C OLLOQUIUM MATHEMATICUM

THE SIZE OF $\left(L^{2}, L^{p}\right)$ MULTIPLIERS
BY
KATHRYN E. HARE (WATERLOO, ONTARIO)
0. Introduction. A complex valued function φ defined on the dual Γ of an infinite compact abelian group G is called an $\left(L^{p}, L^{q}\right)$ multiplier if for all $f \in L^{p}(G), M_{\varphi} f \in L^{q}(G)$ where by $M_{\varphi} f$ we mean the function whose Fourier transform is given by $\widehat{M_{\varphi}} f(\chi)=\varphi(\chi) \widehat{f}(\chi)$ for $\chi \in \Gamma$. The space of $\left(L^{p}, L^{q}\right)$ multipliers will be denoted by $M(p, q)$. When μ is a bounded Borel measure on G, then $M_{\hat{\mu}} \in M(p, p)$ (we will write $\mu \in M(p, p)$). If a multiplier $\varphi \in M(2, p)$ for some $p>2$ then φ is called L^{p}-improving. For basic properties, and background information on L^{p}-improving multipliers we refer the reader to [5] and [8].

In this paper we investigate the relationship between the size of the function φ and membership in $M(2, p)$ for certain types of multipliers, furthering the work of [2] and [5] in particular.

By a one-sided Riesz product we mean a multiplier φ given by

$$
\varphi(\chi)= \begin{cases}\prod_{i}^{\varepsilon_{i}} & \text { if } \chi=\prod \chi_{i}^{\varepsilon_{i}}, \varepsilon_{i}=0,1 \\ 0 & \text { otherwise }\end{cases}
$$

where $\left\{\chi_{i}\right\}$ is a dissociate subset of Γ and $\left\{a_{i}\right\}$ is a bounded sequence of complex numbers. We will write $\varphi=\prod\left(1+a_{i} \chi_{i}\right)$ for short. When $\chi_{i}^{2}=1$ for all χ_{i} then a one-sided Riesz product is actually the Fourier transform of a Riesz product; and like Riesz products, one-sided Riesz products exhibit interesting phenomena. Extending work of Bonami [2], in Section 2 we characterize certain (one-sided) Riesz products on T^{∞}, D^{∞} and T which belong to $M(2, p)$. This characterization shows that the necessary conditions on the size of $\left(L^{2}, L^{p}\right)$ multipliers which we obtain in Section 1 are best possible, but are not sufficient even for (one-sided) Riesz products, answering an open problem in [5].

In $[8]\left(L^{2}, L^{p}\right)$ multipliers are "almost" characterized. The necessary conditions we establish are combined with this result to sharpen the known estimates of the $\Lambda(p)$ constants of sums of dissociate sets. The previously known best estimates were developed in [2] by mainly combinatorial methods.

1. Necessary conditions. As a preliminary result we obtain lower bounds for L^{p} norms of Riesz products and one-sided Riesz products.

Lemma 1.1. Let $\left\{\chi_{i}\right\}_{1}^{\infty}$ be a dissociate subset of Γ such that $\chi_{i}^{2} \neq 1$. For each $p>0$ there are positive constants $k=k_{p}$ and $c=c_{p}<1 / 2$ such that
(a) $\quad \prod_{i=1}^{N}\left(1+(p-1)\left|c_{i}\right|^{2}-k\left|c_{i}\right|^{3}\right) \leq\left\|\prod_{i=1}^{N}\left(1+c_{i} \chi_{i}+\overline{c_{i} \chi_{i}}\right)\right\|_{p}$ $\leq \prod_{i=1}^{N}\left(1+(p-1)\left|c_{i}\right|^{2}+k\left|c_{i}\right|^{3}\right)$,
and
(b)

$$
\begin{aligned}
\prod_{i=1}^{N}\left(1+\left|c_{i}\right|^{2} p / 4-k\left|c_{i}\right|^{3}\right) & \leq\left\|\prod_{i=1}^{N}\left(1+c_{i} \chi_{i}\right)\right\|_{p} \\
& \leq \prod_{i=1}^{N}\left(1+\left|c_{i}\right|^{2} p / 4+k\left|c_{i}\right|^{3}\right)
\end{aligned}
$$

whenever $N \in \mathbb{N}$ and $\left\{c_{i}\right\}$ is a sequence of complex numbers with $\left|c_{i}\right| \leq c$ for all i.

Proof. In what follows the constant $k=k_{p}$ may vary from one line to another.
(a) The Taylor series expansion of $(1+x)^{p}$ for $|x|$ small yields that

$$
\begin{aligned}
& \left\|\prod_{i=1}^{N}\left(1+c_{i} \chi_{i}+\overline{c_{i} \chi_{i}}\right)\right\|_{p}^{p} \\
& \quad \geq \int \prod_{i=1}^{N}\left(1+p\left(c_{i} \chi_{i}+\overline{c_{i} \chi_{i}}\right)+\frac{p(p-1)}{2}\left(c_{i} \chi_{i}+\overline{c_{i} \chi_{i}}\right)^{2}-k\left|c_{i}\right|^{3}\right) .
\end{aligned}
$$

As $\left\{\chi_{i}\right\}$ is a dissociate set this integral equals $\prod_{i=1}^{N}\left(1+p(p-1)\left|c_{i}\right|^{2}-k\left|c_{i}\right|^{3}\right)$. By taking p th roots and another application of Taylor series we obtain the first inequality in (a). The other is similar.

For (b) first we observe that

$$
\begin{aligned}
\left\|\prod_{i=1}^{N}\left(1+c_{i} \chi_{i}\right)\right\|_{p} & =\left[\int \prod_{i=1}^{N}\left(\left(1+c_{i} \chi_{i}\right)\left(1+\bar{c}_{i} \bar{\chi}_{i}\right)\right)^{p / 2}\right]^{1 / p} \\
& =\prod_{i=1}^{N}\left(1+\left|c_{i}\right|^{2}\right)^{1 / 2}\left[\int \prod_{i=1}^{N}\left(1+\frac{c_{i} \chi_{i}+\overline{c_{i} \chi_{i}}}{1+\left|c_{i}\right|^{2}}\right)^{p / 2}\right]^{1 / p} .
\end{aligned}
$$

Using part (a) it follows that if constants $\left|c_{i}\right|$ are sufficiently small, than the
integral in the line above dominates

$$
\prod_{i=1}^{N}\left(1+\left(\frac{p}{2}-1\right) \frac{\left|c_{i}\right|^{2}}{\left(1+\left|c_{i}\right|^{2}\right)^{2}}-k\left|c_{i}\right|^{3}\right)^{p / 2}
$$

This estimate together with another application of Taylor series establishes the lower bound for $\left\|\prod_{i=1}^{N}\left(1+c_{i} \chi_{i}\right)\right\|_{p}$, and similar arguments give the upper bound.

Remark. Of course, for any sequence $\left\{c_{i}\right\}$, the L^{2} norms of $\prod_{i=1}^{N}(1+$ $\left.c_{i} \chi_{i}+\overline{c_{i} \chi_{i}}\right)$ and $\prod_{i=1}^{N}\left(1+c_{i} \chi_{i}\right)$ are $\prod_{i=1}^{N}\left(1+2\left|c_{i}\right|^{2}\right)^{1 / 2}$ and $\prod_{i=1}^{N}\left(1+\left|c_{i}\right|^{2}\right)^{1 / 2}$ respectively.

With the estimates of this lemma we can now obtain necessary quantitative estimates for certain $\left(L^{2}, L^{p}\right)$ multipliers. First we consider the case when the multiplier arises from a measure. Recall that a measure μ is tame if for each $\varphi \in \Delta M(G)$ there exists $a \in \mathbb{C}$ and $\gamma \in \Gamma$ such that $\varphi_{\mu}=a \gamma$ a.e. $d \mu([6,6.1])$. A Riesz product is an example of a tame measure.

Theorem 1.2. Let μ be a tame measure on a compact abelian group G and assume $\mu \in M(2, p)$ for some $p>2$. Suppose that Γ has no elements of order 2. Then $\left|\varphi_{\mu}\right|^{2} \leq 1 /(p-1)$ for all $\varphi \in \bar{\Gamma} \backslash \Gamma \subset \Delta M(G)$.

Before proving this we state an immediate corollary and make some initial remarks.

Corollary 1.3. If tame $\mu \in M(2, p)$ for $p>2$ then

$$
\limsup _{\chi \in \Gamma}|\widehat{\mu}(\chi)|^{2} \leq \frac{1}{p-1}\|\mu\|_{M(G)}^{2}
$$

Remarks. (1) For background information on $\Delta M(G)$ see [6].
(2) This result improves the estimate in [5] and [7] for tame measures, and was shown by Bonami to be both necessary and sufficient for certain Riesz products ([2, p. 376, 385]).

Proof of Theorem. Let $\varphi \in \bar{\Gamma} \backslash \Gamma$ and suppose $\varphi_{\mu}=z \chi d \mu$ a.e. where, without loss of generality, we may assume $z \neq 0$. Replacing μ by $\gamma \mu$ if necessary we may assume $\widehat{\mu}(1) \neq 0$. Fix $0<\delta<|z|$. Observe that $\left|\widehat{\mu}\left((\varphi \bar{\chi})^{k}\right)\right|=\left|\widehat{\mu}\left((\bar{\varphi} \chi)^{k}\right)\right|=\left|z^{k} \widehat{\mu}(1)\right|$ for all non-negative integers k, thus we may choose a dissociate set $\left\{\chi_{i}\right\}_{i=1}^{\infty}$ such that

$$
\left|\widehat{\mu}\left(\prod \chi_{i}^{\varepsilon_{i}}\right)\right| \geq(|z|-\delta)^{\sum\left|\varepsilon_{i}\right|}|\widehat{\mu}(1)| \quad \text { whenever } \varepsilon_{i}=0, \pm 1
$$

For $\varepsilon>0$ (and small), define the trigonometric polynomial $f_{N, \varepsilon}$ by

$$
\widehat{f}_{N, \varepsilon}(\chi)= \begin{cases}\frac{(\varepsilon(|z|-\delta))^{k}}{\widehat{\mu}(\chi)} & \text { if } \chi=\prod_{j=1}^{N} \chi_{j}^{\varepsilon_{j}}, \varepsilon_{j}=0, \pm 1 \text { and } \sum_{j=1}^{N}\left|\varepsilon_{j}\right|=k \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\mu * f_{N, \varepsilon}=\prod_{j=1}^{N}\left(1+\varepsilon(|z|-\delta)\left(\chi_{j}+\bar{\chi}_{j}\right)\right)
$$

Thus

$$
\left|\widehat{f}_{N, \varepsilon}(\chi)\right| \leq \begin{cases}\frac{\varepsilon^{k}}{|z|-\delta} & \text { if } \chi=\prod_{j=1}^{N} \chi_{j}^{\varepsilon_{j}}, \varepsilon_{j}=0, \pm 1 \text { and } \sum_{j=1}^{N}\left|\varepsilon_{j}\right|=k \\ 0 & \text { otherwise }\end{cases}
$$

so

$$
\left\|f_{N, \varepsilon}\right\|_{2} \leq \frac{1}{|z|-\delta}\left(1+2 \varepsilon^{2}\right)^{N / 2}
$$

An application of the closed graph theorem shows that there is a constant C such that $\|\mu * f\|_{p} \leq C\|f\|_{2}$ for all $f \in L^{2}$. Together with Lemma 1.1 this shows that for all N and for all sufficiently small ε,

$$
C \geq \frac{\left\|\mu * f_{N, \varepsilon}\right\|_{p}}{\left\|f_{N, \varepsilon}\right\|_{2}} \geq \frac{1}{|z|-\delta}\left[\frac{1+(p-1) \varepsilon^{2}(|z|-\delta)^{2}-k \varepsilon^{3}(|z|-\delta)^{3}}{\left(1+2 \varepsilon^{2}\right)^{1 / 2}}\right]^{N}
$$

Hence for all small ε,

$$
1+(p-1) \varepsilon^{2}(|z|-\delta)^{2}-k \varepsilon^{3}(|z|-\delta)^{3} \leq\left(1+2 \varepsilon^{2}\right)^{1 / 2}
$$

Letting $\varepsilon \rightarrow 0$ we see that this can occur only if $(p-1)(|z|-\delta)^{2} \leq 1$, but as $\delta>0$ was arbitrary this implies that $|z|^{2} \leq 1 /(p-1)$ as desired.

Unlike measures, for general $\left(L^{2}, L^{p}\right)$ multipliers φ it is not necessary that $\lim \sup |\varphi(\chi)|<\|\varphi\|_{l^{\infty}}$. Indeed, it is easy to see that the characteristic function of a Sidon set is an $\left(L^{2}, L^{p}\right)$ multiplier for all $p>2$ (cf. [8] or [12]). However, in the next proposition we will prove that for one-sided Riesz products a better estimate can be obtained, and we will prove an estimate sharper than Corollary 1.3 for Riesz products.

Proposition 1.4. Let $\left\{\chi_{n}\right\}$ be a dissociate set in Γ with $\chi_{n}^{2} \neq 1$ and let $1<p<q<\infty$. Suppose $\left\{r_{n}\right\}$ and $\left\{t_{n}\right\}$ are sets of complex numbers and let

$$
\varepsilon_{n}^{(1)}=\max \left(\left|r_{n}\right|^{2}-\frac{p-1}{q-1}, 0\right), \quad \varepsilon_{n}^{(2)}=\max \left(\left|t_{n}\right|^{2}-\frac{p}{q}, 0\right)
$$

If either $\varphi_{1}=\Pi\left(1+r_{n} \chi_{n}+\overline{r_{n} \chi_{n}}\right)$ or $\varphi_{2}=\Pi\left(1+t_{n} \chi_{n}\right)$ belong to $M(p, q)$, then $\sum_{n}\left(\varepsilon_{n}^{(i)}\right)^{3}<\infty$ for $i=1,2$.

If, in addition, $\left\{\chi_{n}\right\}$ satisfies the further independence condition

$$
\prod \chi_{n}^{\delta_{n}}=0 \text { for } \delta_{n}=0, \pm 1, \pm 2, \pm 3 \quad \text { implies } \quad \delta_{n}=0
$$

then $\sum\left(\varepsilon_{n}^{(i)}\right)^{2}<\infty$ is a necessary condition.
Remark. If $\left|r_{n}\right| \leq 1 / 2$ then φ_{1} is a measure, otherwise by φ_{1} we simply mean the obvious multiplier.

Proof. Note that a necessary condition for φ_{1} or φ_{2} to be an element of $M(p, q)$ is that $\left\{\varepsilon_{n}^{(i)}\right\}$ is a bounded sequence for $i=1,2$. Define trigonometric polynomials $f_{N}^{(1)}=\prod_{n=1}^{N}\left(1+c \varepsilon_{n}^{(1)}\left(\chi_{n}+\bar{\chi}_{n}\right)\right)$ and $f_{N}^{(2)}=$ $\prod_{n=1}^{N}\left(1+c \varepsilon_{n}^{(2)} \chi_{n}\right)$ where $c \geq 0$ is a small constant.

As $\varphi_{1}, \varphi_{2} \in M(p, q)$ the usual closed graph theorem argument shows that for $i=1,2, \sup _{N}\left\|M_{\varphi_{i}} f_{N}^{(i)}\right\|_{q} /\left\|f_{N}^{(i)}\right\|_{p}<\infty$. Thus for c chosen sufficiently small, Lemma 1.1 implies that

$$
\begin{aligned}
\infty>\sup _{N} \frac{\left\|M_{\varphi_{1}} f_{N}^{(1)}\right\|_{q}}{\left\|f_{N}^{(1)}\right\|_{p}} & \geq \sup _{N} \prod_{n=1}^{N}\left(\frac{1+(q-1)\left|c \varepsilon_{n}^{(1)} r_{n}\right|^{2}-k\left|c \varepsilon_{n}^{(1)} r_{n}\right|^{3}}{1+(p-1)\left|c \varepsilon_{n}^{(1)}\right|^{2}+k\left|c \varepsilon_{n}^{(1)}\right|^{3}}\right) \\
& =\sup _{N} \prod_{n=1}^{N}\left(1+\frac{\left(\varepsilon_{n}^{(1)}\right)^{3}\left((q-1) c^{2}-k c^{3}\left|r_{n}\right|^{3}\right)}{(p-1)\left|c \varepsilon_{n}^{(1)}\right|^{2}+k\left|c \varepsilon_{n}^{(1)}\right|^{3}}\right),
\end{aligned}
$$

which forces $\sum\left(\varepsilon_{n}^{(1)}\right)^{3}<\infty$. Similar arguments apply to $\sum\left(\varepsilon_{n}^{(2)}\right)^{3}$.
If $\left\{\chi_{i}\right\}$ satisfies the stronger independence property, then Lemma 1.1 can be improved. The stronger property implies that for every i,

$$
\int \chi_{i}^{\delta} \bar{\chi}_{i}^{3-\delta} \prod_{j \neq i} \chi_{j}^{\delta_{j}}=0 \quad \text { for } \delta=0,1,2,3 \text { and } \delta_{j}=0, \pm 1, \pm 2, \pm 3
$$

thus arguments similar to Lemma 1.1, but taking the first four terms of the Taylor series expansion, show that for c_{i} sufficiently small

$$
\begin{aligned}
\prod_{i=1}^{N}\left(1+(p-1)\left|c_{i}\right|^{2}-k\left|c_{i}\right|^{4}\right) & \leq\left\|\prod_{i=1}^{N}\left(1+c_{i} \chi_{i}+\overline{c_{i} \chi_{i}}\right)\right\|_{p} \\
& \leq \prod_{i=1}^{N}\left(1+(p-1)\left|c_{i}\right|^{2}+k\left|c_{i}\right|^{4}\right)
\end{aligned}
$$

and

$$
\prod_{i=1}^{N}\left(1+\left|c_{i}\right|^{2} p / 4-k\left|c_{i}\right|^{4}\right) \leq\left\|\prod_{i=1}^{N}\left(1+c_{i} \chi_{i}\right)\right\|_{p} \leq \prod_{i=1}^{N}\left(1+\left|c_{i}\right|^{2} p / 4+k\left|c_{i}\right|^{4}\right)
$$

If we take $g_{N}^{(1)}=\prod_{n=1}^{N}\left(1+\sqrt{c \varepsilon_{n}^{(1)}}\left(\chi_{n}+\bar{\chi}_{n}\right)\right)$ and $g_{N}^{(2)}=\prod_{n=1}^{N}\left(1+\sqrt{c \varepsilon_{n}^{(2)}} \chi_{n}\right)$, then by estimating $\left\|M_{\varphi_{i}} g_{N}^{(i)}\right\|\left\|_{q} /\right\| g_{N}^{(i)} \|_{p}$ with these sharper estimates we get the necessary condition $\sum\left(\varepsilon_{n}^{(i)}\right)^{2}<\infty$ for $i=1,2$.

Corollary 1.5. Let $\left\{\chi_{i}\right\}$ be a dissociate subset of Γ and let $\varphi=$ $\prod\left(1+a_{i} \chi_{i}\right)$ be a one-sided Riesz product. If $\varphi \in M(2, p)$ then $\limsup \left|a_{i}\right|^{2}$ $\leq 2 / p$.

Remark. This condition is both necessary and sufficient for certain one-sided Riesz products (see [2, p. 389] and §2).

Proof. Assume $\left\{\chi_{i}\right\}=\left\{\chi_{i}\right\}_{i \in J} \cup\left\{\chi_{i}\right\}_{i \in K}$ where $\chi_{i}^{2}=1$ for $i \in J$ and $\chi_{i}^{2} \neq 1$ for $i \in K$. Let $\alpha=\prod_{i \in J}\left(1+a_{i} \chi_{i}\right)$ and $\beta=\prod_{i \in K}\left(1+a_{i} \chi_{i}\right)$. By duality $M(2, p)=M\left(p^{\prime}, 2\right)$ and as $|\alpha(\chi)|$ and $|\beta(\chi)|$ are both dominated by $|\varphi(\chi)|$ for all $\chi \in \Gamma$ it follows that α and β belong to $M(2, p)$. But α is actually a Riesz product so, by [5] or [7], $\lim \sup _{i \in J}\left|a_{i}\right|^{2} \leq 2 / p$. By the previous proposition $\lim \sup _{i \in K}\left|a_{i}\right|^{2} \leq 2 / p$.

Corollary 1.6. A one-sided Riesz product φ maps L^{2} to L^{p} for some $p>2$ if and only if $\limsup |\varphi(\chi)|<1$.

Proof. Necessity has already been established. For sufficiency, assume $\left|\varphi\left(\chi_{i}\right)\right| \leq 1-\delta<1$ for all $i \geq k$ and let $\varphi_{1}=\prod_{i=k}^{\infty}\left(1+\varphi\left(\chi_{i}\right) \chi_{i}\right)$. Let φ_{1}^{N} denote the composition of φ_{1} with itself N times. If N is chosen sufficiently large, and μ is the Riesz product $\mu=\prod_{i=k}^{\infty}\left(1+\left(\chi_{i}+\bar{\chi}_{i}\right) / 4\right)$ then $\left|\varphi_{1}^{N}(\chi)\right| \leq$ $|\widehat{\mu}(\chi)|$ for all $\chi \in \Gamma$. By [13], $\mu \in M(2, p)$ for some $p>2$, hence $\varphi_{1}^{N} \in$ $M(2, p)$. An interpolation argument $([8,1.3])$ shows that $\varphi_{1} \in M(2, q)$ for some $2<q \leq p$. As φ is a finite linear combination of translates of φ_{1}, the multiplier $\varphi \in M(2, q)$.
2. L^{p}-Improving Riesz products and one-sided Riesz products. Perhaps the most difficult problem in the study of $\left(L^{2}, L^{p}\right)$ multipliers, and the one with the least satisfactory solutions, is of finding good (and practical) sufficient conditions to describe the $p>2$ for which a multiplier φ maps L^{2} to L^{p}. Other than for monotonic functions ($[5,2.2]$), optimal sufficient conditions are known only for certain (one-sided) Riesz products.

In Chapter 3 of [2], Bonami showed that the Riesz products $\prod(1+$ $\left.r e_{n}(\chi)\right)$ on D^{∞} and $\prod\left(1+2 r \cos x_{j}\right)$ on T^{∞} belong to $M(p, q)$ if and only if $r^{2} \leq(p-1) /(q-1)$, and for even integers p the one-sided Riesz products $\Pi\left(1+r e^{i x_{j}}\right)$ on T^{∞} belong to $M(2, p)$ if and only if $r^{2} \leq 2 / p$. In contrast, our Proposition 1.4 shows that there are Riesz products μ satisfying $\lim \sup |\widehat{\mu}|^{2} \leq(p-1) /(q-1)$ but with $\mu \notin M(p, q)$, answering [5, 3.2(vi)], and similarly that there are one-sided Riesz products φ with $\lim \sup |\varphi|^{2} \leq 2 / p$ but with $\varphi \notin M(2, p)$. In this section we characterize a more general class of L^{p}-improving (one-sided) Riesz products and as a corollary extend Bonami's result on one-sided Riesz products to all $p>2$.

Theorem 2.1. Let $p>2$ and let $\left\{r_{j}\right\}$ and $\left\{t_{j}\right\}$ be sequences of complex numbers such that $\left|t_{j}\right|^{2} \geq 2 / p$ and $\left|r_{j}\right|^{2} \geq 1 /(p-1)$. Let $\varphi=\prod\left(1+t_{j} e^{i x_{j}}\right)$ be a one-sided Riesz product on T^{∞}, and $\mu=\prod\left(1+r_{j} e^{i x_{j}}+\bar{r}_{j} e^{-i x_{j}}\right)$ be a Riesz product on T^{∞}. Then $\varphi \in M(2, p)$ if and only if $\sum\left(\left|t_{j}\right|^{2}-2 / p\right)^{2}<\infty$, and $\mu \in M(2, p)$ if and only if $\sum\left(\left|r_{j}\right|^{2}-1 /(p-1)\right)^{2}<\infty$.

Proof. Notice that the characters defined on T^{∞} by $\left(x_{k}\right) \mapsto e^{i x_{j}}$ satisfy the "further independence condition" of Proposition 1.4, thus necessity is clear in both cases.

To prove sufficiency we need the following lemma which is a straightforward modification of [2, p. 374].

Lemma 2.2. Let $\varphi=\prod\left(1+a_{j} e^{i x_{j}}+b_{j} e^{-i x_{j}}\right)$ be a multiplier on T^{∞}. For each n let $\varphi_{n}=1+a_{n} e^{i x_{n}}+b_{n} e^{-i x_{n}}$ and let $\left\|\varphi_{n}\right\|_{p, q}$ denote the norm of φ_{n} as an operator from L^{p} to L^{q}. Then $\varphi \in M(p, q)$ if and only if $\prod\left\|\varphi_{n}\right\|_{p, q}<\infty$ and in this case $\|\varphi\|_{p, q} \leq \prod\left\|\varphi_{n}\right\|_{p, q}$.

Proof of Theorem 2.1 (ctd.). Sufficiency for one-sided Riesz products. Let $p=2 s$ (so $s>1$) and set $\varepsilon_{n}=\left|t_{n}\right|^{2}-2 / p$. Let $s_{0}=1$ and let

$$
s_{k}=\frac{s(s-1) \ldots(s-k+1)}{k!} \quad \text { if } k \neq 0 .
$$

Thus $s_{k}=\binom{s}{k}$ if s is an integer (where $\binom{s}{k}=0$ if $k>s$). One can easily check that $0 \leq s_{k} \leq s^{k} / k!$ if $k \leq[s]+1$ and $\left|s_{k}\right| \leq s^{[s]+1} /(k(k-1))$ if $k>[s]+1$.

Certainly the assumption that $\sum \varepsilon_{n}^{2}<\infty$ implies that $\varepsilon_{n} \rightarrow 0$ so we may choose N so that for all $n>N$ we have $\left|t_{n}\right|<1, s_{k}\left(1 / s+\varepsilon_{n}\right)^{k}<3 / 4$ if $k=2,3, \ldots,[s]$, and $\varepsilon_{n}<\varepsilon=\varepsilon(s)$ where $0<\varepsilon \leq 1-1 / s$ will be specified later.

It is easy to see that if $\varphi_{n}=1+t_{n} e^{i x}$ then

$$
\left\|\varphi_{n}\right\|_{2, p}=\sup _{b} \frac{\left\|1+b t_{n} e^{i x}\right\|_{p}}{\left\|1+b e^{i x}\right\|_{2}}
$$

Claim. For $|r| \leq 1$ and any complex number b with $|b|>1,\left|1+b r e^{i x}\right| \leq$ $\left|\bar{b}+r e^{i x}\right|$.

To prove this observe that

$$
\left|\bar{b}+r e^{i x}\right|^{2}-\left|1+b r e^{i x}\right|^{2}=|b|^{2}-1+|r|^{2}-|b r|^{2}
$$

The latter expression is a decreasing function of $|r|^{2}$, whose value at $|r|^{2}=1$ is zero. This proves the claim.

From this inequality we see that if $|b|>1$ and $\left|t_{n}\right| \leq 1$ then

$$
\left\|1+b t_{n} e^{i x}\right\|_{p} \leq\left\|\bar{b}+t_{n} e^{i x}\right\|_{p}=|b|\left\|1+\bar{b}^{-1} t_{n} e^{i x}\right\|_{p} .
$$

As $\left\|1+b e^{i x}\right\|_{2}=|b|| | 1+\bar{b}^{-1} e^{i x} \|_{2}$ and $\left|\bar{b}^{-1}\right|<1$ it follows that in computing $\left\|\varphi_{n}\right\|_{2, p}$, for $n \geq N$, we need only take the supremum over $b \in \mathbb{C}$ with $|b| \leq 1$. By taking limits we may further reduce to

$$
\left\|\varphi_{n}\right\|_{2, p}=\sup _{|b|<1} \frac{\left\|1+b t_{n} e^{i x}\right\|_{p}}{\left\|1+b e^{i x}\right\|_{2}} .
$$

Thus we now assume $|b|<1$ and $n \geq N$. Compute the Taylor series expansion for

$$
\left(1+b t_{n} e^{i x}\right)^{s}=\sum_{k=0}^{\infty} s_{k}\left(b t_{n}\right)^{k} e^{i k x}
$$

(of course the sum terminates at $k=s$ if s is an integer). Since $\left|b t_{n} e^{i x}\right| \leq$ $|b|<1$ this series converges uniformly so

$$
\left\|1+b t_{n} e^{i x}\right\|_{p}^{p}=\left\|\left(1+b t_{n} e^{i x}\right)^{s}\right\|_{2}^{2}=\sum_{k=0}^{\infty} s_{k}^{2}\left|b t_{n}\right|^{2 k}
$$

and this series converges absolutely. Also,

$$
\left\|1+b e^{i x}\right\|_{2}^{p}=\left(1+|b|^{2}\right)^{s}=\sum_{k=0}^{\infty} s_{k}|b|^{2 k}
$$

and this series converges absolutely as well.
We must estimate

$$
\begin{aligned}
\frac{\left\|1+b t_{n} e^{i x}\right\|_{p}^{p}}{\left\|1+b e^{i x}\right\|_{2}^{p}} & =\frac{\sum_{k=0}^{\infty} s_{k}^{2}\left|b t_{n}\right|^{2 k}}{\sum_{k=0}^{\infty} s_{k}|b|^{2 k}} \\
& =1+\frac{s^{2}|b|^{2} \varepsilon_{n}+|b|^{4} \sum_{k=2}^{\infty} s_{k}|b|^{2(k-2)}\left(s_{k}\left(1 / s+\varepsilon_{n}\right)^{k}-1\right)}{\left(1+|b|^{2}\right)^{s}}
\end{aligned}
$$

We break the infinite sum into two terms:
(i) $\sum_{k=2}^{[s]} s_{k}|b|^{2(k-2)}\left(s_{k}\left(1 / s+\varepsilon_{n}\right)^{k}-1\right)$

$$
\text { (If }[s]=1 \text { this term is not present.) }
$$

(ii) $\sum_{k=[s]+1}^{\infty} s_{k}|b|^{2(k-2)}\left(s_{k}\left(1 / s+\varepsilon_{n}\right)^{k}-1\right)$

$$
\text { (If } s \text { is an integer this term is not present.) }
$$

In (i) the choice of $n \geq N$ ensures that $s_{k}\left(1 / s+\varepsilon_{n}\right)^{k}-1<-1 / 4$, and as $s_{k}>0$ for $k=2, \ldots,[s]$ the first sum is at most $-s_{2} / 4$ if $[s] \neq 1$.

Sum (ii) we further break down as

$$
\sum_{k=[s]+1}^{\infty} s_{k}|b|^{2(k-2)}\left(s_{k} s^{-1}-1\right)+\sum_{k=[s]+1}^{\infty} s_{k}^{2}|b|^{2(k-2)}\left(\left(1 / s+\varepsilon_{n}\right)^{k}-s^{-k}\right) .
$$

By the mean-value theorem and the assumption that $\varepsilon_{n} \leq \varepsilon \leq 1-1 / s$,

$$
\left(1 / s+\varepsilon_{n}\right)^{k}-s^{-k} \leq \varepsilon_{n} k\left(1 / s+\varepsilon_{n}\right)^{k-1} \leq \varepsilon k
$$

Thus for some constant $C_{1}(s)$,

$$
\begin{aligned}
\sum_{k=[s]+1}^{\infty} s_{k}^{2}|b|^{2(k-2)}\left(\left(1 / s+\varepsilon_{n}\right)^{k}-s^{-k}\right) & \leq \sum_{k=[s]+1}^{\infty}\left(\frac{s^{[s]+1}}{k(k-1)}\right)^{2}|b|^{2(k-2)} \varepsilon k \\
& \leq|b|^{2([s]-1)} \leq C_{1}(s)
\end{aligned}
$$

Clearly $\left\{s_{k}\left(s_{k} s^{-k}-1\right)\right\}_{k=[s]+1}^{\infty}$ is an alternating sequence tending to zero, with first term negative. We claim that it is a (strictly) decreasing sequence (in absolute value). To prove this we first remark that as $s_{k+1} / s_{k}=$ $(s-k) /(k+1)$ it suffices to show that for $k \geq[s]+1$,

$$
\frac{s_{k}}{s^{k}}\left(k+1+\frac{(k-s)^{2}}{(k+1) s}\right)<s+1
$$

Since $\left|s_{k} s^{-k}\right| \leq 1 /(k(k-1))$ and $k^{2}+1+s+k^{2} / s \leq 2 k(k+1)$,

$$
\frac{s_{k}}{s^{k}}\left(k+1+\frac{(k-s)^{2}}{(k+1) s}\right) \leq \frac{1}{k(k-1)}\left(\frac{2 k(k+1)}{k+1}\right)=\frac{2}{k-1}<s+1
$$

as desired. Hence the first sum in (ii) is at most the sum of its first two terms, which is at most $|b|^{2([s]-1)} C_{2}(s)$ where $C_{2}(s)<0$. If $\varepsilon>0$ is chosen so that $\varepsilon C_{1}(s)<\left|C_{2}(s)\right| / 2$ then sum (ii) is negative, and more specifically, if $[s]=1$ then (ii) is at most $C_{2}(s) / 2$.

Combining (i) and (ii) we get

$$
\sum_{k=2}^{\infty} s_{k}|b|^{2(k-2)}\left(s_{k}\left(1 / s+\varepsilon_{n}\right)^{k}-1\right) \leq C_{3}(s) \equiv \begin{cases}-s_{2} / 4 & \text { if }[s] \neq 1 \\ C_{2}(s) / 2 & \text { if }[s]=1\end{cases}
$$

Thus for $|b|<1$ and $n \geq N$,

$$
\frac{\| 1+\left.b t_{n} e^{i x}\right|_{p} ^{p}}{\left\|1+b e^{i x}\right\|_{2}^{p}} \leq 1+\frac{s^{2}|b|^{2} \varepsilon_{n}+|b|^{4} C_{3}(s)}{\left(1+|b|^{2}\right)^{s}}
$$

If $|b|^{2} \leq 2 s^{2} \varepsilon_{n} /\left|C_{3}(s)\right|$ then clearly

$$
\frac{\| 1+\left.b t_{n} e^{i x}\right|_{p} ^{p}}{\left\|1+b e^{i x}\right\|_{2}^{p}} \leq 1+\varepsilon_{n}^{2} C_{4}(s)
$$

for $C_{4}(s)=2 s^{4} /\left|C_{3}(s)\right|$, while if $2 s^{2} \varepsilon_{n} /\left|C_{3}(s)\right| \leq|b|^{2}<1$,

$$
\frac{\| 1+\left.b t_{n} e^{i x}\right|_{p} ^{p}}{\left\|1+b e^{i x}\right\|_{2}^{p}} \leq 1+\frac{s^{2}|b|^{2}\left(\varepsilon_{n}-2 \varepsilon_{n}\right)}{\left(1+|b|^{2}\right)^{s}} \leq 1
$$

Thus $\left\|\varphi_{n}\right\|_{2, p} \leq\left(1+\varepsilon_{n}^{2} C_{4}(s)\right)^{1 / p}$ whenever $n \geq N$. As $\left\|\varphi_{n}\right\|_{2, p}<\infty$ for all $n, \Pi\left\|\varphi_{n}\right\|_{2, p}<\infty$ when $\sum \varepsilon_{n}^{2}<\infty$. By Lemma 2.2, $\varphi \in M(2, p)$.

Sufficiency for Riesz products. The proof is similar to that for one-sided Riesz products so only the main ideas will be sketched.

Let $\varphi_{n}=1+r_{n} e^{i x}+\bar{r}_{n} e^{-i x}$. We need to bound $\left\|\varphi_{n}\right\|_{2, p}$. Since $\mu \in$ $M(2, p)$ if and only if $\prod\left(1+\left|r_{n}\right|\left(e^{i x_{n}}+e^{-i x_{n}}\right)\right) \in M(2, p)$, without loss of generality we may assume $r_{n} \geq 0$. Since this operator maps real-valued functions to real-valued functions, Bonami [2, p. 377] has shown that

$$
\left\|\varphi_{n}\right\|_{2, p}=\sup _{b \in \mathbb{R}} \frac{\left\|1+b r_{n} \cos x\right\|_{p}}{\|1+b \cos x\|_{2}}
$$

For $0 \leq r \leq 1$ and $|b|>1$

$$
|1+b r \cos x| \leq|b+r \cos x|=|b|\left|1+r b^{-1} \cos x\right| .
$$

This simple inequality shows that whenever $r_{n} \leq 1$ then in computing $\left\|\varphi_{n}\right\|_{2, p}$ we may restrict ourselves to $|b| \leq 1$. Choose N so that $r_{n}<1$ for $n \geq N$ and let $p=2 s$.

The power series expansion of $(1+x)^{2 s}$ converges uniformly on $[-\alpha, \alpha]$ for any $\alpha<1$, thus for $n \geq N$ and $|b| \leq 1$

$$
\begin{aligned}
\left\|1+b r_{n} \cos x\right\|_{p}^{p} & =\sum_{k=0}^{\infty} \int_{0}^{2 \pi}(2 s)_{k}\left(b r_{n}\right)^{k} \cos ^{k} x d x \\
& =1+\sum_{k=1}^{\infty}(2 s)_{2 k}\left(b r_{n}\right)^{2 k} \frac{(2 k-1)(2 k-3) \ldots 1}{2 k(2 k-2) \ldots 2}
\end{aligned}
$$

and the latter series converges absolutely. (Of course, this is a finite sum if $2 s$ is an integer.) It follows that

$$
\begin{aligned}
& \frac{\left\|1+b r_{n} \cos x\right\|_{p}^{p}}{\|1+b \cos x\|_{2}^{p}} \\
& \quad=1+\frac{\sum_{k=1}^{\infty} \frac{s_{k}}{2^{k}} b^{2 k}\left[\left(\frac{1}{2 s-1}+\varepsilon_{n}\right)^{k} \frac{(2 s-1)(2 s-3) \ldots(2 s-2 k+1)}{k!}-1\right]}{\left(1+b^{2} / 2\right)^{s}} .
\end{aligned}
$$

Let

$$
a_{k}(s) \equiv a_{k} \equiv \frac{1}{(2 s-1)^{k}} \frac{(2 s-1) \ldots(2 s-2 k+1)}{k!} .
$$

When $s \geq 3 / 2$ then $(2 s-1) \geq 2$ and with this observation it is not hard to show that $\left|a_{k}\right| \leq 1 / k$. (It is helpful to consider the cases [2s] an even or odd integer separately.) Also, $\left\{s_{k}\left(a_{k}-1\right) / 2^{k}\right\}_{k=[s]+1}^{\infty}$ is an alternating sequence which is decreasing (in absolute value) to zero and with first term negative. Thus arguments similar to those used for the one-sided Riesz products show that $\left\|\varphi_{n}\right\|_{2, p} \leq\left(1+C(s) \varepsilon_{n}^{2}\right)^{1 / p}$ for $n \geq N$.

When $1<s<3 / 2$, the factors $(2 s)_{2 k}$ are negative for $k \geq 2$. Thus

$$
\left\|1+b r_{n} \cos x\right\|_{p}^{p} \leq 1+(2 s)_{2}\left(b r_{n}\right)^{2} / 2 .
$$

Hence

$$
\frac{\left\|1+b r_{n} \cos x\right\|_{p}^{p}}{\|1+b \cos x\|_{2}^{p}} \leq 1+\frac{\frac{1}{4} 2 s(2 s-1) b^{2} \varepsilon_{n}-\sum_{k=2}^{\infty} s_{k}\left(b^{2} / 2\right)^{k}}{\left(1+b^{2} / 2\right)^{s}}
$$

Since $\left\{s_{k} / 2^{k}\right\}$ is an alternating sequence which is decreasing (in absolute value) to zero and with first term positive, the same sort of arguments as before again prove that $\left\|\varphi_{n}\right\|_{2, p} \leq\left(1+C(s) \varepsilon_{n}^{2}\right)^{1 / p}$ for $n \geq N$.

Since $\varphi_{n} \in M(2, p)$ for all n we can conclude (in either case) that $\varphi \in$ $M(2, p)$ when $\sum \varepsilon_{n}^{2}<\infty$.

An obvious corollary to this theorem is
Corollary 2.3. The one-sided Riesz product $\varphi=\prod\left(1+r e^{i x_{j}}\right)$ belongs to $M(2, p)$ if and only if $|r| \leq \sqrt{2 / p}$.

The next corollary is in the same spirit as [2, p. 387].
Corollary 2.4. Let $1<p \leq 2<q<\infty$ and

$$
\left|r_{n}\right|^{2}=\frac{p-1}{q-1}+\varepsilon_{n}
$$

where $\varepsilon_{n} \geq 0$. Then the Riesz product μ on T^{∞} given by $\mu=\prod(1+$ $\left.2 r_{j} \cos x_{j}\right)$ belongs to $M(p, q)$ if and only if $\sum \varepsilon_{n}^{2}<\infty$.

Proof. First we prove sufficiency. Let $t_{n}=r_{n} / \sqrt{p-1}, \nu_{1}=\Pi(1+$ $\left.2 \sqrt{p-1} \cos x_{j}\right)$ and $\nu_{2}=\Pi\left(1+2 t_{n} \cos x_{j}\right)$. Clearly μ is the composition of the multipliers ν_{1} and ν_{2}. Since $\left|t_{n}\right|^{2}=r_{n}^{2} /(p-1) \geq 1 /(q-1)$ and

$$
\sum\left(\left|t_{n}\right|^{2}-\frac{1}{q-1}\right)^{2}=\frac{1}{(p-1)^{2}} \sum\left(\left|r_{n}\right|^{2}-\frac{p-1}{q-1}\right)^{2}<\infty
$$

by the theorem $\nu_{2} \in M(2, q)$. If $1 / p+1 / p^{\prime}=1$ then $p-1=1 /\left(p^{\prime}-1\right)$, so $\nu_{1} \in M\left(2, p^{\prime}\right)=M(p, 2)$. Therefore $\mu \in M(p, q)$.

Necessity follows from Proposition 1.4.
Example 2.5. Let $1<p \leq 2<q<\infty$. The multiplier on T^{∞} given by

$$
\varphi=\prod\left(1+2 \sqrt{a_{n}} \cos x_{n}\right) \quad \text { where } \quad a_{n}=\frac{p-1}{q-1}+\frac{1}{\sqrt{n}}
$$

does not belong to $M(p, q)$ but does belong to $M(s, t)$ for all $1<s \leq 2<$ $t<\infty$ satisfying $(p-1) /(q-1)<(s-1) /(t-1)$.

Proof. By the previous corollary $\varphi \notin M(p, q)$. Suppose $(s-1) /(t-1)$ $>(p-1) /(q-1)$. Let $\varphi_{1}=\prod\left(1+2 \sqrt{s-1} \cos x_{n}\right)$ and $\varphi_{2}=\prod(1+$ $\left.2 \sqrt{a_{n} /(s-1)} \cos x_{n}\right)$. Clearly $\varphi_{1} \in M(s, 2)$ and as $a_{n} /(s-1)<1 /(t-1)$ for n sufficiently large, $\varphi_{2} \in M(2, t)$. Since φ is the composition of φ_{1} and φ_{2}, we see that $\varphi \in M(s, t)$.

Just as in [2, pp. 392-393] the following is another consequence of Theorem 2.1:

Corollary 2.6. Let $p>2$ and let $\left\{n_{i}\right\}$ be a lacunary sequence of positive integers satisfying $n_{i+1} / n_{i} \geq 3$. Then $\varphi=\prod\left(1+r e^{i n_{j} x}\right) \in M(2, p)$ if $|r| \leq \sqrt{1 / 2 p}$, and if in addition $\sum n_{i} / n_{i+1}<\infty$, then $\varphi \in M(2, p)$ if and only if $|r| \leq \sqrt{2 / p}$.

We will omit the proofs as they are similar to the corresponding results in [2].

Let e_{n} be the character on D^{∞} given by $e_{n}\left(\left(x_{j}\right)\right)=x_{n}$. Similar arguments to those used in Theorem 2.1 enable one to prove

Proposition 2.7. Let $1<p \leq 2<q<\infty$ and let $\left|r_{n}\right|^{2}=(p-1) /(q-1)$ $+\varepsilon_{n}$ with $\varepsilon_{n} \geq 0$. Then the Riesz product $\mu=\prod\left(1+r_{n} e_{n}(x)\right)$ on D^{∞} belongs to $M(p, q)$ if and only if $\sum \varepsilon_{n}^{2}<\infty$.

We leave the details to the reader.
3. Computation of $\Lambda(p)$ constants. Let $p>2$. A subset E of Γ is called a $\Lambda(p)$ set if there is a constant C_{p} such that $\|f\|_{p} \leq C_{p}\|f\|_{2}$ for all $f \in\left\{g \in L^{2}: \operatorname{supp} \widehat{g} \subseteq E\right\}$. The least such constant C_{p} is called the $\Lambda(p)$ constant of E and is denoted by $\Lambda(E, p)$. For standard results on $\Lambda(p)$ sets see [10] or [15].

Let $\left\{\chi_{i}\right\} \subseteq \Gamma$ be a dissociate set. Sets of the form

$$
\left\{\prod \chi_{i}^{\varepsilon_{i}}: \sum\left|\varepsilon_{i}\right| \leq n, \varepsilon_{i}=0, \pm 1\left(\text { or } \varepsilon_{i}=0,1\right)\right\}
$$

are well known examples of $\Lambda(p)$ sets for all $2<p<\infty$, but are not Sidon sets. Using mainly combinatorial methods Bonami found estimates for the $\Lambda(p)$ constants of such sets [2, Ch. 2]. She then used her estimates in the proof of her result for $\left(L^{2}, L^{p}\right)$ one-sided Riesz products. Here we take the opposite approach and use the earlier results of this paper to improve upon Bonami's estimates of $\Lambda(p)$ constants (when they are not already optimal). The connection between the two subjects is due to the following theorem which almost characterizes $\left(L^{2}, L^{p}\right)$ multipliers.

Theorem 3.1 ([8]). Let φ be a bounded function on Γ and for each $\varphi>0$ let $E(\varphi)=\{\chi:|\varphi(\chi)| \geq \varepsilon\}$. If $\varphi \in M(2, p)$ for some $p>2$, then for each $\varepsilon>0, E(\varepsilon)$ is a $\Lambda(p)$ set and $\Lambda(E(\varepsilon), p) \leq\|\varphi\|_{2, p} \varepsilon^{-1}$. If $E(\varepsilon)$ is a $\Lambda(p)$ set for every $\varepsilon>0$ and $\Lambda(E(\varepsilon), p)=O\left(\varepsilon^{-1}\right)$, then $\varphi \in M(2, r)$ for all $r<p$.

Before applying this theorem it is convenient to establish some notation.
Notation. Let

$$
T_{k}=\left\{\left(n_{i}\right) \in \sum \mathbb{Z}: n_{i}=0, \pm 1, \quad \sum\left|n_{i}\right|=k\right\}
$$

$$
\begin{aligned}
T_{k}^{+} & =\left\{\left(n_{i}\right) \in \sum \mathbb{Z}: n_{i}=0,1, \sum\left|n_{i}\right|=k\right\} \\
\Gamma_{k} & =\left\{\left(\varepsilon_{i}\right) \in \sum \mathbb{Z}(2): \sum \varepsilon_{i}=k\right\}
\end{aligned}
$$

Given $E \subseteq \mathbb{Z}$ let

$$
\begin{aligned}
E_{k} & =\left\{\sum \varepsilon_{i} n_{i}: \varepsilon_{i}=0, \pm 1, n_{i} \in E, \sum\left|\varepsilon_{i}\right|=k\right\} \\
E_{k}^{+} & =\left\{\sum \varepsilon_{i} n_{i}: \varepsilon_{i}=0,1, n_{i} \in E, \sum\left|\varepsilon_{i}\right|=k\right\}
\end{aligned}
$$

Given two real-valued functions, F and G, defined on $\mathbb{N} \times(2, \infty)$, we will say that F is exactly dominated by G if for every $2<p<\infty, F(k, p) \leq$ $G(k, p)$ for all $k \in \mathbb{N}$, and for every $2<q<p, \limsup _{k} F(k, p) / G(k, q)=\infty$.

Proposition 3.2. Let $p>2$. Then both $\Lambda\left(T_{k}, p\right)$ and $\Lambda\left(\Gamma_{k}, p\right)$ are exactly dominated by $(p-1)^{k / 2}$, and $\Lambda\left(T_{k}^{+}, p\right)$ is exactly dominated by $(p / 2)^{k / 2}$.

Proof. Let $\varphi=\Pi\left(1+\sqrt{2 / p} e^{i x_{j}}\right)$ be a one-sided Riesz product on T^{∞}. Then φ is an $\left(L^{2}, L^{p}\right)$ multiplier and

$$
E\left((2 / p)^{k / 2}, \varphi\right) \equiv\left\{\left(n_{i}\right) \in \sum \mathbb{Z}:\left|\varphi\left(\left(n_{i}\right)\right)\right| \geq(2 / p)^{k / 2}\right\}=\bigcup_{j=1}^{k} T_{j}^{+}
$$

The proof of Theorem 2.1 shows that $\|\varphi\|_{2, p}=1$, thus Theorem 3.1 gives $\Lambda\left(T_{k}^{+}, p\right) \leq(p / 2)^{k / 2}$. Suppose $\limsup _{k} \Lambda\left(T_{k}^{+}, p\right) \leq C(q / 2)^{k / 2}$ for some $2<$ $q<p$. As T_{k}^{+}is a $\Lambda(p)$ set for every k there is a constant C_{1} such that

$$
\Lambda\left(\bigcup_{j=1}^{k} T_{k}^{+}, p\right) \leq k \sup _{1 \leq j \leq k} \Lambda\left(T_{j}^{+}, p\right) \leq C_{1}(q / 2)^{k / 2}
$$

Let $\varphi_{1}=\Pi\left(1+\sqrt{2 / q} e^{i x_{j}}\right)$. Since $E\left((2 / q)^{k / 2}, \varphi_{1}\right) \subseteq \bigcup_{j=1}^{k} T_{k}^{+}$the converse direction of Theorem 3.1 tells us $\varphi_{1} \in M(2, r)$ for every $r<p$. But this is false for $r>q$.

The estimates of the $\Lambda(p)$ constants for the sets T_{k} and Γ_{k} follow similarly from Theorem 3.1 and [2, p. 376, 385].

Proposition 3.3. Let $E=\left\{n_{i}\right\}$ be a lacunary set of positive integers satisfying $n_{i+1} / n_{i} \geq 3$ for all i.
(a) $\Lambda\left(E_{k}^{+}, p\right) \leq(2 p)^{k / 2}$ and $\Lambda\left(E_{k}, p\right) \leq(4(p-1))^{k / 2}$ for all $k \in \mathbb{N}$.
(b) If $\sum n_{i} / n_{i+1}<\infty$, then for some constant $C, \Lambda\left(E_{k}^{+}, p\right)$ and $\Lambda\left(E_{k}, p\right)$ are exactly dominated by $C(p / 2)^{k / 2}$ respectively.

Proof. The proof is similar using Corollary 2.6 and [2, pp. 392-393]. We remark that in (a) the $\left(L^{2}, L^{p}\right)$ operator norm of the appropriate multiplier can be shown to be 1 .

REFERENCES

[1] H. Beckner, S. Janson and J. Jerison, Convolution inequalities on the circle, in: Conference on Harmonic Analysis in Honor of Antoni Zygmund (W. Beckner et al., eds.), Wadsworth, Belmont 1983, 32-43.
[2] A. Bonami, Étude des coefficients de Fourier des fonctions de $L^{p}(G)$, Ann. Inst. Fourier (Grenoble) 20 (2) (1970), 335-402.
[3] M. Christ, A convolution inequality concerning Cantor-Lebesgue measures, Rev. Mat. Iberoamericana 1 (1985), 75-83.
[4] R. E. Edwards, Fourier Series, Vol. 2, Springer, New York 1982.
[5] C. Graham, K. Hare and D. Ritter, The size of L^{p}-improving measures, J. Funct. Anal. 84 (1989), 472-495.
[6] C. C. Graham and O. C. Mc Gehee, Essays in Commutative Harmonic Analysis, Springer, New York 1979.
[7] K. Hare, A characterization of L^{p}-improving measures, Proc. Amer. Math. Soc. 102 (1988), 295-299.
[8] -, Properties and examples of $\left(L^{p}, L^{q}\right)$ multipliers, Indiana Univ. Math. J. 38 (1989), 211-227.
[9] R. Larson, An Introduction to the Theory of Multipliers, Grundlehren Math. Wiss. 175, Springer, New York, 1971.
[10] J. López and K. Ross, Sidon Sets, Lecture Notes in Pure Appl. Math. 13, Marcel Dekker, New York 1975.
[11] D. Oberlin, A convolution property of the Cantor-Lebesgue measure, Colloq. Math. 67 (1982), 113-117.
[12] J. Price, Some strict inclusions between spaces of L^{p}-multipliers, Trans. Amer. Math. Soc. 152 (1970), 321-330.
[13] D. Ritter, Most Riesz product mesures are L^{p}-improving, Proc. Amer. Math. Soc. 97 (1986), 291-295.
[14] -, Some singular measures on the circle which improve L^{p} spaces, Colloq. Math. 52 (1987), 133-144.
[15] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227.
[16] E. M. Stein, Harmonic analysis on R^{n}, in: Studies in Harmonic Analysis, MAA Stud. Math. 13, J. M. Ash (ed.), 1976, 97-135.

DEPARTMENT OF PURE MATHEMATICS
UNIVERSITY OF WATERLOO
WATERLOO, ONTARIO
CANADA N2L 3G1

