv.org/abs/0805.3993
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.3993
http://dx.doi.org/10.1103/PhysRevLett.105.061602
http://arxiv.org/abs/1004.0476
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.0476
http://arxiv.org/abs/math/0606419
http://arxiv.org/abs/0908.2238
http://dx.doi.org/10.1103/PhysRevLett.105.151605
http://arxiv.org/abs/1006.5703
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.5703
http://dx.doi.org/10.1007/JHEP10(2012)075
http://arxiv.org/abs/1110.0458
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.0458
http://dx.doi.org/10.1088/1126-6708/2007/06/064
http://arxiv.org/abs/0705.0303
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0303
http://dx.doi.org/10.1088/1126-6708/2007/01/064
http://arxiv.org/abs/hep-th/0607160
http://inspirehep.net/search?p=find+EPRINT+hep-th/0607160
http://dx.doi.org/10.1103/PhysRevD.75.085010
http://arxiv.org/abs/hep-th/0610248
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610248
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.041
http://arxiv.org/abs/0707.0243
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.0243
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.002
http://arxiv.org/abs/0707.1153
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.1153
http://dx.doi.org/10.1088/1126-6708/2007/11/068
http://arxiv.org/abs/0710.1060
http://inspirehep.net/search?p=find+EPRINT+arXiv:0710.1060
http://dx.doi.org/10.1016/j.nuclphysb.2009.10.013
http://arxiv.org/abs/0712.1223
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.1223
http://dx.doi.org/10.1016/j.nuclphysb.2009.11.022
http://arxiv.org/abs/0807.1095
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.1095


J
H
E
P
0
1
(
2
0
1
3
)
0
5
9

[22] J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in

N = 4 super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [INSPIRE].

[23] J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, On planar gluon

amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].

[24] Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally

supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001

[hep-th/0505205] [INSPIRE].

[25] Z. Bern, L. Dixon, D. Kosower, R. Roiban, M. Spradlin, C. Vergu and A. Volovich, The

Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory,

Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].

[26] J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon

MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE].

[27] J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, The hexagon Wilson loop and the

BDS ansatz for the six-gluon amplitude, Phys. Lett. B 662 (2008) 456 [arXiv:0712.4138]

[INSPIRE].

[28] J. Bartels, L. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and

Bern-Dixon-Smirnov amplitudes, Phys. Rev. D 80 (2009) 045002 [arXiv:0802.2065]

[INSPIRE].

[29] V. Del Duca, C. Duhr and V.A. Smirnov, An Analytic Result for the Two-Loop Hexagon

Wilson Loop in N = 4 SYM, JHEP 03 (2010) 099 [arXiv:0911.5332] [INSPIRE].

[30] V. Del Duca, C. Duhr and V.A. Smirnov, The Two-Loop Hexagon Wilson Loop in N = 4

SYM, JHEP 05 (2010) 084 [arXiv:1003.1702] [INSPIRE].

[31] J. Bartels, L. Lipatov and A. Sabio Vera, N = 4 supersymmetric Yang-Mills scattering

amplitudes at high energies: The Regge cut contribution, Eur. Phys. J. C 65 (2010) 587

[arXiv:0807.0894] [INSPIRE].

[32] R.M. Schabinger, The Imaginary Part of the N = 4 super-Yang-Mills Two-Loop Six-Point

MHV Amplitude in Multi-Regge Kinematics, JHEP 11 (2009) 108 [arXiv:0910.3933]

[INSPIRE].

[33] L. Lipatov and A. Prygarin, Mandelstam cuts and light-like Wilson loops in N = 4 SUSY,

Phys. Rev. D 83 (2011) 045020 [arXiv:1008.1016] [INSPIRE].

[34] J. Bartels, J. Kotanski and V. Schomerus, Excited Hexagon Wilson Loops for Strongly

Coupled N = 4 SYM, JHEP 01 (2011) 096 [arXiv:1009.3938] [INSPIRE].

[35] L. Lipatov and A. Prygarin, BFKL approach and six-particle MHV amplitude in N = 4 super

Yang-Mills, Phys. Rev. D 83 (2011) 125001 [arXiv:1011.2673] [INSPIRE].

[36] J. Bartels, L. Lipatov and A. Prygarin, MHV Amplitude for 3 → 3 Gluon Scattering in Regge

Limit, Phys. Lett. B 705 (2011) 507 [arXiv:1012.3178] [INSPIRE].

[37] L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon,

JHEP 11 (2011) 023 [arXiv:1108.4461] [INSPIRE].

[38] V. Fadin and L. Lipatov, BFKL equation for the adjoint representation of the gauge group in

the next-to-leading approximation at N = 4 SUSY, Phys. Lett. B 706 (2012) 470

[arXiv:1111.0782] [INSPIRE].

[39] A. Prygarin, M. Spradlin, C. Vergu and A. Volovich, All Two-Loop MHV Amplitudes in

Multi-Regge Kinematics From Applied Symbology, Phys. Rev. D 85 (2012) 085019

[arXiv:1112.6365] [INSPIRE].

– 22 –

http://dx.doi.org/10.1088/1126-6708/2009/05/046
http://arxiv.org/abs/0902.2987
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.2987
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.007
http://arxiv.org/abs/0709.2368
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2368
http://dx.doi.org/10.1103/PhysRevD.72.085001
http://arxiv.org/abs/hep-th/0505205
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505205
http://dx.doi.org/10.1103/PhysRevD.78.045007
http://arxiv.org/abs/0803.1465
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.1465
http://dx.doi.org/10.1016/j.nuclphysb.2009.02.015
http://arxiv.org/abs/0803.1466
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.1466
http://dx.doi.org/10.1016/j.physletb.2008.03.032
http://arxiv.org/abs/0712.4138
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.4138
http://dx.doi.org/10.1103/PhysRevD.80.045002
http://arxiv.org/abs/0802.2065
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.2065
http://dx.doi.org/10.1007/JHEP03(2010)099
http://arxiv.org/abs/0911.5332
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.5332
http://dx.doi.org/10.1007/JHEP05(2010)084
http://arxiv.org/abs/1003.1702
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.1702
http://dx.doi.org/10.1140/epjc/s10052-009-1218-5
http://arxiv.org/abs/0807.0894
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0894
http://dx.doi.org/10.1088/1126-6708/2009/11/108
http://arxiv.org/abs/0910.3933
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.3933
http://dx.doi.org/10.1103/PhysRevD.83.045020
http://arxiv.org/abs/1008.1016
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1016
http://dx.doi.org/10.1007/JHEP01(2011)096
http://arxiv.org/abs/1009.3938
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.3938
http://dx.doi.org/10.1103/PhysRevD.83.125001
http://arxiv.org/abs/1011.2673
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.2673
http://dx.doi.org/10.1016/j.physletb.2011.09.061
http://arxiv.org/abs/1012.3178
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3178
http://dx.doi.org/10.1007/JHEP11(2011)023
http://arxiv.org/abs/1108.4461
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.4461
http://dx.doi.org/10.1016/j.physletb.2011.11.048
http://arxiv.org/abs/1111.0782
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.0782
http://dx.doi.org/10.1103/PhysRevD.85.085019
http://arxiv.org/abs/1112.6365
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.6365


J
H
E
P
0
1
(
2
0
1
3
)
0
5
9

[40] J. Bartels, A. Kormilitzin, L. Lipatov and A. Prygarin, BFKL approach and 2 → 5

maximally helicity violating amplitude in N = 4 super-Yang-Mills theory,

Phys. Rev. D 86 (2012) 065026 [arXiv:1112.6366] [INSPIRE].

[41] L. Lipatov, A. Prygarin and H.J. Schnitzer, The Multi-Regge limit of NMHV Amplitudes in

N = 4 SYM Theory, arXiv:1205.0186 [INSPIRE].

[42] L.J. Dixon, C. Duhr and J. Pennington, Single-valued harmonic polylogarithms and the

multi-Regge limit, JHEP 10 (2012) 074 [arXiv:1207.0186] [INSPIRE].

[43] J. Bartels, V. Schomerus and M. Sprenger, Multi-Regge Limit of the n-Gluon Bubble Ansatz,

arXiv:1207.4204 [INSPIRE].

[44] F.C.S. Brown, Single-valued multiple polylogarithms in one variable, C. R. Acad. Sci. Paris,

Ser. I (2004) 338.

[45] R.C. Brower, H. Nastase, H.J. Schnitzer and C.-I. Tan, Implications of multi-Regge limits for

the Bern-Dixon-Smirnov conjecture, Nucl. Phys. B 814 (2009) 293 [arXiv:0801.3891]

[INSPIRE].

[46] R.C. Brower, H. Nastase, H.J. Schnitzer and C.-I. Tan, Analyticity for Multi-Regge Limits of

the Bern-Dixon-Smirnov Amplitudes, Nucl. Phys. B 822 (2009) 301 [arXiv:0809.1632]

[INSPIRE].

[47] V. Del Duca, C. Duhr and E. Glover, Iterated amplitudes in the high-energy limit,

JHEP 12 (2008) 097 [arXiv:0809.1822] [INSPIRE].

[48] J. Bartels, L. Lipatov and A. Prygarin, Collinear and Regge behavior of 2 → 4 MHV

amplitude in N = 4 super Yang-Mills theory, arXiv:1104.4709 [INSPIRE].

[49] N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing,

J. Stat. Mech. 0701 (2007) P01021 [hep-th/0610251] [INSPIRE].

[50] S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and

multiscale multiloop integrals, J. Math. Phys. 43 (2002) 3363 [hep-ph/0110083] [INSPIRE].

[51] V. Del Duca, Equivalence of the Parke-Taylor and the Fadin-Kuraev-Lipatov amplitudes in

the high-energy limit, Phys. Rev. D 52 (1995) 1527 [hep-ph/9503340] [INSPIRE].

[52] E. Remiddi and J. Vermaseren, Harmonic polylogarithms,

Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

[53] L. Euler, Meditationes circa singulare serierum genus, Novi Comm. Acad. Sci. Petropol. 20

(1775) 140.

[54] D. Zagier, Values of zeta functions and their applications, in A. Joseph et al. eds., First

European Congress of Mathematics (Paris, 6–10 July 1992), Vol. II, Birkhäuser, Basel
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