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Abstract. When metal is removed by machining there is substantial increase
in the specific energy required with decrease in chip size. It is generally believed
this is due to the fact that all metals contain defects (grain boundaries, missing
and impurity atoms, etc.), and when the size of the material removed decreases,
the probability of encountering a stress-reducing defect decreases. Since the shear
stress and strain in metal cutting is unusually high, discontinuous microcracks
usually form on the metal-cutting shear plane. If the material being cut is very brittle,
or the compressive stress on the shear plane is relatively low, microcracks grow
into gross cracks giving rise to discontinuous chip formation. When discontinuous
microcracks form on the shear plane they weld and reform as strain proceeds, thus
joining the transport of dislocations in accounting for the total slip of the shear
plane. In the presence of a contaminant, such as CCl4 vapour at a low cutting
speed, the rewelding of microcracks decreases, resulting in decrease in the cutting
force required for chip formation. A number of special experiments are described
in the paper that support the transport of microcracks across the shear plane, and
the important role compressive stress plays on the shear plane. Relatively recently,
an alternative explanation for the size effect in cutting was provided based on the
premise that shear stress increases with increase in strain rate. When an attempt
is made to apply this to metal cutting by Dineshet al (2001) it is assumed in the
analysis that the von Mises criterion pertains to the shear plane. This is inconsistent
with the experimental findings of Merchant. Until this difficulty is taken care of,
together with the promised experimental verification of the strain rate approach, it
should be assumed that the strain rate effect may be responsible for some notion of
the size effect in metal cutting. However, based on the many experiments discussed
here, it is very unlikely that it is totally responsible for the size effect in metal
cutting as inferred in Dineshet al (2001).
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1. Introduction

It has been known for a very long time that a size effect exists in metal cutting, where the
specific energy increases with decrease in deformation size. Backeret al (1952) performed a
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Figure 1. Plunge grinding cut with wheel engaging complete
area of work with downfeedt and wheel speedV (after Backer
et al1952).

special series of tests in which the shear energy per unit volume deformed(uS) was determined
as a function of specimen size for a ductile metal (SAE 1112 steel). The deformation processes
involved were as follows, listed from top to bottom with increasing size of specimen deformed:

• surface grinding
• micromilling
• turning
• tensile test

Surface grinding tests were performed under relatively mild conditions involving plunge type
tests in which an eight-inch (20·3 cm) diameter wheel was fed radially downward against a
square specimen of length and width 0·5 in. (1·27 cm), as shown in figure 1. The width of
the wheel was sufficient to grind the entire surface of the specimen at different downfeed
rates(t). The vertical and horizontal forces were measured by a dynameter supporting the
workpiece. This enabled the specific energy(uS) and the shear stress on the shear plane(τ )

to be obtained for different values of undeformed chip thickness(t) as shown in figure 2.
The points corresponding to a constant specific energy below a value of downfeed of about
28µin. (0·7µm) are on a horizontal line due to constant theoretical strength of the material
being reached when the value oft goes below about 28µin. (0·7µm). The reasoning in
support of this conclusion is presented by Backeret al (1952).

In the micromilling tests a carefully balanced 6 in. (152 mm) carbide-tipped milling cutter
was used with all but one of the teeth relieved so that it operated as a fly milling cutter.

Figure 2. Specific energy-depth of cut
curve for grinding tests (after Backeret al
1952).
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Figure 3. Variation of shear
stress on shear plane when cutting
SAE 1112 steel (after Backeret al
1952).

Horizontal and vertical forces were measured for a number of depths of cut(t)when machining
the same-sized surface as in grinding. The shear stress on the shear plane(τ ) was estimated
by a rather detailed method presented by Backeret al (1952).

Turning tests were performed upon a 2·25 in (5·72 cm) diameter SAE 1112 steel bar prema-
chined in the form of a thin-walled tube having a wall thickness of 0·2 in (5 mm). A 0◦ rake
angle carbide tool was operated in a steady state two-dimensional orthogonal cutting mode
as it machined the end of the tube. Values of shear stress on the shear plane(τ ) versus unde-
formed chip thickness were determined for tests at a constant cutting speed and different
values of axial infeed rate and for variable cutting speeds and a constant axial infeed rate.
The grinding, micromilling and turning results are shown in figure 3.

A true stress-true strain tensile test was performed on a 0·505 in (1·28 cm) diameter by
2 in. (5·08 cm) gauge length specimen of the same SAE 1112 steel. The mean shear stress at
fracture was 22,000 psi (151·7 MPa). This value is not shown in figure 3 since it falls too far
to the right.

In 1993 Dr. Norio Taniguchi was the American Society of Precision Engineers’ distin-
guished lecturer in Seattle, WA. In his lecture discussing the art of nanotechnology (Taniguchi
1994), Dr. Tanigiuchi discusses the size effect in cutting and forming and presents his version
of figure 3 in figure 4 which is more complete since it includes the tensile test.

Figure 4. Relation between chip
thickness and resisting shear stress
for figure 3 as modified by Taniguchi
(1994).
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Figure 5. Back free surface of chip showing regions of
discontinuous strain or microfracture.

Shaw (1952) discusses the origin of the size effect in metal cutting which is believed to be
primarily due to short range inhomogeneities present in all commercial engineering metals.
When the back of a metal cutting chip is examined at very high magnification by means of
an electron microscope individual slip lines are evident as shown in figure 5. In deformation
studies Heidenreich & Shockley (1948) found that slip does not occur on all atomic planes
but only on certain discrete planes. In experiments on deformed aluminum single crystals the
minimum spacing of adjacent slip planes was found to be approximately 50 atomic spaces
while the mean slip distance along the active slip planes was found to be about 500 atomic
spaces as shown in figure 6. These experiments further support the observation that metals
are not homogeneous and suggest that the planes along which slip occurs are associated with
inhomogeneities in the metal.

Strain is not uniformly distributed in many cases. For example, the size effect in a tensile
test is usually observed only for specimens less than 0·1 in. (2·5 mm) in diameter. On the
other hand, a size effect in a torsion test occurs for considerably larger samples due to the
greater stress gradient present in a torsion test than in a tensile test. This effect and several
other related ones are discussed in detail by Shaw (1952).

2. Shear angle prediction

There have been many notable attempts to derive an equation for the shear angle(φ) shown
in figure 7 for steady state orthogonal cutting. Ernst & Merchant (1941) presented the first
quantitative analysis. Figure 7 shows the forces acting on a chip at the tool point where

Figure 6. Spacing of adjacent slip planes for pure aluminium
single crystal (after Heidenreich & Shockley 1948).
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Figure 7. Nomenclature for two-dimensional
steady state orthogonal cutting process.

R is the resultant force on the tool face,
R′ is the resultant force∼ n the shear plane,
NC andFC are the components ofR normal to and parallel to the tool face,
NS andFS are the components ofR′ normal to and parallel to the cutting direction,
FQ andFP are the components ofR normal to and parallel to the cutting direction,
β = tan−1 FC/NC (called the friction angle).

Assuming the shear stress on the shear plane(τ ) to be uniformly distributed it is evident that

τ = FS/AS = (R′ cos(φ+ β − α) sinφ)/A, (1)

whereAS andA are the areas of the shear plane and that corresponding to the width of cut
(b), times the depth of cut(t). Ernst & Merchant (1941) reasoned thatφ should be an angle
such that t would be a maximum and a relationship forφ was obtained by differentiating (1)
with respect toφ and equating the resulting expression to zero. This led to:

φ = 45− (β/2) + (α/2). (2)

However, it is to be noted that in differentiating, bothR′ andβ were considered independent
of φ.

Merchant (1945) presented a different derivation that also led to (2). This time an expression
for the total power consumed in the cutting process was first written

P = FP V = (τAV )[cos(β− α)/ sinφ cos(φ+ β − α)]. (3)

It was then reasoned thatφ would be such that the total power would be a minimum. An
expression identical to (2) was obtained whenP was differentiated with respect toφ, this
time consideringτ andβ to be independent ofφ.

Piispanen (1937) had done this previously in a graphical way. However he immediately
carried his line of reasoning one step further and assumed that the shear stressτ would be
influenced directly by normal stress on the shear planeσ as follows:

τ = r0 + Kσ , (4)

whereK is a material constant. Piispanen then incorporated this into his graphical solution
for the shear angle.

Upon finding (2) to be in poor agreement with experimental data Merchant also indepen-
dently (without knowledge of Piispanen’s work at the time) assumed the relationship given
in (4), and proceeded to work this into his second analysis as follows:
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Figure 8. Cutting forces at the tool tip for
the cutting operation in figure 7.

From figure 8 it may be seen that

σ = τ tan(φ + β − α) (5)

or from (4)

r0 = r + kσ τ tan(φ + β − α) (6)

hence

τ = τ0

1 − K tan(φ + β − α)
(7)

When this is substituted into (3) we have:

P = τ0AV cos(β− α)

[1 − K tan(φ + β − α)] sinφ cos(φ+ β − α)
(8)

Now, whenP is differentiated with respect toφ and equated to zero (withτ0 andp considered
independent ofφ) we obtain:

φ = cot−1(K)

2
− β

2
+ α

2
= C − β + α

2
. (9)

Merchant called the quantity cot−1 K the machining ‘constant’C. In figure 9 the quantityC
is seen to be the angle the assumed line relatingτ andσ makes with theτ axis.

Figure 10a shows the variation of shear stress on the shear plane versus compressive stress
on the shear plane for a range of cutting conditions when SAE 9445 steel is turned with a
carbide tool. The value ofC in (9) is seen to be 77◦ to a good approximation. Figure 10b

Figure 9. Relation between shear stress and normal stress on
the shear plane assumed by Piispanen (1937) and by Merchant
(1945) independently.
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Figure 10. (a)Shear stress on shear plane versus compressive stress on shear plane (psi) for SAE 9445
steel machined with carbide tool.(b) Observed shear angleφ vsβ −α (Merchant 1945b). Open points,
α = +10◦; solid points,α = −10◦; ◦ V = 542 fpm (165 mpm), variablet ; 2t = 0·0018 in. (45·7µm),
variableV ; 1t = 0·0037 in.(94µm), variableV ; ∇t = 0·0062 in.(157µm), variableV .

shows a comparison of the experimental data based on (2) and (9). Figure 11 shows similar
results for SAE 4340 steel where the value ofC is seen to be 80◦ to a good approximation.

Merchant (1950) has determined the values ofC given in Table 1 for materials of different
chemistry and structure being turned under finishing conditions with different tool materials.
From this table it is evident thatC is not a constant. Figures 10 and 11 illustrate how use
of the Merchant empirical machining ‘constant’C that gives rise to (9) with values ofφ in
reasonably good agreement with experimentally measured values.

While it is well established that the rupture stress of both brittle and ductile materials is
increased significantly by the presence of compressive stress (known as the Mohr Effect), it
is generally believed that a similar relationship for flow stress does not hold.

Table 1. Values ofC in (9) for a variety of work and tool materials
in finish turning without a cutting fluid.

Work material Tool material C(deg)

SAE 1035 Steel HSS∗ 70
SAE 1035 Steel Carbide 73
SAE 1035 Steel Diamond 86
AISI 1022 (leaded) HSS∗ 77
AISI 1022 (leaded) Carbide 75
AISI 1113 (sul.) HSS∗ 76
AISI 1113 (sul.) Carbide 75
AISI 1019 (plain) HSS∗ 75
AISI 1019 (plain) Carbide 79
Aluminium HSS∗ 83
Aluminium Carbide 84
Aluminium Diamond 90
Copper HSS∗ 49
Copper Carbide 47
Copper Diamond 64
Brass Diamond 74

∗HSS= high speed steel
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Figure 11. (a) Shear stress on shear plane versus compressive stress on shear plane for SAE
4340 steel machined with tungsten carbide tool.(b) Observed shear angleφ vs. β − α (after
Merchant 1945b). Open points,α = +10◦; solid points, α = −10◦; ◦ V = 542 fpm
(165 mpm), variablet ; 2t = 0·0018 in.(45·1µm), variablev; 1t = 0·0031 in.(94µm), variablev;
∇± = 0·0062 in.(159µm), variablev.

However an explanation for this paradox with considerable supporting experimental data
is presented below.

The fact that this discussion is limited to steady state chip formation rules out the possibility
of periodic gross cracks being involved. However, the role of micro-cracks is a possibility
consistent with steady state chip formation and the influence of compressive stress on the flow
stress in shear. A discussion of the role micro-cracks can play in steady state chip formation
is presented in the next section.

Hydrostatic stress plays no role in the plastic flow of metals if they have no porosity.
Yielding then occurs when the von Mises criterion reaches a critical value. Merchant (1945)
has indicated that Barrett (1943) found that for single crystal metalsτS is independent ofσS

when plastics such as celluloid are cut.
In general, if a small amount of compressibility is involved yielding will occur when the

von Mises criterion reaches a certain value. However based on the results of figures 10 and
11 and Table 1 the role of compressive stress on shear stress on the shear plane in steady state
metal cutting is substantial. The fact there is no outward sign of voids or porosity in steady
state chip formation of a ductile metal during cutting and yet there is a substantial influence
of normal stress on shear stress on the shear plane represents an interesting paradox. It is
interesting to note that Piispanen (1937) had assumed that shear stress on the shear plane
would increase with normal stress and had incorporated this into his graphical treatment. This
was unknown to Merchant when writing his 1942 papers since a translation of Piispanen’s
paper from Finnish into English became available only between the time Merchant’s paper
was written and when it was published. It is not uncommon that important discoveries are
made quite independently at different locations at about the same time. A case in point is
discovery of the dislocation quite independently by Orowan (1934), Polanyi (1934) and Taylor
(1934). Apparently there is a right time for important discoveries to be made!

3. Plastic behaviour at large strain

There has been remarkably little work done in the region of large plastic strains. Nobel
Laureate Bridgman (1952), using the hollow tubular notched specimen shown in figure 12,
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Figure 12. Bridgman (1952) specimen for
combined axial load and torsion.

performed tests under combined axial compression and torsion. The specimen was loaded
axially in compression as the centre section was rotated relative to the ends. Strain was
concentrated in the reduced sections and it was possible to crudely estimate and plot shear
stress vs. shear strain with different amounts of compressive stress on the shear plane. From
these tests, Bridgman concluded that the flow curve for a given material is the same for all
values of compressive stress on the shear plane, a result consistent with other materials tests
involving much lower plastic strains. However, the strain at gross fracture is found to be
strongly influenced by compressive stress. A number of related results are considered in the
following subsections.

3.1 Langford and Cohen

Langford & Cohen (1969) were interested in the behaviour of dislocations at very large plastic
strains and whether there is saturation relative to the strain hardening effect with strain or
whether strain hardening continues to occur with strain to the point of fracture.

Their experimental approach was an interesting and fortunate one. They performed wire
drawing on iron specimens using a large number of progressively smaller dies with remarkably
low semi-die angle(1·5◦) and a relatively low (10%) reduction in area per die pass. After each
die pass, a specimen was tested in uniaxial tension and a true stress–strain curve obtained.
The drawing and tensile tests were performed at room temperature and low speeds to avoid
heating and specimens were stored in liquid nitrogen between tests to avoid strain-aging
effects. All tensile results were then plotted in a single diagram, the strain used being that
introduced in drawing (0·13 per die pass) plus the plastic strain in the tensile test. The result
is shown in figure 13a. The general overlap of the tensile stress-strain curves gives an overall
strain hardening envelope which indicates that the wire drawing and tensile deformations are
approximately equivalent relative to strain hardening. Figure 13b shows similar results on the
same iron wire tested in uniaxial compression following drawing.

Figure 13c shows somewhat similar results obtained earlier by Blazynski & Cole (1960) for
AISI 1012 steel carried to much lower values of total strain. Blazynski & Cole (1960) were
interested in strain hardening in tube drawing and tube sinking. Drawn tubes were sectioned as
shown in figure 13d and tested in plane strain compression as shown in figure 13e. Figure 13c
shows the flow stress in compression plotted against the total strain.

The curves with bent tops in figure 13c were obtained using graphite grease as a lubricant
in the plane strain tests while the data points were obtained in similar tests using a more effec-
tive molybdenum disulphide lubricant. The smooth curve drawn through the molybdenum
disulphide data points constitutes the flow curve essentially in the absence of friction.

Up to a strain of about 1 (figures 13 a, b and c) the usual strain-hardening curve is obtained
that is in good agreement with the generally accepted equation,

σ = σ1ε
n. (10)
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Figure 13. (a)Effect of wire drawing strain on uniaxial stress-strain curve (corrected for necking)
of furnace cooled iron (0·007 w/o C) drawn and tested at room temperature (after Langford & Cohen
1969).(b) Uniaxial compression test data following wire drawing of same materials (tested in tension
following drawing) shown in (a).(c) Plane strain compression tests following tube drawing of AISI
1012 steel. Curves with hooks at top are with graphite lubricant while data points are for a more effective
molybdenum disulphide lubricant (after Blazynski & Cole 1960).(d) How plane strain specimen was
removed from the drawn tube by Blazynski & Cole (1960). Tube diameter was approximately 55 mm,
wall thickness 4·8 mm.(e) Plane strain compression test used by Blazynski & Cole (1960) following
tube drawing.t = 0·045 in. (1·14 mm);b = 0·115 in. (2·92 mm),w (perpendicular to paper= 0·690 in.
(17·53 mm).

However, beyond a strain of 1, the curve was linear corresponding to the equation

σ = A + Bε, (ε < 1), (11)

whereA andB are constants. It may be shown that

A = (1 − n)σ1, (12)

B = nσ1, (13)

in order that the curves of (10) and (11) have the same slope and and ordinate atε = 1.
While (10) is well-known and widely applied there is relatively little data in the literature

for plastic strains greater than 1 and hence (11) is relatively unknown.
From transmission electron micrographs of deformed specimens, Langford & Cohen (1952)

found that cell walls representing concentrations of dislocations began to form at strains
below 0·2 and became ribbon-shaped with decreasing mean linear intercept cell size as the
strain progressed. Dynamic recovery and cell wall migration resulted in only about 7% of
the original cells remaining after a strain of 6. The flow stress of the cold-worked wires was
found to vary linearly with the reciprocal of the mean transverse cell size.

Data that make one question the wisdom of extrapolating test data from ordinary materials
to the larger strain regime of metal cutting are given in figure 14. These are data for the same
material cut under the same conditions except for rake angle(α). The shear stress on the shear
plane is obviously not constant but appears to decrease with increase in shear strain (negative
strain hardening).



The size effect in metal cutting 885

Figure 14. Values of shear stress on shear plane
versus shear strain in chip when cutting the same
material with tools of different rake angle (after Shaw
1954).

3.2 Walker & Shaw (1967)

Toward the end of the sixties it was decided to conduct an acoustical emission study of
concentrated shear at Carnegie-Mellon University. The initial acoustical studies were on
specimens of the Bridgman type but, fortunately, lower levels of axial compressive stress than
Bridgman had used, were employed in order to more closely simulate the concentrated shear
process of metal cutting. The apparatus used, which was capable of measuring stresses and
strains as well as acoustical signals arising from plastic flow, is described in the dissertation
of Walker (1967). Two important results were obtained.

(1) A region of rather intense acoustical activity occurs at the yield point followed by a quieter
region until a shear strain of about 1·5 is reached. At this point there is a rather abrupt
increase in acoustical activity that continues to the strain at fracture which is appreciably
greater than 1·5;

(2) The shear stress appears to reach a maximum at strain corresponding to the beginning of
the second acoustical activity(γ = 1·5)

The presence of the notches in the Bridgman specimen (figure 12) made interpretation of
stress-strain results somewhat uncertain. Therefore, a new specimen was designed (figure 15)
which substitutes simple shear for torsion with normal stress on the shear plane. By empirically
adjusting distance1x (figure 15) to a value of 0·25 mm it is possible to confine all the plastic
shear strain to the reduced area, thus making it possible to readily determine the shear strain
(γ = 1y/1x). When the width of the minimum section is greater or lesser than 0·25 mm,
the extent of plastic strain observed in a transverse micrograph at the minimum section either
does not extend completely across the 0·25 mm dimension or is beyond this width.

Figure 15. Plane strain simple shear-compression specimen of Walker & Shaw (1969).
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Figure 16. Shear stress-shear strain results for
resulphurised low carbon steel for specimen of
figure 15 (after Walker & Shaw 1969).

A representative set of curves is shown in figure 16 for resulphurised low carbon steel.
Similar results are obtained for nonresulphurised steels and other ductile metals. There is
little difference in the curves for different values of normal stress on the shear plane(σ ) to a
shear strain of about 1·5.

This is in agreement with Bridgman (1952). However, beyond this strain, the curves differ
substantially with compressive stress on the shear plane. At large strains(τ ) is found to
decrease with increase in(γ ), a result that does not agree with Bridgman (1952).

When the results of figure 13a and 16 are compared they are seen to be very different. In
the case of figure 13a, strain hardening is positive to normal strains as high as 7. In the case
of figure 16 strain hardening becomes negative above a particular shear strain that increases
with normal stress on the shear plane.

From figure 16 it is seen that for a low value of normal stress on the shear plane of 40 MPa
strain hardening appears to be negative at a shear strain of about 1·5; that is, when the normal
stress on the shear plane is about 10% of the maximum shear stress reached, negative strain
hardening sets in at a shear strain of about 1·5. On the other hand, strain hardening remains
positive to a normal strain of about 8 when the normal stress on the shear plane is about equal
to the maximum shear stress (note curve forσ = 497 MPa in figure 16).

3.3 Usui et al (1961)

Usuiet al(1961) describe an experiment designed to determine why CCI4 is such an effective
cutting fluid at low cutting speeds. Since this also has a bearing on the role of microcracks in
large strain deformation, it is considered here.

A piece of copper was prepared as shown in figure 17. The piece that extends upward
and appears to be a chip is not a chip but a piece of undeformed material left there when
the specimen was prepared. A vertical flat tool was then placed precisely opposite the free
surface as shown in figure 17 and fed horizontally. HorizontalFP and verticalFQ forces were
recorded as the shear test proceeded. It was expected that the vertical piece would fall free
from the lower material after the vertical region had been displaced a small percentage of
its length. However, it went well beyond the original extent of the shear plane and was still
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Figure 17. Special shear test arrangement
(after Usuiet al1961).

firmly attached to the base. This represents a huge shear strain since the shear deformation is
confined to a narrow band. When a single drop of CCI4 was placed atA in figure 17 before
conducting the shear test the protrusion could be moved only a fraction of the displacement
in air before gross fracture occurred on the shear plane. Figure 18 shows photo-micrographs
of tests without and with CCI4. It is apparent that CCI4 is much more effective than air in
preventing microcracks from rewelding.

3.4 Saw tooth chip formation in hard turning

Saw tooth chip formation for hard steel discussed by Vyas and Shaw (1999) is another example
of the role microcracks play. In this case, gross cracks periodically form at the free surface
and run down along the shear plane until sufficient compressive stress is encountered to cause
the gross crack to change to a collection of isolated microcracks.

3.5 Fluid-like flow in metal cutting chip formation

At the General Assembly of the International Institution for Production Engineering Research
(CIRP) in 1952, an interesting paper was presented by Eugene (1952). Figure 19 shows the

(a)

(b)

Figure 18. Photomicrographs of speci-
mens that have been sheared a distance
approximately equal to the shear plane
length:(a) In air, (b) with a drop of CCL4
applied at pointA in figure 17.
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Figure 19. Apparatus used by Eugene (1952)
to photograph flow paths past tools having dif-
ferent rake angles.

apparatus he used. Water is pumped into a baffle chamberA that removed eddies and then
causes flow under gravity past a simulated tool atB. Powdered bakelite is introduced atC

to make the streamlines visible as the fluid flows past the tool. The photographs taken by
the camera atD are remarkably similar to quick stop photomicrographs of actual chips. It
was thought by this author at the time that any similarity between fluid flow and plastic flow
of a solid was not to be expected. That was long before it was clear that the only logical
explanation for the results of Bridgman and Merchant involve microfracture (Shaw 1980).

At the General Assembly of CIRP 47 years later, a paper was presented that again suggests
that metal cutting might be modelled by a fluid (Kwonet al 1999). However, this paper is
concerned with ultraprecision machining (depths of cut< 4µm) and potential flow analysis
is employed instead of the experimental approach taken by Eugene.

It is interesting to note that chemists relate the flow of liquids to the migration of vacancies
(voids) just as physicists relate ordinary plastic flow of solid metals to the migration of
dislocations. Henry Eyring and coworkers (Eyringet al 1958; Eyring & Ree 1961; Eyring
& Jhon 1969) have studied the marked changes in volume, entropy and fluidity that occur
when a solid melts. For example, a 12% increase in volume accompanies melting of argon,
suggesting the removal of every eighth molecule as a vacancy upon melting. This is consistent
with X-ray diffraction of liquid argon that shows good short range order but poor long range
order. The relative ease of diffusion of these vacancies accounts for the increased fluidity
that accompanies melting. A random distribution of vacancies is also consistent with the
increase in entropy observed on melting. Eyring’s theory of fluid flow was initially termed
the “hole theory of fluid flow” but later “the significant structure theory” which is the title of
the Eyring–Jhon book (1969).

According to this theory, the vacancies in a liquid move through a sea of molecules. Eyring’s
theory of liquid flow is mentioned here since it explains why the flow of a liquid approximates
the flow of metal past a tool in chip formation. In this case, microcracks (voids) move through
a sea of crystalline solid.

3.6 Kececioglu’s contributions

Kececioglu (1958, 1960) has presented several papers that illustrate the difficulty of predicting
the mean shear stress on the shear plane in steady state chip formation. The last of these builds
on the others and is most important relative to the modelling being discussed here. Based on
a large number of dry-cutting experiments on AISI 10l5 steel tubing having a hardness of
118 Brinell and using a steel cutting grade of carbide, Kececioglu (1960) concluded that the
mean shear stress on the shear plane depends upon the following variables:

• mean normal stress on the shear plane(σS)

• shear volume of the shear zone(e)
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• mean strain rate in the shear plane(γ̇ )

• mean temperature of the shear plane(θS)

• degree of strain hardening in the work before cutting

If this were not complicated enough, it is clear from Kececioglu’s experimental results that
these items do not act independently (i.e. the influence of a high normal stress on the shear
plane on shear stress on the shear plane depends upon the combination of other variables
pertaining). This is an important result since it means that in general it is not possible to
extrapolate material test values of shear stress to vastly different cutting conditions.

It is interesting to note that Kececioglu (1958, 1960) suggests that the specific energy should
be related to the shear plane area(e) instead of(t) as in most treatments of metal-cutting
mechanics. The shear plane area is

e = b(t/ sinφ)1y(in3. or mm3). (14)

This appears to be a useful suggestion. In both cases the inverse relation betweenu andt or e

is due to the greater chance of encountering a stress-reducing defect ast or e increases. The
use ofe instead oft is a more general although more complex way of expressing the “size
effect”. The range of values covered by Kececioglu in his orthogonal experiments on AISI
1015 steel were as follows:

• rake angle:−10◦ to + 37◦
• undeformed chip thickness(t): 0·004 to 0·012 in (0·2 to 0·3 mm)
• cutting speed(V ): 126 to 746 fpm (38·4 to 227·4 m/min)
• inclination angle(i): 0 to 35◦

This resulted in the following wide range of dependent variables:

• width of shear zone: 0·002 to 0·007 in (0·10 to 0·18 mm)
• rate of strain: 20 000 to 40 000 s−1

• mean shear stress on shear plane(τS) 62,000 to 84,000 psi (427·5 to 579·2 MPa)
• mean normal stress on shear plane: 1000 to 12000 psi (6·9 to 83 MPa)
• mean shear plane temperature: 410 to 840 F (210 to 449◦C)

Figure 20a shows considerable scatter of the variation of shear stress with normal stress due
to the fact that the effect of changing one independent variable on shear stress depends upon a
combination of the other variables as well. Figure 20b shows the variation of the mean value
of shear stress for a group of points in figure 20a in the vicinity of the value of normal stress
plotted in figure 20b. This indicates, on the average, that shear stress increases with increase
in normal stress. This is consistent with the view that under the very high strains involved in
metal cutting (a mean value of about 3·5 in Kececioglu’s experiments) localised microcracks
are likely to form on the shear plane and an increase in normal stress should decrease their
number and give rise to an increase in shear stress on the shear plane.

Figures 21a and b show similar results for the mean shear stress on the shear plane versus
the volume of the shear zone(e). This shows clearly that in general a decrease in the shear
zone volume causes an increase in the shear stress on the shear plane, particularly for shear
volumes below 10−5 in3.

Figure 22 shows results for the mean shear stress on the shear plane versus the shear strain
for the tests of figures 20 and 21. This yields the unusual result that the shear stress decreases
with increase in strain which is not consistent with ordinary materials test results that involve
strain hardening. The reason for this paradox is due to the fact that in addition to strain several
other variables are involved and the net effect is a decrease in shear stress with shear strain.
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Figure 20. Variation of shear stress on the shear plane with normal stress on the shear plane, (a) for
43 tests involving a wide range of rake angle, cutting speed, undeformed chip thickness, and inclination
angle,(b) mean values of shear stress on the shear plane for values of normal stress indicated (after
Kececioglu 1960).

3.7 Zhang & Bagchi (1994)

Zhang & Bagchi (1994) have presented valuable analysis of the chip separation problem in
FEM in terms of microfracture mechanics. This is based on the fact that ductile metals fail in
three steps: nucleation, growth, and coalescence of microvoids that initiate at points of stress
concentration (Anderson 1991). Figure 23 illustrates how the three steps lead to gross fracture
in shear. Figure 24 shows a random distribution of defects (points of stress concentration) in
a ductile metal chip. As the work material approaches a stationary tool, defects along thex

axis in the cutting direction are subjected to increasing stress. This leads to nucleation of a
void atA in figure 24a, growth as the void moves toB in figure 24b and coalescence with the
tool as shown in figure 24c.

Zhang & Bagchi (1994) suggest that voids approaching the tool tip grow but do not
coalesce before reaching the tool tip. This is important since coalescence would lead to a
gross crack extending in front of the tool tip and this is never observed experimentally even

Figure 21. Variation of shear stress on shear plane with shear zone volume:(a) for 43 tests involving
a wide range of rake angle, cutting speed, undeformed chip thickness, and inclination angle,(b) mean
values of shear stress on the shear plane for values of shear volume close to the values ofe indicated
(after Kececioglu 1960).
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Figure 22. Variation of shear stress on the shear plane with shear strain on a shear plane.(a) For 43
tests involving a wide range of rake angle, cutting speed, undeformed chip thickness, and inclination
angle,(b) mean values of shear stress on the shear plane for values of shear strain(γ ) close to the
values of shear strain(γ ) indicated. (after Kececioglu 1960).

when hard materials are machined. Zhang & Bagchi (1994) have applied the continuum
model for void nucleation of Argonet al (1975) and that of Rice & Tracey (1969) for void
growth. It is assumed that separation occurs when the leading void reaches its maximum
size.

The theory presented by Zhang & Bagchi (1994) based on the presence of points of stress
concentration, formation of microvoids, void growth and void coalescence within the tool tip
offers a very reasonable explanation for the flow separation problem involved when FEM is
applied to metal cutting chip formation.

Figure 25 shows a diagram equivalent to figure 24 including action along the shear plane.
Here the material in the shear plane is subjected to very large strains and any points of stress
concentration should be expected to give rise to microcracks instead of micovoids. In the

Figure 23. Void nucleation, growth, and coalescence in ductile metals (after Anderson 1991).
(a) Inclusions in a ductile matrix,(b) void nucleation,(c) void growth,(d) strain localization between
void, (e)necking between voids,(f) void coalescence and fracture.
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Figure 24. Chip separation based on microstructure
mechanics (after Zhang & Bagchi 1994).

presence of relatively high normal stress on the shear plane and the absence of a contaminating
film such as CCI4 vapour, these microcracks reweld after moving a relatively short distance.
Also, due to the very high strains associated with the shear plane very much higher density
of microcracks is involved than the density of microvoids involved in the undeformed work
material of figure 24.

Based on the discussion presented, it is concluded that microcracks usually play an
important role in steady state metal cutting chip formation because of the unusually large
strains involved. Also, there is considerable experimental evidence that normal stress on
the shear plane has a substantial influence on shear stress on the shear plane. Both of these
rule out use of the von Mises criterion in metal cutting modelling except as a very rough
approximation.

Figure 25. Chip formation involving trans-
port of microcracks across the shear plane by
formation, displacement and rewelding.
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4. New mechanism of large strain plastic flow

It is seen that whereas the Bridgman, Langford & Cohen results are in agreement, these
results are completely different from those of Walker & Shaw. A proposed mechanism
of large strain plastic flow (Shaw 1980) suggests that at moderate values of normal
stress on the shear plane, discontinuous microcracks begin to appear in a plane of con-
centrated shear at a shear strain of about 1·5. As strain proceeds beyond this point the
first microcracks are sheared shut as new ones take their place. The sound area on the
shear plane gradually decreases until it becomes insufficient to resist the shear load with-
out gross facture. What seems to be negative strain-hardening in figure 16 is due to
what might be described as ‘internal necking’ (i.e. a gradual decrease in sound inter-
nal area with load just as the area in the neck of a tensile specimen decreases with
load to give the appearance of negative strain-hardening in an engineering stress-strain
curve).

The reason such ‘negative strain hardening’ was not observed by Bridgman or Lang-
ford & Cohen appears to be due to the normal compressive stress on the shear plane
in their experiments being high enough to prevent the formation of microcracks. The
choice of a die angle (only 1·50◦ half angle) and a reduction per pass (0·22) in the
Langford & Cohen drawing experiments provides essentially homogeneous compres-
sive strain in the deformation zone and under such conditions, one would not expect
microcracks to develop. There is considerable indirect evidence to support the for-
mation of microcracks in metal cutting. While it has been reported (Komanduri &
Brown 1967) that microcracks have been observed on the shear plane of quick-stop
chip roots, one should not expect to find many. Such cracks will be of the thin hair-
line variety and most of them would be expected to reweld as the specimen is suddenly
unloaded.

The new theory of plastic flow discussed here is an add-on to dislocation theory. As long
as microcracks do not occur in appreciable number, a material may be deformed to very large
strains with a continuous increase in dislocation density and strain hardening. This is consistent
with the experimental results of Bridgman and Langford & Cohen. However, at a particular
value of shear strain, depending upon the ductility of the material and the normal stress on the
shear plane, microcracks begin to form. If the normal stress on the shear plane is tensile, these
cracks spread rapidly over the shear surface leading to gross fracture. If, however, a moderate
compressive stress (for example 1/2 the shear flow stress for a ductile metal) is present on
the shear plane, the new mechanism pertains. When this occurs there is an extended stress–
strain region exhibiting decrease in flow stress with strain as the ratio of real to apparent area
on the shear plane(AR/A) decreases from one to the critical value at which gross fracture
occurs.

It is suggested that in metal cutting the shear stress on the shear plane is not, in general,
independent of normal stress on the shear plane. The part of the shear plane that involves
microcracks should show an increase in shear stress with normal stress as Piispanen and
Merchant suggested. However, the part that does not involve microcracks should have a
shear stress that is independent of normal stress in keeping with the experimental results of
Bridgman and Langord & Cohen.

It should not be inferred that the foregoing discussion has brought us any nearer to the
solution of the shear angle problem. It should, however, serve to further explain why it is
unlikely that a simple solution to this persistent problem is apt to be found.
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5. Inhomogeneous strain

When metallic single crystals are plastically deformed as previously stated, it is found that
slip does not occur uniformly on every atomic plane but that the active slip planes are rel-
atively far apart (figure 6). It is further found that polycrystalline metals also strain block-
wise rather than uniformly. Crystal imperfections are responsible for this inhomogeneous
behaviour.

When the volume of material deformed at one time is relatively large, there is a uniform
density of imperfections and for all practical purposes, strain (and strain hardening) may be
considered to be uniform. However, as the volume deformed approaches the small volume
associated with an imperfection, the material shows obvious signs of the basic inhomogeneous
character of strain. The mean flow stress rises and the ends of the active shear planes are
evident in a free surface as in figure 5. This is called the size effect.

In metal cutting, the undeformed chip thickness(t) is small, and the width of shear
zone(1y) is very small but the width of cut(b) is relatively large. It would thus appear
that the volume deformed at one time would be(bt1y/ sinφ). However, when the back
of a continuous chip is observed under the microscope it is found (figure 5) that the
edges of the slip bands that are observed are not continuous across the width of the
chip but have an extent characteristic of the imperfection spacing(a). Thus, the volume
deformed at any one time should be taken to(bt1y/ sinφ) wherea � b. In metal cut-
ting, this volume appoachsa3 (mean imperfection volume) and there is a size effect.
This is the main reason specific energy(u) increases with decrease in undeformed chip
thickness(t).

Under ordinary conditions, the shear planes are very closely spaced corresponding to the
closeness of spacing of the weak spots in the metal. It may be assumed that slip planes are
so spaced that a single weak spot is present on each plane. Drucker (1949) has employed
a random array of weak points to qualitatively demonstrate the increase in unit cutting
energy with decrease in depth of cut. However, in as much as the spacing of weak points
is very small compared with the usual depths of cut, an orderly array of weak spots seems
justified. The dots shown in figure 26 represent such an orderly arrangement of weak
points to an exaggerated scale. These points have a uniform spacing of a unit in each
direction.

Figure 26. A specimen with uniform
distribution of points of stress concen-
tration (weak points) (after Shaw 1950).
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Let P1 andP2 be two shear planes making an angleφ with the direction of cut and passing
through adjacent points in the first row below the surface. If the depth of cut ist , thent/a

planes may be placed between those atP1 andP2 such that a single plane passes through each
weak spot in the layer in the process of being cut. The number of planes per unit distance in
a direction perpendicular to the shear plane will be

n = t/[a(a sinφ)] (15)

or the spacing of successive planes is

1y = (a2 sinφ)/t. (16)

The total slip on a given shear plane is

x = [(z2 sinφ)/t ]γ (17)

whereγ is the unit uniform strain.
Assuming normal stress on the shear plane that is sufficient to suppress microcrack for-

mation as in the Langford & Cohen experiments, the flow stress should vary with strain as
given by (10). However, beyond this strain, (11) pertains giving rise to a source of displace-
ment due to the formation, transport, and rewelding of microcracks in addition to strain due
to dislocations.

6. Alternative origin of the size effect

It is appropriate at this point to mention that an alternative explanation for the increase
in hardness that occurs when the indentation size is reduced in metals has recently been
introduced (Stelmashenkoet al1993; Flecket al1994; Ma & Clark 1995; Nix & Gao 1998;
Gao et al 1999). This is based on the fact that there is an increase in the strain gradient
with reduction in indentation size. This has been extended by Dineshet al (2001) to explain
the size effect in machining. In the analysis by them the size effect in hardness is related to
that in cutting, by assuming the von Mises criterion is applicable. Based on the experiments
of Merchant considered in § 2 it is evident that this is not applicable in steady state chip
formation.

In this strain gradient theory two types of dislocations are proposed: geometrically necessary
dislocations(ρg) that are responsible for work hardening and statistically stored dislocations
(ρS) that are affected by a strain gradient. Whenρg � ρS conventional plasticity pertains
(strain rate is unimportant) but whenρg � ρS , a constitutive equation including strain rate
should be included.

The impression one obtains is that the strain gradient approach (Dineshet al 2001) is
uniquely responsible for the size effect in cutting. In their concluding remarks, it is sug-
gested that it should be possible to verify the validity of the strain rate formulation by
experiments designed to test predictions of this approach. This has not yet been done and
until it is it will not be possible to determine whether the influence of strain rate is sig-
nificant in the chip formation application. In any case, it is believed the explanation pre-
sented here based on the influence of defects and normal stress on the shear plane is suffi-
ciently well-supported by the experiments described in § 3 that it should not be considered
insignificant.
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