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ABSTRACT

We analyse the bulge/spheroid size–(stellar mass), 𝑅e,Sph–𝑀∗,Sph, relation and spheroid structural parameters for 202 local
(predominantly . 110 Mpc) galaxies spanning 𝑀∗ ∼ 3 × 109–1012 M� and 0.1 . 𝑅e,Sph . 32 kpc from multicomponent
decomposition. The correlations between the spheroid Sérsic index (𝑛Sph), central surface brightness (𝜇0,Sph), effective half-light
radius (𝑅e,Sph), absolute magnitude (𝔐Sph) and stellar mass (𝑀∗,Sph) are explored. We also investigate the consequences of using
different scale radii, 𝑅𝑧,Sph, encapsulating a different fraction (𝑧, from 0 to 1) of the total spheroid luminosity. The correlation
strengths for projected mass densities, Σ𝑧 and 〈Σ〉𝑧 , vary significantly with the choice of 𝑧. Spheroid size (𝑅z,Sph) and mass
(𝑀∗,Sph) are strongly correlated for all light fractions 𝑧. We find: log(𝑅e,Sph/kpc) = 0.88 log(M∗,Sph/M�) − 9.15 with a small
scatter of Δ𝑟𝑚𝑠 = 0.24 dex in the log(𝑅e,Sph) direction. This result is discussed relative to the curved size–mass relation for
early-type galaxies due to their discs yielding larger galaxy radii at lower masses. Moreover, the slope of our spheroid size–mass
relation is a factor of ∼ 3, steeper than reported bulge size–mass relations, and with bulge sizes at 𝑀∗,sph ∼ 3 × 109 M�
which are 2 to 3 times smaller. Our spheroid size–mass relation present no significant flattening in slope in the low-mass end
(𝑀∗,sph ∼ 109–1010 M�). Instead of treating galaxies as single entities, future theoretical and evolutionary models should also
attempt to recreate the strong scaling relations of specific galactic components. Additional scaling relations, such as log(𝑛Sph)–
log(𝑀∗,Sph), log(Σ0,Sph)–log(𝑛Sph), and log(𝑛Sph)–log(𝑅e,Sph), are also presented. Finally, we show that the local spheroids align
well with the size-mass distribution of quiescent galaxies at 𝑧 ∼ 1.25–2.25. In essence, local spheroids and high-𝑧 quiescent
galaxies appear structurally similar, likely dictated by the virial theorem.
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1 INTRODUCTION

Some of the complexity in galaxy morphology arises from the dif-
ferent developmental processes of the ellipsoidal/spherical bulge and
flat disc. Their diametrically different nature leads to the support for
a two phase formation scenario (e.g., Graham 2013; Driver et al.
2013), where the bulges were formed via a rapid, hot-mode process
(early collapse) at high-redshifts (e.g., Naab et al. 2009; Hopkins
et al. 2009; Bezanson et al. 2009; Trujillo et al. 2011) and the discs
are subsequently built through mergers and accretion (Larson 1976;
Tinsley & Larson 1978; Graham et al. 2015, and reference therein).
In this picture, massive bulges formed first (𝑧 & 2.0) and the disc
later, a.k.a., an inside-out evolution. Less massive galaxies may have
experienced a delayed, more gradual evolution in a down-sizing sce-
nario (e.g. Graham et al. 2017). The third phase of evolution will be
the major merging of these galaxies to produce elliptical (E) galax-
ies or S0 galaxies if the net angular momentum is not sufficiently
cancelled.
While the bulges of some of today’s massive galaxies appear to

be the descendants of the high-𝑧 compact massive galaxies (such
as NGC 3311, see Barbosa et al. 2021), some lower mass bulges
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may also have existed as smaller "red gems" in the distant Universe.
Indeed, the stellar population in the inner part of galaxies seems to
be significantly older than the outer region (Proctor & Sansom 2002;
Moorthy & Holtzman 2006; Thomas & Davies 2006; Jablonka et al.
2007; MacArthur et al. 2008; Saracco et al. 2009), with the work by
MacArthur et al. (2009) revealing that the bulk of the stars in spiral
galaxy bulges are old.

Early-type galaxies (ETGs) are known to follow a curved size-
mass relation, stretching from the ellipitcal (E) galaxies at the high-
mass end (Caon et al. 1993; D’Onofrio et al. 1994; Shen et al.
2003; Cappellari et al. 2011a; Baldry et al. 2012; Lange et al. 2015,
2016; Morishita et al. 2017; Nedkova et al. 2021; Noordeh et al.
2021) to the dwarf ETGs (dETGs) at the low-mass end (Binggeli
& Jerjen 1998; Graham et al. 2006; Forbes et al. 2008; Graham
2013). Due to the prevalence of discs in ETGs (Scott et al. 2015, and
reference therein), this curved relation is a product of the disc size
and mass, which dominate the ETGs at the low-mas end. In the 70s,
when the galaxies’ size was measured using isophotal radius (e.g.,
Heidmann 1969; Holmberg 1969; Oemler 1976; Strom & Strom
1978), the galaxies exhibited a linear size-mass relation in log-log
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space (i.e., the size–mass relation follows a simple power law)1.
However, these works primarily focus on the size-mass relation for
galaxies as a whole instead of their substructures. Additional insight
can be drawn if a similar study is conducted on the bulge/spheroids.
A bulge/bar/disc decomposition is required to explore the size–mass
relation of ETG bulges, as opposed to the size–mass relation of the
galaxies themselves. This enables greater insight into the formation
physics shaping the components of galaxies. Before high-resolution
observations of distant galaxies, such as those promised by MAVIS
(optical, under development, McDermid et al. 2020; Rigaut et al.
2020) and VLT’s PIONIER (1.6 𝜇m, Le Bouquin et al. 2011), and
GRAVITY (2.0–2.4 𝜇m imager, Gillessen et al. 2010; Eisenhauer
et al. 2011) are available, local spheroids are a great place to probe
the Universe’s past. Important questions can be asked in regard to
bulge formation. For instance, with the low merger rate at 𝑧 < 0.7
(De Propris et al. 2005, 2007, 2010), how are spheroids formed so
efficiently 10–12 Gyr ago? Is the continuity in the spheroid size–
mass relation, from E galaxies to spheroids embedded in S0, S, and
dETGs, a coincidence, or are they the products of the same formation
physics but simply differ in scale?
For decades, the standard method to break down galaxy structure

was to fit either an 𝑅1/4 (de Vaucouleurs 1948) or an 𝑅1/𝑛 (Sérsic
1968) model to describe the spheroid, plus an exponential function
to describe the disc (e.g., Andredakis et al. 1995; Seigar & James
1998; Iodice et al. 1999; Khosroshahi et al. 2000b; D’Onofrio 2001;
Graham 2001; Möllenhoff & Heidt 2001; Simard et al. 2002; Allen
et al. 2006; Fisher & Drory 2010; Simard et al. 2011, etc.). However,
due to the complex substructures in galaxies, a simple Bulge+Disc
decomposition is inappropriate for some. Consequently, past size–
mass relations for bulges are questionable due to the influence of,
for example, the bar, which can inflate both the size and the mass of
the presumed ‘bulge’ component. This can muddy the waters when
attempting to identify classical bulges versus ‘pseudo-bulges’. Given
the need for more detailed breakdowns of galaxy structures, many
(e.g., Martin 1995; Prieto et al. 1997; Aguerri et al. 1998; Graham
et al. 2003b; Laurikainen et al. 2005; Gadotti 2009; Laurikainen et al.
2010; Vika et al. 2012; Läsker et al. 2014; Savorgnan & Graham
2016a; Davis et al. 2019; Sahu et al. 2019) developed sophisticated,
manual (i.e., not blind automated) multicomponent decompositions
in an attempt to capture these substructures. The benefit of such,
interestingly, is that now the spheroids can be better qualified because
the biasing substructures have been accounted for.
While spheroids can grow, the entropy of such pressure-supported

systems makes them hard to erase. As such, they are expected to
have longevity which bars and spiral arms will not. Here, we focus
on the spheroids, leaving the bar or disc scaling relation for future
investigation.We take advantage of multicomponent decompositions
to examine the bulge/spheroid size-mass (𝑅e,Sph–𝑀∗,Sph) relation
and some of their structural parameters: central surface brightness
(𝜇0,Sph) and Sérsic index (𝑛Sph).
In Section 2, we briefly describe our data sources (Section 2.1),

the surface brightness profile extraction (Section 2.2), and the mod-
els used to measure the spheroids (Section 2.3). In Section 3, we
first discuss the spheroid structural parameters and their correlations
with each others (Section 3.1 and 3.2). We subsequently explore
the changes among these parameters when using scale radii enclos-
ing different fractions of the spheroid light (Section 3.3). Subse-
quently, we converted the spheroid absolute magnitude into stellar

1 Evidence of a linear isophotal size–mass relation are also seen in later
works (e.g., Forbes et al. 2008; van den Bergh 2008; Nair et al. 2011).

mass (Section 3.4) and studied how the spheroid mass related scal-
ing relations varies when using different scale radii (Section 3.4.1,
3.4.2, and 3.4.3). The spheroid size-mass relation (Section 3.5.1) and
other scaling relations (Section 3.5.2) are also presented. Section 4
compares the spheroid size-mass relation to relevant works in the
literature and discusses what it informs us on the formation history
of the spheroids.

2 DATA AND ANALYSIS

2.1 Galaxy sample

We utilise the following works for our analyses: (1) Savorgnan &
Graham (2016a, hereafter SG16), (2) Davis et al. (2019, hereafter
D+19), (3) Sahu et al. (2019, hereafter S+19), and (4) Hon et al.
(2022, hereafter H+22). These studies have performed physically-
motivated2, multicomponent decompositions of local galaxies of
various morphology. The decomposition in D+19, S+19, and H+22
are performed using Profiler (Ciambur 2016), while SG16 used
their own programme "profilterol".
Among the data from the four works, there are some repeating

galaxies. There is one galaxy in D+19 (NGC 3368) and four galaxies
in S+19 (NGC 3665, NGC 4429, NGC 4526, and NGC4649) over-
lapping with H+22. We adopt the newer decomposition from H+22
and remove the repeating data points from the previous works. In
total, there are 241 unique galaxies in these data sets. See the respec-
tive papers for the structural parameters of individual galaxies. The
followings are brief descriptions of each.

2.1.1 Savorgnan & Graham (2016)

SG16 analyzed 66 galaxieswith dynamicallymeasured supermassive
black hole (SMBH)mass,𝑀BH, fromGreenhill et al. (2003); Graham
& Scott (2013); Rusli et al. (2013). It contains 47 ETGs and 19
"early-type" spiral galaxies. The analysis was performed on 3.6 𝜇m
Spitzer/IRAC (InfraRed Array Camera) images (Fazio et al. 2004;
Werner et al. 2004) (see SG16, their Section 2.1). In their subsequent
paper, Savorgnan et al. (2016) convert the 3.6 𝜇m luminosity into
stellar mass using a constant mass-to-light (𝑀∗/𝐿3.6, or Υ3.6) ratio
of 0.6 (Meidt et al. 2014)3.

2.1.2 Davis et al. (2019)

D+19 performed multicomponent decompositions for 434 late-type
galaxies (LTGs). The sample was selected based on a compilation
from Davis et al. (2017): a set of spiral galaxies with their SMBH
mass measured via proper stellar motion, stellar dynamics, gas dy-
namics, and stimulated astrophysical masers (see their Table 1). The
spiral galaxy data set consists of the following morphological type:
10 SA, 12 SAB, and 22 SB galaxies (defined by RC3 de Vaucouleurs
et al. 1991)5. D+19 analysed the galaxy structures primarily using
3.6 𝜇m images. D+19 analyzed the Spitzer Survey of Stellar Struc-
ture in Galaxies (S4G, Sheth et al. 2010) and the Spitzer Heritage

2 Rather than blindly fitting 2, 3, or 4 Sérsic components, we inspect each
image and fit for specific physical components seen in the data.
3 Meidt et al. (2014) assumes a Chabrier (2003) initial mass function (IMF), a
Bruzual & Charlot (2003) stellar synthesised stellar population model (SSP),
and an exponentially declining stellar formation history (SFH).
4 Three of which are bulgeless galaxies.
5 Four of which were discarded by D+19 in the decomposition process.
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Archive (SHA)6. Alternative data from the 𝐹814𝑊-band in Hubble
Space Telescope (HST)7 images and 𝐾s-band images from the Two
Micron All Sky Survey (2MASS) Large Galaxy Atlas (LGA, Jarrett
et al. 2003) were used in the absence of Spitzer images or when
greater special resolution was required (see Section 2.2 in D+19). In
LTGs, because the dust in the disc glows in the infrared, D+19 used
a smaller stellar mass-to-light ratio 𝑀∗/𝐿3.6 = 0.453, in accordance
with data from Querejeta et al. (2015), to compensate for the poten-
tial overestimation of stellar mass due to non-stellar luminosity in
LTGs (see Section 2.8 in D+19)8. For the sake of consistency, we
only use their 26 galaxies with Spitzer images.

2.1.3 Sahu et al. (2019)

Building upon the 47 ETGs from SG16, S+19 added 41 more
ETGs, including seven remodelled ETGs (A3565 BCG, NGC 524,
NGC 2787, NGC 1374, NGC 4026, NGC 5845, and NGC 7052). For
these seven remodelled galaxies, we use the parameters provided by
S+19. Among the newly added 41 galaxies, based on their decom-
position, are 15 E, 3 ES, and 23 S0 galaxies, respectively. S+19 data
sources are from: 3.6 𝜇m-band images in Spitzer/IRAC (Sheth et al.
2010), r-band images in Sloan Digital Sky Survey (SDSS, York et al.
2000), 𝐾𝑠-band images from 2MASS/LGA (Jarrett et al. 2003), and
𝐹814𝑊-band in SHA. As was done with the D+19 data, we only use
the Spitzer galaxies from S+19, which amounts to 33 galaxies.
Similar to what was done in SG16, the spheroid 3.6 𝜇m luminosity

from Spitzer/IRAC and SHA images are converted into stellar mass
with a constant mass-to-light ratio 𝑀∗/𝐿3.6 = 0.6 (Meidt et al. 2014,
see their Section 3.3 for details).

2.1.4 Hon et al. (2022)

H+22 selected a mass- and volume-limited sample of massive
(𝑀∗,gal > 1011 M�) galaxies at Distance < 110 Mpc from the
NASA-Sloan catalogue9 based on SDSS photometry (York et al.
2000; Aihara et al. 2011) in the 𝑖-band. The H+22 sample contains
103massive galaxies with𝑀∗/M� > 6.7×1010 (based on the Roedi-
ger & Courteau (2015) 𝑀∗/𝐿𝑖 ratio) but is otherwise nondiscrimi-
natory to galaxy morphology. According to H+22’s decomposition,
the galaxies are assigned new morphologies. There are 13 ellipticals
(E+ES)10, 50 lenticular (S0) and 40 spiral (S) galaxies in this sam-
ple. H+22 use the galaxies’ 𝑔- and 𝑖-band photometry from SDSS to
estimate the 𝑀∗/𝐿𝑖 ratio. In this paper, we will use the 𝑀∗/𝐿𝑖 ratio
provided by the Roediger&Courteau (2015) prescription, which pro-
vides agreement with the Spitzer-derivedmasses from the three other
works (Sahu et al. 2019, see their Section 3.4) 11. After removing the

6 http://sha.ipac.caltech.edu
7 https://mast.stsci.edu/
8 D+19 used the median (𝐿∗/𝐿obs)IRAC1 = 0.755 from Fig. 10 of Querejeta
et al. (2015) and the color-independent 𝑀∗/𝐿IRAC1 = 0.60 from Meidt et al.
(2014) to estimate the median value of 𝑀∗/𝐿3.6 = 0.453. See Section 2.8 in
D+19 for details.
9 http://www.nsatlas.org/
10 Here, the elliptical galaxies are composed of two populations: 11 con-
ventional ellipticals (E) and two ellicular (ES) galaxies. ES galaxies (Liller
1966; Savorgnan & Graham 2016b; Graham 2019b) are ellipitcals that con-
tain an intermediate-scale disc. The name "ellicular" ("elliptical+lenticular")
was introduced in Graham et al. (2016).
11 The𝑀∗/𝐿 ratio utilised by the four works assume a Chabrier (2003) initial
mass function and the stellar populationmodel fromBruzual&Charlot (2003)
(see Meidt et al. 2014; Roediger & Courteau 2015).

non-Spitzer galaxies from the previous three studies and combining
them with H+22, we have, in total, 202 galaxies for analysis.

2.2 Surface brightness profile analysis

The surface brightness profiles of the host galaxies were previously
extracted via the isophotal fitting programme ISOFIT (Ciambur
2015). Built on the isophotal fitting function ellipse in IRAF, it
fits a series of concentric quasi-ellipses onto the galaxy image. The
flux along each quasi-ellipse gives the surface brightness at a given
radius. Improving upon ellipse, ISOFIT is able to better handle
bars and near-edge-on discs by correctly using high-order Fourier
harmonic distortions to ellipses rather than just circles (see Ciambur
2015, for details).
The decomposition is informed by the various radial profiles (sur-

face brightness 𝜇, ellipticity 𝜖 , Position Angle 𝑃𝐴, harmonic coef-
ficients 𝐵4, 𝐵6) of the galaxy isophotes, describing features in the
2D images. Relevant studies from the literature were also consid-
ered when choosing the appropriate components for each galaxy. In
addition to the more apparent structures, such as a bulge, extended
disc, and bar, less prominent but important substructures, such as
a nuclear disc (Ferrarese et al. 1994; van den Bosch 1998; Scorza
& van den Bosch 1998; Balcells et al. 2007), secondary bar (Buta
& Crocker 1993; Shaw et al. 1993; Wozniak et al. 1995; Jungwiert
et al. 1997; Erwin et al. 2003), anase (Martinez-Valpuesta et al. 2007)
and rings (Buta & Combes 1996), were also included in the decom-
position (see Section 3 in Hon et al. 2022). The different types of
disc, namely the Type I regular disc (Patterson 1940; de Vaucouleurs
1957), the down-bending Type II disc (van der Kruit & Searle 1981),
the up-bending Type III disc (de Grĳs et al. 2001; Pohlen et al. 2002),
and the inclined disc model (van der Kruit & Searle 1981) were also
considered. Because such potentially biasing factors and components
have been accounted for, the bulges/spheroids obtained from the de-
composition process are more accurate than simple 2-component
Bulge+Disc decomposition. Rather than relying on a statistical ap-
proach, e.g., Akaike information criterion or Bayesian information
criterion, additional components were only fit if there was evidence,
either pre-existing in the literature or in the SDSS imaging data, for
their presence. This included features in the ellipticity (𝜖), position
angle (𝑃𝐴) or harmonic coefficient (e.g. 𝐵4, 𝐵6) radial profiles. For
detailed descriptions of the decomposition process, see Sec. 3.3 and
Fig. 6 in H+22.
The multicomponent galaxy models were convolved using a

Moffat representation of the PSF measured in the same frame as
each galaxy. For the SDSS 𝑖-band images from H+22, the median
FWHM size of the PSF is ∼ 1.0′′, with individual measurements
listed in Tables C1–C3 of H+22. None of the 103 galaxies had
𝑅e,sph/𝐹𝑊𝐻𝑀 < 1.0. As noted in section 2.2 of D+19, when 𝑅e,Sph
was comparable to or smaller than the ‘seeing’ of the Spitzer Space
Telescope (∼ 2′′), then HST data was used for those galaxies with
directly measured black hole masses, which are not included here
due to our effort to ensure the use of consistent 𝑀/𝐿∗ ratios between
the samples. This was also the case with the Spitzer sample from
SG16 and S+19. That is, the black hole sample used here has a priori
excluded galaxies with 𝑅e,Sph/𝐹𝑊𝐻𝑀 . 1, and simulations have
repeatedly shown that the Sérsic model’s 𝑅e,sph can be recovered
under such conditions (Gadotti 2008).
Finally, it is perhaps useful to remark on the nature of the spheroids,

whether they are the classical bulges or pseudo-bulges built via sec-
ular influence from the disc. SG16 stated that they did not attempt to
distinguish between classical and pseudo-bulges. However, withmost
of their data being barless S0 galaxies and giant elliptical galaxies,
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pseudo-bulges are not likely to be present in SG16. Because D+19
focuses on LTGs, they reported on claims in the literature for 35
pseudo-bulges in their sample of 43. However, having their galaxies’
bar components and (peanut shell)-shaped structures captured and
modelled, bar-induced pseudo-bulge structures were effectively sub-
sumed into the barmodel.D+19 note that all their bulges co-define the
same𝑀BH-𝑀∗,Sph relation. A tight𝑀BH-𝑀∗,Sph relation implies the
bulges they extracted are the structures that coevolve with the SMBH,
namely the classical spheroids instead of the secularly-built pseudo-
bulges. S+19 modelled the boxy/X/(peanut shell)-shaped structure,
as well as the oval (barlens) structure, separate from the (classical)
bulges. They used either a Ferrers (Ferrers 1877; Sellwood&Wilkin-
son 1993) or Sérsic function (Sérsic 1968) for these "pseudo-bulge"
structures (see in their plots, NGC 4792, NGC 2787, and NGC 4371);
that is, the disc-induced, secularly-built pseudo-bulges are captured
in either the bar/barlens component. The same treatment can be seen
in H+22. Therefore, the spheroids described in this work are thought
to be classical bulges and not inner discs, which are modelled as
such, nor features thrown up by unstable bars.

2.3 Spheroid model

The spheroids are modelled by either one of two functions: the Sérsic
or the core-Sérsic function (Graham et al. 2003a). The Sérsic function
describes the bulges’ intensity profile with three parameters (𝑛, 𝑅e,
and 𝐼e), such that

𝐼 (𝑅) = 𝐼e exp
{
−𝑏𝑛

[(
𝑅

𝑅e

) 1
𝑛

− 1
]}
, (1)

where 𝑛 is the Sérsic index or ‘shape parameter’ that depicts the shape
of the profile, 𝑅e is the "effective" half-light radius that encapsulate
half the total luminosity, and 𝐼e is the intensity at 𝑅e. It is easy to
see that 𝐼0 ≡ 𝐼 (𝑅 = 0) = 𝐼e 𝑒𝑏n . The quantity 𝑏n is a function
of 𝑛, determined by solving the equation Γ(2𝑛) = 0.5𝛾(2𝑛, 𝑏n),
where Γ and 𝛾 are the complete and incomplete gamma functions,
respectively (see Graham & Driver 2005). For 0.5 < 𝑛 < 10, 𝑏n can
be approximated by the following equation: 𝑏n ≈ 1.9992𝑛 − 0.3271
(Capaccioli et al. 1989). The total luminosity (𝐿tot) can be calculated
by integrating the intensity over the projected surface of the galaxy.
We have:

𝐿tot =
𝐼0𝑅
2
e2𝑛𝜋

(𝑏𝑛)2𝑛
Γ(2𝑛), (2)

and the surface brightness (𝜇) at a given radius (𝑅) is:

𝜇(𝑅) = −2.5 log(𝐼 (𝑅)). (3)

The Sérsic function has a particular noteworthy construct. The
value of 𝑏𝑛 is arbitrarily defined in Sérsic (1968) to be the value
where the parameter, 𝑅e, encompasses half of the total luminosity
(0.5𝐿tot). When switching to a different scale radius, 𝑅z, encom-
passes a different fraction 𝑧 of the total light, and this is achieved by
changing 𝑏𝑛 to a new constant 𝑏𝑛,𝑧 . We can convert 𝑅e to 𝑅z using
equation 22 in Graham (2019a):

𝑅z =

(
𝑏𝑛,𝑧

𝑏n

)𝑛
𝑅e. (4)

where 𝑏𝑛,z is a function of 𝑛 obtained by solving the equationΓ(2𝑛) =
𝑧𝛾(2𝑛, 𝑏n), and 𝑧 is the enclosed fraction of light ranging from 0 and
1.
The scale radius, 𝑅𝑧 , is often overlooked in the literature. As one

chooses to characterise the spheroid structures with a different 𝑅𝑧 in-
stead of 𝑅e, the distribution of 𝜇𝑧 and projected mass density Σ𝑧 will
change as well. As a result, the corresponding scaling relations differ
drastically from when 𝑅e was used. One might incorrectly assign
physical significance to a particular relation without realising that
some quantities are arbitrarily defined and unrelated to the underly-
ing physics of galaxy evolution. We shall reveal how the correlation
strength changes for different scaling relations as a function of light
fraction 𝑧 later in Section 3.3.
Similarly, the corresponding surface brightness at 𝑅𝑧 , 𝜇z, will be:

𝜇z = 𝜇0 + 2.5
𝑏𝑛,𝑧

ln(10) , (5)

where 𝜇0 is the central surface brightness. The average surface bright-
ness, 〈𝜇〉𝑧 , within 𝑅𝑧 is:

〈𝜇〉𝑧 = 𝜇𝑧 − 2.5 log
(
2𝑧𝑛e𝑏𝑛,𝑧(
𝑏𝑛,𝑧

)2𝑛 Γ(2𝑛)) = 𝜇𝑧 − 2.5 log(𝐵𝑧 (𝑛)), (6)

where, here, we name the function 𝐵𝑧 (𝑛) the ‘shape function’12 of a
Sérsic profile:

𝐵𝑧 (𝑛) ≡
2𝑧𝑛e𝑏𝑛,𝑧(
𝑏𝑛,𝑧

)2𝑛 Γ(2𝑛). (7)

Note that 𝐵𝑧 (𝑛) is required to calculate the total luminosity of a
Sérsic profile with 𝐿tot = 𝐼0𝑅2𝑧𝐵𝑧 (𝑛)𝑒−𝑏n,z𝜋.
The surface brightness, 𝜇𝑧 , can be converted into a physical quan-

tity, the projected mass density, Σz:

−2.5 log
(
Σz

[
M�pc−2

] )
=𝜇z − DM −𝔐�,𝜆 − 2.5 log

(
1/s2

)
− 2.5 log (Υ𝜆) ,

(8)

where 𝜇𝑧 is the surface brightness at 𝑅𝑧 ; DM is the distancemodulus;
𝔐�,𝜆 is the absolute magnitude of the Sun at wavelength 𝜆; 𝑠 is the
physical size scale in pc arcsec−1; and Υ𝜆 is the mass-to-light ratio
at wavelength 𝜆 (Sahu et al. 2022, see their equation A5 for details).
Some massive galaxies/spheroids have surface brightness profiles

which deviate from the Sérsic model because of their core-deficit
(King 1978; Byun et al. 1996; Trujillo et al. 2004). The merging
of binary SMBHs ejects the neighbouring stars outwards through
gravitational slingshots (Saslaw et al. 1974; Begelman et al. 1980).
As a result, the surface brightness profile of the core is shallow
out to some "break-radius", 𝑅b, and conforms to a regular Sérsic
model in the outer region. For this special class of spheroids, they
are modelled with the six parameters (𝑛, 𝑅e, 𝑅b, 𝐼b, 𝛼, and 𝛾) "core-
Sérsic" function13 (Graham et al. 2003a):

𝐼 (𝑅) = 𝐼 ′
[
1 +

(
𝑅b
𝑅

)𝛼] 𝛾

𝛼

exp
−𝑏𝑛

[
𝑅𝛼 + 𝑅𝛼b
𝑅𝛼e

] 1
𝛼𝑛

 , (9)

where 𝑅b is the "break-radius", 𝛾 describes the slope of the inner
power-law profile, and 𝛼 describes the sharpness of the transition be-
tween the inner (power-law) and outer (Sérsic) regimes. The intensity
𝐼 ′ can be expressed as such:

𝐼 ′ = 𝐼b2−(𝛾/𝛼) exp
[
𝑏n

(
21/𝛼𝑅b/𝑅e

)1/𝑛]
, (10)

12 Graham (2019a) refer to this function as 𝑓 (𝑛) (see their equation 20).
13 The core-Sérsic function is an empirical model combining a power-law to
describe the depleted core with the Sérsic function.
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where 𝐼b is the intensity at the break-radius. See Fig. 9 and 10 in
Graham et al. (2003a) for the differences in Sérsic and core-Sérsic
functions.
In what follows, we present the spheroid scaling relations, as well

as their structural parameters as described by these two models.
Unless otherwise stated, all parameters (e.g., 𝑛, 𝜇e,) shown in this
work are calculated using radii, 𝑅eq, equivalent to the geometric-
mean of the major (𝑎) and minor (𝑏) axis: 𝑅eq =

√
𝑎𝑏. This implicitly

accounts for the ellipticity of the isophotes.

3 RESULTS

This section is structured as follows:

(i) We first establish the correlation strength of various rela-
tions involving the spheroid structural parameters, 𝑛Sph, 𝜇0,Sph, and
𝑅e,Sph, absolute magnitude,𝔐Sph in Section 3.1 and 3.2 using H+22
sample.
(ii) Afterward, we demonstrate how these distributions change

while using alternate scale radii, 𝑅𝑧 (see equation 4), in Section 3.3.
We also explore how the effective surface brightness (equation 5)
changes with𝔐Sph for a range of fractions, 𝑧.
(iii) In Section 3.4, we convert the spheroid surface brightness and

magnitude into physical quantities: Σz,Sph, 〈Σ〉𝑧,Sph, and 𝑀∗,Sph,
where Σ𝑧,Sph and 〈Σ〉𝑧,Sph are the stellar surface mass density at
and within 𝑅𝑧,Sph, and 𝑀∗,Sph is the spheroid stellar mass. This
enables us to fold in the sample from SG16, D+19, and S+19 in to
the analysis. In Section 3.4.3, we explore the correlation strength of
various quantities: 𝑛Sph, 𝑅𝑧,Sph, Σ𝑧,Sph, 〈Σ〉𝑧,Sph, and 𝐵𝑧,Sph (𝑛Sph)
with the spheroid stellar mass, 𝑀∗,Sph, under the assumption of
different scale radii.
(iv) We then fit the spheroid size–mass (𝑅e,Sph–𝑀∗,Sph) relation

in Section 3.5.1. Due to its strong linearity, the size–mass relation is
arguably the most important scaling relation. Section 3.5.2 presents
a few additional fitted scaling relations: 𝑛Sph–𝑀∗,Sph, Σ0,Sph–𝑛Sph,
and 𝑛Sph–𝑅e,Sph that are supplementary to the size–mass relation.

3.1 Absolute Magnitude versus Sérsic index, central surface
brightness, and effective radius

Fig. 1 shows the distribution of the total spheroidal absolute mag-
nitude, 𝔐Sph, versus the Sérsic index, log(𝑛Sph), central surface
brightness, 𝜇0,Sph, and effective radius, log(𝑅e,Sph), from the sam-
ple in H+22. The core-Sérsic spheroids, highlighted by red circles,
are universally bright with 𝔐Sph < −21 mag in the 𝑖-band (AB
mag). The distribution of spheroid parameters separates E+ES galax-
ies and spheroids from S0 and S galaxies. In the𝔐Sph − log(𝑛Sph)
plot (left-hand panel), most spheroids residing at 𝑛Sph > 3.5 and
𝔐Sph < −21 mag are elliptical (E+ES) galaxies. Bulges coming
from S0 and S galaxies concentrate in −21 < 𝔐Sph/mag < −18 and
0.4 < 𝑛Sph < 3.5. In the middle panel of Fig. 1, the 𝔐Sph–𝜇0,Sph
plot presents a rather different distribution. S0 and S spheroids are
concentrated between 12 . 𝜇0,Sph/mag arcsec−2 . 20 and −23 <
𝔐Sph/ mag < −18, while the E+ES galaxies span a different range,
at 15 . 𝜇0,Sph/mag arcsec−2 . 0 and −23 < 𝔐Sph < −17 mag.
These differences likely reflect a major merger origin for the ES/E
galaxies, inflating their 𝑅e and luminosity as the disc mass of the pro-
genitors is turned into spheroid mass and resulting in larger Sérsic
indices and brighter (extrapolated) 𝜇0 values. In practice, the damage
caused by coalescing binary SMBHs erodes the central stellar phase

space and reduces the observed 𝜇0 value. The disc stars from the pro-
genitor galaxies contribute to the long tail of their high-𝑛 profile. The
𝔐Sph–log(𝑅e,Sph) relation, shown in the right-hand panel, exhibits
a strong log-linear trend, with good agreement across the E+ES,
S0 and S bulges. At 𝑅e,Sph & 3–4 kpc, the spheroid population is
dominated by E+ES galaxies.
Studies have reported linear scaling relations for ETGs in the

𝔐gal–log(𝑛gal) and 𝔐gal–𝜇0,gal planes (Caon et al. 1993; Young
& Currie 1994; Graham et al. 1996; Graham 2001; Ferrarese et al.
2006; Savorgnan et al. 2013; Janz et al. 2014). For instance, using
a single Sérsic function to model ETGs in the 𝐵-band (Binggeli
& Jerjen 1998; Caon et al. 1993; D’Onofrio et al. 1994; Stiavelli
et al. 2001; Graham et al. 2003b). Researchers have investigated
the empirical 𝔐gal–log(𝑛) and 𝔐gal–𝜇0,gal for massive ETGs. In
Graham & Scott (2013, see their Fig. 6), both distributions exhibit a
clear linear relation (see also their equation 6 and 7), and they use
these empirical relations to predict the ETG size–luminosity relation
in the 𝐵-band.
However, for the spheroid structural parameters shown in Fig. 1,

the 𝔐Sph–𝜇0,Sph and 𝔐Sph–log(𝑛Sph) relations are not obviously
log-linear. The𝔐Sph–log(𝑛Sph) relation appears to have awide range
of scatter, and the𝔐Sph–𝜇0,Sph distribution has a prominent "bend"
at 𝔐Sph ∼ −22 mag (AB mag), with E+ES galaxies having much
brighter central surface brightness compared to the S0 and S bulges.
Interestingly, our𝔐Sph–𝜇0,Sph distribution is similar toWatkins et al.
(2022)’s𝔐gal–𝜇0,gal relation for their ETGs (see their Fig. 14).While
their distribution is also clearly not linear, by excluding galaxies with
high Sérsic index (𝑛 & 7), they provide a linear𝔐gal–𝜇0,gal relation
(see their equations 15–16). Here, we first test the linearity among
the three distributions shown in our Fig. 1.
We computed the Pearson correlation coefficient (𝑟p) and the

Spearman rank-order correlation coefficient (𝑟s) for each distribu-
tions (listed in Fig. 1). The coefficient 𝑟p depicts how well a linear
relation describes our data and 𝑟s describes how well the relation
approximates a monotonic increasing trend. For our spheroids, both
𝑟p and 𝑟s are similar across all parameters. The 𝔐Sph–log(𝑅e,Sph)
relation presents the highest positive correlation among the three,
with 𝑟p = −0.90 and 𝑟s = −0.92. Note that the coefficient is negative
because a more luminous object has a lower absolute magnitude. Fol-
lowing the observation above on the different locations of elliptical
and disc galaxies in these scaling diagrams, we subdivided our sam-
ple into E+ES and S0+S galaxies to check if there is any deviation
between the two groups. The Pearson and Spearman coefficients for
ellipticals, 𝑟p (E + ES) and 𝑟s (E + ES), and disc-galaxies, 𝑟p (S0 + S)
and 𝑟s (S0 + S), are shown in Fig. 1. Note that, in particular, in the
𝔐Sph–𝜇0,Sph plane, disc-galaxies exhibit a different pattern than the
ellipticals, with 𝑟p (S0 + S) = 0.20 and 𝑟p (E + ES) = 0.21.

3.2 Correlation between 𝑛Sph, 𝜇0,Sph, and 𝑅e,Sph
Beyond comparing structural parameters to the spheroid magnitude,
we also study how these parameters relate to each other. Fig. 2 shows
the distribution of H+22’s spheroids in the log(𝑅e,Sph)–log(𝑛Sph),
𝜇0,Sph–𝑛Sph and 𝜇0,Sph–log(𝑅e,Sph) planes.
Among the three relations, the distribution in the 𝜇0,Sph–𝑛Sph

plane shows the strongest correlation (𝑟𝑝 (𝐴𝑙𝑙) = −0.95 and
𝑟𝑠 (𝐴𝑙𝑙) = −0.81). It is remarkably linear, especially for the E+ES
galaxies (𝑟𝑝 (𝐸 + 𝐸𝑆) = −0.97) due to extrapolation of the Sér-
sic model, with high-𝑛 profiles giving bright 𝜇0 values. In the
log(𝑅e,Sph)–log(𝑛Sph) plane, the spheroids exhibit amoderately high
correlation (𝑟𝑝 (𝐴𝑙𝑙), 𝑟𝑠 (𝐴𝑙𝑙) ≈ 0.79, 0.73). The shape of the distri-
bution is somewhat reminiscent of that seen in the𝔐Sph–log(𝑛Sph)
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Figure 1. Spheroid absolute magnitude, 𝔐Sph (𝑖-band, AB), versus the structural parameters (𝑛Sph, 𝜇0,Sph, and 𝑅e,Sph, from the equivalent axis) from the
decomposition in H+22. The 𝜇0 value of the core-Sérsic spheroids are derived from extrapolations towards the centre, based on the three parameters (𝑅e, 𝜇e, and
𝑛) in the Sérsic component of the core-Sérsic model. Essentially, they depict 𝜇0 as if there is no core-deficit. Spheroids modelled by the core-Sérsic model are
marked with red open circles (©). The Pearson correlation coefficients (𝑟p) and Spearman rank-order correlation coefficient (𝑟s) for each relation are displayed.

diagram in Fig. 1. Given that𝔐Sph and log(𝑅e,Sph) are strongly cor-
related, forming essentially a log-linear relation, it is not surprising
that the log(𝑅e,Sph)–log(𝑛Sph) distribution resembles the 𝔐Sph–
log(𝑛Sph) distribution. The 𝜇0,Sph–log(𝑅e,Sph) distribution does not
exhibit any obvious scaling relation beyond a broad trend. E+ES
galaxies and bulges from S0+S galaxies occupy different regions
of the plot with most S0+S bulges within 0.1 < 𝑅e,Sph/kpc < 3
and 13 < 𝜇0,Sph/mag arcsec−2 < 18.5. A spheroid effective radius,
𝑅e,Sph, is not particularly useful in predicting the central surface
brightness, 𝜇0,Sph.
Two sets of spheroid parameters:𝔐Sph–log(𝑅e,Sph) and 𝜇0,Sph–

𝑛Sph have the highest correlation among any pairs and, therefore, can
be used as the primary scaling relations to predict spheroid properties
reliably. In contrast, log(𝑅e,Sph)–log(𝑛Sph) and𝔐Sph–𝑛Sph relations
are moderately correlated with a varying range of scatter. As such,
𝑅e,Sph and 𝔐Sph can be used as a supplementary predictor for the
spheroid shape, 𝑛Sph if 𝜇0,Sph is not available.
The 𝜇0,Sph–𝑛Sph relation is one of the more prominent scaling

relations among spheroid parameters. In Khosroshahi et al. (2000a),
using both the bulges from two component decompositions of disc
galaxies and E galaxies, they found that the 𝜇0,Sph–log(𝑛Sph) rela-
tion, has a high correlation factor of 𝑟𝑝 ∼ −0.88. It suggests the
shape of the spheroid’s light profile, measured by the Sérsic index,
𝑛Sph, dictates the (at least extrapolated) value of its central surface
brightness, 𝜇0,Sph, or vice versa. However, unlike Khosroshahi et al.
(2000a), we found our spheroid 𝜇0,Sph–𝑛Sph relation to be linear in-
stead of the 𝜇0,Sph–log(𝑛Sph) relation (𝑟𝑝 (𝐴𝑙𝑙) = −0.95, see Fig. 2).
In the 𝜇0,Sph–log(𝑛Sph) plane, our spheroids have a curved relation.

3.3 Alternate scale radii 𝑅𝑧 and the associated scale intensities

From this Section onward, we examine the spheroid parameters us-
ing alternate scale radii 𝑅𝑧,Sph. The local ETGs’ size-mass rela-
tion changes slopes at a bending point near the 𝐵-band magnitude,
𝔐𝐵 ∼ −18 mag, when using 𝑅e (e.g., Graham 2013). Such a fea-
ture had been used to argue in favour of distinct formation scenarios
between two classes of objects (Kormendy et al. 2009; Tolstoy et al.
2009; Kormendy & Bender 2012; Somerville & Davé 2015; Kor-
mendy & Freeman 2016). However, an extensive review by Graham
(2019a) pointed out that the curvature in the galaxy size-mass rela-
tion is artificial. As shown in their Section 7 and Fig. 3, the shape
of the curved size–mass relation varies drastically when radii that

encompass a different, say, 10 or 90 per cent of the light, are cho-
sen, i.e. different scale radii. Moreover, the magnitude at the bend
point that supposedly divides ETGs and dETGs galaxies also change
accordingly, and therefore the alleged division at 𝔐𝐵 = −18 mag
carries no physical meaning. To avoid misinterpretation, we shall
bare in mind the effect of chosen scale radii on the distribution of the
spheroid parameters.

3.3.1 𝑅0.05 & 𝑅0.95 and 𝜇0.5 & 𝜇0.95

In this section, we develop the spheroid 𝔐Sph–𝜇Sph and 𝔐Sph–
𝑅Sph relations, with a different definition for the radial scale param-
eter, 𝑅𝑧,Sph, and thus also the intensity scale parameter (𝐼𝑧 : 𝜇𝑧 ≡
−2.5 log 𝐼𝑧). The canonical approach with the Sérsic model is to only
use the effective half-light radius 𝑅e. We examine how the various
relations change when a different fraction (𝑧, from 0 to 1) of the total
luminosity, 𝐿tot, is used to define the equally-valid alternate scale
radii, 𝑅z.
In the left-hand panel of Fig. 3, we show𝔐Sph–log(𝑅𝑧,Sph) using

a radius 𝑅𝑧,Sph encapsulating 50 percent (𝑧 = 0.5, red points), 5 per-
cent (𝑧 = 0.05, black points) and 95 percent (𝑧 = 0.95, blue points)
of the light. We illustrate the trends for each relation with green
dashed lines. The green points are the median value within an abso-
lute magnitude interval of Δ𝔐Sph = 1 mag from𝔐Sph = −18 mag
to −25 mag. In the right-hand panel of Fig. 3, the 𝔐Sph–𝜇𝑧,Sph
distributions are presented, where 𝜇𝑧,Sph is the surface brightness
at 𝑅𝑧,Sph. For 𝑧 = 0 (purple points), it recreates the same plot as
shown in the middle panel of Fig. 1. When 𝑧 = 0, the𝔐Sph–𝜇𝑧,Sph
relation presents a positive trend, i.e., a brighter spheroid has a more
luminous central surface brightness value. For 𝑧 = 0.5 and 𝑧 = 0.95,
both relations change directions and have their absolute magnitude
negatively correlating with the surface brightness, 𝜇0.5,Sph (or 𝜇e)
and 𝜇0.95,Sph. In both panels, the spheroids have a continuous rela-
tions between𝔐Sph ∼ −18 to −25 (in 𝑖-band ABmag). The spheroid
population appears to be continuous regardless of the radius 𝑅𝑧,Sph
used.
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Figure 2. Left-hand panel: The H+22’s spheroid effective radius, log(𝑅e,Sph) , versus Sérsic index, log(𝑛Sph) . Middle panel: central surface brightness, 𝜇0,Sph
(𝑖-band, AB), versus Sérsic index, 𝑛Sph. Right-hand panel: the central surface brightness, 𝜇0,Sph, versus effective radius, log(𝑅e,Sph) .

Figure 3. Left-hand panel: Spheroids’ 𝑖-band absolute magnitude,𝔐Sph (in AB mag) versus the equivalent-axis radius, 𝑅𝑧,Sph, and Right-hand panel: Surface
brightness, 𝜇𝑧,Sph, relation using H+22’s data. The plot presents the different radius, 𝑅𝑧,Sph, and surface brightness, 𝜇𝑧,Sph, defined by the different fraction
(z, from 0 to 1) of light encapsulated within the radius 𝑅𝑧,Sph (see Equation 4 and 5). The radius 𝑅0.05,Sph, 𝑅0.5,Sph (= 𝑅e,Sph), and 𝑅0.95,Sph, correspond to
the radius capturing 5 percent, 50 percent, and 95 percent of the spheroid light, are depicted by black, red, and blue points, respectively. Similarly, the surface
brightness 𝜇0,Sph, 𝜇0.5,Sph (= 𝜇e,Sph), and 𝜇0.95,Sph are shown as well. Note that 𝜇0,Sph is shown in purple points. The bright green dashed lines are drawn
using the median value of 𝑅𝑧,Sph and 𝜇𝑧,Sph within the bins defined by a Δ𝔐Sph = 1 mag width, from𝔐Sph = −18 to −25 (𝑖-band AB mag).

3.4 From magnitude to mass

3.4.1 𝑀∗,Sph–𝑛Sph, 𝑀∗,Sph–Σ𝑧,Sph and 𝑀∗,Sph–𝑅𝑧,Sph relations

In an effort to extract physical meaning from these relations, as
well as comparing the data from H+22 with SG16, D+19 and S+19,
we converted the spheroids’ absolute magnitude, 𝔐Sph, into stellar
mass, 𝑀∗,Sph, and central surface brightness, 𝜇0, into central pro-
jected mass density, Σ0,Sph. Using the data from the four sources, we
plotted the spheroid stellar mass, log(𝑀∗,Sph), versus Sérsic index,
log(𝑛Sph), log(Σ0,Sph), and log(𝑅e,Sph) in the left-hand, middle, and
right-hand panel in Fig. 4, respectively.
Kelvin et al. (2012, their Fig.22) report how the galaxy half-light

radii change with wavelength, which is related to the bulge/disc
transition, such that the (small) different colours between the bulge
and disc can produce a change in the galaxy size as a function of

wavelength (Kennedy et al. 2016). Kelvin et al. (2012) report that
the drop in the median galaxy size from the 𝑖-band (0.6 micron) to
the 𝐽, 𝐻, and 𝐾-band (1-2 micron) is ∼4.5 kpc to 3.5 kpc, before the
decline in size stabilises beyond 1micron. This is a 22% drop, or 0.11
dex, for the galaxy half-light size. Vulcani et al. (2014) performed
the same analysis, and for their ‘red galaxies’, the median galaxy size
dropped from 5.5 kpc to 4 kpc (0.14 dex) when going from the 𝑖-band
(0.6 micron) to the 𝐻-band (1.6 micron). However, what is required
is the change in the bulge/spheroid size rather than the change in
the galaxy (bulge+disc+bar) size. As discussed in Hon et al. (2022),
for a uniform stellar population within the spheroidal component,
there should be no systematic change in the spheroid’s size with
wavelength, modulo the impact of dust. We are, however, at present
unable to quantify this change from the 𝑖-band to 3.6 microns, and
as such, have not implemented any rescaling of the spheroid sizes.
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The correlation coefficients for the entire sample, 𝑟p (All)
and 𝑟s (All), where "All" now includes all four galaxy samples
(SG16, D+19, S+19, and H+22) in both log(𝑀∗,Sph)–log(𝑛Sph),
log(𝑀∗,Sph)–log(Σ0,Sph), and log(𝑀∗,Sph)–log(𝑅e,Sph) planes are
comparable to that in the𝔐Sph–log(𝑛Sph),𝔐Sph–log(𝜇0,Sph), and
𝔐Sph–log(𝑅e,Sph) planes from Fig. 1, respectively. The inclusion
of the data from SG16, D+19 and S+19 does not increase the cor-
relation strength. In the log(𝑀∗,Sph)–log(Σ0,Sph) plane, when we
divide the sample into ellipticals and disc-galaxies, both subgroups
return an extremely low correlation, with 𝑟p (𝐸 + 𝐸𝑆) = 0.19 and
𝑟p (𝑆0 + 𝑆) = 0.44. The weak correlations between the spheroid lu-
minosity (subsequently its stellar mass) and projected central density
persists even after being converted into physical quantities, 𝑀∗ and
Σ0,Sph. Sahu et al. (2022) reported a similar Pearson correlation co-
efficient, 𝑟p (𝐴𝑙𝑙) = 0.57 (their table 1), in the 𝑀BH–Σ0,Sph plane.
Due to the coevolution between the SMBH and the spheroid, 𝑀BH
and 𝑀Sph are strongly correlated. Therefore, the similarity between
the log(𝑀BH)–log(Σ0,Sph) and log(𝑀∗,Sph)–log(Σ0,Sph) relation is
somewhat expected.
In Fig. 5, we convert the log(𝑀∗,Sph)–log(𝑅e,Sph) and

log(𝑀∗,Sph)–log(Σ0,Sph) into the log(𝑀∗,Sph)–log(𝑅𝑧,Sph) and
log(𝑀∗,Sph)–log(Σ𝑧,Sph) distributions by using different scale radii,
encompassing light fractions 𝑧 = 0.05, 0.5, and 0.95. The behaviour
is similar to that in Fig. 3. The log(𝑀∗,Sph)–log(𝑅𝑧,Sph) distribu-
tions maintain a somewhat linear trend with positive slope while the
log(𝑀∗,Sph)–log(Σ𝑧,Sph) distributions change slope with different
values of 𝑧.

3.4.2 𝑀∗,Sph–〈Σ〉𝑧,Sph relation

Some studies have suggested that the average projected mass density
within a small fixed radius, say 1 kpc, 〈Σ〉1 kpc, or 5 kpcs, 〈Σ〉5 kpc, are
great estimators to track the growth of SMBHs (e.g., Barro et al. 2017;
Dekel et al. 2019; Ni et al. 2021; Sahu et al. 2022). By proxy, it will
also pertain to the growth of spheroids, given the connection between
the two. Indeed, the 𝑀BH–〈Σ〉5 kpc,Sph plane exhibits a log-linear re-
lation (𝑟p = 0.83 and 𝑟s = 0.84, see Sahu et al. 2022). However, it is
noteworthy that at this fixed radius, the quantity 〈Σ〉5 kpc,Sphmight be
sampling a different percentage of light in different spheroids. For in-
stance, for a bulge with 𝑅e = 6 kpc, 〈Σ〉5 kpc,Sph captures nearly half
of the light, while for a spheroid like an E galaxy with 𝑅e = 12 kpc,
it captures a small fraction. In the interest of studying how the av-
erage projected mass density14, 〈Σ〉𝑧,Sph, varies as one includes a
different percentage of light within the radius 𝑅𝑧,Sph, we plot 𝑀∗,Sph
versus 〈Σ〉𝑧,Sph in Fig. 6. The log(𝑀∗,Sph)–log(〈Σ〉𝑧,Sph) relations
present a negative trend for all 𝑧. This result is consistent with Sahu
et al. (2022) who found a negative correlation in the log(𝑀BH)–
log(〈Σ〉e,Sph) (= log(〈Σ〉0.5,Sph)) relation (see their Fig. 6). As the
value of 𝑧 increases, the log(𝑀∗,Sph)–log(〈Σ〉𝑧,Sph) relation appears
increasingly more linear and has a steeper slope. In addition, it ap-
pears that the correlation strength of the distributions varies with 𝑧.
At 𝑧 = 0.05, the correlation is non-existent (𝑟𝑝 , 𝑟𝑠 ∼ −0.08) while at
𝑧 = 0.95, log(𝑀∗,Sph) and log(〈Σ〉𝑧,Sph) have amoderate correlation
(𝑟𝑝 , 𝑟𝑠 ∼ −0.68).
Since 〈Σ〉𝑧,Sph is calculated by substituting 𝜇𝑧,Sph with 〈𝜇〉𝑧,Sph

in equation 8, the varying trends in the log(𝑀∗,Sph)–log(〈Σ〉𝑧,Sph)
plane can be explained by looking into the formulation in equa-
tion 6. The average surface brightness, 〈𝜇〉𝑧,Sph, is a linear combi-

14 〈Σ〉𝑧,Sph can be calculated by subsituting 〈𝜇〉𝑧,Sph (see equation 6) into
equation 8.

nation of the surface brightness, 𝜇𝑧 , in the first term and the shape
function, 𝐵𝑧 (𝑛), in the second term. Because 𝐵𝑧,Sph (𝑛) is purely
a function of Sérsic index 𝑛, it inherits the moderately strong lin-
earity in the log(𝑀∗,Sph)–log(𝑛Sph) plane (see Fig. 4). We demon-
strate such a strong trend in Fig. 7, where the spheroid stellar mass
(𝑀∗,Sph) is plotted against −2.5 log[𝐵𝑧,Sph (𝑛Sph)]. Indeed, the
log(𝑀∗,Sph)–(−2.5 log[𝐵𝑧,Sph]) relations have a rather consistent
anti-correlation15 across 𝑧, with 𝑟𝑝 , 𝑟𝑠 ∼ −0.7. Hence, the varia-
tion in correlation strength in the log(𝑀∗,Sph)–log(〈Σ〉𝑧,Sph) plane
is because of the inherent non-linearity in the log(𝑀∗,Sph)–𝜇z,Sph re-
lation (see Fig. 1). This latter trend dampens the correlation strength
of the log(𝑀∗,Sph)–(−2.5 log[𝐵𝑧,Sph]) distribution and results in an
changed trend as 𝑧 changes. It is clear that the choice of the light frac-
tion value 𝑧 significantly affects the shape and slope of the scaling
relations.

3.4.3 Correlation strength (𝑟p & 𝑟s) versus fraction 𝑧

Here, we explore how the correlation strength changes with dif-
ferent light fractions 𝑧. In Fig. 8, we plot the correlation strength,
𝑟𝑝 and 𝑟𝑠 , in the upper and lower panel, respectively, as a
function of the fraction of spheroid light, 𝑧, contained within
the radius 𝑅𝑧,Sph, for various scaling relations: log(𝑀∗,Sph)–
log(𝑅𝑧,Sph), log(𝑀∗,Sph)–log(Σ𝑧,Sph), log(𝑀∗,Sph)–log(〈Σ〉𝑧,Sph),
and log(𝑀∗,Sph)–(−2.5 log[𝐵𝑧.Sph (𝑛)]), where all involve the stellar
mass. The log(𝑀∗,Sph)–log(𝑅𝑧,Sph) relations (green line) are consis-
tently strongly coupled regardless of the value of 𝑧. The log(𝑀∗,Sph)–
log(Σ𝑧,Sph) relation (blue line) is positively correlated at 𝑧 = 0, but
it becomes negatively correlated at larger 𝑧, a feature that can be seen
in the right-hand panel of Fig. 5. For the log(𝑀∗,Sph)–log(〈Σ〉𝑧,Sph)
relation at 𝑧 = 0.05 (first point on the red line), it has an extremely low
correlation (𝑟p, 𝑟s ∼ 0) but as 𝑧 increases, it becomes increasingly
anti-correlated. Finally, the log(𝑀∗,Sph)–(−2.5 log[𝐵𝑧,Sph (𝑛Sph)])
relations (purple line) exhibit a very consistent anti-correlation trend
across all 𝑧 with 𝑟𝑝 , 𝑟𝑠 ∼ −0.7.
Fig. 8 provides an important insight into spheroid scaling rela-

tions that, in general, the surface brightness, 𝜇𝑧,Sph, and its derived
physical quantities (Σ𝑧,Sph and 〈Σ〉𝑧,Sph) are comparatively weak es-
timators for spheroid stellar mass.While the scaling relations become
more reliable at higher light fraction 𝑧, the correlation coefficients
are limited to ∼ 0.7. The variability in correlation strength across 𝑧
makes these scaling relations inherently biased by choice of 𝑅𝑧,Sph.
In Section 3.1, we found that the Sérsic index (𝑛Sph) of a spheroid

is a slightly better predictor for a spheroid stellar mass than 𝜇0.
Here, we show that the Sérsic shape function, 𝐵𝑧,Sph (𝑛Sph), is also a
decent spheroid mass predictor across all 𝑧 (𝑟𝑝 , 𝑟𝑠 ∼ 0.7). Similarly,
𝑅𝑧,Sph also has a consistently strong log-linear relation with 𝑀∗,Sph
across all 𝑧 but with an even higher correlation strength (𝑟𝑝 , 𝑟𝑠 ∼
0.9). Hence, we advocate using 𝑅𝑧,Sph as the primary predictor to
spheroid stellar mass (𝑀∗,Sph) and 𝑛Sph (or 𝐵𝑧,Sph (𝑛Sph)) as the
secondary. Of course, 𝑅𝑧,Sph, 𝑛Sph, and 𝜇0,Sph perfectly define the
stellar luminosity of the spheroid.
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Spheroid size-mass relation 9

Figure 4. Left-hand panel: Spheroid mass versus Sérsic index. Middle panel: Spheroid mass versus projected surface mass density, Σ0,Sph. Right-hand panel:
Spheroid mass versus effective radius, 𝑅e,Sph. Similar to Fig. 1, the correlation coefficients are also shown. The points are colour-schemed according to the data
sources. The black and red ellipses are drawn to highlight E+ES galaxies and S0+S bulges, respectively. They represent a 2𝜎 range about the median value of
the two subgroups.

Figure 5. Left-hand panel: Spheroid mass versus scale radii 𝑅𝑧,Sph. Right-hand panel: Spheroid mass versus projected stellar mass density, Σ𝑧,Sph. Three
fractional values of 𝑧 = 0.05, 0.50, 0.95, are shown in different colours. The data points (purple) in the right-hand panel with 𝑧 = 0 are the same as the ones
shown in the middle panel of Figure 4.

3.5 Fitting the scaling relations

3.5.1 The spheroid size–mass (𝑅e,Sph–𝑀∗,Sph) scaling relation

With the above observation that spheroid size (𝑅𝑧,Sph) is the most
consistent and reliable predictor for spheroid stellar mass (𝑀∗,Sph)
across all 𝑧, we proceed to investigate the spheroid size-mass relation
for our expanded sample. In Fig. 9, we present the equivalent axis
effective radius (𝑅e,Sph) versus the stellar mass (𝑀∗,Sph) for the
local spheroids from SG16, D+19, S+19, and H+22. In the left-hand
panel of Fig. 9, the data is separated by the morphological type
of the host galaxies. There is a significant overlap between S0 and
S spheroids. The elliptical (E) and ellicular (ES) galaxies are the
largest and most massive, occupying the region 𝑅e,Sph & 2 kpc and
𝑀∗,Sph & 1011 M� . They are also more likely to have a depleted

15 The negative sign is due to the multiplier −2.5. Spheroid stellar mass,
log(𝑀∗,Sph) correlates positively with the shape function log(𝐵𝑧,Sph) .

stellar core: 19 of them are well described by the core-Sérsic model.
Spheroids embedded in S0 and S galaxies reside within the range
0.2 . 𝑅e,Sph/kpc . 5 and 3 × 109 . 𝑀∗,Sph/M� . 2 × 1011.
In the right-hand panel of Fig. 9, the data points are colour-coded

for their respective sources. The size–mass relation shows strong
agreement between the four data sets despite having different per-
sonnel conducting the decomposition. The big spheroids follow an
established trend set by elliptical galaxies (not to be confused with
ETGs). Although there is an important upturn at high masses, which
we speculate is due to E+E mergers rather than E built from S0+S0
mergers, we fit a single power-law to the relation using the Linmix
fitting routine (Kelly 2007):

log(𝑅e) = S log
(
𝑀∗

)
+ int. (11)

where 𝑆 is the slope and 𝑖𝑛𝑡. is the y-intercept of the relation.
Linmix calculates the best-fit regression line via maximising the

Bayesian likelihood function (see equation 16 in Kelly 2007). The
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Figure 6. Spheroid mass versus the average projected stellar mass density,
〈Σ〉𝑧,Sph.

Figure 7. The spheroid mass, log(𝑀∗,Sph) , versus −2.5 log(𝐵𝑧,Sph (𝑛Sph))
(see equation 7). Similar to Fig. 3, 5, and 6, the sample is divided by different
percentage of light, 𝑧, captured in 𝑅𝑧,Sph.

prior distribution of the independent variable is assumed to be a
Gaussian mixture. Such treatment allows greater flexibility in deal-
ing with data heteroscedasticity, i.e., the non-uniform variance in
each data point. We implemented 5000 iterations of Monte Carlo
Markov Chain (MCMC) sampling to maximise the likelihood func-
tion. It is unclear in nature whether the size of a galactic structure
depends on its stellar mass or vice versa. For this reason, we have
performed the fitting process with 𝑀∗,Sph treated as the independent
variable for the relation 𝑅e,Sph (𝑀∗,Sph) and 𝑅e,Sph, as the indepen-
dent variable for the relation 𝑀∗,Sph (𝑅e,Sph). In the right-hand panel
of Fig. 9, we depict the regression lines for fitting 𝑅e,Sph (𝑀∗,Sph)
and 𝑀∗,Sph (𝑅e,Sph) with red and cyan shaded area, respectively. The
optimal fits among these regressions are shown as a dash-dotted and

Figure 8. The correlation strength of different quantities versus the
spheroid stellar mass as a function of the fractional light 𝑧. The upper
and lower panel shows the Pearson and Spearman correlation coefficient,
𝑟𝑝 and 𝑟𝑠 , respectively. Both plots shows the correlation coefficient for
the following relations: log(𝑀∗,Sph)–log(𝑅𝑧,Sph) (green), log(𝑀∗,Sph)–
log(Σ𝑧,Sph) (blue), log(𝑀∗,Sph)–log( 〈Σ〉𝑧,Sph) (red), and log(𝑀∗,Sph)–
(−2.5 log[𝐵𝑧,Sph (𝑛Sph) ]) (purple).

dashed line, respectively. They are the following relations.

𝑅e,Sph (𝑀∗,Sph) :
log(𝑅e,Sph/kpc) = (0.80 ± 0.03) log(𝑀∗,Sph/M�) − (8.35 ± 0.26),

(12a)

𝑀∗,Sph (𝑅e,Sph) :
log(𝑅e,Sph/kpc) = (0.96 ± 0.03) log(𝑀∗,Sph/M�) − (10.00 ± 0.32),

(12b)

From these regression lines, we calculated the bisector line, shown
as the solid black line in the panel:

log(𝑅e,Sph/kpc) = 0.88 log(𝑀∗,Sph/M�) − 9.15, (13)

with a scatter of Δ𝑟𝑚𝑠 = 0.24 dex in the vertical direction. All three
scaling relations are valid but with differing assumptions. Future
workmay choose the appropriate relation for their purpose. However,
since the spheroid size and mass are highly correlated (𝑟𝑝 ∼ 0.9),
the three scaling relations are similar.
For 𝑅e . 10 kpc, a log-linear relation appears adequate to describe

the size-mass distribution of local spheroids. An unrelated log-linear
relation was also demonstrated in Sahu et al. (2020, see their Fig. 8)
but is now abundantly clear with the additional 103 spheroids from
H+22. As noted above, there is a slight departure from a log-linear
relation at the high-mass end (𝑀∗,Sph > 5 × 1011 M�), where, at
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Figure 9. Left-hand panel: Size–mass (log(𝑅e,Sph)–log(𝑀∗,Sph)) relation for 202 local spheroids with 𝑧 . 0.05 divided by the host galaxies’ morphology
from the following works involving multicomponents decomposition: SG16, D+19, S+19, and H+22. The size is from the geometric-mean radius. The sample
is separated by elliptical (E) + ellicular (ES) galaxies (black points), spheroids embedded in lenticular (S0) galaxies (red points) and spiral (S) galaxies (orange
points). The light green dashed track is made by binning the data points in between a mass interval of 0.6 dex across 𝑀∗ ∼ 109–1012 M� . The green points on
the dashed track are the median values, and the error bars indicate the standard deviations ±1𝜎 for each interval. The two blue lines are two single-power laws
(equation 11) with 𝑆 = 1.0 and int. = −10.0 & − 10.8. The colour-coded lines are obtained via fitting a single power law to the spheroids in each morphology
group via bisector regression. Right-hand panel: Same data points separated by their sources: SG16 (purple points), D+19 (blue points), S+19 (orange points),
and H+22 (red points). The data points are fitted by a log-linear relation (see equation 11). The red shaded area consists of 5000 MCMC trial fits when treating
the stellar mass, 𝑀∗,Sph, as the independent variables. The dash-dotted black line is the optimal fit among the trials. The cyan shaded area and the dashed
black line are similar but with the effective radius (𝑅e,Sph) treated as the independent variable. The solid black line is the bisector line constructed using the
preceding two approaches. The effective range for our relation is within 2 × 109 . 𝑀∗,Sph/M� . 2 × 1012. For comparison, the curved size-mass relation for
ETGs in the 𝐵-band modelled with a single Sérsic function (Graham et al. 2006) and the bulges obtained from Sérsic+exponential models (Graham & Worley
2008) in the 𝐾 -band are plotted as solid and dashed dark green lines, respectively. To compare the bulges with the ETGs, we adjust their bulge magnitude by
𝐵 − 𝐾 = 4.0 mag to conform with the 𝐵-band magnitude. Their magnitudes are converted to stellar mass using a constant mass-to-light ratio of 𝑀/𝐿𝐵 = 3.9
(see texts in Section 4.3 for details).

fixed mass, massive spheroids have a larger radius than the log-linear
relation suggests.We speculate that thismight also partly be due to the
influence of intracluster light (ICL) in the brightest cluster galaxies
(BCGs)16. The most massive (𝑀∗ & 4 × 1011 M�) galaxies tend to
be BCGs living in the centre of clusters with extended stellar halos.
As a result, the ICL accumulates around the BCG. When modelling
the galaxies with a single Sérsic model, we could be slightly biased
by the ICL and overestimate their intrinsic size. For E+E mergers in
which the velocity dispersion,𝜎, may not increase, the virial theorem
(𝑀∗ ∝ 𝜎2𝑅) dictates 𝑀∗ ∝ 𝑅. For reference, we have added solid
blue lines of slope 𝑆 = 1 in Fig. 9.

3.5.2 Additional scaling relations involving Sérsic index

We present a few supplementary scaling relations: log(𝑛Sph)–
log(𝑀∗,Sph) and log(𝐵e,Sph)–log(𝑀∗,Sph), log(Σ0,Sph)–𝑛Sph, and
log(𝑅e,Sph)–log(𝑛Sph). These extra relations have amoderate to high
linearity (𝑟𝑝 ≈ 0.7 − 0.9) and, therefore, are suited to be secondary
estimators for spheroid structures. Our intention here is to merely
demonstrate and touch on the potential importance of these relations.
A deeper exploration of their physical meaning shall be conducted
in future works.
Sérsic index, 𝑛, and its derived ‘shape function’, 𝐵𝑧 (𝑛), have a

16 There are three, four, and three BCGs in SG16, S+19, and H+22, respec-
tively. All of which have a galaxy stellar mass 𝑀∗,gal > 4 × 1011 M� .

weaker correlation with stellar mass than the size–mass relation, with
𝑟𝑝 , 𝑟𝑠 ∼ 0.72 versus ∼ 0.9. The left- and right-hand panel of Fig. 10
depict the log(𝑛Sph)–log(𝑀∗,Sph) plane and the log[𝐵e,Sph (𝑛Sph)]–
log(𝑀∗,Sph) plane17, respectively. We performed multiple linear fits
on our sample, similar to what was done for the size–mass relation in
Section 3.5.1. For the log(𝑛Sph)–log(𝑀∗,Sph) relation, we have the
following bisector relations:

log(𝑛Sph) = 0.43 log(𝑀∗,Sph/M�) − 4.20, (14)

with a scatter of Δ𝑟𝑚𝑠 = 0.21 dex.
For the log(𝐵e,Sph)–log(𝑀∗,Sph) relation, we have:

log(𝐵e,Sph) = 0.20 log(𝑀∗,Sph/M�) − 1.70. (15)

with a scatter of Δ𝑟𝑚𝑠 = 0.10 dex.
The log(𝐵𝑧,Sph (𝑛Sph))–log(𝑀∗,Sph) scaling relations also present

a smaller scatter than the log(𝑛Sph)–log(𝑀∗,Sph) scaling relation.
Note that this is due to the Sérsic shape function, 𝐵𝑧,Sph (𝑛Sph), re-
scaled the input parameter, 𝑛Sph into a smaller range and, therefore,
created a smaller scatter in the vertical axis of the plot.
We plotted the bisector fit in the log(Σ0,Sph)–𝑛Sph plane in Fig. 11.

We have obtained the following scaling relations:

log(Σ0,Sph/M�pc−2) = 0.59 𝑛Sph + 3.42. (16)

17 𝐵𝑧 (𝑛) (equation 7) depends on 𝑏𝑛,𝑧 and thus 𝑅𝑧 , Here, we set 𝑅𝑧 to 𝑅e,
i.e. 𝑧 = 0.5.
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Figure 10. Left-hand panel: Spheroid Sérsic index-stellar mass (log(𝑛Sph)–log(𝑀∗,Sph)) relation. Right-hand panel: Spheroid Sérsic shape function (at light
fraction 𝑧 = 0.5)–versus–stellar mass (log(𝐵e,Sph)–log(𝑀∗,Sph)) relation. In both panels, the red shaded area depicts the 5000 MCMC trial fits when treating
𝑀∗,Sph as the independent variable. The black dash-dotted line is the optimal fit among these trials. The cyan shaded area and black dashed lines are similar but
with 𝑛Sph (or 𝐵e,Sph) treated as the independent variable during the fitting process. The solid black line is the bisector line obtained from the two optimal fits
mentioned above.

Figure 11. The spheroid central projected mass density–versus–Sérsic index
(log(Σ0,Sph)–𝑛Sph) relations.

with a scatter of Δ𝑟𝑚𝑠 = 0.47 dex. Crucially, log(Σ0,Sph) present a
strong linear relation against 𝑛Sph instead of log(𝑛Sph).
Previously, we found that two pairs of quantities are strongly cou-

pled in spheroids: the size (𝑅e,Sph)–mass (𝑀∗,Sph), and the surface
brightness (𝜇0,Sph)–shape parameters (𝑛Sph). One may question if
the size (𝑅e,Sph) and shape (𝑛Sph) are also somehow related. From
Section 3.1, we know that the correlation strength in the log(𝑅e,Sph)–
log(𝑛Sph) plane for the H+22 sample is moderately strong (𝑟𝑝 = 0.79
and 𝑟𝑠 = 0.73). In Fig. 12, we performed a symmetrical regression
on the spheroid in the log(𝑅e,Sph)–log(𝑛Sph) plane. The bisector

Figure 12. The spheroid size–versus–Sérsic index (log(𝑅e,Sph)–log(𝑛Sph))
relation.

scaling relation is:

log(𝑅e,Sph/kpc) = 2.06 log(𝑛Sph) − 0.66, (17)

with a scatter of Δ𝑟𝑚𝑠 = 0.39 dex.
It is curious that the two pairs of quantities, log(𝑅e,Sph)–

log(𝑀∗,Sph) and log(Σ0,Sph)–𝑛Sph, have such a strong correla-
tion (𝑟𝑝 , 𝑟𝑠 ∼ 0.9) while log(𝑛Sph)–log(𝑀∗,Sph) and log(𝑅e,Sph)–
log(𝑛Sph) do not (𝑟𝑝 , 𝑟𝑠 ∼ 0.7). The log(𝑅e,Sph)–log(𝑛Sph) rela-
tion therefore appears a secondary scaling relations that connects
the two primary scaling relations: log(𝑅e,Sph)–log(𝑀∗,Sph) and
log(Σ0,Sph)–log(𝑛Sph).
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If the ‘photometric plane18’ (Khosroshahi et al. 2000a) exist for
spheroids, we might be seeing a side of the plane’s surface in the
log(𝑅e)–log(𝑛Sph) distribution. Combining with the knowledge that,
unlike in Khosroshahi et al. (2000a), our log(Σ0,Sph)–𝑛Sph relation
appears to be linear instead of curved, the photometric plane for our
spheroids might be a curved surface. Further investigation, however,
is beyond the scope of this paper and shall be explored in future
works.

4 DISCUSSION AND CONCLUSIONS

4.1 Comparison with early works on spheroid structural
parameters

In this section, we compare the spheroid’s structural parameters with
some early pioneer works involving 𝑅1/𝑛 bulges (Khosroshahi et al.
2000b; Möllenhoff & Heidt 2001; Barway et al. 2009; Laurikainen
et al. 2010). This will test if our spheroid parameters from multi-
component decomposition behave similarly compared to previous
studies.
Khosroshahi et al. (2000b) studied a sample of 26 early-type spi-

ral galaxies from the UGC catalogue (Nilson 1973), selected by
Balcells & Peletier (1994). They performed two-dimensional 𝑅1/𝑛-
bulge+exponential disc decompositions on the 𝐾-band images from
Andredakis et al. (1995) to obtain the bulge parameters. Möllenhoff
& Heidt (2001) have studied 40 galaxies without a strong bar and
with low inclination in the Revised ShapleyAmes Catalog (Sandage
& Tammann 1981) via 2-D bulge+disc decomposition in 𝐽-, 𝐻-, and
𝐾-band. Their sample consists of early-type spiral galaxies ranging
from Sa to Sc type. Here, we focus on their 𝐾-band data. Barway
et al. (2009) also performed 2-D bulge+disc decompositions on 36
bright field S0 galaxies from Barway et al. (2005), and imaged in the
𝐾-band. Finally, Laurikainen et al. (2010) studied the structure of 175
local galaxies using deep 𝐾𝑠-band images. Their sample consists of
117 S0, 22 S0/a and 36 Sa galaxies. Unlike the previous three works,
Laurikainen et al. (2010) performed a multicomponent fit to obtain
the bulge parameters. More specifically, in addition to an 𝑅1/𝑛 bulge
and an exponential-disc, they included a Ferrer-bar when a bar was
present.
Fig. 13 shows our spheroid parameters in contrast with the bulges’

ones from the works above. To compare bulges from different filters
with our sample, we artificially shifted19 the central surface bright-
ness, 𝜇0,Sph, of the bulges in Khosroshahi et al. (2000a), Möllenhoff
& Heidt (2001), Barway et al. (2009), and Laurikainen et al. (2010)
by Δ𝜇0,Sph ∼ 2.48 mag arcsec−2. That is, we applied a shift of
𝜇𝑖,AB − 𝜇𝐾,Vega = 2.48 mag arcsec−2. Our distribution overlaps
quite well with the early works, albeit with a different degree of
scatter. Particularly in the log(𝑅e,Sph)–log(𝑛Sph) and 𝜇0,Sph–𝑛Sph
planes, the distributions follow a similar scaling relation.
While the overall shape of our distribution agrees well with the

literature, discrepancies can be found in individual galaxies. Barway
et al. (2009) bulges from S0 galaxies predominantly occupy the
range of 3 . 𝑛Sph . 4 and the remainder of the sample scatter
across 1 . 𝑛Sph . 3. Our S0 spheroids, however, mostly reside
within 1.5 . 𝑛Sph . 3, a slightly lower value range compared to
Barway et al. (2009). Interestingly, some bulges from early-type S

18 An unifying plane in the parameter space of (log(𝑛) , 𝜇0, log(𝑅e)).
19 Note that this is for illustrative purposes only. This action does not affect
the slope of the scaling relation in the 𝜇0,Sph–𝑛Sph and 𝜇0,Sph–log(𝑅e,Sph)
planes.

galaxy bulges in Khosroshahi et al. (2000a, green★) and Möllenhoff
& Heidt (2001, grey�) have rather high Sérsic indices (𝑛Sph & 3.5).
This is not the case for our spheroids and the bulges fromLaurikainen
et al. (2010). Spheroids from our multicomponent analysis have a
low Sérsic index (𝑛Sph . 3.5). We speculate that during the fitting
process, the Sérsic function might be biased by the presence of a bar
or an anti-truncated disc.
In Fig.14, we additionally compare our spheroid 𝔐Sph–

log(𝑅e,Sph) data with those in the literature. Similar to the plots
involving 𝜇0, the absolute magnitude of the literature data is shifted
by Δ𝔐Sph ∼ 2.48 mag to match our spheroids. The solid black line
is an ordinary least square (OLS) fit on our data points with a linear
function. It is not our intention to conduct a comprehensive meta-
analysis of the literature but merely to demonstrate the similarity of
some features between these distributions. One can see that, collec-
tively, the size–luminosity distribution across the four works aligns
quite well with our spheroid relation, with an apparent point of dis-
tinction at low masses between some studies. While Möllenhoff &
Heidt (2001) and Laurikainen et al. (2010) observe a flattening of the
bulge size–mass relation at the low- mass end, Barway et al. (2009)
and Khosroshahi et al. (2000b) do not. However, some clarification
is required. As we can see in Gadotti (2009, their Fig. 13), the flat-
tening at the faint-end occurs at log(𝑀∗,Sph/M�) . 9.5 and only
become evident when faint bulges are sampled. The jump from the
bulge sequence to the elliptical galaxy sequence is because of how
the disc stars from S0+S0 galaxy merger add to the size and mass of
the elliptical galaxy (Graham & Sahu 2022, MNRAS, in Press).

4.2 Distinction between giant elliptical and disc-galaxy

One can observe a significant overlap among massive S0 and S
galaxy bulges—not to be confused with bars and inner discs—in all
three structural relations (Fig. 1). As one can see in the spheroid
size-mass relation (Fig. 9), the spheroids embedded in S0 and S
galaxies are structurally similar. To illustrate this point, we performed
a symmetrical regression to the morphology-dependent size–mass
relation in the left-hand panel of Fig. 9. Their bisector lines are:

𝐸 + 𝐸𝑆 : log(𝑅e,Sph/kpc) = 0.96 log(𝑀∗,Sph/M�) − 9.94, (18a)

𝑆0 : log(𝑅e,Sph/kpc) = 0.84 log(𝑀∗,Sph/M�) − 8.81, (18b)

𝑆 : log(𝑅e,Sph/kpc) = 0.79 log(𝑀∗,Sph/M�) − 8.20, (18c)

with a scatter of Δ𝑟𝑚𝑠 = 0.18, 0.22 and 0.23 dex in the log(𝑅e,Sph)
direction, respectively. Indeed, the slope, 𝑆, and intercept, int., for
the bulges in S0 and S galaxies are very similar. Interestingly, the
slope of the spheroid size–mass relation seem to be flattening20 as
we move from E to S galaxies. A similar trend has been reported
in Gadotti (2009, see their Fig. 13) as the slopes of their size–mass
relations decrease from E galaxies to classical bulges, and from
classical to pseudo-bulges. Although, their size–mass relations have
considerably shallower slopes (by a factor of∼ 3) than ours, with
𝑆 = 0.38 for E galaxies and 𝑆 = 0.30 for classical bulges (see
Section 4.3 in Gadotti 2009).

20 Note that the flattening disappears once we removed several outliers: the
E galaxy with log(𝑅e,Sph) > 1.7 and the two S galaxies with log(𝑀∗,Sph) <
9.4. The resulting bisector lines for each group becomes: log(𝑅e,Sph) =

0.87 log(𝑀∗,Sph) − 9.00 for E galaxies, log(𝑅e,Sph) = 0.84 log(𝑀∗,Sph) −
8.80 for S0 galaxies, and log(𝑅e,Sph) = 0.85 log(𝑀∗,Sph) −8.80 for S galax-
ies.
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Figure 13. A comparison of the spheroid parameters with some early-works. Left-hand panel: The log(𝑅e,Sph)–log(𝑛Sph) plane. Middle panel: The 𝜇0,Sph–𝑛Sph
plane.: Right-hand panel: The 𝜇0,Sph–log(𝑅e,Sph) plane. In all three panels, we present the bulge data from Khosroshahi et al. (2000b, green★), Möllenhoff &
Heidt (2001, grey �), Barway et al. (2009, red �), and Laurikainen et al. (2010, blue +). See text for a description of the individual studies and the adjustment
for differing 𝜇0 bandpass (𝑖 − 𝐾 = 2.48).

Figure 14. Comparison with works from the literature: bulge size–versus–
absolutemagnitude (𝑅e,Sph–𝔐i,Sph). The symbols and colour follows Fig. 13.
The 𝐾 -band are artificially shifted to match with our spheroid sample by
Δ𝔐 = +2.48 mag for comparison. The solid black line is an ordinary least
square fit on our data points with a log-linear function.

The similarity between S0 and S bulges implies that they might
share the same origin. Indeed, the shared origin has previously been
hinted at from different perspectives. In stellar population studies
(MacArthur et al. 2009), bulges in both S0 and early-type S galaxies
contain significantly older stars than the disc, implying the galaxy
grows in an inside-out manner, a.k.a. disc-cloaking (H+22) upon
an existing spheroid (Graham et al. 2015). From dynamical studies,
some lower-mass S0 galaxies are suggested to be S galaxies with
their spiral arms faded away (see also Aragón-Salamanca et al. 2006;
Laurikainen et al. 2010). Rizzo et al. (2018) investigated the disc
dynamics of ten S0 galaxies in the CALIFA survey and found that
in the specific angular momentum ( 𝑗∗) versus stellar mass (𝑀∗)

diagram, their S0 discs align with the S discs from Romanowsky &
Fall (2012, see their Fig. 8). This observation implies that some S0
galaxies are similar to massive spiral galaxies. Some S galaxies may
have evolved by slowly removing cold gas in their spiral arms via
processes such as star formation (van den Bergh 2009; Laurikainen
et al. 2010; Williams et al. 2010; Cappellari et al. 2011b; Bellstedt
et al. 2017) and outflow. There is also significant overlap in the
bulge-to-total (𝐵/𝑇) flux ratio of S galaxies and S0 galaxies (e.g.,
Méndez-Abreu et al. 2017, H+22), giving credence to the fading
spiral arm scenario.

4.3 Modes of galaxy size evolution

4.3.1 Comparison with local ETGs

A log-linear size–mass relation was reported long ago in studies
that used isophotal radii to describe galaxy size (Heidmann 1969;
Holmberg 1969; Oemler 1976; Strom & Strom 1978). As explained,
for perhaps the first time in Graham (2019a), this is understood in
terms of the (stellar mass)–(Sérsic 𝑛) relation for ETGs. The more
slowly declining (with increasing radius) light profile of higher-𝑛
ETGs results in larger isophotal radii being reached in ETGs with
higher values of 𝑛.
Notably, our spheroid size-mass relation deviates from the curved

size-mass relation for ETGs and bulges. Using the ETGs and dwarf
ETGs (dETGs) imaged in the 𝐵-band from the compilation in Gra-
ham & Guzmán (2003), they obtained two linear empirical scaling
relations, 𝔐–log(𝑛) and 𝔐–𝜇0. With these two relations, Graham
et al. (2006) proceed to construct a curved size–mass relations for
ETGs (solid green line in the right-hand panel of our Fig. 9). Here,
the ETG magnitudes are converted into stellar masses with a con-
stant mass-to-light ratio21 of 𝑀/𝐿𝐵 = 3.9. Similar curved log(𝑅e)–

21 To ensure a fair comparison with the ETGs in the 𝐵-band from Graham
et al. (2006), we use the same 𝑀/𝐿 ratio prescription as was done in H+22
to convert ETG magnitudes into stellar mass. Roediger & Courteau (2015,
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Figure 15.Comparisonwith the size-mass relations in the literature. The solid
black line is our single-power law fit to the spheroid data, and the black points
are the spheroids presented in Fig. 9. Upper panel: ETG, i.e., not just spheroid,
size-mass relation at 𝑧 < 1.0 from Shen et al. (2003), Graham et al. (2006,
𝑧 < 0.04), the galaxy ZOE from Cappellari et al. (2013a, 𝑧 . 0.01), Lange
et al. (2015, 0.002 < 𝑧 < 0.06), Baldry et al. (2021, 0.04 < 𝑧 < 0.15), and
Nedkova et al. (2021, 0.2 < 𝑧 < 0.5). The grey cloud depicts SDSS galaxies
of all type. Middle panel: local bulge size-mass relation from Graham &
Worley (2008), Lange et al. (2016, 0.002 < 𝑧 < 0.06), Dimauro et al. (2019,
𝑧 ∼ 0.25), and Méndez-Abreu et al. (2021). Bottom panel: the size–mass
distribution for quiescent galaxies (QGs) at high-𝑧. The red and orange points
depict the QGs from van der Wel et al. (2014) at 𝑧 ∼ 1.25 and 𝑧 ∼ 2.25,
respectively, with their effective radius scaled to equivalent axis (see texts).
Nedkova et al. (2021)’s size-mass relation at 1.0 < 𝑧 < 1.5 and Saracco et al.
(2017)’s relation (1.2 < 𝑧 < 1.4) are shown in solid orange and dark green
lines, respectively.

log(𝑀∗) distributions for galaxies have been found in other works
(e.g., Shen et al. 2003; Lange et al. 2015; Nedkova et al. 2021), in
which a double-power law was used to fit the curved size-mass rela-
tion. Similarly, Graham&Worley (2008) have also produced a curved
size-mass relations for bulges. They used published decompositions
for ∼ 400 S0 and S galaxies with predominantly two components: a
Sérsic-bulge plus an exponential-disc. The scaling relations for these
bulges were subsequently presented in Graham (2019a). To compare
the bulges data (taken in the 𝐾-band) with the ETGs data (taken
in the 𝐵-band) in the 𝐵-band, we shifted the bulge magnitudes by
𝐵Vega − 𝐾Vega = 4.0 mag and calculated their stellar masses with
𝑀/𝐿𝐵 = 3.9. The resulting curved size-mass relation for bulges has
a greater curvature than the galaxies’ relation and leans into the more
compact region in the diagram (dashed green line in the right-hand
panel of Fig. 9). However, having data from more detailed decom-
position (SG16, D+19, S+19, and H+22), we observe that spheroids
follow a different relation which continues downwards to smaller
sizes. The tight spheroid size–mass relation shows that the size of
a spheroid is a great predictor of stellar mass. It also implies local
spheroids in this mass range follow a simple scalar virial relation:
𝑅e = (𝛽 G/𝜎𝛼e ) (𝑀∗/M�)𝛾 where G is the gravitational constant
and 𝛼, 𝛽, and 𝛾 are some constants.
We further compare our spheroids to the galaxy and bulge size–

mass relations in the literature. Fig. 15 shows a comparison of our
spheroids with local galaxies (upper panel), local bulges/spheroids
(middle panel), and high-𝑧 quiescent galaxies (bottom panel). Our
spheroid size-mass relation (solid black line) and data (black points)
are plotted in all three panels.
In the upper panel of Fig. 13, the galaxy size-mass relation from the

following works are shown: Shen et al. (2003), Graham et al. (2006),
Lange et al. (2015), Baldry et al. (2021), Nedkova et al. (2021,
their quiescent galaxies (QGs) at 0.2 < 𝑧 < 0.5 ). Additionally, the
empirical zone of exclusion (ZOE, Bender et al. 1992; Burstein et al.
1997), defined in Cappellari et al. (2013a), is shown with a bent
solid grey line. The grey cloud depicts the SDSS galaxies from the
NASA-Sloan ATLAS catalogue at 𝑧 < 0.05.
Our spheroid relation resides on the high-mass and small-radius

side of the SDSS galaxies. It also presents a steeper slope (𝑆 = 0.88)
compared to the galaxy relations. Simply put, the spheroids are
more compact than ETGs or QGs. At the high-mass end (𝑀∗ >

4× 1011 M�), the galaxy size-mass relation from Shen et al. (2003),
Lange et al. (2015), Baldry et al. (2021), and Nedkova et al. (2021,
0.2 < 𝑧 < 0.5) align better with our spheroid relation than compared
to the low-mass end (𝑀∗ < 4 × 1011 M�). This is because single-
component spheroidal E galaxies dominate the high-mass range. Our
spheroids at the high-mass end are elliptical galaxies modelled with a
single Sérsic function similar to the earlier works. E galaxies appear
to follow the same continuous log-linear relation as the embedded
spheroids in S0 and S galaxies. Indeed, Lange et al. (2016) show
that their galaxy size-mass relation was the steepest (𝑆 = 0.786)
when they only considered massive galaxies (𝑀∗ > 2 × 1010 M� ,
see their Table 1), a result much closer to our relation. Further, the
ZOE presented in Cappellari et al. (2013a) is an empirical model
of a double-power law that cuddles the lower bound of their galaxy
size-mass distribution. It depicts an empirical lower limit for galax-
ies’ size and maximum density. However, note that Cappellari et al.

H+22’s𝑀/𝐿 prescription) provided a colour-dependent𝑀/𝐿 relation in the
𝑔-band: log(𝑀/𝐿𝑔) = 1.379(𝑔 − 𝑖) − 1.067. Given that the SDSS 𝑔-band
is similar to the 𝐵-band, we can approximate 𝑀/𝐿𝐵 ≈ 𝑀/𝐿𝑔 . We further
assume ETGs have a constant colour of (𝑔 − 𝑖) = 1.2 (Fukugita et al. 1996).
This result in 𝑀/𝐿𝐵 ≈ 3.9.
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(2013a)’s ZOE is constructed with local galaxies (within 42 Mpc).
The embedded spheroids need not conform to such a constraint. If
indeed some spheroids are already fully formed at high-𝑧, the ZOE
at higher 𝑧 could be different to the ZOE in Cappellari et al. (2013a).
Since the spheroids’ relation roughly follows a log-linear trend across
2 × 109 . 𝑀∗/M� . 2 × 1012, its ZOE should also be log-linear.

4.3.2 Comparison with local bulges

Our result also highlights the necessity for multicomponent decom-
position in order to extract bulges correctly. In the middle panel
of Fig. 15, we compare our spheroids with some bulge size-mass
relations at low-𝑧: Graham & Worley (2008), Lange et al. (2016),
Dimauro et al. (2019), and Méndez-Abreu et al. (2021). Building
on Allen et al. (2006), Lange et al. (2016) performed an automatic
Bulge+Disc decomposition of 2247 ETGs and LTGs with stellar
mass 109 . 𝑀∗/M� < 3 × 1011 at 0.002 < 𝑧 < 0.06 taken from
the Galaxy And Mass Assembly (GAMA) survey (GAMA II, Driver
et al. 2009, 2016; Liske et al. 2015). They improved on the conven-
tional fitting routines by performing multiple fits with a wide range
of starting parameters and using the median value of these fits to
obtain the size–mass relation. However, their bulge size-mass rela-
tions differ significantly from our spheroid relation, with the slope
𝑆 = 0.263 (Lange et al. 2016, see their Table 1). In Dimauro et al.
(2019), the slope of the size–mass relation iss 𝑆 = 0.385 for all
bulges coming from galaxies with 𝑀∗,Sph > 2 × 1010 at 𝑧 ∼ 0.25.
Since both their methods do not account for potentially biasing com-
ponents, e.g., bars, disc truncation and anti-trucation, and nuclear
components, the bulge sizes are likely overestimated. On the con-
trary, Méndez-Abreu et al. (2017, 2021) present a bulge relation
made using 2D multi-component decomposition for 404 galaxies at
𝑧 < 1 in the Calar Alto Legacy Integral Field Area survey (CALIFA-
DR3, García-Benito et al. 2015; Sánchez et al. 2016) that includes
a variety of components, specifically, the bulge, bar, nuclear point
source, and Type I-III disc. As a result, their bulge size–mass re-
lation is the closest to ours, with a slope of 𝑆 = 0.71 for bulges
with 10.5 < log(𝑀∗,Sph/M�) < 12. Interestingly, however, the low-
mass (8.0 < log(𝑀∗,Sph/M� < 10.5) bulges in Méndez-Abreu et al.
(2021) follows a shallower relation with a slope of 𝑆 = 0.34, resulting
in an ‘up-bend’ in the overall size–mass relation. Similar up-bend at
𝑀∗,Sph ∼ 108–3 × 109 M� was also reported in other works (e.g.,
Gadotti 2008; Laurikainen et al. 2010).
We note that the absent of up-bend in our relation could be a result

of sample selection. From Fig. 8 in Laurikainen et al. (2010), we can
see that bulges from Sc or later-type spiral (Sc-) galaxies dominate
the low-mass range (𝑀∗,Sph ∼ 108–3 × 109 M�). Without the Sc-
bulges, their spheroid size–luminosity distribution resembles a log-
linear relation. Sc- galaxies are also abundant in the parent sample of
the aforementioned work that presented the up-bend (Gadotti 2009;
Lange et al. 2016; Méndez-Abreu et al. 2021). However, since our
data sources, H+22 and D+19, contain mostly early-type (Sa-Sb)
spiral galaxies, the up-bend is not present in our spheroid size–mass
relation. While our sample does not contain many late-type (Sc-
Sd) spiral galaxies, or more specifically, galaxies with 𝑀∗,Sph <
2 × 109 M� , the light-green curve in Fig. 9 suggests a possible
flattening of the size-mass relation at low masses. Late-type spiral
galaxies can, however, be challenging tomodel because they typically
contain bulges whose surface brightness is relatively faint compared
to the inner disc (Graham 2001, their Fig. 21), and with ground-bases
seeing, the bars of bulgeless spiral galaxies can mimic bulges (e.g.
Baldassare et al. 2015, 2017). While our colleagues have addressed

these issues and measured a reduction of the slope in the size-mass
diagram for late-type spiral galaxies, we do not attempt to do this.
When the disc (and any additional inner-disc) and disc-induced

components (e.g., bars and spiral arms) are removed, the remaining
component would be the relatively dense spheroid. Galaxy size-
mass relations possess a flatter slope than spheroids’ because the
disc in S0 and S galaxies, which exist at lower-mass end, increases
the overall size and decreases the overall density of a galaxy. The
deviation between the galaxy and spheroid size-mass relation is more
prominent at the low-mass end (𝑀∗,gal/M� . 1011), where the
galaxies tend to have a lower bulge-to-total flux ratio and the disc’s
mass trumps the spheroids’.

4.3.3 Comparison with high-𝑧 quiescent galaxies

With the knowledge that ETGs have a different size-mass relation
than the spheroids, kicking up in size at low-mass end because of the
disc, we compare our spheroid relation with the quiescent galaxies
at 𝑧 > 1.0. The bottom panel of Fig. 15 shows the galaxy size-mass
relation at 𝑧 > 1.0: Nedkova et al. (2021, QGs at 1.2 < 𝑧 < 1.4)
and Saracco et al. (2017, QGs at 1.2 < 𝑧 < 1.4). The red and orange
points are the QGs from CANDELS (van der Wel et al. 2014) at
𝑧 ∼ 1.25 and 𝑧 ∼ 2.25 (their Fig. 5)22, respectively. The relation
in Nedkova et al. (2021) matches the high-mass (𝑀∗,gal/M� & 3 ×
1010) end of the relation in Saracco et al. (2017) remarkably well.
Compared to the Nedkova et al. (2021) galaxy size-mass relation
at 0.2 < 𝑧 < 0.5 (see the upper panel of Fig. 15), their relation at
𝑧 > 1.0 migrates toward the lower-right side of the plot, implying
quiescent galaxies are more compact as redshift increases (see also
van der Wel et al. 2014). The up-bend at 𝑀∗ ∼ 3 × 1010 M� in the
Saracco et al. (2017) galaxy size-mass relation is also present in the
QGs from van der Wel et al. (2014) at 𝑧 ∼ 1.25–2.25. The QGs from
van der Wel et al. (2014) at 𝑧 ∼ 1.25–2.25 follow a similar trend
to our spheroids’ size-mass relation. In between 1010 . 𝑀∗/M� .
1011, our spheroids reside in the middle of the van der Wel et al.
(2014)’s QGs distribution. It shows that, in terms of size and mass,
local spheroids are structurally similar to high-𝑧 quiescent galaxies.
The galaxy size evolution among QGs has been discussed by many
studies (e.g., Trujillo et al. 2007; Bezanson et al. 2009; Taylor et al.
2010; Barro et al. 2013; van der Wel et al. 2014; van Dokkum et al.
2015), where QGs become less compact as 𝑧 decreases. Since local
spheroids are analogous to the quiescent system at 𝑧 > 1.0, our result
supports the scenario where the system builds from the inside-out,
either through the disc-cloaking process (Graham et al. 2015; Hon
et al. 2022) to build up a disc within over an existing spheroid to
become S0 or S galaxy (see also Costantin et al. 2020, 2022), or
major mergers to become an elliptical galaxy (Graham& Sahu 2022,
in Press).

5 SUMMARY

In this paper, using the local bulge/spheroid data from multi-
component decompositions in SG16, D+19, S+19, and H+22, we
present the followings:

22 The original size-mass distribution was depicted using the effective radius
in the major-axis instead of the circularised radius. Following what was done
in Saracco et al. (2017), we scaled down their radius by the average radius
ratio 〈𝑅e,circularised/𝑅e,major 〉 ∼ 0.76 (Cappellari et al. 2013b) to match the
size-mass relations in the other studies.
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• The distribution of the spheroids’ 𝑖−band absolute magnitude
(𝔐Sph) against their structural parameters, namely the spheroid’s
Sérsic index (𝑛Sph), central surface brightness (𝜇0,Sph), and effective
radius (𝑅e,Sph) have been presented in Section 3.1.

• The correlation strength among 𝑅e,Sph, 𝜇0,Sph, and 𝑛Sph are
measured (Section 3.2).

• The 𝔐Sph–log(𝑅𝑧,Sph) and 𝔐Sph–𝜇𝑧,Sph relations, using the
different scale radii 𝑅z,Sph, enclosing different fractions of the
spheroid light, are presented in Section 3.3.1.

• The spheroid mass (𝑀∗,Sph) versus Sérsic index (𝑛Sph), pro-
jected mass density (Σ0,Sph), and effective radius (𝑅e,Sph) relations
are provided in Section 3.4.1. Their behaviour resembles that of
the𝔐Sph–log(𝑛Sph),𝔐Sph–𝜇0,Sph and𝔐Sph–log(𝑅e,Sph) relations,
with similar correlation strength.

• We charted the correlation strength (𝑟𝑝 , 𝑟𝑠) as a function of
the fraction of light, 𝑧, included within the scale radii 𝑅z,Sph for
different parameter (𝑅𝑧,Sph, Σ𝑧,Sph, 〈Σ〉𝑧,Sph, and 𝐵𝑧,Sph (𝑛Sph))
pairings with the spheroid mass (Section 3.4.3). Among them, the
log(𝑀∗,Sph)–log(𝑅𝑧,Sph) relations consistently have the highest cor-
relation strength (𝑟𝑝 , 𝑟𝑠 ∼ 0.9) across all 𝑧. The Sérsic ‘shape func-
tion’ log(𝑀∗,Sph)–log(𝐵z,Sph (𝑛Sph) relations have the second high-
est correlation across all 𝑧, with 𝑟𝑝 and 𝑟𝑠 ∼ 0.7, while the strength
of the log(𝑀∗,Sph)–log(Σ𝑧,Sph) and log(𝑀∗,Sph)–log(〈Σ〉𝑧, Sph) re-
lations vary significantly with the choice of 𝑧.

• The local spheroid size (𝑅e,Sph)–mass (𝑀∗,Sph) relation is pre-
sented in Section 3.5.1. For the full sample, the bisector regression
line is:

log(𝑅e,Sph/kpc) = 0.88 log(M∗,Sph/M�) − 9.15, (19)

with an intrinsic scatter of Δ𝑟𝑚𝑠 = 0.24 dex.
• Four additional scaling relations: log(𝑛Sph)–log(𝑀∗,Sph),

log(𝐵e,Sph)–log(𝑀∗,Sph), log(Σ0,Sph)–𝑛Sph, and log(𝑅e,Sph)–
log(𝑛Sph) are presented in Section 3.5.2. We obtained the bisector
lines:

log(𝑛Sph) = 0.43 log(𝑀Sph/M�) − 4.20, (20)

with an intrinsic scatter of Δ𝑟𝑚𝑠 = 0.21 dex;

log(𝐵e,Sph) = 0.20 log(𝑀∗,Sph/M�) − 1.70, (21)

with an intrinsic scatter of Δ𝑟𝑚𝑠 = 0.10 dex;

log(Σ0,Sph/M�pc−2) = 0.59 nSph + 3.42, (22)

with an intrinsic scatter of Δ𝑟𝑚𝑠 = 0.47 dex; and

log(𝑅e,Sph/kpc) = 2.06 nSph − 0.66, (23)

with an intrinsic scatter of Δ𝑟𝑚𝑠 = 0.39 dex. In each case, the scatter
is measured in the vertical direction.

Here, we briefly summarise the findings in this paper:

(i) There is no clear boundary between spheroids embedded in
S0 and S galaxies. They have a significant overlap in the size-mass
diagram and other parameter planes, indicating a shared origin or,
at the very least, governing formation physics among bulges (see
Section 4.2).
(ii) The spheroid radius (𝑅𝑧,Sph) is the best predictor of its lumi-

nosity and stellar mass, regardless of the fraction of light, 𝑧, used.
The shape of the spheroid’s light profile (𝑛Sph) and ‘shape function’,
𝐵𝑧,Sph (𝑛Sph), also correlate well with the spheroid mass, albeit it not
as strong as 𝑅𝑧,Sph. The surface brightness, 𝜇𝑧,Sph, and the surface
mass densisities, Σ𝑧,Sph and 〈Σ〉𝑧,Sph, are weak predictors of the
spheroid stellar mass because of their low correlation with 𝑀∗,Sph, a
result which is also subject to the light fraction 𝑧.

(iii) The spheroid size (𝑅e,Sph)–mass (𝑀∗,Sph) distribution ex-
hibits a roughly log-linear relation at 𝑀∗,Sph & 109 M� , contrary to
the curved size–mass predicted in Graham et al. (2006) for ETGs and
the double-power law from other works. Since the disc (and other)
components are less dense than the bulge, S0 and S galaxies will
have a larger size than a pure spheroid at the same mass, resulting in
the upbend in the low-mass end where discs are more prominent.
(iv) The spheroid central surface brightness (𝜇0,Sph)–Sérsic index

(𝑛∗,Sph) relation shows a strong linear trend (Fig.2). As such, in log-
space (𝜇0,Sph–log(𝑛∗,Sph)), the relation appears curved. This is in
contrast to the linear scaling 𝜇0,Sph–log(𝑛∗,Sph) relation presented
in Khosroshahi et al. (2000a). If the ‘photometric plane’ is present
in our sample, we speculate its surface will also be curved if using
log(𝑛).
(v) Our spheroid size-mass relation is a factor of∼ 3 steeper than

some reported bulge size-mass relation obtained via Bulge+Disc de-
composition. Likely due to the lack of Sc or later-type spiral galaxies
in our sample, we do not see the flattening of slope (i.e. an up-bend) in
the low-mass end (𝑀∗,Sph/M� < 109) that is common in other bulge
size–mass relation in the literature. Finally, our spheroids’ relation
aligns well with the quiescent galaxy size-mass relation at 𝑧 ∼ 1.25
and 2.25 in between 2 × 1010 < 𝑀∗/M� < 4 × 1011. It indicates
that local spheroids are structurally similar to the high-𝑧 quiescent
galaxies.
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