VOL. LXIII

1992

THE SIZE OF (L^2, L^p) MULTIPLIERS

BY

KATHRYN E. HARE (WATERLOO, ONTARIO)

0. Introduction. A complex valued function φ defined on the dual Γ of an infinite compact abelian group G is called an (L^p, L^q) multiplier if for all $f \in L^p(G)$, $M_{\varphi}f \in L^q(G)$ where by $M_{\varphi}f$ we mean the function whose Fourier transform is given by $\widehat{M_{\varphi}f}(\chi) = \varphi(\chi)\widehat{f}(\chi)$ for $\chi \in \Gamma$. The space of (L^p, L^q) multipliers will be denoted by M(p,q). When μ is a bounded Borel measure on G, then $M_{\hat{\mu}} \in M(p,p)$ (we will write $\mu \in M(p,p)$). If a multiplier $\varphi \in M(2,p)$ for some p > 2 then φ is called L^p -improving. For basic properties, and background information on L^p -improving multipliers we refer the reader to [5] and [8].

In this paper we investigate the relationship between the size of the function φ and membership in M(2, p) for certain types of multipliers, furthering the work of [2] and [5] in particular.

By a one-sided Riesz product we mean a multiplier φ given by

$$\varphi(\chi) = \begin{cases} \prod a_i^{\varepsilon_i} & \text{if } \chi = \prod \chi_i^{\varepsilon_i}, \ \varepsilon_i = 0, 1, \\ 0 & \text{otherwise} \end{cases}$$

where $\{\chi_i\}$ is a dissociate subset of Γ and $\{a_i\}$ is a bounded sequence of complex numbers. We will write $\varphi = \prod(1 + a_i\chi_i)$ for short. When $\chi_i^2 = 1$ for all χ_i then a one-sided Riesz product is actually the Fourier transform of a Riesz product; and like Riesz products, one-sided Riesz products exhibit interesting phenomena. Extending work of Bonami [2], in Section 2 we characterize certain (one-sided) Riesz products on T^{∞} , D^{∞} and T which belong to M(2, p). This characterization shows that the necessary conditions on the size of (L^2, L^p) multipliers which we obtain in Section 1 are best possible, but are not sufficient even for (one-sided) Riesz products, answering an open problem in [5].

In [8] (L^2, L^p) multipliers are "almost" characterized. The necessary conditions we establish are combined with this result to sharpen the known estimates of the $\Lambda(p)$ constants of sums of dissociate sets. The previously known best estimates were developed in [2] by mainly combinatorial methods.

Research partially supported by the NSERC.

K. E. HARE

1. Necessary conditions. As a preliminary result we obtain lower bounds for L^p norms of Riesz products and one-sided Riesz products.

LEMMA 1.1. Let $\{\chi_i\}_1^\infty$ be a dissociate subset of Γ such that $\chi_i^2 \neq 1$. For each p > 0 there are positive constants $k = k_p$ and $c = c_p < 1/2$ such that

(a)
$$\prod_{i=1}^{N} (1 + (p-1)|c_i|^2 - k|c_i|^3) \le \left\| \prod_{i=1}^{N} (1 + c_i \chi_i + \overline{c_i \chi_i}) \right\|_p$$
$$\le \prod_{i=1}^{N} (1 + (p-1)|c_i|^2 + k|c_i|^3),$$

and

(b)
$$\prod_{i=1}^{N} (1+|c_i|^2 p/4 - k|c_i|^3) \le \left\| \prod_{i=1}^{N} (1+c_i\chi_i) \right\|_p$$
$$\le \prod_{i=1}^{N} (1+|c_i|^2 p/4 + k|c_i|^3)$$

whenever $N \in \mathbb{N}$ and $\{c_i\}$ is a sequence of complex numbers with $|c_i| \leq c$ for all *i*.

 $\operatorname{Proof.}$ In what follows the constant $k=k_p$ may vary from one line to another.

(a) The Taylor series expansion of $(1+x)^p$ for |x| small yields that

$$\left\|\prod_{i=1}^{N} (1+c_i\chi_i+\overline{c_i\chi_i})\right\|_p^p$$

$$\geq \int \prod_{i=1}^{N} \left(1+p(c_i\chi_i+\overline{c_i\chi_i})+\frac{p(p-1)}{2}(c_i\chi_i+\overline{c_i\chi_i})^2-k|c_i|^3\right).$$

As $\{\chi_i\}$ is a dissociate set this integral equals $\prod_{i=1}^N (1+p(p-1)|c_i|^2 - k|c_i|^3)$. By taking *p*th roots and another application of Taylor series we obtain the first inequality in (a). The other is similar.

For (b) first we observe that

$$\left\|\prod_{i=1}^{N} (1+c_i\chi_i)\right\|_p = \left[\int \prod_{i=1}^{N} ((1+c_i\chi_i)(1+\overline{c}_i\overline{\chi}_i))^{p/2}\right]^{1/p}$$
$$= \prod_{i=1}^{N} (1+|c_i|^2)^{1/2} \left[\int \prod_{i=1}^{N} \left(1+\frac{c_i\chi_i+\overline{c_i\chi_i}}{1+|c_i|^2}\right)^{p/2}\right]^{1/p}.$$

Using part (a) it follows that if constants $|c_i|$ are sufficiently small, than the

250

integral in the line above dominates

$$\prod_{i=1}^{N} \left(1 + \left(\frac{p}{2} - 1 \right) \frac{|c_i|^2}{(1 + |c_i|^2)^2} - k|c_i|^3 \right)^{p/2}.$$

This estimate together with another application of Taylor series establishes the lower bound for $||\prod_{i=1}^{N}(1+c_i\chi_i)||_p$, and similar arguments give the upper bound.

Remark. Of course, for any sequence $\{c_i\}$, the L^2 norms of $\prod_{i=1}^N (1 + c_i\chi_i + \overline{c_i\chi_i})$ and $\prod_{i=1}^N (1 + c_i\chi_i)$ are $\prod_{i=1}^N (1 + 2|c_i|^2)^{1/2}$ and $\prod_{i=1}^N (1 + |c_i|^2)^{1/2}$ respectively.

With the estimates of this lemma we can now obtain necessary quantitative estimates for certain (L^2, L^p) multipliers. First we consider the case when the multiplier arises from a measure. Recall that a measure μ is *tame* if for each $\varphi \in \Delta M(G)$ there exists $a \in \mathbb{C}$ and $\gamma \in \Gamma$ such that $\varphi_{\mu} = a\gamma$ a.e. $d\mu$ ([6, 6.1]). A Riesz product is an example of a tame measure.

THEOREM 1.2. Let μ be a tame measure on a compact abelian group Gand assume $\mu \in M(2, p)$ for some p > 2. Suppose that Γ has no elements of order 2. Then $|\varphi_{\mu}|^2 \leq 1/(p-1)$ for all $\varphi \in \overline{\Gamma} \setminus \Gamma \subset \Delta M(G)$.

Before proving this we state an immediate corollary and make some initial remarks.

COROLLARY 1.3. If tame $\mu \in M(2, p)$ for p > 2 then

$$\limsup_{\chi \in \Gamma} |\widehat{\mu}(\chi)|^2 \le \frac{1}{p-1} ||\mu||^2_{M(G)}$$

Remarks. (1) For background information on $\Delta M(G)$ see [6].

(2) This result improves the estimate in [5] and [7] for tame measures, and was shown by Bonami to be both necessary and sufficient for certain Riesz products ([2, p. 376, 385]).

Proof of Theorem. Let $\varphi \in \overline{\Gamma} \setminus \Gamma$ and suppose $\varphi_{\mu} = z\chi d\mu$ a.e. where, without loss of generality, we may assume $z \neq 0$. Replacing μ by $\gamma \mu$ if necessary we may assume $\hat{\mu}(1) \neq 0$. Fix $0 < \delta < |z|$. Observe that $|\hat{\mu}((\varphi \overline{\chi})^k)| = |\hat{\mu}((\overline{\varphi}\chi)^k)| = |z^k \hat{\mu}(1)|$ for all non-negative integers k, thus we may choose a dissociate set $\{\chi_i\}_{i=1}^{\infty}$ such that

$$\left|\widehat{\mu}\Big(\prod \chi_i^{\varepsilon_i}\Big)\right| \ge (|z| - \delta)^{\sum |\varepsilon_i|} |\widehat{\mu}(1)| \quad \text{whenever } \varepsilon_i = 0, \pm 1.$$

For $\varepsilon > 0$ (and small), define the trigonometric polynomial $f_{N,\varepsilon}$ by

$$\widehat{f}_{N,\varepsilon}(\chi) = \begin{cases} \frac{(\varepsilon(|z|-\delta))^k}{\widehat{\mu}(\chi)} & \text{if } \chi = \prod_{j=1}^N \chi_j^{\varepsilon_j}, \ \varepsilon_j = 0, \pm 1 \text{ and } \sum_{j=1}^N |\varepsilon_j| = k\\ 0 & \text{otherwise.} \end{cases}$$

Then

$$\mu * f_{N,\varepsilon} = \prod_{j=1}^{N} (1 + \varepsilon(|z| - \delta)(\chi_j + \overline{\chi}_j)).$$

Thus

$$|\widehat{f}_{N,\varepsilon}(\chi)| \leq \begin{cases} \frac{\varepsilon^k}{|z| - \delta} & \text{if } \chi = \prod_{j=1}^N \chi_j^{\varepsilon_j}, \ \varepsilon_j = 0, \pm 1 \text{ and } \sum_{j=1}^N |\varepsilon_j| = k, \\ 0 & \text{otherwise} \end{cases}$$

 \mathbf{SO}

$$||f_{N,\varepsilon}||_2 \le \frac{1}{|z| - \delta} (1 + 2\varepsilon^2)^{N/2}.$$

An application of the closed graph theorem shows that there is a constant C such that $||\mu * f||_p \leq C||f||_2$ for all $f \in L^2$. Together with Lemma 1.1 this shows that for all N and for all sufficiently small ε ,

$$C \ge \frac{||\mu * f_{N,\varepsilon}||_p}{||f_{N,\varepsilon}||_2} \ge \frac{1}{|z| - \delta} \left[\frac{1 + (p-1)\varepsilon^2 (|z| - \delta)^2 - k\varepsilon^3 (|z| - \delta)^3}{(1 + 2\varepsilon^2)^{1/2}} \right]^N.$$

Hence for all small ε ,

$$1 + (p-1)\varepsilon^2 (|z| - \delta)^2 - k\varepsilon^3 (|z| - \delta)^3 \le (1 + 2\varepsilon^2)^{1/2}.$$

Letting $\varepsilon \to 0$ we see that this can occur only if $(p-1)(|z|-\delta)^2 \leq 1$, but as $\delta > 0$ was arbitrary this implies that $|z|^2 \leq 1/(p-1)$ as desired.

Unlike measures, for general (L^2, L^p) multipliers φ it is not necessary that $\limsup |\varphi(\chi)| < ||\varphi||_{l^{\infty}}$. Indeed, it is easy to see that the characteristic function of a Sidon set is an (L^2, L^p) multiplier for all p > 2 (cf. [8] or [12]). However, in the next proposition we will prove that for one-sided Riesz products a better estimate can be obtained, and we will prove an estimate sharper than Corollary 1.3 for Riesz products.

PROPOSITION 1.4. Let $\{\chi_n\}$ be a dissociate set in Γ with $\chi_n^2 \neq 1$ and let $1 . Suppose <math>\{r_n\}$ and $\{t_n\}$ are sets of complex numbers and let

$$\varepsilon_n^{(1)} = \max\left(|r_n|^2 - \frac{p-1}{q-1}, 0\right), \quad \varepsilon_n^{(2)} = \max\left(|t_n|^2 - \frac{p}{q}, 0\right).$$

If either $\varphi_1 = \prod (1 + r_n \chi_n + \overline{r_n \chi_n})$ or $\varphi_2 = \prod (1 + t_n \chi_n)$ belong to M(p,q), then $\sum_n (\varepsilon_n^{(i)})^3 < \infty$ for i = 1, 2.

If, in addition, $\{\chi_n\}$ satisfies the further independence condition

$$\prod \chi_n^{\delta_n} = 0 \text{ for } \delta_n = 0, \pm 1, \pm 2, \pm 3 \text{ implies } \delta_n = 0,$$

then $\sum_{n=1}^{\infty} (\varepsilon_n^{(i)})^2 < \infty$ is a necessary condition.

R e m a r k. If $|r_n| \leq 1/2$ then φ_1 is a measure, otherwise by φ_1 we simply mean the obvious multiplier.

(L^2, L^p)	MULTIPLIERS	
--------------	-------------	--

Proof. Note that a necessary condition for φ_1 or φ_2 to be an element of M(p,q) is that $\{\varepsilon_n^{(i)}\}$ is a bounded sequence for i = 1, 2. Define trigonometric polynomials $f_N^{(1)} = \prod_{n=1}^N (1 + c\varepsilon_n^{(1)}(\chi_n + \overline{\chi}_n))$ and $f_N^{(2)} = \prod_{n=1}^N (1 + c\varepsilon_n^{(2)}\chi_n)$ where $c \ge 0$ is a small constant.

As $\varphi_1, \varphi_2 \in M(p,q)$ the usual closed graph theorem argument shows that for i = 1, 2, $\sup_N ||M_{\varphi_i} f_N^{(i)}||_q / ||f_N^{(i)}||_p < \infty$. Thus for c chosen sufficiently small, Lemma 1.1 implies that

$$\begin{split} \infty > \sup_{N} \frac{||M_{\varphi_{1}}f_{N}^{(1)}||_{q}}{||f_{N}^{(1)}||_{p}} \ge \sup_{N} \prod_{n=1}^{N} \left(\frac{1 + (q-1)|c\varepsilon_{n}^{(1)}r_{n}|^{2} - k|c\varepsilon_{n}^{(1)}r_{n}|^{3}}{1 + (p-1)|c\varepsilon_{n}^{(1)}|^{2} + k|c\varepsilon_{n}^{(1)}|^{3}} \right) \\ = \sup_{N} \prod_{n=1}^{N} \left(1 + \frac{(\varepsilon_{n}^{(1)})^{3}((q-1)c^{2} - kc^{3}|r_{n}|^{3})}{(p-1)|c\varepsilon_{n}^{(1)}|^{2} + k|c\varepsilon_{n}^{(1)}|^{3}} \right), \end{split}$$

which forces $\sum (\varepsilon_n^{(1)})^3 < \infty$. Similar arguments apply to $\sum (\varepsilon_n^{(2)})^3$.

If $\{\chi_i\}$ satisfies the stronger independence property, then Lemma 1.1 can be improved. The stronger property implies that for every i,

$$\int \chi_i^{\delta} \overline{\chi}_i^{3-\delta} \prod_{j \neq i} \chi_j^{\delta_j} = 0 \quad \text{for } \delta = 0, 1, 2, 3 \text{ and } \delta_j = 0, \pm 1, \pm 2, \pm 3,$$

thus arguments similar to Lemma 1.1, but taking the first four terms of the Taylor series expansion, show that for c_i sufficiently small

$$\prod_{i=1}^{N} (1 + (p-1)|c_i|^2 - k|c_i|^4) \le \left\| \prod_{i=1}^{N} (1 + c_i \chi_i + \overline{c_i \chi_i}) \right\|_p$$
$$\le \prod_{i=1}^{N} (1 + (p-1)|c_i|^2 + k|c_i|^4)$$

and

$$\prod_{i=1}^{N} (1+|c_i|^2 p/4 - k|c_i|^4) \le \left\| \prod_{i=1}^{N} (1+c_i\chi_i) \right\|_p \le \prod_{i=1}^{N} (1+|c_i|^2 p/4 + k|c_i|^4).$$

If we take $g_N^{(1)} = \prod_{n=1}^N (1 + \sqrt{c\varepsilon_n^{(1)}}(\chi_n + \overline{\chi}_n))$ and $g_N^{(2)} = \prod_{n=1}^N (1 + \sqrt{c\varepsilon_n^{(2)}}\chi_n)$, then by estimating $||M_{\varphi_i}g_N^{(i)}||_q/||g_N^{(i)}||_p$ with these sharper estimates we get the necessary condition $\sum (\varepsilon_n^{(i)})^2 < \infty$ for i = 1, 2.

COROLLARY 1.5. Let $\{\chi_i\}$ be a dissociate subset of Γ and let $\varphi = \prod (1 + a_i \chi_i)$ be a one-sided Riesz product. If $\varphi \in M(2, p)$ then $\limsup |a_i|^2 \le 2/p$.

Remark. This condition is both necessary and sufficient for certain one-sided Riesz products (see [2, p. 389] and $\S 2$).

Proof. Assume $\{\chi_i\} = \{\chi_i\}_{i \in J} \cup \{\chi_i\}_{i \in K}$ where $\chi_i^2 = 1$ for $i \in J$ and $\chi_i^2 \neq 1$ for $i \in K$. Let $\alpha = \prod_{i \in J} (1 + a_i \chi_i)$ and $\beta = \prod_{i \in K} (1 + a_i \chi_i)$. By duality M(2, p) = M(p', 2) and as $|\alpha(\chi)|$ and $|\beta(\chi)|$ are both dominated by $|\varphi(\chi)|$ for all $\chi \in \Gamma$ it follows that α and β belong to M(2, p). But α is actually a Riesz product so, by [5] or [7], $\limsup_{i \in J} |a_i|^2 \leq 2/p$. By the previous proposition $\limsup_{i \in K} |a_i|^2 \leq 2/p$.

COROLLARY 1.6. A one-sided Riesz product φ maps L^2 to L^p for some p > 2 if and only if $\limsup |\varphi(\chi)| < 1$.

Proof. Necessity has already been established. For sufficiency, assume $|\varphi(\chi_i)| \leq 1 - \delta < 1$ for all $i \geq k$ and let $\varphi_1 = \prod_{i=k}^{\infty} (1 + \varphi(\chi_i)\chi_i)$. Let φ_1^N denote the composition of φ_1 with itself N times. If N is chosen sufficiently large, and μ is the Riesz product $\mu = \prod_{i=k}^{\infty} (1 + (\chi_i + \overline{\chi_i})/4)$ then $|\varphi_1^N(\chi)| \leq |\widehat{\mu}(\chi)|$ for all $\chi \in \Gamma$. By [13], $\mu \in M(2, p)$ for some p > 2, hence $\varphi_1^N \in M(2, p)$. An interpolation argument ([8, 1.3]) shows that $\varphi_1 \in M(2, q)$ for some $2 < q \leq p$. As φ is a finite linear combination of translates of φ_1 , the multiplier $\varphi \in M(2, q)$.

2. L^p -Improving Riesz products and one-sided Riesz products. Perhaps the most difficult problem in the study of (L^2, L^p) multipliers, and the one with the least satisfactory solutions, is of finding good (and practical) sufficient conditions to describe the p > 2 for which a multiplier φ maps L^2 to L^p . Other than for monotonic functions ([5, 2.2]), optimal sufficient conditions are known only for certain (one-sided) Riesz products.

In Chapter 3 of [2], Bonami showed that the Riesz products $\prod(1 + re_n(\chi))$ on D^{∞} and $\prod(1 + 2r\cos x_j)$ on T^{∞} belong to M(p,q) if and only if $r^2 \leq (p-1)/(q-1)$, and for even integers p the one-sided Riesz products $\prod(1 + re^{ix_j})$ on T^{∞} belong to M(2,p) if and only if $r^2 \leq 2/p$. In contrast, our Proposition 1.4 shows that there are Riesz products μ satisfying $\limsup |\widehat{\mu}|^2 \leq (p-1)/(q-1)$ but with $\mu \notin M(p,q)$, answering [5, 3.2(vi)], and similarly that there are one-sided Riesz products φ with $\limsup |\varphi|^2 \leq 2/p$ but with $\varphi \notin M(2,p)$. In this section we characterize a more general class of L^p -improving (one-sided) Riesz products and as a corollary extend Bonami's result on one-sided Riesz products to all p > 2.

THEOREM 2.1. Let p > 2 and let $\{r_j\}$ and $\{t_j\}$ be sequences of complex numbers such that $|t_j|^2 \ge 2/p$ and $|r_j|^2 \ge 1/(p-1)$. Let $\varphi = \prod(1+t_j e^{ix_j})$ be a one-sided Riesz product on T^{∞} , and $\mu = \prod(1+r_j e^{ix_j} + \bar{r}_j e^{-ix_j})$ be a Riesz product on T^{∞} . Then $\varphi \in M(2,p)$ if and only if $\sum(|t_j|^2 - 2/p)^2 < \infty$, and $\mu \in M(2,p)$ if and only if $\sum(|r_j|^2 - 1/(p-1))^2 < \infty$.

(L^2, L^p) MULTIPLIERS	255
--------------------------	-----

Proof. Notice that the characters defined on T^{∞} by $(x_k) \mapsto e^{ix_j}$ satisfy the "further independence condition" of Proposition 1.4, thus necessity is clear in both cases.

To prove sufficiency we need the following lemma which is a straightforward modification of [2, p. 374].

LEMMA 2.2. Let $\varphi = \prod (1 + a_j e^{ix_j} + b_j e^{-ix_j})$ be a multiplier on T^{∞} . For each n let $\varphi_n = 1 + a_n e^{ix_n} + b_n e^{-ix_n}$ and let $||\varphi_n||_{p,q}$ denote the norm of φ_n as an operator from L^p to L^q . Then $\varphi \in M(p,q)$ if and only if $\prod ||\varphi_n||_{p,q} < \infty$ and in this case $||\varphi||_{p,q} \leq \prod ||\varphi_n||_{p,q}$.

Proof of Theorem 2.1 (ctd.). Sufficiency for one-sided Riesz products. Let p = 2s (so s > 1) and set $\varepsilon_n = |t_n|^2 - 2/p$. Let $s_0 = 1$ and let

$$s_k = \frac{s(s-1)\dots(s-k+1)}{k!} \quad \text{if } k \neq 0$$

Thus $s_k = {s \choose k}$ if s is an integer (where ${s \choose k} = 0$ if k > s). One can easily check that $0 \le s_k \le s^k/k!$ if $k \le [s] + 1$ and $|s_k| \le s^{[s]+1}/(k(k-1))$ if k > [s] + 1.

Certainly the assumption that $\sum \varepsilon_n^2 < \infty$ implies that $\varepsilon_n \to 0$ so we may choose N so that for all n > N we have $|t_n| < 1$, $s_k(1/s + \varepsilon_n)^k < 3/4$ if $k = 2, 3, \ldots, [s]$, and $\varepsilon_n < \varepsilon = \varepsilon(s)$ where $0 < \varepsilon \le 1 - 1/s$ will be specified later.

It is easy to see that if $\varphi_n = 1 + t_n e^{ix}$ then

$$||\varphi_n||_{2,p} = \sup_b \frac{||1 + bt_n e^{ix}||_p}{||1 + be^{ix}||_2}$$

CLAIM. For $|r| \leq 1$ and any complex number b with |b| > 1, $|1 + bre^{ix}| \leq |\bar{b} + re^{ix}|$.

To prove this observe that

$$|\bar{b} + re^{ix}|^2 - |1 + bre^{ix}|^2 = |b|^2 - 1 + |r|^2 - |br|^2$$

The latter expression is a decreasing function of $|r|^2$, whose value at $|r|^2 = 1$ is zero. This proves the claim.

From this inequality we see that if |b| > 1 and $|t_n| \le 1$ then

$$||1 + bt_n e^{ix}||_p \le ||\bar{b} + t_n e^{ix}||_p = |b| ||1 + \bar{b}^{-1} t_n e^{ix}||_p$$

As $||1+be^{ix}||_2 = |b|||1+\bar{b}^{-1}e^{ix}||_2$ and $|\bar{b}^{-1}| < 1$ it follows that in computing $||\varphi_n||_{2,p}$, for $n \geq N$, we need only take the supremum over $b \in \mathbb{C}$ with $|b| \leq 1$. By taking limits we may further reduce to

$$||\varphi_n||_{2,p} = \sup_{|b|<1} \frac{||1+bt_n e^{ix}||_p}{||1+be^{ix}||_2}$$

Thus we now assume |b| < 1 and $n \ge N$. Compute the Taylor series expansion for

$$(1+bt_n e^{ix})^s = \sum_{k=0}^\infty s_k (bt_n)^k e^{ikx}$$

(of course the sum terminates at k = s if s is an integer). Since $|bt_n e^{ix}| \le |b| < 1$ this series converges uniformly so

$$||1 + bt_n e^{ix}||_p^p = ||(1 + bt_n e^{ix})^s||_2^2 = \sum_{k=0}^{\infty} s_k^2 |bt_n|^{2k},$$

and this series converges absolutely. Also,

$$||1 + be^{ix}||_2^p = (1 + |b|^2)^s = \sum_{k=0}^{\infty} s_k |b|^{2k},$$

and this series converges absolutely as well.

We must estimate

$$\frac{||1+bt_n e^{ix}||_p^p}{||1+be^{ix}||_2^p} = \frac{\sum_{k=0}^\infty s_k^2 |bt_n|^{2k}}{\sum_{k=0}^\infty s_k |b|^{2k}}$$
$$= 1 + \frac{s^2 |b|^2 \varepsilon_n + |b|^4 \sum_{k=2}^\infty s_k |b|^{2(k-2)} (s_k (1/s + \varepsilon_n)^k - 1)}{(1+|b|^2)^s}$$

We break the infinite sum into two terms:

(i)
$$\sum_{k=2}^{[s]} s_k |b|^{2(k-2)} (s_k (1/s + \varepsilon_n)^k - 1)$$

(If [s] = 1 this term is not present.)

(ii)
$$\sum_{k=[s]+1}^{\infty} s_k |b|^{2(k-2)} (s_k (1/s + \varepsilon_n)^k - 1)$$

(If s is an integer this term is not present.)

In (i) the choice of $n \ge N$ ensures that $s_k(1/s + \varepsilon_n)^k - 1 < -1/4$, and as $s_k > 0$ for $k = 2, \ldots, [s]$ the first sum is at most $-s_2/4$ if $[s] \ne 1$.

Sum (ii) we further break down as

$$\sum_{k=[s]+1}^{\infty} s_k |b|^{2(k-2)} (s_k s^{-1} - 1) + \sum_{k=[s]+1}^{\infty} s_k^2 |b|^{2(k-2)} ((1/s + \varepsilon_n)^k - s^{-k}).$$

By the mean-value theorem and the assumption that $\varepsilon_n \leq \varepsilon \leq 1 - 1/s$,

$$(1/s + \varepsilon_n)^k - s^{-k} \le \varepsilon_n k (1/s + \varepsilon_n)^{k-1} \le \varepsilon k.$$

 (L^2, L^p) MULTIPLIERS

Thus for some constant $C_1(s)$,

$$\sum_{k=[s]+1}^{\infty} s_k^2 |b|^{2(k-2)} ((1/s + \varepsilon_n)^k - s^{-k}) \le \sum_{k=[s]+1}^{\infty} \left(\frac{s^{[s]+1}}{k(k-1)}\right)^2 |b|^{2(k-2)} \varepsilon k$$
$$\le |b|^{2([s]-1)} \le C_1(s) \,.$$

Clearly $\{s_k(s_ks^{-k}-1)\}_{k=[s]+1}^{\infty}$ is an alternating sequence tending to zero, with first term negative. We claim that it is a (strictly) decreasing sequence (in absolute value). To prove this we first remark that as $s_{k+1}/s_k = (s-k)/(k+1)$ it suffices to show that for $k \ge [s] + 1$,

$$\frac{s_k}{s^k} \left(k + 1 + \frac{(k-s)^2}{(k+1)s} \right) < s+1 \,.$$

Since $|s_k s^{-k}| \le 1/(k(k-1))$ and $k^2 + 1 + s + k^2/s \le 2k(k+1)$,

$$\frac{s_k}{s^k} \left(k + 1 + \frac{(k-s)^2}{(k+1)s} \right) \le \frac{1}{k(k-1)} \left(\frac{2k(k+1)}{k+1} \right) = \frac{2}{k-1} < s+1 \,,$$

as desired. Hence the first sum in (ii) is at most the sum of its first two terms, which is at most $|b|^{2([s]-1)}C_2(s)$ where $C_2(s) < 0$. If $\varepsilon > 0$ is chosen so that $\varepsilon C_1(s) < |C_2(s)|/2$ then sum (ii) is negative, and more specifically, if [s] = 1 then (ii) is at most $C_2(s)/2$.

Combining (i) and (ii) we get

$$\sum_{k=2}^{\infty} s_k |b|^{2(k-2)} (s_k (1/s + \varepsilon_n)^k - 1) \le C_3(s) \equiv \begin{cases} -s_2/4 & \text{if } [s] \neq 1, \\ C_2(s)/2 & \text{if } [s] = 1. \end{cases}$$

Thus for |b| < 1 and $n \ge N$,

$$\frac{|1+bt_n e^{ix}||_p^p}{||1+be^{ix}||_2^p} \le 1 + \frac{s^2|b|^2\varepsilon_n + |b|^4C_3(s)}{(1+|b|^2)^s}$$

If $|b|^2 \leq 2s^2 \varepsilon_n / |C_3(s)|$ then clearly

$$\frac{||1+bt_n e^{ix}||_p^p}{||1+be^{ix}||_2^p} \le 1 + \varepsilon_n^2 C_4(s)$$

for $C_4(s) = 2s^4/|C_3(s)|$, while if $2s^2\varepsilon_n/|C_3(s)| \le |b|^2 < 1$,

$$\frac{||1+bt_n e^{ix}||_p^p}{||1+be^{ix}||_2^p} \le 1 + \frac{s^2|b|^2(\varepsilon_n - 2\varepsilon_n)}{(1+|b|^2)^s} \le 1$$

Thus $||\varphi_n||_{2,p} \leq (1 + \varepsilon_n^2 C_4(s))^{1/p}$ whenever $n \geq N$. As $||\varphi_n||_{2,p} < \infty$ for all $n, \prod ||\varphi_n||_{2,p} < \infty$ when $\sum \varepsilon_n^2 < \infty$. By Lemma 2.2, $\varphi \in M(2,p)$.

Sufficiency for Riesz products. The proof is similar to that for one-sided Riesz products so only the main ideas will be sketched.

Let $\varphi_n = 1 + r_n e^{ix} + \bar{r}_n e^{-ix}$. We need to bound $||\varphi_n||_{2,p}$. Since $\mu \in M(2,p)$ if and only if $\prod (1 + |r_n|(e^{ix_n} + e^{-ix_n})) \in M(2,p)$, without loss of generality we may assume $r_n \geq 0$. Since this operator maps real-valued functions to real-valued functions, Bonami [2, p. 377] has shown that

$$||\varphi_n||_{2,p} = \sup_{b \in \mathbb{R}} \frac{||1 + br_n \cos x||_p}{||1 + b \cos x||_2}$$

For $0 \le r \le 1$ and |b| > 1

$$|1 + br \cos x| \le |b + r \cos x| = |b| |1 + rb^{-1} \cos x|.$$

This simple inequality shows that whenever $r_n \leq 1$ then in computing $||\varphi_n||_{2,p}$ we may restrict ourselves to $|b| \leq 1$. Choose N so that $r_n < 1$ for $n \geq N$ and let p = 2s.

The power series expansion of $(1+x)^{2s}$ converges uniformly on $[-\alpha, \alpha]$ for any $\alpha < 1$, thus for $n \ge N$ and $|b| \le 1$

$$||1 + br_n \cos x||_p^p = \sum_{k=0}^{\infty} \int_0^{2\pi} (2s)_k (br_n)^k \cos^k x \, dx$$
$$= 1 + \sum_{k=1}^{\infty} (2s)_{2k} (br_n)^{2k} \frac{(2k-1)(2k-3)\dots 1}{2k(2k-2)\dots 2}$$

and the latter series converges absolutely. (Of course, this is a finite sum if 2s is an integer.) It follows that

$$\frac{||1+br_n\cos x||_p^p}{||1+b\cos x||_2^p} = 1 + \frac{\sum_{k=1}^{\infty} \frac{s_k}{2^k} b^{2k} \left[\left(\frac{1}{2s-1} + \varepsilon_n\right)^k \frac{(2s-1)(2s-3)\dots(2s-2k+1)}{k!} - 1 \right]}{(1+b^2/2)^s}$$

Let

$$a_k(s) \equiv a_k \equiv \frac{1}{(2s-1)^k} \frac{(2s-1)\dots(2s-2k+1)}{k!}$$

When $s \geq 3/2$ then $(2s-1) \geq 2$ and with this observation it is not hard to show that $|a_k| \leq 1/k$. (It is helpful to consider the cases [2s] an even or odd integer separately.) Also, $\{s_k(a_k-1)/2^k\}_{k=[s]+1}^{\infty}$ is an alternating sequence which is decreasing (in absolute value) to zero and with first term negative. Thus arguments similar to those used for the one-sided Riesz products show that $||\varphi_n||_{2,p} \leq (1 + C(s)\varepsilon_n^2)^{1/p}$ for $n \geq N$.

When 1 < s < 3/2, the factors $(2s)_{2k}$ are negative for $k \ge 2$. Thus

$$||1 + br_n \cos x||_p^p \le 1 + (2s)_2 (br_n)^2 / 2$$

Hence

$$\frac{||1+br_n\cos x||_p^p}{||1+b\cos x||_2^p} \le 1 + \frac{\frac{1}{4}2s(2s-1)b^2\varepsilon_n - \sum_{k=2}^{\infty}s_k(b^2/2)^k}{(1+b^2/2)^s}$$

Since $\{s_k/2^k\}$ is an alternating sequence which is decreasing (in absolute value) to zero and with first term positive, the same sort of arguments as before again prove that $||\varphi_n||_{2,p} \leq (1 + C(s)\varepsilon_n^2)^{1/p}$ for $n \geq N$.

Since $\varphi_n \in M(2,p)$ for all n we can conclude (in either case) that $\varphi \in M(2,p)$ when $\sum \varepsilon_n^2 < \infty$.

An obvious corollary to this theorem is

COROLLARY 2.3. The one-sided Riesz product $\varphi = \prod (1 + re^{ix_j})$ belongs to M(2,p) if and only if $|r| \leq \sqrt{2/p}$.

The next corollary is in the same spirit as [2, p. 387].

COROLLARY 2.4. Let 1 and

$$|r_n|^2 = \frac{p-1}{q-1} + \varepsilon_n$$

where $\varepsilon_n \geq 0$. Then the Riesz product μ on T^{∞} given by $\mu = \prod (1 + 2r_j \cos x_j)$ belongs to M(p,q) if and only if $\sum \varepsilon_n^2 < \infty$.

Proof. First we prove sufficiency. Let $t_n = r_n/\sqrt{p-1}$, $\nu_1 = \prod(1+2\sqrt{p-1}\cos x_j)$ and $\nu_2 = \prod(1+2t_n\cos x_j)$. Clearly μ is the composition of the multipliers ν_1 and ν_2 . Since $|t_n|^2 = r_n^2/(p-1) \ge 1/(q-1)$ and

$$\sum \left(|t_n|^2 - \frac{1}{q-1} \right)^2 = \frac{1}{(p-1)^2} \sum \left(|r_n|^2 - \frac{p-1}{q-1} \right)^2 < \infty$$

by the theorem $\nu_2 \in M(2,q)$. If 1/p + 1/p' = 1 then p - 1 = 1/(p' - 1), so $\nu_1 \in M(2,p') = M(p,2)$. Therefore $\mu \in M(p,q)$.

Necessity follows from Proposition 1.4.

EXAMPLE 2.5. Let $1 . The multiplier on <math>T^{\infty}$ given by

$$\varphi = \prod (1 + 2\sqrt{a_n} \cos x_n) \quad \text{where} \quad a_n = \frac{p-1}{q-1} + \frac{1}{\sqrt{n}}$$

does not belong to M(p,q) but does belong to M(s,t) for all $1 < s \le 2 < t < \infty$ satisfying (p-1)/(q-1) < (s-1)/(t-1).

Proof. By the previous corollary $\varphi \notin M(p,q)$. Suppose (s-1)/(t-1) > (p-1)/(q-1). Let $\varphi_1 = \prod(1+2\sqrt{s-1}\cos x_n)$ and $\varphi_2 = \prod(1+2\sqrt{a_n/(s-1)}\cos x_n)$. Clearly $\varphi_1 \in M(s,2)$ and as $a_n/(s-1) < 1/(t-1)$ for *n* sufficiently large, $\varphi_2 \in M(2,t)$. Since φ is the composition of φ_1 and φ_2 , we see that $\varphi \in M(s,t)$.

Just as in [2, pp. 392–393] the following is another consequence of Theorem 2.1:

COROLLARY 2.6. Let p > 2 and let $\{n_i\}$ be a lacunary sequence of positive integers satisfying $n_{i+1}/n_i \ge 3$. Then $\varphi = \prod (1 + re^{in_j x}) \in M(2, p)$ if $|r| \le \sqrt{1/2p}$, and if in addition $\sum n_i/n_{i+1} < \infty$, then $\varphi \in M(2, p)$ if and only if $|r| \le \sqrt{2/p}$.

We will omit the proofs as they are similar to the corresponding results in [2].

Let e_n be the character on D^{∞} given by $e_n((x_j)) = x_n$. Similar arguments to those used in Theorem 2.1 enable one to prove

PROPOSITION 2.7. Let $1 and let <math>|r_n|^2 = (p-1)/(q-1) + \varepsilon_n$ with $\varepsilon_n \ge 0$. Then the Riesz product $\mu = \prod (1 + r_n e_n(x))$ on D^{∞} belongs to M(p,q) if and only if $\sum \varepsilon_n^2 < \infty$.

We leave the details to the reader.

3. Computation of $\Lambda(p)$ constants. Let p > 2. A subset E of Γ is called a $\Lambda(p)$ set if there is a constant C_p such that $||f||_p \leq C_p ||f||_2$ for all $f \in \{g \in L^2 : \operatorname{supp} \widehat{g} \subseteq E\}$. The least such constant C_p is called the $\Lambda(p)$ constant of E and is denoted by $\Lambda(E,p)$. For standard results on $\Lambda(p)$ sets see [10] or [15].

Let $\{\chi_i\} \subseteq \Gamma$ be a dissociate set. Sets of the form

$$\left\{\prod \chi_i^{\varepsilon_i} : \sum |\varepsilon_i| \le n, \ \varepsilon_i = 0, \pm 1 \ (\text{or} \ \varepsilon_i = 0, 1) \right\}$$

are well known examples of $\Lambda(p)$ sets for all 2 , but are not Sidonsets. Using mainly combinatorial methods Bonami found estimates for the $<math>\Lambda(p)$ constants of such sets [2, Ch. 2]. She then used her estimates in the proof of her result for (L^2, L^p) one-sided Riesz products. Here we take the opposite approach and use the earlier results of this paper to improve upon Bonami's estimates of $\Lambda(p)$ constants (when they are not already optimal). The connection between the two subjects is due to the following theorem which almost characterizes (L^2, L^p) multipliers.

THEOREM 3.1 ([8]). Let φ be a bounded function on Γ and for each $\varphi > 0$ let $E(\varphi) = \{\chi : |\varphi(\chi)| \ge \varepsilon\}$. If $\varphi \in M(2,p)$ for some p > 2, then for each $\varepsilon > 0$, $E(\varepsilon)$ is a $\Lambda(p)$ set and $\Lambda(E(\varepsilon),p) \le ||\varphi||_{2,p}\varepsilon^{-1}$. If $E(\varepsilon)$ is a $\Lambda(p)$ set for every $\varepsilon > 0$ and $\Lambda(E(\varepsilon),p) = O(\varepsilon^{-1})$, then $\varphi \in M(2,r)$ for all r < p.

Before applying this theorem it is convenient to establish some notation.

Notation. Let

$$T_k = \left\{ (n_i) \in \sum \mathbb{Z} : n_i = 0, \pm 1, \ \sum |n_i| = k \right\},\$$

$$T_k^+ = \left\{ (n_i) \in \sum \mathbb{Z} : n_i = 0, 1, \ \sum |n_i| = k \right\},$$

$$\Gamma_k = \left\{ (\varepsilon_i) \in \sum \mathbb{Z}(2) : \sum \varepsilon_i = k \right\}.$$

Given $E \subseteq \mathbb{Z}$ let

$$E_{k} = \left\{ \sum \varepsilon_{i} n_{i} : \varepsilon_{i} = 0, \pm 1, \ n_{i} \in E, \ \sum |\varepsilon_{i}| = k \right\}$$
$$E_{k}^{+} = \left\{ \sum \varepsilon_{i} n_{i} : \varepsilon_{i} = 0, 1, \ n_{i} \in E, \ \sum |\varepsilon_{i}| = k \right\}.$$

Given two real-valued functions, F and G, defined on $\mathbb{N} \times (2, \infty)$, we will say that F is exactly dominated by G if for every $2 , <math>F(k, p) \leq$ G(k, p) for all $k \in \mathbb{N}$, and for every 2 < q < p, $\limsup_k F(k, p)/G(k, q) = \infty$.

PROPOSITION 3.2. Let p > 2. Then both $\Lambda(T_k, p)$ and $\Lambda(\Gamma_k, p)$ are exactly dominated by $(p-1)^{k/2}$, and $\Lambda(T_k^+, p)$ is exactly dominated by $(p/2)^{k/2}$.

Proof. Let $\varphi = \prod (1 + \sqrt{2/p}e^{ix_j})$ be a one-sided Riesz product on T^{∞} . Then φ is an (L^2, L^p) multiplier and

$$E((2/p)^{k/2},\varphi) \equiv \left\{ (n_i) \in \sum \mathbb{Z} : |\varphi((n_i))| \ge (2/p)^{k/2} \right\} = \bigcup_{j=1}^k T_j^+.$$

The proof of Theorem 2.1 shows that $||\varphi||_{2,p} = 1$, thus Theorem 3.1 gives $\Lambda(T_k^+, p) \leq (p/2)^{k/2}$. Suppose $\limsup_k \Lambda(T_k^+, p) \leq C(q/2)^{k/2}$ for some 2 < q < p. As T_k^+ is a $\Lambda(p)$ set for every k there is a constant C_1 such that

$$\Lambda\Big(\bigcup_{j=1}^{k} T_k^+, p\Big) \le k \sup_{1 \le j \le k} \Lambda(T_j^+, p) \le C_1(q/2)^{k/2},$$

Let $\varphi_1 = \prod (1 + \sqrt{2/q}e^{ix_j})$. Since $E((2/q)^{k/2}, \varphi_1) \subseteq \bigcup_{j=1}^k T_k^+$ the converse direction of Theorem 3.1 tells us $\varphi_1 \in M(2, r)$ for every r < p. But this is false for r > q.

The estimates of the $\Lambda(p)$ constants for the sets T_k and Γ_k follow similarly from Theorem 3.1 and [2, p. 376, 385].

PROPOSITION 3.3. Let $E = \{n_i\}$ be a lacunary set of positive integers satisfying $n_{i+1}/n_i \geq 3$ for all *i*.

(a) $\Lambda(E_k^+, p) \leq (2p)^{k/2}$ and $\Lambda(E_k, p) \leq (4(p-1))^{k/2}$ for all $k \in \mathbb{N}$. (b) If $\sum n_i/n_{i+1} < \infty$, then for some constant C, $\Lambda(E_k^+, p)$ and $\Lambda(E_k, p)$ are exactly dominated by $C(p/2)^{k/2}$ respectively.

Proof. The proof is similar using Corollary 2.6 and [2, pp. 392–393]. We remark that in (a) the (L^2, L^p) operator norm of the appropriate multiplier can be shown to be 1. \blacksquare

K. E. HARE

REFERENCES

- H. Beckner, S. Janson and J. Jerison, Convolution inequalities on the circle, in: Conference on Harmonic Analysis in Honor of Antoni Zygmund (W. Beckner et al., eds.), Wadsworth, Belmont 1983, 32–43.
- [2] A. Bonami, Étude des coefficients de Fourier des fonctions de $L^p(G)$, Ann. Inst. Fourier (Grenoble) 20 (2) (1970), 335–402.
- M. Christ, A convolution inequality concerning Cantor-Lebesgue measures, Rev. Mat. Iberoamericana 1 (1985), 75-83.
- [4] R. E. Edwards, Fourier Series, Vol. 2, Springer, New York 1982.
- C. Graham, K. Hare and D. Ritter, The size of L^p-improving measures, J. Funct. Anal. 84 (1989), 472–495.
- [6] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York 1979.
- [7] K. Hare, A characterization of L^p-improving measures, Proc. Amer. Math. Soc. 102 (1988), 295–299.
- [8] —, Properties and examples of (L^p, L^q) multipliers, Indiana Univ. Math. J. 38 (1989), 211–227.
- R. Larson, An Introduction to the Theory of Multipliers, Grundlehren Math. Wiss. 175, Springer, New York, 1971.
- [10] J. López and K. Ross, Sidon Sets, Lecture Notes in Pure Appl. Math. 13, Marcel Dekker, New York 1975.
- [11] D. Oberlin, A convolution property of the Cantor-Lebesgue measure, Colloq. Math. 67 (1982), 113–117.
- J. Price, Some strict inclusions between spaces of L^p-multipliers, Trans. Amer. Math. Soc. 152 (1970), 321–330.
- D. Ritter, Most Riesz product mesures are L^p-improving, Proc. Amer. Math. Soc. 97 (1986), 291–295.
- [14] —, Some singular measures on the circle which improve L^p spaces, Colloq. Math. 52 (1987), 133–144.
- [15] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227.
- [16] E. M. Stein, Harmonic analysis on Rⁿ, in: Studies in Harmonic Analysis, MAA Stud. Math. 13, J. M. Ash (ed.), 1976, 97–135.

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY OF WATERLOO WATERLOO, ONTARIO CANADA N2L 3G1

> Reçu par la Rédaction le 30.8.1990; en version modifiée le 4.3.1991

262