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THE SIX ROLL MILL: UNFOLDING AN 

UNSTABLE PERSISTENTLY EXTENSIONAL FLOWt 

BY M. V. BERRY AND M. R. MACKLEYt 
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1 TL 

(Communicated by A. Keller, F.R.S. - Received 29 September 1976) 

[Plates 1-5] 

The six roll mill produces steady two-dimensional flows with three incoming and three 
outgoing streams of fluid. Each flow is generated by a particular set of roller speeds 
represented by a point in 'control space', and is characterized by its 'critical points', 
at which the fluid velocity vanishes. A surface Z separates control space into regions 
whose flows have different numbers of critical points; on Z the critical points are 
degenerate. For the system studied, Z is the 'elliptic umbilic catastrophe' in the 
classification of Thom. By using glycerol in the mill, a sequence of flows was explored, 
corresponding in control space to a loop intersecting S. The observed streamline 
patterns agree well with computer simulations. 

When the mill contained a 2 % solution of polyethylene oxide in water the sequence 
of observed flow patterns was very different. This can be explained by the long chain 
molecules becoming persistently extended along the outgoing streamlines issuing from 
critical points, and the resulting sheets of high extension inhibiting the development 
of large strain rates in the outgoing fluid streams; the breaking of symmetry between 
inflows and outflows is shown to explain the observed flow patterns. The high extension 
of the polymer molecules was observed as intense localized flow birefringence. The 
diminution in this intensity near degenerate critical points can be used to give rapid 
estimates of macromolecular relaxation time. 

1. INTRODUCTION 

Infinitesimal lines of fluid particles issuing from any point in a flowing fluid are generally 

altering in length and rotating as well as translating. Flows where some such fluid lines 

continually increase in length are called 'persistently extensional'. Their importance in the 

context of this paper lies in their ability to stretch to substantially full extension initially 

tangled long-chain polymer molecules dissolved in the fluid, provided both the relaxation time 
of the chains and the rate of extension of fluid lines are sufficiently large. 

For steady flows the recent work of Crowley, Frank, Mackley & Stephenson (1976) and 

Frank & Mackley (I976) shows that persistent extension occurs along streamlines issuing from 

stagnation points of the flow field; these are points where the fluid velocity vanishes (relative to 

rigid boundaries of the system, or to distant fluid). Frank & Mackley (1976) study two- 
dimensional flows with constant principal strain rate S and vorticity w. They show that these 

stagnation points exist when the flow is strain rate dominated, i.e. when S > w, as hyperbolic 
critical points of the flow field, where two incoming and two outgoing streamlines meet. When 
the flow is vorticity dominated, i.e. when S < o, the fluid velocity vanishes at elliptic critical 

t Dedicated to F. C. Frank, F.R.S., on his retirement as Director of the H. H. Wills Physics Laboratory. 
$ Now at School of Engineering and Applied Sciences, University of Sussex, Falmer, Brighton, Sussex. 
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points; these are surrounded by closed streamlines and are not sources of persistently extensional 

flow. Henceforth any place where the fluid velocity vanishes will be called a critical point. 
The purpose of this paper is to examine in detail a family of two-dimensional persistently 

extensional flows associated with degenerate critical points at which S = o where the fluid velocity 
vanishes. Such points are singularities of the flow; they have been classified by Thom (I972) and 

the classification forms the basis of'catastrophe theory'. A degenerate critical point is unstable 

in that a generic perturbation of the flow field causes its associated streamlines to change 

topology and the critical point to break up into non-degenerate hyperbolic or elliptic critical 

points, or degenerate critical points whose degree of singularity is lower. This breaking-up can 

occur in a number of topologically different ways which can be completely enumerated for the 

simpler types of degenerate critical points (a proof is given by Arnol'd 1973). The family of 

topologically distinct flows into which a singular flow (that is a flow containing a singularity) 
can break up is called the 'universal unfolding' of the singular flow, and the changes of topology 
are the 'catastrophes'. 

In the most singular flow considered here, three streamlines enter the singularity and three 

issue from it. The flow can be realized in the 'six roll mill', which consists of six alternately 
counter rotating rollers immersed in the fluid so that the parallel axes of the rollers form the 

edges of a regular hexagonal prism. The universal unfolding is the elliptic umbilic catastrophe of 

Thom's classification, and all the different flow patterns in this family can be produced by 

altering the controls of the rollers so that they may no longer all rotate at the same rate. 
In the context of polymer chain extension there are two reasons for studying ingular flows. 

The first is connected with the fact that at degenerate critical points, in contrast with hyperbolic 
critical points, fluid lines are not extending: the rate of persistent extension increases from zero 

along the streamline issuing from the singularity. This means that high extension of dissolved 

polymer molecules occurs not at the singularity but some distance from it. The region sur- 

rounding the singularity, containing chains that are not highly extended, can be observed as a 
'hole ' in the distribution of flow-induced birefringence. The size of this hole gives information 
about the relaxation time of polymer chains. 

The second reason is connected with the fact that polymer chains are not passive indicators 
whose extension merely reveals localized birefringence issuing from stagnation points. In fact 
localized regions of high extension can modify the ambient flow (Frank & Mackley 1976) 
probably by inhibiting the development of high strain rates. With singular flows this effect can 
be dramatic: in the six roll mill a given sequence of roller control settings can produce a sequence 
of flows (within the elliptic umbilic family) that is very different in fluids with and without 
dissolved polymer. 

2. SIX ROLL MILL FLOW FIELD 

In the two-dimensional flows under consideration the fluid velocity u has no component uz, 
the components u, and u, do not vary with z, and the fluid is incompressible. Such flows can be 

represented by a stream function 0(R), where R = (x, y), as 

u(R) = VA(0(R) "z) = (v, -X, 0), (2.1) 

where z is the unit vector in the z direction and subscripts on 0 denote differentiation. It is 

helpful to think of 0 as a curved surface whose infinitesimal deviation from the R plane is equal 
to q5(R). From (2.1) the streamlines are the contours of 0 and the fluid speed is 

2 
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Hyperbolic critical points are cols (saddle points) of the surface 0, and elliptic critical points 
are maxima or minima of S. 

Let C1 and C2 be the principal curvatures of 0 at R, reckoned positive if S is concave towards 
5 = + oo, and let C1 > C2. Then the following results can be proved: 

The vorticity is w(R) - V,1u = z, (2.3) 

where o(R) V = - - (C + C2)2. (2.4) 

The strain rate tensor is a 8 1 [au a8ul 

(R) S S] - 
ax 

2 Ly 
(\ [ + \ x x y' 
2 ay ax ay 

x L(z-f ) -z 
] (2.5) 

12 (Oy - ]'X) - QXY 
The principal strain rate is 

S(R) V(-det Sj) = (C1-C2) (2.6) 

The persistent strain rate, defined by Frank & Mackley (1976) as the strain rate of a non-rotating 
fluid line at R, is 

a(R) = 4(S2(R)-o2(R)) = V(-C,2). (2.7) 

Obviously cr is real only where the Gaussian curvature of q is negative. 
The lines of curvature of 95 form an orthogonal net of fluid lines that are momentarily not 

altering in length. They are rotating, however, with angular velocities 

1 =-C1, 2 =-C2, (2.8) 

where the subscripts on () refer to the fluid lines along which the surface has the corresponding 
principal curvatures, and where a positive ( has angular velocity vector along z. The net of 
lines of curvature divides the region near any point R into two pairs of opposite quadrants. 
Fluid lines issuing from R into one pair of quadrants are momentarily extending, while those 

issuing into the other pair are contracting. If the Gaussian curvature of 0 is negative, o1 and 02 
have opposite sign and fluid lines along both directions of curvature are rotating into the 

extending quadrants, which contain the non-rotating lines whose strain rate is o-. The strain rate 

trajectories, defined by the directions of the principal axes of Si^, also form an orthogonal net 
oriented at 450 to the net of lines of curvature. Figure 1 shows the two nets and the streamlines 
near a hyperbolic critical point; fluid lines along the outgoing streamlines remain in the 

extending quadrants for arbitrarily long times and hence 'persistently extend' with strain 
rate or. 

The singular flow which is the principal object of study in this paper belongs to a class of 
flows where 2n alternately outgoing and ingoing streamlines issue symmetrically from a 

degenerate critical point at R = 0. The flow function is 

0(R) = (y/n) Re(x+iy)n = (yRY/n) cos nO, (2.9) 

where (R, 0) are the polar coordinates of R and y is a constant. This flow is irrotational. When 
n = 2 the critical point is in fact not degenerate but hyperbolic, and the flow closely approxi- 
mates that in a four roll mill (Crowley et al. I976). For general n the flow is expected to approxi- 
mate that in a '2n roll mill' whose rollers are alternately counter rotating about parallel axes 

I-2 
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forming a prism whose normal cross-section is a regular 2n sided polygon. The general case will 

not be studied here, because the form of the perturbation of s(R) that would 'unfold' the 

singularity at R = 0 in all possible topologically distinct ways is not known. When n = 3, 

however, the universal unfolding is known and attention will henceforth be restricted to this 

case. 

FGE1Srmis-*), lr" - s 

I> " 
I? 

J 

FIGURE 1. Streamlines (-,-), lines of curvature (- - -) and strain rate trajectories (- -- -) near a hyperbolic 
critical point. Extending quadrants are shaded (i-) and the directions of extension and rotation of fluid lines 
are marked with light arrows. S is the principal strain rate and or the persistent strain rate. 

The flow given by equation (2.9) when n = 3 contains only cubic terms in its stream func- 

tion 0. This suggests that the universal unfolding contains the 'missing' linear and quadratic 
terms in x and y, and it is plausible on physical grounds that these terms correspond to the 

addition to the singular flow of a uniform translational flow with velocity V = (VJ, Vy, 0) and 

a uniform vorticity oz. The stream function now becomes 

s(R) = y(1x3-xy2) --w(x2 +y2) _ -Vx + VXy. (2.10) 

It was proved by Arnol'd (I973) that this is in fact the universal unfolding of the singular flow: 

any further perturbation may deform the streamlines but cannot change the topology of the 

critical-point structure of the totality of flows obtained from equation (2.10) by varying o, V, 
and V,. Precisely the stream function (2.10) appears as the 'elliptic umbilic catastrophe' in 

the classification of Thom (I972). In the language of catastrophe theory, x and y are 'state 

variables', o/y, V/Iy and VW/y are 'control parameters' and x3 -xy2 is the 'germ' of the cata- 

strophe. These aspects of the flow will be further discussed in ? 3. 

For large R the flow (2.10) has outgoing streamlines in directions 0 = 90?, 2100 and -30, 
and incoming streamlines in directions 0 = 30?, 150? and 270?. This suggests that the flow will 

be closely approximated in the central region of a six roll mill with rollers arranged as on 

figure 2. The rollers, which have radius a and separation d-a, rotate in the senses shown, and 

the rotation rates Q1 to Q6 are positive quantities by definition. 

4 
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The control parameters oly and V/y in the stream function qS of equation (2.10) depend on 

the roller rates Q1 to Q6 in a manner that can be determined by a matching procedure on the 

assumption that 0 gives a good approximation to the flow up to the inner surfaces of the rollers 

as well as for small R. Consider first the case V = 0. This can be realized by making the three 

anticlockwise roller speeds Q1, Q3 and Q5 the same (QA, say), and the three clockwise roller 

rates Q2,? Q4 and Q6 the same (QB, say). By matching the speeds aQA and aQB of the rollers' 

peripheries (c.f. figure 2) to the flow velocities u generated by (2.1) and (2.10) at their inner 

surfaces R = d, 0 = 0, tr/3 ... 51r/3, it is not hard to obtain the following expressions for y and o: 

y = (a/2d2) (QA + QB), (o = (a/2d) (QB - A). (2.11) 

FIGURE 2. Six roll mill geometry. Rollers are labelled 1 to 6 and streams between rollers are labelled (i) to (vi). 
6 and r are coordinates describing the approximately two roll mill flow in stream (i). 

In the general case this method fails, but the expressions just found suggest that y and w are 

respectively proportional to the mean roller rate D and the difference AQ of the mean rates 

of the clockwise and anticlockwise rollers, that is 

y = aD/d2, (o = aAQ2/2d, 

where n - (Q1+,Q2+Q+3+Q4+sQ+ Q),I 

AQ =- -(2 + Q4 + Q6-Q1-3- s5). 

(2.12) 

(2.13) 

The velocity parameters Vx and Vc can be estimated by representing the flow near R = 0 as 

the superposition of six two roll mill flows corresponding to the streams (i) to (vi). Employing 
the coordinates (6, y) shown on figure 2 to describe the flow between rollers 1 and 2, the stream 

function may be taken to be 

-| U(t(g') d' ()(d-a)/2 = aQ2, 

0(6, ) = 
1 + (2/a(d- a))' u(,)(a- d)/2 = aQD.! 

(2.14) 
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This has the following properties: (a) u(,)(g) is the velocity profile across the 'throat', J = 0, 
of stream (i), matched to the roller speeds at (6) = (d-a)/2. (b) The straight line g = 0 is 

a streamline. (c) When Q1 = Q2 and u(i)(f) is a constant the streamlines form a family of 

parabolae whose curvature at ( () = (d-a)/2 matches that of the rollers. 
At the centre of the six roll mill the stream (i) contributes a velocity 

U(1)i( = 0) A 
u(i(R = 0) = (d+a)^ (2.15) 

3(d+ a)2 
q, 

1+ 
4a(d-a) 

where i is the unit vector in the q direction. It is reasonable to assume that u((i( = 0) will be 

proportional to the mean of the peripheral roller speeds aQ1 and aQ2. The constant of propor- 
tionality will be taken as oc for the inflowing streams (i), (iii) and (v) and a_ for the outflowing 
streams (ii), (iv) and (vi). As will be further discussed in ? 6, the difference between aO+ and a_ 

is of crucial importance in understanding the streamline patterns of flowing polymer solution. 
The control parameters V, and Vy of the flow (2.10) are just the components of the velocity 
u(R = 0), and summing the six stream contributions of the type (2.15) gives 

vx = [ 
3a 

2 [X+(Q3+Q4 
- 1 -Q2)- 4-(Q+Q- Q1 6)] 

4 1 + a(d- a)2 
4a(d-1~~~~~~~~~ a)%~ /(2.16) 

V = 
3(d+a) [l+(2Q5 + 2Q6- - - 3 - - 4) 

4 
b4a(d f- Ja)_ +a_(2Q2+2,Q3 -Q1-Q4 5-Q6)]. 

3. ELLIPTIC UMBILIC CATASTROPHE 

As the roller speeds are varied, the parameters y, (), V of the stream function ( (R) of equation 

(2.10) change according to equations (2.12) and (2.16), and the different flows of the family 
can be explored. Of particular interest are the singular flows, whose critical points are 

degenerate, that is S = w where u = 0. Equations (2.5) and (2.6) give the principal strain 

rate of 5 as S = 2yR. (3.1) 

The vorticity is uniform for the flows under consideration, and this means that the degenerate 
critical points must lie on the circle R = o/2y. Since the critical points for any y, w, V are 

completely determined by the vanishing of Va, the existence of a singular flow implies a 

relation between the control parameters. In fact singular flows lie on a 'catastrophe surface' 

Z in the 'control space' whose coordinates are o/y, VJxy and Vy,y. The equation of , para- 
meterized by a variable 0, is 

VJy/ = (&y/)2 sin 0((1 +cos 0), V/y = (w/y)2 ?(cos2 0-cos 0-S ). (3.2) 

The surfaces is illustrated on figure 3; its sections for constant (o are deltoid curves with 

linear dimensions proportional to ()2. To each point P in the control space there corresponds a 

flow with a pattern of streamlines in the R plane. If P lies outside E the flow has two non- 

degenerate critical points, both hyperbolic. If P lies within ? the flow has four non-degenerate 
critical points, three hyperbolic and one elliptic. Therefore as P crosses Z from the inside a 

hyperbolic and an elliptic critical point must annihilate. These are the 'catastrophes'. 
There are three sorts of catastrophe in the flow family under consideration. The simplest is 

the 'fold', where P pierces the smooth surface of X, as in the 'sequence of positions labelled 

6 
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5, 4, 3 on figure 3; the annihilation of critical points takes place as shown on figure 4 a. The next 

simplest is the 'cusp', where P pierces a cusp edge of X, as in the sequence 7, 8, 9 on figure 3; 
the annihilation now involves an extra hyperbolic critical point as shown on figure 4b. The 

third sort of catastrophe is the elliptic umbilic itself, where P passes through the singular point 
() = 0, V = 0 of ?, as in the sequence 2, 1, 10 on figure 3; the annihilation involves two extra 

hyperbolic points and will be studied later (see figure 7, plates 2 and 3). 

I Vy/Y 

............. _ _ 
-- , 

10 

I.. / 

7'o 

6' 

5 j 

4'i 
II 

. I 

'2 

/w/7 1/ 

FIGURE 3. Elliptic umbilic catastrophe surface Z in control space. 
The numbers correspond to flows on figures 7 and 8. 

The nature of the persistent extension of fluid lines is different for different sorts of critical 

point. It is conveniently described by the extension index v defined as follows: let r measure 

distance from the critical point along an outgoing streamline issuing from it. Then for small r the 

fluid speed is 
t..h\ - (9 Q\ 
u\) = ni , 

where k is constant. Alternatively stated, an infinitesimal fluid line of length Il at rO, on and 

parallel to the streamline, extends to length 1 at r, and 

I/lo = (r/ro)P. (3.4) 

Employing the standard forms of catastrophe stream function 0 as given by Thom (1972), it is 

possible to calculate v for the types of critical point considered in this paper, with the following 
_---._ . 4 results 1 (hyperbolic critical point), 

3 (fold catastrophe critical point as in figure 4a), 
V 2 (cusp catastrophe critical point as in figure 4b), 

2 (elliptic umbilic critical point as in figure 7, plates 2 and 3). 

(3.5) 

7 

ko.oj 



M. V. BERRY AND M. R. MACKLEY 

Near a critical point the persistent strain rate cr varies as rv-1. At a degenerate critical point cr 

vanishes, and from (2.7) the Gaussian curvature of q vanishes too. Therefore one or both 

principal curvatures must vanish. At fold and cusp critical points just one curvature vanishes, 
and the streamlines through these points touch the corresponding line of curvature (along which 

the fluid line does not rotate, as equation 2.8 shows). At the elliptic umbilic critical point of the 

flow (2.10) (w = 0, V = 0 in control space and R = 0 in state space) both curvatures vanish, 

(a) ) > 

(b) c 

FIGURE 4. Sequence of flow patterns in unfolding of (a) fold catastrophe (corresponding to the sequence 
543 on figure 3), (b) cusp catastrophe (corresponding to the sequence 789 on figure 3). 

y 

FIGURE 5. Net of lines of curvature for elliptic umbilic flow field. Extending quadrants are shaded (kl). 
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FIGURE 6. Photograph of six roll mill. 
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Berry &S Mackley, plate 2 

(b) 
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FIGURE 7. For description see opposite. 
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(a) 
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7 

8 
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10 

Berry & Mackley, plate 3 

(b) 
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r" 1 

FIGURE 7. (a) Flows 1 to 10 of glycerol in the six roll mill, corresponding to roller speeds F,, 32,, and Q,, of 

table 1. (b) Computer simulations of flows 1 to 10 with control parameters 0]/' and VI4y of table I. 
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(a) 

Berry & Mackley, plate 4 

(c) (b) 

FIGURE 8. For description see opposite. 
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(a) (b) (c) 

6 

10 

FIGURE 8. Streamline patterns of (a) glycerol and (b) 2 %0 polyethylene oxide solution in the six roll mill corre- 

sponding to roller speeds QD,,, Q and Q,,, of table 2. (c) Corresponding flow birefringence observations of the 

polyethylene oxide solution. 

Phil. Trans. R. Soc. Lond. A, volume 287 Berry & Mackley, plate 5 
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since when ( = 0 the vanishing of cr implies the vanishing of S (equation 2.7) and this in turn 

implies C1 = C2 = 0 (equation 2.6). A point on a surface where both curvatures are equal (so 
that S = 0) is called an 'umbilic point'; the directions of principal curvature are not defined 

there, and the net of lines of curvature is singular. Figure 5 shows this net for the stream function 

(2.10) ; the lines are independent of the control parameters, and are determined by the equations 

tan 20 = - tan 0, (3.6) 

where q0 is the direction of the lines at points R with polar angle 0. The singularity at the 

umbilic point at the origin is evident. 

4. STREAMLINE PATTERNS FOR NEWTONIAN FLUID 

A six roll mill was constructed. The rollers were 120 mm in length. In the experiments to be 

described two sets of rollers were used. Referring to figure 2, their respective dimensions were 

a1 = 3 mm, d, = 12 mm, and a2 - 4.5 mm, d2 = 10.5 mm; the latter set of rollers were given 
a cross knurled finish. Three independent electric motors were connected with gears to three 

pairs of rollers with speeds QI1, QII, QIII arranged as follows 

Qi, = Q3 = Q5 

nII = Q1= -Q4, (4.1) 

nIII = Q2 = Q6-3 

The speed of each set of rollers could be independently varied and the rotation rate of each 

monitored. Figure 6, plate 1 is a photograph of the mill showing the essential features of the 

mechanism. 

In the first series of experiments the rollers of the mill were immersed in glycerol which was 

contained in a cylindrical tank (diameter = 150 mm) with an optical flat bottom surface. 

Streamline patterns were made visible by illuminating the regions between the rollers with a 

horizontal plane beam of light and including a small quantity of polyethylene powder into the 

glycerol to act as scattering centres. Photographs of the streamlines produced by the scattering 

particles were taken from below; typical exposure times were of the order one second. 

In this series of experiments the smaller diameter rollers were chosen a1 = 3 mm, d1 = 12 mm, 
in order that the gap between the rollers was sufficiently large to be able to illuminate a 

significant proportion of the region within the mill. Illumination was provided by a mercury 

lamp. The plane beam was split by a system of mirrors into three components and directed into 

the mill through streams (iv), (v) and (vi) indicated in figure 2. The gap width of the rollers 

can be identified on the streamline photographs by the clearly defined width of the illuminated 

regions. The diameter of the observed field of view in all the streamline photographs was 

18 mm, a limit set by the size of the central hole in the bottom plate of the mill. Ten flows were 

studied corresponding to the roller speeds shown in table 1. Figure 7(la-lOa), plates 2 and 3, 
shows photographs of the streamline patterns in these flows. Degenerate critical points can be 

seen on flows 1 (elliptic umbilic), 4 (fold, c.f. figure 4a) and 8 (cusp, c.f. figure 4b). 

Figure 7a suggests that the flows 1 to 10 correspond to a sequence of points in control space 
that are situated relative to the catastrophe surface S as indicated by the numbers on figure 3. 

This hypothesis can be tested by computer simulation of the stream lines as contours of the 

Vol. 287. A. 
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model stream function (2.10). The control variables can be calculated from equations (4.1) 

(2.12) and (2.16), which give 

d(QI - 21) (a) 
o7/ Q + 0 + QII (a) 

3 J3d2(+ 
- a_) (QI -Q I)4 

Vx 4[1 +3(d+a) 2/4a(d - a)] (Ii+Qin + II)'I 
Ib 

^V / 3d2(C+ + a_) (Q1 + nI,, - 2Qn) (C) 
V/7 = 4[11 + 3(d + a) 2/4a(d- a)] (i + Dii + QIII) 

TABLE 1. DATA FOR FLOWS NUMBERED 1 TO 10 ON FIGURE 3 AND FIGURE 7 

QI, QDI and Q2,, are the experimental roller speeds in radians per second (each value of Q has an estimated 
error of + 6 %). to/y and V,Jy (with Vx = 0) are the control parameters employed in the computer simulation of the 
flows. 

flow no. 1 2 3 4 5 6 7 8 9 10 

QI 2.5 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5 
QII 2.5 4.0 4.0 3.0 2.5 2.25 1.25 0.5 0 0.5 

DQII 2.5 2.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 2.5 
/7 0 0 1 1 1 1 1 1 1 0 

V0/ -1 -1 - - -- 0 o i 1 1 

Glycerol is, to a good approximation, a Newtonian fluid, and there is no reason why flows in 

the incoming and outgoing streams should have different velocity fields. Therefore the multi- 

pliers a+ and a_ introduced after equation (2.15) may be set equal (to a, say). According to 

equation (4.2b) this implies that V, = O, so that all flows should lie in the (w, V,) plane in 

control space. This suggests a quantitative test of the model stream function that is independent 
of the mill dimensions and the value of the multiplier a. It follows from equations (3.2) that the 

ratio of the quantities 

q (=/y)2 (4.3) 

for the cusp and fold points (8 and 4 on figure 3) should be - 3. The experimental value of this 

ratio, calculated from equations (4.2a, c) and the roller speeds of table 1 is -2.75, in fair 

agreement with the theoretical value. For a this method gives a = 1.42 + 0.06 (With the larger 
rollers the ratio of quantities q comes out as - 3.4, and a = 0.48 ? 0.03.) 

For a visual comparison of actual and model flows the control parameters (l/y, Vy/y of table 1 

were employed, and contours of the stream function (2.10) computed for flows 1 to 10. These 

are shown on figure 7 (lb-lOb), plates 2 and 3. The agreement is remarkably good, even out 

towards the rollers whose inner surfaces lie outside the periphery of figure 7a, plates 2 and 3. 

An interesting feature was observed that reflects the nature of the elliptic umbilic catastrophe 
surface near the origin of control space. It was observed experimentally that flows near the 

origin of control space were very much more sensitive to changes in Vy/y (equation 4.2c) than 

to comparable changes in w/y (equation 4.2a); this is fully consistent with the manner in which 

the cross section of I (figure 3) shrinks to a point as w vanishes. 

10 



THE SIX ROLL MILL 

5. STREAMLINE PATTERNS FOR POLYMER SOLUTION 

In the second series of experiments streamline patterns were studied with glycerol (for com- 

parison) and a 2 % solution of polyethylene oxide (WSR 301) in water, to discover how the 

flows are affected by extending polymer chains in the outgoing streams. 

For these experiments the larger roller diameter was chosen, a2 = 4.5 mm, d2 = 10.5 mm. This 

was done in order to obtain increased magnitudes for the persistent strain rate for any given 
rotation rate of the rollers. This enabled flow birefringence observations to be made. In addition, 
it was also found necessary to knurl the rollers to prevent suspected 'slipping' at the rollers when 

polymer solutions were used. 

Figure 8(1a-10 a), plates 4 and 5, show the behaviour of glycerol for the ten flows studied 

with roller speeds shown in table 2. As expected the topology of the flows follows that of the 

previous figure 7(1a-10a), plates 2 and 3, where smaller diameter rollers were used. Figure 

8(1 b- b), plates 4 and 5, are photographs of the streamline patterns for a 2 % solution of 

polyethylene oxide in water, the corresponding roller speeds are again given in table 2. This 

sequence of flows is strikingly different from that obtained with glycerol. All flows except the 

symmetrical flow 1 possess two hyperbolic critical points; there are no elliptic critical points as 

with flows 5, 6 and 7 on figure 7, plates 2 and 3 and no degenerate fold and cusp critical points 
as with flows 4 and 8 on figure 7, plates 2, and 3. It appears, however, that the flows 1, 2 and 

TABLE 2. DATA FOR FLOWS NUMBERED 1 TO 10 ON FIGURE 8 

QI,QI[ Q,11 are the experimental roller speeds for each series (8a, 8 b and 8c) corresponding to each flow number 
(each value of Q has an estimated error of + 6%). 

flow no. 1 2 3 4 5 6 7 8 9 10 

QI 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.5 

QI2 2.5 4.0 4.0 3.5 2.75 2.0 1.0 0.5 0 0.5 

QxII 2.5 2.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 2.5 

The first step towards understanding this behaviour is the observation that the flows 3, 4 ... 9 

where polymer solution differs from glycerol are those for which the vorticity w) is non-zero 

(cf. figure 3). The second step is the observation that the observation that tchange in the polymer streamlines 

from flow 2 to flow 10 consists of a smooth counterclockwise rotation of the line joining the two 

hyperbolic critical points from the y axis to the x axis. This strongly suggests that with polymer 
the sequence of flows explored is not 1 2 3 4 5 6 7 8 9 10 but a different sequence, such as that 
shown as 1 2 3' 4' 5' 6' 7' 8' 9' 10 on figure 3, in which the arc 3 ... 9 has swung out of the 

(Vy,, w) plane to avoid intersecting S. It is simple to confirm that a swing towards negative V$ 

is required for the line joining the two hyperbolic points to rotate in the sense observed. 
It seems that the same roller speeds which produce no velocity component VZ with glycerol 

produce a negative VT with polymer. This can be explained by equation (4.2) on the assumption 
that a+ > oa_ for polymer solution, because then Vx is proportional to - o), corresponding to 

points on the dotted path in figure 3 that does not intersect S. Recalling the definition of a+ 
and oa_ following equation (2.15), this implies that fluid in the central streamlines between pairs 
of rollers moves faster in the inflowing streams than in the outflowing streams. 

This is reasonable. The central streamlines presumably lie close to the asymptotic streamlines 

issuing from critical points of the flow field. On outgoing asymptotic streamlines the flow is 
2-2 

11 



M. V. BERRY AND M. R. MACKLEY 

persistently extensional and stretches polymer chains dissolved in the flow as shown by bire- 

fringence observations reported in ? 6. The sheet of highly extended chains inhibits the develop- 
ment of high strain rates, as suggested by an experiment of Frank & Mackley (I976). This in 

turn reduces the flow velocity on the outgoing asymptotic streamlines far from the critical 

point. No such effect is expected for the inflowing streams so that ao should exceed ac_ as the 

flow patterns suggest. 

lu(~) 

/ aQ2 

//O O 
,o0 

a 
? 

?o o o 0, ' 000 / 

\ / 

-(d-a)/2 (d-a)/2 

FIGURE 9. Conjectured velocity profiles u(g) between adjacent rollers with rotation rates Q1 and Q2. The full line 
is for a Newtonian fluid, the dashed line is for outflowing polymer solution and the dotted line is for inflowing 
polymer solution. 

The elliptic umbilic family of flows is a very sensitive indicator of polymer-induced modifica- 

tion of the velocity field, because 2 shrinks to zero thickness as the vorticity vanishes, and the 

slightest asymmetry a+ - a between inflows and outflows will swing the sequence of control 

points away from S. Professor T. Poston has pointed out to us that this reflects the fact that 

DQ1, Qn and Q211 correspond to two and not three elliptic umbilic control variables, since 

multiplying all roller speeds by the same factor merely intensifies the flow without changing the 

streamlines. The third essential control variable is a+ - _ which corresponds to adding 

polymer. Furthermore, some of the flow patterns without polymer (figures 7 and 8a), plates 2, 3, 
4 and 5), which all have V, = 0, possess the non-generic property of saddle connections, that is 

streamlines joining two saddles; when polymer is added to flows with vorticity, making ac+ a_ 

and Vy 7# 0, the saddle connections are destroyed as figure 8b, plates 4 and 5 shows. 

It is of course necessary that the total outgoing flux in all six streams always vanishes. When 

considered together withion the asymmetry under discussion this has implications for the velocity 

profiles u(6) between pairs of rollers (cf. equation 2.14). Between rollers with rotation rates Q1 

and Q2 (e.g. stream (i) on figure 2) u(4) must change smoothly from aQ, when 6 = - I(d- a) 
to aQ2 when ( = 1(d-a), whatever fluid is in the mill and whether the stream flows out or in. 

With polymer, however, the sheets of extended chains in the outflows will act as a barrier, 

considerably reducing u(6) near 9 = 0 in comparison with speeds in the flow with Newtonian 

fluid (figure 9). Therefore the flux in an outgoing polymer stream will be less than that in a 

corresponding Newtonian flow. The barrier in the outflow will cause the pressure in the central 

region of the mill to rise and in turn reduce the fluxes in the incoming polymer stream to balance 

those in the outgoing streams. In the inflows, however, there need be no sharp diminution in 

speed near 6 = 0 and it is probable that the reduction in u(6) is more smoothly distributed 

over the cross section of the streams, as indicated in figure 9. 
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6. FLOW BIREFRINGENCE 

It is now established (Mackley & Keller I975; Crowley et al. I976; Frank & Mackley I976) 
that localized extension of polymer chains in persistently extensional flows can be detected by the 

birefringence it produces in the fluid, on observing the illuminated flow through crossed 

polarizer and analyser. For the flows of figure 8(1 b-10 b), plates 4 and 5, the flow birefringence 
was photographed while continuously rotating the polarizer and analyser so as to ensure 

recording the intensity of the birefringence irrespective of its orientation. Photographic exposure 
times were of the order 3 seconds; other aspects of the experimental technique were essentially 
as described in Crowley et al. (I976). The result was the series of pictures shown on figure 

8(1c-10c), plates 4 and 5. 

The observed flow birefringence is sharply localized near the outgoing streamlines issuing 
from critical points. As explained by Crowley et al (I976), the reason for this is that only near 

these streamlines do polymer chains reside in the flow for long enough to get fully extended. 

For each given position in control space comparison of the position of the localized bire- 

fringence with each associated flow pattern, figure 8(1b-10b), plates 4 and 5 shows that the 

birefringence occurs consistently as 'birefringent sheets of oriented molecules' along stream- 

lines issuing from critical points. The 'width' of the birefringent sheet is also consistent with that 

previously observed for a single hyperbolic critical point (Crowley et al. I976). However, in 

contrast to flow configurations studied previously, the intensity of birefringence along the 

asymptotic streamlines is clearly far from uniform: there is a sharp diminution of intensity 
towards the centre of the flow field. This effect is most marked on figure 8(l c), plate 4. 

It was also noted that the birefringence intensity was somewhat time dependent. When flows 
were changed from one setting in control space to another it was observed that the intensity of 
the localized birefringence would decay from an initial essentially uniform distribution along 
the asymptotic streamline to the 'equilibrium' distribution which is weak near R = 0. 

To understand the weak birefringence near R = 0, observe that no hyperbolic critical points 
can exist within the circle R = )/2y where the flow is vorticity dominated (this follows from 

equation 3.1). Moreover, critical points lying on this circle, being degenerate, have zero 

persistent strain rate o and so cannot extend polymer chains. On figure 8b, plates 4 and 5, the 

only such degenerate critical point is the elliptic umbilic at w = 0 when the circle R = o/2y 
has shrunk to a point, but there is no reason in principle why fold and cusp points should not 

exist in polymer flows for some other sets of roller rates. Away from a degenerate critical point, 
o- increases, and so therefore does the birefringence (cf. figure 8(1 c), plate 4). A theory of 

molecular extension in these circumstances will now be given. 
Consider a critical point with extension index v as defined by equations (3.3) or (3.4). The 

persistent strain rate is the strain rate along an outgoing streamline, that is 

(r) =- d- = vkr. (6.1) 

Polymer chains in this flow will be considered as members of an ensemble of 'Hookean dumb- 

bells' (Peterlin 1966) characterized by a relaxation time r expressing the competition between 

fluid friction which tends to extend the chains and an elastic restoring force of entropic origin. 
With the high polymer concentrations employed in the six roll mill, entanglement of different 

chains is inevitable, and leads to non-Newtonian behaviour of the solution manifested by 
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Weissenberg effect (Weissenberg I947) at the surface of the rollers. It is assumed that T incor- 

porates the effect of these entanglements. Molecular extension will be described by the r.m.s. 

value I of the component of the chain end-to-end vector lying along the streamline; by slight 
abuse of language l(r) will be called the length of the chain at the point r. The unstretched 

length of the chains will be denoted by Io; for N independent random links of length A, 

o = A V(N/3). (6.2) 

The dumbbell model gives an equation for the time dependence of I in a flow with strain 

rate cr. In the present case o- is itself time dependent because macromolecules convect through 
the non-uniform flow field. Transforming the independent variable from time to r using 

dr/dt = u(r) gives, as the equation for l(r), 

u d(1(r)) +2(r) 21- (6.3) 
dr T T 

The solution corresponding to chains unextended at r0 is easily verified to be 

12(r) 2u2(r) 2 dr' r dr' ( r"' dr " \ u2(r) / 2 fr dr' 

12(rO) ep 
- 

rou(r') Jo u3(r') exp Jo u(r) +u2(rO) exp ~ 
Jo u(r')' 

(6.4) 

Only high extensions (I > lo) are of interest in the present context, and it can be assumed that 

the chains are unextended at the critical point (ro = 0). In these limiting circumstances (6.4) 

gives, for a critical point with extension index v, 

(r) = lorv [rk(v 
- 

1)]- ( 2 1) ! (6.5) 

This extension does not continue indefinitely. As I approaches the fully extended length NA 

strong non-Hookean forces act and the chain ceases to extend further or snaps. Full extension is 

reached at a distance rH from the critical point given by 

rH - (3N)2v )1 (6.6) H 
=[k(v - 

1)]ll-1 [ 21- 1i2v . 

Therefore the persistent strain rate Or at rH satisfies 

2v(3N)v-112v 
o'uT = (v-) [( 3) !]l2 (6.7) 

As v -> 1 this expression tends to e-1 and merely reproduces the known result that near a hyper- 
bolic critical point high extension occurs in strain rates exceeding a quantity of order ',- 
As v -> oo (infinitely degenerate critical point), CHur -> /(6N). 

Obviously rH is a measure of the size of the 'hole' of weak birefringence near the critical 

point. For the elliptic umbilic point v = 2 and k = y (equation 2.10), so that 

rH = (2N)/T7y. (6.8) 

In the six roll mill y is known (equation 2.12) in terms of the roller speeds, so that a measure 

of the size of the birefringence hole can be used to give an estimate of T even if N is very 

imprecisely known. When applied to figure 8(c1), assuming N - 
104, this gives r w 3 s. 
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7. CONCLUSIONS 

The central result of this work is the discovery of the qualitative difference in the six roll mill 

streamline patterns when the fluid does or does not contain polymer molecules. By contrast, 
streamlines in the flow between opposed jets (Mackey & Keller I975) and in the four roll mill 

(Crowley et al. 1976) are unaffected by polymer, while in the two roll mill (Frank & Mackley 

I976) the addition of polymer only causes the acute angle between streamlines issuing from a 

hyperbolic critical point to diminish without altering the topology of the streamlines. It is 

probable that the elliptic umbilic castastrophe describes the simplest family of flows in which 

the flow modification due to polymer causes topological changes in the streamlines. 

There seems no reason to doubt that any polymer solution, in any concentration, would show 

effects similar to those reported here. For low concentrations the stream asymmetry a+ -a_ 

would be small, so that the rotated path in control space (1 2 3' 4' 5' 6' 7' 8' 9' 10 on figure 3) 
would still intersect the catastrophe surface I twice. One of these intersections would, however, 
no longer lie on the cusp edge of ? (8 on figure 3), so that the family of flows would show 

two fold catastrophes rather than one fold and one cusp. It was not possible to explore these 

flows with low concentration by using solutions of polyethylene oxide in water, because the 

flow became turbulent, even at low speeds, when the concentration was reduced below about 

0.5 %. 
It is tempting to regard the elliptic umbilic flow family as a rudimentary form of turbulence. 

in which a completely describable instability can give birth to a vortex (elliptic critical point) 
in several ways. Such an approach, which would consider in detail the origin and interactions 

of vortices - the 'atoms' of turbulence - would be complementary to the usual approaches 
based on the statistics of vorticity (Tennekas & Lumley 1972) or the instability of solutions of the 
Navier-Stokes equation (Ruelle & Takens 1971). 

The six roll mill experiment does illustrate quite clearly that molecular extension of polymers 
occurs in these rather complex flows as thin sheets of oriented molecules within the flow. 

Moreover, it is possible that singular persistently extensional flows such as that in the six roll 
mill will feature in a full explanation of the Toms effect (Toms I949). This is the reduction of 
turbulent drag by the addition of small amounts (of order 10-5) of polymer, and has been 

plausibly supposed by Frank (I975) to be caused by localized persistent extension of the 
macromolecules. 

However, such speculations relating the six roll mill to turbulence mechanisms should be 

regarded with a certain scepticism, because turbulence is time dependent and above all three- 

dimensional, whereas the flows considered in this paper are steady and essentially two- 

dimensional, being derived from a scalar stream function 0. The nonexistence of a stream 
function for general three-dimensional flows with vorticity means that elementary catastrophe 
theory cannot be employed to classify degenerate critical points. Non-degenerate critical points 
in an incompressible three-dimensional flow are the 'col' and 'col-foyer' in the classification of 

Poincare (i886). 

We thank Professor F. C. Frank, F.R.S., and Professor A. Keller, F.R.S., for many helpful 
discussions, Mr F. Bannister for supervising the construction of the mill, and Mr D. Read for 

photographic assistance. One of us (M.R. M) wishes to thank the Science Research Council 
for financial support. 
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