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Abstract

We apply an understanding of what computers do - the execution of procedural or rules-based logic - to

study how computer technology alters job skill demands. We contend that computer capital (1) substitutes

for a limited and well-defined set of human activities, those involving routine (repetitive) cognitive and

manual tasks; and (2) complements activities involving non-routine problem solving and interactive tasks.

Provided these tasks are imperfect substitutes, our model implies measurable changes in the task content

of employment, which we explore using representative data on job task requirements over 1960 - 1998.

Computerization is associated with declining relative industry demand for routine manual and cognitive

tasks and increased relative demand for non-routine cognitive tasks. Shifts are evident within detailed

industries, within detailed occupations, and within education groups within industries. Translating

observed task shifts into educational demands, the sum of within-industry and within-occupation task

changes explains thirty to forty percent of the observed relative demand shift favoring college versus non-

college labor during 1970 to 1998, with the largest impact felt after 1980. Changes in task content within

nominally identical occupations explain more than half of the overall demand shift induced by

computerization.
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Introduction

Much quantitative and case-study evidence documents a strong association between the adoption of

computers and computer-based technologies and the increased use of college-educated and non-

production labor within detailed industries, within firms, and across plants within industries. These

patterns implicating computerization as a potential source of a demand shift favoring better-educated

labor appear consistently in studies from the U.S., the OECD, Canada and other developed and

developing countries.' While the empirical relationship between computer investment and use of

educated labor is firmly established, it is our view that the conceptual link explaining specifically how

computer technology complements skilled labor or substitutes for unskilled labor is not well

developed. In particular, most studies do not ask, or are prevented by data limitations from answering,

what is it that computers do - or what is it that people do with computers - that causes educated

workers to be relatively more in demand.^

These mechanisms may initially appear trivial; computers substitute for less educated workers in

the performance of simple tasks or and/or complement the performance ofmore educated workers in

complex tasks. Reflection suggests that the relationship between human education and "computer

skills" is more complex. In the economy of the 1970s, long haul truck driving and double entry

bookkeeping were both tasks routinely performed by workers with modest education, typically high

school graduates. In the present economy, computers perform a vast share of the routine bookkeeping

via database and accounting software but do little of the truck driving. Similarly, playing a strong game

Autor, Katz and Krueger ( 1 998) and Berman, Bound and Griliches (1994) present evidence on industry level shifts.

Bresnahan, Brynjolfsson and Hitt (forthcoming) and Levy and Mumane (1996) and Doms, Dunne and Troske (1997)

provide evidence on firm and plant level shifts. Machin and Van Reenen (1998) provide data on the OECD, Gera, Gu
and Lin (2001) on Canada, and Berman, Bound and Machin (1998) and Berman and Machin (2000) on other

developing and developed countries.

Herbert Simon (1960) provides the first treatment of this question with which we are familiar. His essay introduces

many of the ideas explored here. Influential studies in the ethnography of work literature provide insightftil discussions

of what computers and related technology do in the workplace but do not consider economic implications (Adler,

1986; Orr, 1996; and Zuboff, 1988). Bresnahan (1999), Bresnahan, Brynjolfsson and Hitt (forthcoming), Goldin and

Katz (1998), and Lindbeck and Snower (2000) exemplify important studies in the economic literature that explore why
new technologies and educated labor appear to be relative complements.



of chess and writing a persuasive legal brief are both skilled tasks. Current computer technology can

readily perform the first task but not the second. These examples suggest that neither all 'high' nor all

'low' skilled tasks are equally amenable to computerization. We argue below that present computer

technology has quite specific applications and limitations that make it an incomplete substitute for both

well-educated and less educated human labor.

The objective of this paper is to propose and test a model of how the computerization of workplace

tasks alters job content and thereby human skill demands. We build the model from an understanding

of what computers do - by which we mean the tasks that present computer technology is particularly

suited to performing. By conceptualizing and measuring job skill demands in terms ofjob tasks rather

than the educational credentials ofworkers performing those tasks, we believe our analysis makes

three contributions. First, we provide an explicit account of how computerization alters work content,

exposing the mechanisms undergirding the widely documented observation that computers and

education are relative complements. Second, using representative observational metrics ofjob tasks

from the Dictionary of Occupational Titles (DOT), we analyze the degree to which technological

change has altered the cognitive and manual content ofjobs between 1960 and 1998. A unique virtue

of the DOT is that it permits us to study changes in job content within industries, education groups, and

occupations - phenomena that in all but the first case are not normally observable. Finally, we quantify

the extent to which changes in the structure of work induced by computerization have contributed to

recent observed increases in the relative demand for educated labor. We find that this contribution is

sizable.

Our analysis builds upon two branches of the literature on the demand for skill. The first infers

shifts in the demand for skills from secular trends in the occupational, educational, and gender

composition of employment." The second posits, and in several cases tests empirically, individual and

' See Bound and Johnson (1992); Juhn (1999), Juhn, Murphy and Pierce (1993), Katz and Murphy (1992), Murphy
and Welch (1992 and 1993), and Welch (2000).



organizational level complementarities between technological change and workers' learning and

problem solving capabilities.'' Our analysis extends both avenues of research. We first offer a

conceptual framework that makes specific predictions about complementarity and substitutability

between new technology and labor in carrying out workplace tasks. We next explore the empirical

implications of this framework using economy-wide data on the task distribution of employment over

four decades.

1. Framework

For purposes of our framework, it is usefiil to conceptualize a job as a series of tasks: moving an

object, executing a calculation, communicating a piece of information, resolving a discrepancy. In this

context, we ask the question: which tasks can be performed by a computer?^ A good first answer is that

computers perform tasks that can be expressed using procedural or 'rules-based' logic, that is codified

in a fully specified sequence of logical programming commands ("If-Then-Do" statements) that

designate unambiguously what actions the machine will perform and in what sequence at each

contingency to achieve the desired result.^ The simple observation that tasks cannot be computerized

unless they can be proceduralized is the point of departure for our discussion. We focus first on the

computerization of manual tasks and subsequently discuss information processing (cognitive) tasks.^

Important examples include Acemoglu (1999), Bartel and Lichtenberg (1989), Bresnahan (1999), Bresnahan,

Brynjolfsson and Hitt (forthcoming), Casselli (1999), Goldin and Katz (1998), Lindbeck and Snower (2000), Nelson

and Phelps (1966), Schultz (1975), and Welch (1970).

We take as given that the rapidly declining price of computer capital - a 35 percent average annual rate from 1985 to

1996 (Grimm, 1998) - provides firms with strong incentives to answer this question. Jorgenson and Stiroh (1995 and

1999) discuss the importance of the declining price of computer capital in inducing substitution between information

technology and other forms of capital and labor input. The model advanced by Borghans and Ter Weel (2000)

underscores that computers are particularly likely to substitute for (in our terminology) routine tasks performed by

high-wage workers.

The Encyclopedia Brittanica (2000) defines a computer program as a "detailed plan or procedure for solving a

problem with a computer; more specifically, an unambiguous, ordered sequence of computational instructions

necessary to achieve such a solution."

A logical question is whether the requirement for proceduralization is intrinsic to computer technology or is an

artifact of the economic incentives that shaped its development. Our view is that proceduralization is inherent,

although other specific aspects of computer technology may not be. As evidence for this point, we note that Charles

Babbage articulated the notion of procedural programming in his descnption of the "Analytical Engine" in 1837,

almost a century before the first computer was developed (cf Babbage, 1888). Babbage's device was in turn inspired

by what many consider to be the first mechanical computer, the Jacquard Loom developed by Joseph Marie Jacquard



Many manual tasks that humans perform (or used to perform) at their jobs can be specified in

straightforward computer code and accomplished by machines, for example, monitoring the

temperature of a steel finishing line or moving a windshield into place on an assembly line. However, a

problem that arises with many tasks is that, as Michael Polanyi (1966) put it, "we do not know how to

do many of the things we do." Accordingly, it is difficult to develop machines that carry out these

tasks. For example, it is a trivial undertaking for a human child to walk on two legs across a room to

pick an apple from a bowl of fruit. This same task is presently a daunting challenge for computer

science and robotics. Both optical recognition of objects in a visual field and bipedal locomotion across

an uneven surface appear to require enormously sophisticated algorithms, the one in optics and the

other in mechanics, which are currently poorly understood by cognitive science (Pinker, 1 997). These

same problems explain the earlier mentioned inability of computers to perform the tasks of long haul

truckers.^

In this paper we refer to such tasks requiring visual and manual skills as 'non-routine manual

activities.' We emphasize the phrase non-routine because if a manual task is sufficiently well specified

or performed in a well-controlled environment, it often can be automated despite the seeming need for

visual or manual skills that at present are poorly simulated by machines (as, for example, in the case of

industrial robots on assembly lines). It is this 'routineness' or predictability that is lacking in the truck-

in 1801 (Mokyr, 1990). What the Jacquard loom shares with essentially all computers is: first, it is a symbolic

processor, acting upon symbolic representation of information such as binary numbers or, in this case, punched cards;

and, second, its actions are deterministically specified by explicit procedures or programs. Despite the substantial time

interval between initial vision and ultimate implementation, the modem computer is a close relative of Babbage's

machine. As Acemoglu (1998 and 2000) argues forcefully, however, the specific characteristics and applications of the

technology are likely to be endogenously shaped by market forces.

^ It is of course a fallacy to assume that a computer must reproduce all of the functions of a human to perform a task

traditionally done by humans. Automatic Teller Machines, for example, have supplanted many bank teller functions

although they cannot verify signatures or make polite conversation while tallying change. This observation raises the

important question of which if any attributes of a task are intrinsic and which are artifactual characteristics that these

tasks may have obtained precisely because humans traditionally performed them. Although we do not attempt to

address this question here, we surmise that whether the characteristics of a task are intrinsic or merely artifactual, these

historical characteristics generate real costs when automating a task. For example, if robotic technology had preceded

the automobile, it is likely that vehicle navigation would have been designed to rely less heavily on sightedness. Given

the present (sunk) infrastructure of sight-dependent vehicles and visually cued roads, a major cost of automating the



driving example.'

The substitution of machinery for repetitive human labor has of course been a central thrust of

technological change since (at least) the industrial revolution (cf , Hounshell, 1985; Mokyr, 1990; and

Goldin and Katz, 1998). What computer capital uniquely contributes to this process is the capability to

perform symbolic processing, that is, to calculate, store, retrieve, sort, and act upon information."*

Although symbolic processing depends on little more than Boolean algebra, the remarkable generality

of this tool allows computers to supplant or augment human cognition in a vast range of information

processing tasks that had historically been the mind's exclusive dominion. In economic terms,

advances in information technology have sharply lowered the price of accomplishing procedural

cognitive tasks (i.e., rules-based reasoning). Accordingly, computers increasingly substitute for the

routine information processing, communications, and coordinating functions performed by clerks,

cashiers, telephone operators, bank tellers, bookkeepers, and other handlers of repetitive information

processing tasks, a point emphasized by Bresnahan (1999)."

Yet, the applicability of computer capital is nevertheless circumscribed by the need for an

unambiguous, ordered sequence of computational instructions that specify how to achieve a desired

end. As a result, there is little computer technology that can develop, test, and draw inferences from

models, solve new problems, or form persuasive arguments - tasks that many jobs require.'^ In the

task of driving appears to be developing computers that can perform visual processing approximately as well as

humans.

Industrial robots may, for example, select distmct parts from bins, transport parts to work stations on demand, and

perform other non-repetitive manual tasks that require responding appropriately to environmental stimuli. What makes

these robotic feats possible is the extreme predictability of the assembly line, a purposefully engineered attribute. As
Simon (1960) observed, environmental control is a substitute for flexibility. Moreover, the simple distinction between

computer-substitutable and non-substitutable tasks is not absolute. For example, by calculating more efficient long

haul trucking routes, computers can 'substitute' for the labor input of long haul truck drivers without driving trucks.

This observation suggests that there is a non-zero elasticity of substitution between routine and non-routine tasks, a

point we encapsulate in our model.
'" This point is emphasized by Weizenbaum (1976) and Bryjolfsson and Hitt (2000).

Autor, Levy, and Mumane (2001) provide an example of this generalization in a study of the automation of check

clearing in a large bank.

Software that recognizes ill structured patterns ('neural networks') and solves problems based upon inductive

reasoning from well-specified models ('model based reasoning') is under development and has been applied

commercially in several cases. But these technologies have had little role in the computer-induced technical change of



words of artificial intelligence pioneer Patrick Winston (1999):

"The goal of understanding intelligence, from a computational point of view, remains elusive.

Reasoning programs still exhibit little or no common sense. Today's language programs

translate simple sentences into database queries, but those language programs are derailed by

idioms, metaphors, convoluted syntax, or ungrammatical expressions. Today's vision programs

recognize engineered objects, but those vision programs are easily derailed by faces, trees, and

mountains."

The capabilities and 'limitations of present computer technology make it, in our terminology, more

substitutable for routine than non-routine tasks. By implication, computers are relative complements to

workers engaged in non-routine tasks. This complementarity flows through three channels.

First, at a mechanical level, computers increase the share of human labor input devoted to non-

routine cognitive tasks by offloading routine manual and cognitive tasks from expensive professionals.

More substantively, an outward shift in the supply of routine informational inputs (both in quantity and

quality) increases the marginal productivity of workers performing non-routine tasks that rely on these

inputs. For example, comprehensive bibliographic searches increase the quality of legal research;

timely market information improves the efficiency of managerial decision-making; richer customer

demographics increase the productivity of salespersons, etc. Third, and perhaps most significantly,

workplace computerization appears to increase the demand for problem-solving tasks - a non-routine

cognitive task by our definition. Because 'solved' problems are intrinsically routine and hence readily

computerized, the comparative advantage of labor in a computerized envirormient is specifically in

handling non-routine problems such as resolving production deficiencies, handling discrepancies and

exceptions, and detecting and resolving unanticipated bottlenecks.'^ In net, these arguments imply that

price declines in computerization should augment the productivity of workers engaged in non-routine

cognitive tasks.

the last three decades. See Davis (1984) for further discussion. Bresnahan (1999) similarly emphasizes that computers

are at best a limited substitute for human decision-making. Levy et al. (1999) provide a discussion of rules-based

reasonmg in the context of auto repair.

" Observational studies that offer this insight include Adler(1986), Autor, Levy and Mumane (2001), Bartel,

Ichniowski and Shaw (2000), Fernandez (1999), Levy and Mumane (1996) and Zuboff (1988).



Table 1 provides examples ofjobs in each cell of our two-by-two matrix of workplace tasks

(routine versus non-routine, manual versus information processing) and states our hypothesis about the

impact of computerization on the tasks in each cell. Although we limit our focus here to task shifts

within occupations, these forces are likely to alter the task and organizational structure of firms along

analogous dimensions.'''

2. Routine and non-routine skills in production: A model

The manner in which an exogenous decline in the price of carrying out 'routine' tasks alters the

task content ofjobs and the wages attached to them depends on the elasticity of substitution between

routine and non-routine tasks and the supplies of workers and capital to each. While these parameters

are not known with any precision, we believe our discussion motivates several plausible assumptions.

First, we have argued above that computer capital is more substitutable for humans in carrying out

routine tasks than non-routine tasks. Second, we believe it is non-controversial that routine and non-

routine tasks are themselves imperfect substitutes. Third, at least in the domain of cognitive tasks, we

observe that greater intensivity of routine inputs increases the marginal productivity of non-routine

inputs.'^

These assumptions structure the production side of our model. Consider the following production

fiinction in which two types of tasks, routine R and non-routine N , are used to produce output, q ,

which sells at price one. For tractability, we assume a constant returns to scale Cobb-Douglas

technology:

(1) q = R'~'N\(5^{0,\).

To encapsulate the notion that computers are more substitutable for routine than non-routine tasks, we

''* See Autor, Levy and Mumane (2001), Bartel, Ichniowski and Shaw (2000), Bresnahan (1999), Bresnahan,

Brynjolfsson and Hitt (1999), and Brynjolfsson and Hitt (2000), Caroli and Van Reenen (forthcoming), Garicano

(2000), Lindbeck and Snower (2000), and Thesmar and Thoenig (2000) for perspectives on these ideas.

While in the model below we aggregate our four tasks groups into only two categories - routine and non-routine -

we suspect that in actuality routine and non-routine manual tasks are substantially less complementary as productive

inputs than are routine and non-routine cognitive tasks.



assume that computer capital, C , and humans are perfect substitutes in carrying out routine tasks, R .

While this assumption is obviously extreme, the only substantive requirement for our model is that

computer capital is more substitutable for humans in carrying out routine than non-routine tasks.
'^

Computer capital is supplied perfectly elastically at market price P per efficiency unit, where P is

falling exogenously with time due to technical advances. The declining price of computer capital is the

causal force in our model.

To model labor supply, we assume as in Roy (1951) that workers choose among occupations (here,

routine and non-routine) according to comparative advantage. We model each worker as possessing a

productivity endowment, E(R^ , jV, ) , in routine and non-routine tasks specified in efficiency units

where /?, ,N^ > V / . Define the relative efficiency of individual (i) at non-routine versus routine tasks

as a. = N^ /R. where a e (0,°°) . We assume a large number of workers who choose to supply either

R. efficiency units of routine task input or A''^ efficiency units of non-routine task input. In keeping

with our discussion, we think of the decision to supply labor to routine or non-routine tasks as the

choice of an occupation.

Under these assumptions, it is straightforward to trace out the implications of a technical advance -

a fall in the price of computer capital - for occupational choice, marginal task productivity, and wages

(specified in efficiency units). Given the perfect substitutability of computer capital and routine skills,

the wage per efficiency unit of routine labor is given by

(2) W^=P.

Since workers choose their occupation - that is, to supply routine or non-routine labor - to maximize

earnings, the marginal worker with relative efficiency units a' in routine vs. non-routine tasks is

indifferent between routine and non-routine occupations when

Cobb-Douglas technology implies that the elasticity of substitution between routine and non-routine tasks is one.

Hence, computer capital and non-routine task mputs are relative complements.



- w
(3) a =-!^.

W

Equation (3) implies that for a,. < a* , individual i supplies routine labor, and for «.>«',/ supplies

non-routine labor.

To quantify factor supplies to each occupation as a function of a* , denote the functions

g{a), h{a) that give the population endowment in efficiency units of routine and non-routine tasks

respectively for each value of a . We make no assumption on the population distribution of

endowments or their correlation except to require that the joint distribution of R- , N. is non-degenerate

and has mass at all a .' '' Hence, we have gia), h{a) > V a > ; for every a , there is a non-zero set

of workers with total routine efficiency endowment g{a) and non-routine efficiency endowment h{a)

.

Accordingly, both occupations face a strictly upward sloping supply of task input.

Productive efficiency requires that factors are paid their marginal products:

(4) lV,=^ = (l-[i)e-' and ^F,=^ = ^0'-^

C +fg{x)dx
where 6 = is the ratio of routine to non-routine task input in production. is a crucial

r Kx)dx
Ja

endogenous variable in our model. Factors that raise the relative intensity of routine task input (that is,

increase ) lower the wage per efficiency unit of routine task input, and vice versa for the wage paid to

non-routine task input.

To evaluate the impact of a decline in the price of computer capital on the relative intensity of task

input, we use (2) and the first order condition for W,^ and take logarithms to obtain

,^. dlnW, , „ain0 ain0 1

(5) - = l = -B => =
.

d\nP d\nP d\nP B



A decline in the price of computer capital reduces the wage per efficiency unit of routine tasks and, as

the final term of (5) indicates, increases the relative intensity of routine task input in production.

Since routine and non-routine tasks are complementary inputs (specifically, q-complements),

increased intensity of routine task input raises the wage per efficiency unit of non-routine task input:

^
'

d\nP p

A decline in the price of computing power unambiguously increases the marginal productivity of

workers engaged in non-routine tasks.

In the equations above, wages are specified in efficiency units. Since efficiency units vary over the

population and workers choose their occupation to maximize earnings, a decline in the price of

computer capital alters occupational choice. Consider the impact of a price decline in computer capital

on a' , the relative efficiency endowment of the marginal worker in the routine occupation. Combining

(3), (5) and (6), we find

,_, dlna' _ 1

d\nP ~J'

A fall in the price of computer capital decreases labor supply to the routine occupation and raises labor

supply to the non-routine occupation.

Since we derived above that a decline in the price of computer capital raises the relative intensity

of routine task input (i.e., d\n9/d\nP <0), (7) further implies that

dlnC -^^rifg{x)dx 9,„^-
(8) < — <0.

d\nP dlna dlnP

Although labor supply to the routine occupation declines, there is a more than offsetting increase in the

demand for routine tasks in the form of computer capital. Thus, the relative intensity of routine task

Formally, write the probability density function of relative efficiency endowments as f((X) , with /(O) = and

/(a)>0 for a 6(0, °o).

10



input rises even as the relative labor supply of routine task input falls.

The implications for observed wages are ambiguous, however, without further assumptions.

Because an increase in non-routine relative wages may reduce the average productivity (in efficiency

units) of workers entering the non-routine occupation, quality change could reduce observed wages

even as the per-unit price of non-routine tasks rises.

To summarize our simple conceptual framework, we find that a decline in the price of computer

capital lowers the wages of workers carrying out routine tasks and causes employment in these tasks to

contract. Although the demand for routine task input increases as the price of computer capital falls,

this demand is satisfied by substitution of computer capital for human labor. Because greater relative

intensity of routine task input raises the marginal productivity of non-routine tasks, the wage per

efficiency unit of non-routine labor input rises.

Many of the details of our model were chosen for simplicity and are not essential to the basic

results. What is critical is our assumption that computer capital is more substitutable for routine than

non-routine skills, an assumption that we believe is justified by the present state of computer

technology. One dimension of the model we have not explored here is how consumer tastes interact

with price declines and accompanying income gains to shape final demand. Ifwe consider the model

above to characterize production in a single industry and assume that industries have heterogeneous

production technologies, it is plausible, depending on elasticities, that changes in final demand could

amplify or offset changes in industry level demand for skills. For this reason, we focus our empirical

exploration below on the composition of demand at the industry level.
'^

3. Empirical Implementation

For example, if there is a strictly positive correlation between workers' ability at carrying out routine and non-

routine tasks, a decline in the price of computer capital reduces average ability (in efficiency units) m both

occupations. Given the decline in Wj^ JW^ , observed wages in the routine occupation unambiguously fall. But wages

in the non-routine occupation may not rise.

Mobius (2000) and Thesmar and Thoenig (2000) provide insightful formal treatments of the impact of technological

change on tastes, market structure, and the implications for the organization of production.

11



The approach of this paper is to conceptuahze jobs in terms of their component tasks rather than

the educational attainments ofjobholders. To implement this approach, we require measures of tasks

performed in particular jobs and their changes over time. We draw on information from the Fourth

(1977) Edition and Revised Fourth (1991) edition of the U.S. Department of Labor's Dictionary of

Occupational Titles. Many of the details of our data construction are provided in the Data Appendix.

Here we discuss the features most salient to our analysis.

The U.S. Department of Labor released the first edition of the DOT in 1939 to "furnish public

employment offices... with information and techniques [to] facilitate proper classification and

placement of work seekers."^'' Although the DOT was updated four times in the ensuing five decades

(1949, 1965, 1977 and 1991), its structure has been little altered. Based upon first-hand observations of

workplaces, DOT examiners using guidelines supplied by the Handbook For Analyzing Jobs rate

occupations along 44 objective and subjective dimensions including training times, physical demands,

and required worker aptitudes, temperaments, and interests. While the Dictionary of Occupational

Titles categorizes more than 1 2 thousand highly detailed occupations, the DOT data we employ here

are based on an aggregation of these detailed occupations into three-digit Census Occupation Codes

(COC) ofwhich there are approximately 450.^'

Using these COC-DOT aggregations, we append DOT occupation characteristics to the Census

IPUMS one percent extracts for 1960, 1970, 1980 and 1990, and to CPS Merged Outgoing Rotation

Group (MORG) files for 1980, 1990 and 1998. We use all observations on non-mstitutionalized,

employed workers, ages 1 8 - 64. For our industry analysis, these individual worker observations are

aggregated to the level of 140 consistent Census industries spanning all sectors of the economy to

provide indicators of average task requirements by industry for 1960, 1970, 1980, 1990 and 1998. All

individual and industry level analyses are performed using as weights fiill-time equivalent hours of

^° U.S. Department of Labor (1939:xi) as quoted in Miller et al (1980).
2

!

The actual number varies by Census year.

12



labor supply, which is the product of the individual Census or CPS sampling weight times hours of

work in the sample reference week and, for Census samples, weeks ofwork in the previous year.^^

In measuring changes in task requirements, we exploit two sources of variation. The first consists

of changes over time in the occupational distribution of employment economy-wide, within industries,

and within-education groups within industries, holding task content within occupations at its DOT

1977 level. We refer to this source of variation as the 'extensive' (i.e., across occupations) margin,

which we are able to measure consistently over the period 1960 to 1998.

Variation along the extensive margin does not, however, account for changes in task content within

occupations such as is described in Levy and Mumane (1996), and is accordingly likely to provide an

incomplete picture of changing job task requirements. Hence, we exploit changes between 1977 and

1991 in skill content measures within occupations - the 'intensive' margin - using matched

occupations from the Revised Fourth Edition of the Dictionary of Occupational Titles. This approach

also has limitations. In the Revised Fourth Edition of the DOT, only a subset of occupations was

reevaluated by DOT examiners, and moreover the year of reevaluation varied among occupations.^^

Measured changes along the intensive margin are therefore likely to provide a conservative picture of

the total change in occupational task content.

Although the DOT provides unique, observational measures of occupational task requirements, it

has a number of well-known limitations documented by Miller et al (1980). These include limited

sampling of occupations (particularly in the service sector), imprecise definitions of measured

constructs, and omission of important job skills. One result of these problems is that DOT measures of

the skills required in particular occupations are likely to be imprecisely estimated, particularly for

Because the CPS labor force sub-sample only includes those employed during the survey reference week, it is

intrinsically weighted by weeks of labor force participation.

^^ The weighted fraction of employment reevaluated between 1978 and 1990 in our data is 73 percent, with 32 percent

reevaluated between 1978 and 1984 and 41 percent reevaluated between 1985 and 1990. Occupations were chosen for

reevaluation by DOT examiners partly on the expectation that their content had changed since the previous evaluation.

Hence, the subset that was reevaluated may have changed more than the subset that was not.
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occupations outside of manufacturing. Despite these limitations, the DOT contains to our knowledge

the best time series information available on the skill requirements for detailed occupations economy-

wide.^"* Researchers who have used the DOT for related analyses include Howell and Wolff (1991),

Ingram and Neumann (2000), Spenner (1983 and 1990), and Wolff (1996). Our focus on routine versus

non-routine tasks, choice ofDOT variables, and analysis of change in job content within occupations

across successive DOT editions is distinct from these studies.
^^

a. Selecting DOT measures of routine and nen>utine tasks

To identify plausible indicators of the skills discussed above, we reduced the DOT measures to a

relevant subset using their textual definitions and detailed examples provided by the Handbookfor

Analyzing Jobs (U.S. Department of Labor, 1972), the guidebook used by the DOT examiners. Based

on these definitions and examination ofmeans by major occupation for the year 1970, we selected five

variables that appeared to best approximate our skill constructs. Definitions of these variables and

example tasks from the Handbookfor Analyzing Jobs are provided in Appendix Table 1
.^^

To measure non-routine cognitive tasks, we employ two variables, one to capture interactive and

managerial skills and the other to capture analytic reasoning skills. The variable DCP codes the extent

to which occupations involve Direction, Control, and Planning of activities. This variable takes on

consistently high values in occupations involving substantial non-routine managerial and interpersonal

tasks. The variable GED-MATH, our second measure of non-routine cognitive tasks, codes the

quantitative skills ranging from arithmetic to advanced mathematics that are required in occupations.

We employ this variable as a measure of occupations' analytic and technical reasoning requirements.

We identified STS, the acronym for adaptability to work requiring Set limits. Tolerances, or

Standards, as an indicator of routine cognitive tasks and selected the variable FINGDEX (an

^'' The Department of Labor's successor to the DOT, the 0*NET, offers potentially more up to date information on

occupational characteristics. 0*NET does not, however, provide time series data on job content within occupations.
^' Spenner (1983) provides a careful analysis of changes in occupational content between the 3rd and 4th editions of

the DOT.
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abbreviation of Finger Dexterity) as an indicator of routine manual activity.^^ Finally, we selected

EYEHAND, short for Eye-Hand-Foot coordination, as a measure of non-routine motor tasks. This

variable takes on high values in occupations requiring physical agility, such as firemen.

While we believe the selected measures are the most appropriate available from the DOT, we are

sensitive to the concern that our choice of variables could be viewed as arbitrary (or worse). Hence, we

test whether the chosen variables are logical candidates and explore whether initial results are similar if

we employ alternative, composite variables generated by principal components analysis.

b. Are these the correct DOT measures? A predictive test

Observe that our model makes three specific predictions about which industries should have

adopted computer capital most vigorously as its price declined: 1) industries intensive in routine

cognitive and routine manual tasks - for which computers directly substitute for human labor; 2)

industries intensive in non-routine cognitive tasks - with which computers complement human labor;

and 3) industries that employ minimal non-routine manual task input - since non-routine manual tasks

are not very amenable to computerization. If it were possible to measure industry task input pr/or to the

computer era, these task measures should substantially predict subsequent patterns of computer

adoption.

To implement a variant of this test, we pair DOT occupational task measures with industry

occupational distributions from the 1960 Census to fit the following model:

\y) ACj |,j,_|g,7
— CC + p.!

i 1959 + £j ,

where AQ
i959_,997

is the percentage point change between 1959 and 1997 in the share of industry k

employees using a computer on the job, 7^ ,,59 is a measure of industry task intensity in 1959 from the

Supplemental tables providing a descnption of all DOT measures, the means of selected measures by major

occupation, and a set of cross-industry correlations are available from the authors.

As is clear from Appendix Table 1, there is overlap between our measures of routine manual and routine cognitive

tasks. Although STS is weighted toward routine clerical and numerical tasks such as transcnbing and calculating, and

FINGDEX is weighted toward routine manual tasks such as feeding machines and performing repetitive movements.
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DOT, and e is an error term.^^ Although we do not have a direct measure of the level of industry

computer use in 1959, computer penetration was close to zero in all industries at this time; hence, the

1997 industry level is effectively the change since 1959. To test whether the DOT task measures

provide explanatory power beyond standard education variables, we also fit models that include a

measure of industry college graduate employment in 1959.

Estimates of (9) are found in Panel A of Table 2. Most notable from the table is that four of five

task measures have the predicted sign. Industries intensive in non-routine cognitive tasks and intensive

in routine cognitive and routine motor tasks in 1959 computerized significantly more than other

industries over the subsequent four decades. Conversely, industries intensive in non-routine manual

tasks computerized substantially less than others. As is visible in row (2) of the table, all results are

robust to inclusion of industry college graduate employment in 1959. The one unexpected pattern in

the top panel of Table 2 is that the DOT measure of non-routine cognitive/interactive tasks does not

predict subsequent computerization well. Overall, we take these patterns as preliminary evidence that

our task measures primarily capture the task dimensions outlined by our model.

To explore whether similar patterns prevail when we characterize industry task content using

reasonable alternatives to our five DOT variables, we performed principal components analyses (PCA)

to pool variation from each selected DOT task measure with several other plausible alternatives.^^ We

estimated equation (9) using these composites in place of the direct DOT measures. To facilitate

comparisons between the analogous coefficients in the two panels of Table 2, all DOT and composite

variables are standardized to have mean zero and variance one.

The patterns displayed in Panel B of Table 2 are largely comparable to the patterns using the direct

the correlation between the measures is high (0.61 using 1980 Census weights) and examples of both routine manual

and cognitive tasks appear for each measure in the Handbookfor Analyzing Jobs.
^* Specifically, we apply 1977 DOT measures by occupation to the 1960 Census and aggregate to the industry level.

29
The PCA extracts eigenvectors that maximize common variation among selected measures, each standardized with

mean zero and variance one, subject to the constraint that the sum of squared weights in the eigenvector equals one. It
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DOT measures. For three of the five task types, non-routine cognitive, routine manual, and non-routine

manual, the coefficient on the relevant composite and the coefficient on the individual DOT variable

both have the hypothesized sign and are significantly different from zero. For the non-routine

cognitive/interactive task measure, the composite measure predicts somewhat better than the single

DOT variable. For the routine cognitive task measure, the opposite is the case.

While it would be possible to perform our entire analysis using the composites in place of the direct

DOT measures, we find this approach unappealing. The composites are particularly problematic when

analyzing within-occupation changes in the DOT since they do not correspond to any specific

occupational changes observed by DOT examiners. We therefore concentrate the analysis on the direct

measures. However, we perform a second test of our variable choices below by re-estimating key

results using the composite measures in place of the direct DOT variables.

4. Computerization and trends in task input: 19&91998

a. £conoiiij<-wide trends

Figure 1 illustrates the extent to which changes in the occupational distribution over the period

1960 - 1998 resulted in changes in the task content of the work done by the U.S. labor force. ^'^ The

proportion of the labor force employed in occupations that made intensive use of non-routine cognitive

tasks - both interactive and analytic - increased substantially. In contrast, the percentage of the labor

force employed in occupations intensive in routine cognitive, routine manual and non-routine manual

activities declined over the period.

As can be seen in detail in Table 3, while both measures of non-routine cognitive tasks trended

upward during the 1 960s, the upward trend in each accelerated substantially thereafter, and was most

can be shown that if measurement error in the selected variables is iid, the PCA extracts maximal true vanation.

Details of our compositing exercise are provided in the Data Appendix.
^° In this figure and the remainder of the analysis, each DOT measure is scaled from zero to ten with higher values

indicating greater task input. Since these are not standardized metrics, it is potentially misleading to compare the

magnitude of changes across dependent variables. In section 6, we translate task demands into the more familiar metric

of educational requirements.
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rapid during the 1980s and 1990s. Equally notably, routine cognitive and routine manual tasks were

both increasing during the 1960s, prior to commencing a decline in the 1970s, which became more

rapid in each subsequent decade. The steady trend against non-routine manual tasks, however, pre-

dates the computer era. These aggregate patterns are also apparent for each gender (Panel B of Table

3), although given the large increases in women's educational attaiiunent and labor force participation

in recent decades, the patterns are more pronounced for women. ^'

For reference, Appendix Table 2 tabulates the DOT task measures by major educational group.

Notably, while tliree of five skill variables are monotonic in educational attainment, the two measures

of routine tasks - cognitive and manual - show a U-shaped relationship to education; in particular, high

school graduates perform substantially more of both types of routine task than either high school

dropouts or college graduates. This non-monotonicity suggests that the DOT measures may provide

information about job task requirements distinct from standard educational categories.

b. Task upgrading: A withi-dndustry phenomenon?

Changes in the task content of the work done by the U.S. labor force could stem from substitution

of computer capital for routine labor inputs within detailed industries, as our model suggests.

Alternatively, shifts in product demand favoring sectors intensive in non-routine activities could give

rise to economy-wide increases in the utilization of non-routine tasks. Since the focus of our

conceptual model and empirical analysis is on changes in task demands within industries, we explore

the extent to which changes in measured job content stem from within-industry shifts.

A standard decomposition of the change in the use of task j in aggregate employment between

years / and t ( AT^ = Tj^ -T, ) into a term reflecting the reallocation of employment across sectors and

a term reflecting changes in task j input within industries is given by

Notably, in the 1960s, women were more (less) concentrated in routine manual and cognitive tasks (non-routine

cognitive analytic and interactive tasks) than were men. By 1998, the gender distributions of tasks had substantially

converged and women performed fewer routine cognitive tasks than did males.
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(10) A7;,=z(A^^7^,)+i(Ar^,„£,) = A7;':+Ar;,

where k indexes industries, E^^^ is the employment of workers in task j in industry k in year t as a

share of aggregate employment in year r , E^^ is total employment (in FTES) in industry k in year r

,

7^,^ is the mean of task j in industry k in year t
, 7^.^.

= {jji^ +y^^)I1, and E^ ={E^^ + E^)/2 . The

first term ( A7^* ) reflects the change in aggregate employment of task J attributable to changes in

employment shares between industries that utilize different intensities of task j . The second term

( AJJ ) reflects within-industry task change.

Table 4 presents between- and within-industry decompositions of our five DOT task measures

during each decade from 1960 to 1998. These decompositions show quite consistent patterns of task

change. Both measures of non-routine cognitive task input - interactive and analytic - show strong

within-industry growth after the 1970s. For the non-routine cognitive/interactive task measure, the

growth in economy-wide input of this task over four decades is almost entirely a within-industry

phenomenon; moreover, the rate of within-industry growth accelerates from decade to decade. For the

non-routine cognitive/analytic task measure, the within-industry growth rate accelerates after the

1970s. Prior to this decade, the growth of non-routine cognitive/analytic task input is primarily a

between-industry phenomenon.

Trends in routine task input, both cognitive and manual, also follow a striking pattern. During the

1960s, both forms of input increased due to a combination of between- and within-industry shifts. In

the 1970s, however, within-industry input of both tasks declined, with the rate of decline accelerating.

As distinct from the other four task measures, we observe steady within- and between-industry

shifts against non-routine manual tasks for the entire four decades of our sample. Since our conceptual

framework indicates that non-routine manual tasks are largely orthogonal to computerization, we view

this pattern as neither supportive nor at odds with our model.
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In net, these data indicate that within-industry shifts dominate for the most part the task trends that

we seek to analyze, particularly from the 1970s forward. We now turn to an analysis of the role that

computerization has played in these within-industry task shifts.

c. The time pattern of industry task shifts: Do they predate the computer era?

We begin the analysis of the relationship between computerization and industry task input by

estimating the bivariate regression

(11) Ar,,=a + /?AC,+£^,,,
^

where Ar^^,, = T.^^ -7^, is the change in industry input of task j between years t and t and AQ is the

change between 1984 and 1997 in the percentage of industry workers using a computer at their jobs as

estimated from the October Current Population Survey supplements of these years.

In estimating (1 1), we choose the period 1960 to 1998 because it encompasses the recent computer

era and, as importantly, the prior decade. Although the widespread diffusion of desktop computers

during the 1980s and 1990s represents a highly visible technology 'shock' - with the share of workers

using a computer on the job rising from 25 to 5 1 percent between 1 984 and 1 997 - it bears emphasis

that the era of rapid computer investment began in the 1970s (Autor, Katz and Krueger, 1998;

Bresnahan, 1999). Hence, to the degree that industry computer proxies 'predict' occupational task

change during the 1960s, this would suggest that observed trends in task content in computer intensive

sectors pre-date the computer era and hence are unlikely to be caused by computerization. Conversely,

if the relationship between industry computer intensity and task change is not detectable until the 1970s

or later, this is more likely to be consistent with a causal relationship.

Table 5 presents estimates of (1 1) for each of the four decades from I960 - 1998. Each dependent

variable measures ten times the annualized industry level change in the average value of one of the task

indicators. Figure 2 summarizes the time pattern of regression coefficients.

Industries that computerized relatively rapidly during the 1980s and 1990s increased the share of
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jobs requiring non-routine cognitive/analytic task input during these decades more than did other

industries. However, this was not the case for prior decades. As illustrated in Figure 2, during the

1960s and 1970s, the industries that became the rapidly computerizing industries did not differentially

increase input of non-routine cognitive/analytic tasks.

The pattern is somewhat different for the change in cognitive/interactive tasks. Industries that

subsequently computerized intensively were already raising their input of cognitive/interactive tasks

relatively more rapidly than other industries in the 1960s and 1970s. However, the magnitude and

statistical significance of this relationship increased substantially in the 1980s and 1990s, consistent

with the acceleration in within-industry trends in Table 4. In fact, the estimated impact of

computerization on both measures of non-routine cognitive tasks accounts for eighty to one hundred

percent of the observed within-industry growth in input of these tasks over 1980 - 1998.^"

The relationships between computerization and routine cognitive and routine manual task input

present a mirror image of these patterns. During the 1960s, industries that subsequently underwent

rapid computerization did not significantly shift their routine cognitive or routine manual task input

relative to other industries. Beginning in the 1970s, these same sectors undertook rapid reductions in

routine cognitive and routine manual task input. As above, the impact of computerization accounts for

all of the observed within-industry reduction in routine task input between 1970 and 1990.

Consistent with our framework, there is no significant evidence that rapidly computerizing

industries decreased their use of non-routine manual tasks more rapidly than did other industries during

this period. During the 1 990s, however, rapidly computerizing industries decreased the non-routine

manual task intensity of work less rapidly than did other industries.^^

^" Specifically, the intercept of the bivariate regression of the change in industry non-routine cognitive/analytic task

input on computerization during the 1980s and 1990s is close to zero although the mean of the dependent vanable is

large and positive. In this sense, computerization accounts for the entirety of the observed phenomenon.

This result should be interpreted carefully. It is unlikely that computerization directly increases demand for non-

routine manual tasks; rather, the share of human labor devoted to non-routine manual tasks is likely to rise
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To further probe the robustness of our variable choices from the DOT, we estimated comparable

models using the composite task measures developed from the pure DOT variables (Appendix Table

3). The time pattern of results for the composite estimates is for the most part comparable to that found

in Table 5. In all cases, the relationship between computerization and the composite task measure is not

statistically significant during the 1960s and becomes statistically and economically significant in

subsequent decades. The decade of the 1970s presents some inconsistencies, however, indicating that

our composites do not perform as well as the pure DOT measures.

d. Employing contemporaneous measures of computerization

The estimates above are consistent with the hypothesis that computerization during the 1980s and

1 990s induced or accelerated industry level task shifts that were not (as) evident in the pre-computer

era of the 1960s. To provide a broader test of the hypothesis that computerization accounts for these

task shifts, we employ a contemporaneous measure of per-worker industry computer investment from

the National Income and Product Accounts ('NIPA', U.S. Department of Commerce, 1993 and 1999).

To measure industry computerization, we calculate the log of real computer investment per full-time

equivalent employee (FTE) over the course of the decade.'''* Since we are interested in the impacts of

computerization as distinct from overall industry capital deepening, we also construct a measure of the

change in the log industry capital labor ratio.

We use these data to estimate stacked first-difference industry task shift models of the form

( 1 2) ^T.,^ = a + 5,„,3„ + <5,„_,o + ^90-98 + ^fh. + ^^l^,. + £,*-.

.

where CI is log industry investment in computer capital per FTE over the contemporaneous decade.

mechanically as routine tasks are displaced. For example, a constant number of workers doing non-routine manual

work such as cleaning and serving would account for a growing share of employment in computer-intensive sectors.

Note that we do not use the change in this measure since the level proxies the flow of new computer capital into an

industry over the decade. The NIPA data are also employed by Bemdt, Morrison and Rosenblum (1995) and Autor,

Katz, and Krueger (1998). We matched data from the Census, CPS, and DOT to NIPA data in 42 aggregated industries

covering all private industry sectors except private household services. Because the NIPA capital variables are

measured at a higher level of aggregation than our dependent variables, we estimate Huber-White robust standard

errors that account for clustering at the NIPA sectoral level. See the Data Appendix for details.
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AK is the change in the log industry capital labor ratio (also measured in FTEs), the 5's are time

dummies equal to one in each of the post- 1960s decades corresponding to their subscripts, and a is a

common intercept. In this specification, the 5's measure the trend change in industry task input in the

1970s, 1980s, and 1990s relative to the base period of the 1960s. Hence, the key empirical question is

whether by conditioning on measures of industry computer investment, we can explain the trend

changes in task input measured by the 5's .

Note that in estimating this equation, it is not necessary to interpret the industry computer

investment measure, C/^j, , as 'exogenous' (which it surely is not). As vmderscored by our theoretical

model, the exogenous variable in our analysis is the economy-wide decline in the price of computer

capital. Accordingly, the variation we exploit in (12) stems from industries' equilibrium response to

this price decline as they shift the quantities and sources of task input from human to computer capital

according to the new price schedule.
^

Table 6 displays estimates of (12). The NIPA measure of computer investment consistently

predicts relative declines in industry employment of both routine cognitive and manual tasks and

relative grovi^h in employment of non-routine cognitive tasks, both analytic and interactive. By

comparing the decadal intercepts (
5' 5 ) in the first column of each panel to the observed decadal

changes found at the bottom of the table, one can calculate the fraction of the observed change in the

task measure explained by industry computer investment. Using the 1 960s as the baseline, these

comparisons indicate that computer investment can more than fully explain the trend increase in both

measures of non-routine cognitive task input since the 1960s, and accounts for over eighty percent of

the trend decline in routine cognitive and manual tasks. ^^ Hence, computerization has substantial power

in explaining the observed trend shifts in industry task input in each of the three decades following the

As demonstrated in Table 2, the ability of industries to respond to these price changes depends importantly upon the

mix of task inputs that they employ.
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1960s.

A notable pattern in these results is that the estimated impact of capital deepening on changes in

industry skill demands is statistically significant in only one of five models, non-routine manual tasks.

Yet, the coefficient on computer investment is significant in all five models that contain the measure of

capital deepening. Consistent with findings of Autor, Katz, and Krueger (1998) and Bresnahan,

Brynjolfsson and Hitt (forthcoming), these results indicate that there appears to be something

distinctive about computer capital's relationship with industry task demands apart from the well-known

pattern of capital-skill complementarity (Griliches, 1969).

5. Computerization and contemporaneous task shifts at the industry,
occupation and educational level, 19801998

It is possible to argue that the preceding results primarily provide an explanation for the widely

documented pattern that during recent decades computer intensive industries increased their college

graduate employment and decreased their high school graduate employment more than did other

industries.'^ Our contention, however, is that changes in the demand for workplace tasks are an

underlying cause - not merely a reflection - of relative demand shifts favoring educated labor. If so,

educational upgrading should be only one among several margins through which industries alter task

input. Underlying shifts in task demand should also yield pervasive changes in task content that are

visible within (as well as across) education and occupation groups.

To explore this implication, we examine changes in the task content of work within education and

occupation categories over the two most recent decades. As a baseline, we first analyze the

contemporaneous correlations between computerization and within-industry changes in task content

^^ For example, the calculation for routine cognitive tasks is: [((-0.019 - 0.089) + 0.040 + (-0.122 - 0.089) + 0.002 +

((-0.216 - 0.089) + 0.041)*.8]/([ (-0.019 - 0.089) + (-0.122 - 0.089) + (-0.216 - 0.089)*.8] = 0.87. Note that changes

over 1990-98 are down-weighted by 20 percent due to the shorter time interval.

" Cf, Autor, Katz and Krueger ( 1 998), Berman, Bound and Griliches (1994), Berman, Bound and Machin (1998), and

Machin and Van Reenen (1998). The logic would be that because workers at higher levels of education appear to hold

comparative advantage in non-routine relative to routine tasks (Appendix Table 2), industries undergoing rapid
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between 1980 and 1998. Next, we examine whether within-industry task shifts are present even among

workers with the same educational attainments. Finally, we exploit direct field observations ft'om

successive revisions of the DOT to ask whether computerization yielded commensurate shifts in task

content within nominally identical occupations. In the concluding section of the paper, we collect these

strands to quantify the contribution of computerization-induced changes in the task content of work to

recent demand shifts favoring educated labor.

a. Extensive chmges within industries and within education groups: 198(1998

Panel A of Table 7 presents a series of estimates in which the dependent variable is the within-

industry change between 1980 and 1998 in each of the five DOT task measures. The explanatory

variable is the change in industry computer use between 1 984 and 1 997, which in this case is a

contemporaneous measure. These results underscore the story told by Tables 5 and 6. Industries that

rapidly computerized during the 1980s and 1990s undertook large relative increases in the share ofjobs

requiring high levels of non-routine cognitive/interactive and cognitive/analytic task input, and

decreased the share requiring routine cognitive and manual tasks.

These changes in industry task content have two components. One is educational upgrading. As has

been widely documented, computerizing industries have substituted towards college-educated workers

who, by our analysis, appear to hold a comparative advantage in non-routine cognitive tasks (cf.

Appendix Table 2). A second component of these task shifts (not previously explored), is task

upgrading within education groups. Industries undertaking computerization may shift the job tasks of

workers of comparable education towards non-routine and against routine tasks.

A unique virtue of our data is that it allows us to gauge the importance of both channels of task

change and estimate the contribution of computerization of each. To perform this decomposition, we

estimate a variant of equation (1 1) in which the dependent variable is the within-industry change in the

computerization may increase input of these tasks through educational upgradmg. Note that the growth of non-routine

manual tasks in computer intensive sectors would not have been predicted by this simple companson.
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mean of each DOT measure among workers who have the same educational attainments.^^ Since we

pair the 1977 DOT task content measures to education-group-specific industry observations for 1980

and 1 998, observed changes in task input stem solely from shifts in occupational distributions within

education groups within industries. To conserve space, we present and discuss results for high school

graduates and summarize results for all education groups in Figure 3.

The weighted means of the task measures for high school graduates (Panel B of Table 7) indicate

that during 1980 to 1998, the task structvire of high school graduates employment shifted towards non-

routine cognitive/interactive tasks and away from routine cognitive and routine manual tasks. Estimates

of (1 1) for high school graduates reveal that these task shifts were significantly more pronounced in

industries undergoing rapid computerization. Comparison of the estimated intercepts for these models

relative to their weighted means reveals that observed high school graduate employment shifts against

occupations intensive in routine cognitive and manual tasks and towards occupations intensive in non-

routine cognitive tasks were essentially entirely driven by changing employment patterns within

rapidly computerizing sectors.

As is visible from Figure 3, industry-level computerization is associated with within-industry shifts

towards non-routine and against routine tasks within essentially all education groups. A decomposition

analogous to that in equation (10) (shown in Table 8) reveals the importance of within-education group

shifts to the overall pattern of task change. In all but the case of non-routine manual tasks, within

education group task upgrading explains a substantial share - 45 to 9 1 percent - of observed within-

industry task upgrading over these two decades. Hence, the impact of computerization is not confined

to widely observed educational upgrading; within-education group changes in task structure appear at

'* In particular, we replace AT^^ in (11) with Ar^^,,^ where / denotes education groups within industries.

Estimates comparable to Table 7 Panel B for other education groups are found in Appendix Table 4. The pattern of

results for workers with some college is virtually identical to that of high school graduates. The relationships are

almost all of the expected sign for college graduates and high school dropouts but are primanly not statistically

significant. A likely explanation for the weak college graduate results is 'topping out.' Because in 1980, college
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least equally important.

Notably, in a recent analysis of the inter-industry wage structure, Bartel and Sicherman (1999)

found that technology-intensive industries select workers of greater unobservable skill conditional on

education. Our results suggest a likely causal channel for this finding: within nominally similar

education categories, these industries have differentially shifted the task content of employment against

routine, repetitive tasks and towards tasks demanding cognitive flexibility.

b. Computerization and changes in occupational task content: 19-7T991

The task shifts documented above are measured exclusively by shifts in occupational composition

(the extensive margin). Our framework further implies that pervasive shifts in task demands should

induce parallel changes along the intensive margin. In this section, we exploit direct job evaluations

from successive editions of the DOT to explore whether computerization has yielded commensurate

changes in task content within nominally identical occupations. Specifically, we estimate the equation

(13) AT^,,=a + l3AC„+E„,^,

where AT^^^ is the change in observed occupational task content between the 1977 and 1991 in 3-digit

COC occupation m , and AC„ is the change in occupational computer penetration measured by the

CPS.'''

To make this test as clean as possible, our DOT 1977 - 1991 comparison data set is constructed

using only the subset of occupations appearing in the 1977 DOT and represented by the 1973 CPS file

(National Academy of Sciences, 1981) that provides our DOT-COC crosswalk. In addition, although

the distribution of employment in DOT occupations (of which there are approximately 12,000) has

doubtless shifted within COC occupations in recent decades, we hold this distribution fixed at the 1 973

level to again exclude extraneous variation. Accordingly, the variation exploited in estimates of

graduates were concentrated in occupations with high values of non-routine cognitive tasks and low levels of routine

cognitive and routine manual tasks, this left little room for the task measures to attain fiirther extremes.
"^ The Fourth and Fourth Revised editions of the DOT were published in 1977 and 1991 respectively. For consistency

with the analysis above, we use the CPS computerization and education measures for 1984 to 1997.
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equation (13) stems entirely from DOT examiners' reevaluations of the task content of individual

occupations between 1977 and 1991.

For each task measure, we present the results from two specifications in Table 9. The first includes

only the occupational computerization measure. To explore whether intra-occupational task change is

implicitly captured by shifts in the educational distribution of employees in an occupation, the second

specification adds the contemporaneous change in the percentage of workers in the occupation who are

college graduates.
"

The most visible change in occupational task content between 1977 and 1991 was a pronounced

decrease in routine cognitive tasks. A regression of the routine cognitive task measure on occupational

computerization reveals that input of this task declined by substantially more in rapidly computerizing

occupations. Comparison of the intercept of this regression to the weighted mean of the dependent

variable indicates that the implied impact of computerization is more than sufficient to explain the

observed mean shift against routine cognitive tasks over 1977 to 1991 . A second notable pattern is the

positive relationship between occupational computerization and the input of non-routine

cognitive/analytic tasks. Even though the average level of non-routine cognitive/analytic tasks declined

slightly within occupations, the level increased significantly in rapidly computerizing occupations.

Finally, the input of cognitive/interactive tasks increased within occupations (Column 2), and this shift

was significantly greater in more rapidly computerizing industries.

We find little relationship between computerization and changes in the routine manual task content

of occupations, however. Interestingly, computerization predicts significant increases in the non-

routine manual task content of occupations, a pattern also noted at the industry level.

Comparison across the two specifications in each panel demonstrates that the relationship between

computerization and within-occupation task change is quite insensitive to inclusion of the college

graduate employment share measure. Apparently, observed educational upgrading within occupations

does not provide an adequate summary measure of shifts in occupational task content.
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6. Computers, task structure, and the demand for college educated labor

Are the pervasive task shifts documented above economically significant? To answer this question,

we draw together the estimated impacts of computerization on task change within industries, within

education groups and within occupations to calculate their net contribution to the deinand for skill as

conventionally measured by educational attainment.

Since units of task input do not have a natural scale, we translate task inputs into educational

requirements using a "fixed coefficients" model of occupational education requirements in 1970 as a

fimction of occupational task inputs measured by the 1970 DOT. Specifically, we estimate:

(14) 7v;=a + r„,A + £,„

where N"' is the employment share (in FTEs) of college graduates in occupation m , T^ isa column

vector containing the DOT means of our routine and non-routine skill measures, and A is a

conformable row vector of coefficients. A is therefore an estimate of college versus non-college

demand as a function of occupational tasks.

We then translate our estimates of changes in job tasks induced by computerization (Tables 6 and

7) into estimates of implied changes in college versus non-college employment along the extensive

margin by calculating

(15) AN^^=^r,MJ,

where AT^^ is a vector of predicted change in industry k's input of each of our five task measures due

to computerization between times t and t from estimates of equation (11) and (12), y^^ is industry

k's average share of employment between t and z. AN^^ is therefore the implied impact of computer-

induced task shifts on the college graduate share of total employment. Similarly, we incorporate

predicted changes on the intensive margin of task input over 1980 to 1998 by adding to AJ^^ the vector

Ar,^ , which is the change from equation (13) in within occupation tasks attributable to
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computerization (Table 9)."" Hence, this exercise asks by how much the college employment share

would have needed to increase between 1970 and 1998 to satisfy contemporaneous computer-induced

task shifts, assuming that college graduates continued to perform the same tasks (on average) as they

did in 1970.^^

Two caveats apply to these estimates. First, given the limitations of the DOT discussed earlier,

estimates of X are likely to be biased towards zero by measurement error. This will reduce our

estimates of AA^^^ . Second, because equation (15) is a fixed coefficients model of education demand as

a function ofjob tasks, it neglects task prices. To the degree that the implicit prices of non-routine tasks

have risen (fallen) since 1 970, our calculations will under- (over-) state accompanying demand shifts

favoring non-routine tasks, and vice versa for measured demand shifts against routine tasks. Detailed

calculations of (15) are found in Table 10. Panels A tabulates estimates of AT^^ for 1970 - 1998 and

1980 - 1998 excluding and including task changes on the intensive margin. Panel B translates these

task shifts into units of college graduate employment in percentage points.

As is visible in Panel A, task changes on the extensive margin attributable to computerization

explain 1 .8 percentage points of the growth in college vs. non-college employment over 1980 - 1998

"' In addition, there is a third (interaction) term in the sum of computer contributions to task upgradmg. The total

contribution of computerization to task change can be written as:

Aj, =!/; -f: -i:y:-Tr =i(r; -rnr +i(r;' -r)-/: +2:(fr -r:){f:-Tr)m m m m

where m subscripts occupations, y' s denote occupational shares of employment, and the 'hat' overscore (y)

indicates an estimated occupational shift attributable to computerization. The first term on the right hand side of the

above equation measures the task change due to within-industry occupational shifts attributable to computerization,

holding constant the task content of occupations at the initial level in t (this term is given by Table 7). The second

term measures the change due to within-occupation task shifts, holding constant the distribution of occupational

employment at the initial level (this term is given by Table 9). The third term measures the interaction of within-

industry and within-occupation task shifts between time t and T . Because computerizing industries experienced

disproportionate growth in occupations that rapidly computerized, there is a positive covariance between within-

industry and within-occupation components. We calculate this third term and add it to (15),

Although as demonstrated above, task upgrading takes place along many margins - including within education

groups - our objective here is to quantify the total impact of these shifts by translating them into one hypothetical

margin: the demand for college educated labor. We estimate (14) using data from the 1970 Census on the task

structure of employment by education group.
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and explain 2.0 percentage points of this growth over 1970 - 1998. Slightly more than half of this

contribution is accounted for by shifts favoring non-routine cognitive tasks, with the remainder

explained by shifts against routine cognitive and manual tasks."*^

Adding the effect of changes along the intensive margin, AT^^ , more than doubles the magnitude

of this impact. Computerization is estimated to have increased the college graduate employment share

by 5.0 percentage points over 1980 - 1998 and 5.3 percentage points over 1970 - 1998. Moreover,

because the intensive margin change is only measured during 1977 to 1991, it is likely that a longer

time series would show that these shifts have even greater explanatory power.

For reference, the estimate of 5.0 percentage points can be compared to the actual change in

college graduate employment between 1980 and 1998, which is 6.83 percentage points. However, this

is not the most appropriate comparison since increases in college employment are likely to be driven in

part by secular trends in the supply of college graduates as well as shifts in demand per se. To make a

more formal comparison, we employ a simple constant elasticity of substitution framework to translate

induced employment shifts into log relative demand shifts for college equivalent labor. In this

framework, we assume that aggregate output, Q^ , is produced using two factors, college (c) and high

school (h) equivalents in the production ftanction

(16) Q,=k(^,NJ''+{l-a,)ib,N,xf,

where N^, and A^^, are the quantities of employed college equivalents and high school equivalents in

period t , o, and b, represent skilled and unskilled labor-augmenting technological change, a, is a

time-varying technology parameter that can be interpreted as indexing the share ofwork activities

allocated to skilled labor, and p is time invariant. The aggregate elasticity of substitution between

"^ The increased demand for non-routme manual tasks makes a small offsetting contribution.

31



college and high school equivalents is given by cr = 1/(1 - p)
."^

Under the assumption that the economy operates on its labor demand curve so that college and high

school equivalents are paid their marginal products, we can use (16) to solve for the ratio of marginal

products of the two labor types, yielding the relationship between relative wages (vv„/w^,) and relative

supplies (w,/w„)_

(17) ln(M.„ /w„ ) = 1/a [D, - HN^., /N„ )]

.

Rearranging (17) and taking first differences, the change in the relative demand for college equivalent

labor between times t and t in log quantity units can be written as
'^^

(18) AD, = A -D, =Aln[(vv„A^„/w,,Af,j]+(a-l)ln(w„/vv,J.

Change in the relative demand for college equivalents can be written as the sum of the change in the

log relative wage bill and a term that depends positively (negatively) on the change in the log college

wage premium when cr > 1 ( cr < 1 ).

In implementing this framework, we follow Autor, Katz and Krueger (1998) in employing an

elasticity of substitution between college and non-college labor of cr = 1 .4 , a figure that receives broad

empirical support from the literature.''^ Using our Census and CPS samples, we calculate that the

estimated log relative demand for college graduate employment grew by approximately 10 log points

annually over 1970 - 1998 and 7 log pomts over 1980 - 1998 (Panel C of Table 10).

Using these demand shift estimates as a benchmark, we can calculate the share of the estimated

demand shift attributable to computer-induced task shifts. To make this comparison within our "fixed

coefficients" framework, we estimate a version of (18) in which we allow p -4 -co , which implies that

** Autor, Katz and Krueger ( 1 998), Johnson (1997), and Katz and Murphy (1992) implement a similar model. Our
implementation is closest to Autor, Katz and Krueger's, and we update their Table 2 to 1998 to perform the benchmark

demand shift estimates against which we compare our fixed coefficient calculations. Because (16) exhibits constant

returns to scale, we conserve notation by using N^^ and A^^, to refer to employment quantities and employment shares

interchangeably.

'' D,=a\nia,/[\~a,] + ia-\)\nia,/b,).
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a -> , the relative demand for college equivalents is Leontif (i.e., fixed coefficients). In this special

case, (18) reduces to

(19) AD^=A\niN^jN,,) = \n{l + [AN^JN^,]-ln{\ + [AN,JN,/\.

Here, changes in log relative demand are written entirely in terms of shifts in relative employment.''^

To gauge the contribution of computerization to demand shifts, we replace AiV^^ in (19) with AA^_.^ the

estimated computer-induced change in college graduate employment from equation (15).

For the period 1980 - 1998, task shifts induced by computerization are estimated to have increased

log relative college demand by 2.8 log points annually (Table 10, Panel C). Comparing this number to

the estimated economy-wide shift of 6.7 log points over this period, we find that changes in task

content explain approximately 40 percent of the observed shift. Notably, more than half of this impact

is accounted for by (normally unobservable) shifts along the intensive margin. The analogous

calculation for the three-decade interval finds that computer-induced task shifts explain approximately

30 percent of the demand shift favoring college graduates over 1970 - 1998.''^

In interpreting these estimates, we note that relative demand for college-educated labor in the U.S.

increased substantially from the 1940s through the 1960s, decades prior to computerization (cf

,

Acemoglu, forthcoming; Autor, Katz and Krueger, 1998; Johnson, 1997; and Mishel, Bernstein and

Schmitt, 1997). Hence, a claim that computerization has increased the relative demand for educated

labor requires evidence that computerization has accelerated demand growth beyond trends prevailing

during the 1 960s and earlier. It is therefore noteworthy that the estimates in Table 1 indicate that

computerization contributed to more rapid growth in college employment in the 1970s relative to the

"*
Cf., Hamermesh ( 1 993), Heckman, Lochner and Taber ( 1 998), and Katz and Murphy ( 1 992).

* Note that AA'^^^ = —AA'^^^. . For consistency with the fixed coefficients model, we use o = for this calculation. If we

used a= 1.4 instead, our estimate of the contribution of task shifts to observed college demand shifts would be

significantly larger, as follows from the substantial increase in relative wages of college graduates over 1980 - 1998.
"* As with the NIPA estimates in Table 6, we perform all calculations for 1970 - 1998 relative to the 1960s.

Specifically, we subtract off the 1960s trend task change from the task estimates for the 1970s, 1980s, and 1990s on

the assumption that these trends predated computerization and should not be counted as potential computer impacts.
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1960s, and that this impact was greater still during the 1980s and 1990s. Hence, our evidence suggests

that recent technological change has had an accelerating impact on the task structure of employment

smce the 1970s. Cumulatively, this impact appears to have contributed substantially to demand shifts

favoring college-educated labor.

7. Conclusion

A number of influential studies report a positive correlation between technology investments and

educational upgrading. Our study complements and advances this line of research. By conceptualizing

job skill demands in terms ofjob tasks rather than the educational credentials of workers performing

those tasks, our framework provides an account ofhow computerization and associated organizational

changes alters the composition ofjob tasks. This framework rationalizes the observed correlation

between computerization and increased use of educated labor and predicts pervasive shifts in

workplace task structure that are not observable in conventional data sources. By exploiting consistent,

representative, time series observations on the task structure ofjobs from the Dictionary of

Occupational Titles, we both affirm these predictions and find that they contributed substantially to

demand shifts favoring educated labor over the past three decades. While the limitations of the DOT

also place some constraints on the precision of our analysis, we believe it advances understanding of

the evolving skill content of work.
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Data Appendix

A.l. Samples usedfrom Current Population Survey and Census ofPopulations

To calculate occupational and educational distributions economy-wide and within industries for 1960 to

1998, we used observations on all non-institutionalized, employed workers ages 18-64 from the

Census PUMS one percent samples for 1960, 1970, 1980, and 1990 (Ruggles and Sobek, 1997) and the

Merged Outgoing Rotation Groups of the Current Population Survey for the years 1980, 1990, and

1998. All individual and industry level analyses are performed using as weights full-time equivalent

hours of labor supply, which is the product of the individual Census or CPS sampling weight times

hours of work in the sample reference week divided by 35 and, for Census samples, weeks of work in

the previous year. Our method provides equal weight to each hour of labor input in the economy rather

than over-weighting part-time hours as is implicitly done -when using raw Census sampling weights.

Because hours were not reported for the self-employed in the CPS prior to 1994, we assigned self-

employed workers in all CPS samples the average labor hours in their industry-education-year cell. In

cases where industry hours supplied by education category were unavailable (due to an empty industry-

education-year cell), we assigned weekly hours as the mean of workers' education-year cells.

To attain comparable educational categories (high school dropout, high school graduate, some college,

college-plus graduate) across the redefinition of Census's Bureau's education variable introduced in

1990 in the Census and in 1992 in the CPS, we use the method proposed by Jaeger (1997). In data

coded with the pre- 1992 education question (Census PUMS 1960, 1970, and 1980, and CPS MORG
files 1980 and 1990), we defined high school dropouts as those with fewer than 12 years of completed

schooling; high school graduates as those having 12 years of completed schooling; some college

attendees as those with any schooling beyond 12 years (completed or not) and less than 16 completed

years; and college plus graduates as those with 16 or more years of completed schooling. In data coded

with the revised education question (1990 Census PUMS and 1998 CPS MORG file), we define high

school dropouts as those with fewer than 12 years of completed schooling; high school graduates as

those with either 12 completed years of schooling and/or a high school diploma or G.E.D.; some college

as those attending some college or holding an Associate's Degree (either occupational/vocational or

academic); and college plus as those with a B.A. or higher.

A. 2. Computing DOT Task Meansfor Census Occupation Categories (COCs)

To compute DOT Task Means for 1970 CIC Occupafions, we used a special version of the April 1971

CPS Monthly File issued by the Nafional Academy of Sciences (1981) in which a committee of experts

assigned individual DOT occupation codes and associated DOT measures to each of 60,441 workers in

the sample. Because Census occupation categories are significantly coarser than DOT occupation

categories, the 411 1970 census occupation codes represented in the 1971 CPS were assigned a total of

3,886 unique 1977 DOT occupations.' To convert this micro data sample into DOT task measures by

CIC occupation, we used the CPS sampling weights to calculate weighted means of each DOT measure

by occupation. Because the distribudon of DOT occupations differs substantially by gender within COC
occupation cells, we calculated DOT-occupation means for each occupafion separately by gender. In

cases where a COC cell contained exclusively males or females, we assigned the cell mean to both

genders. This provided a set of 822 DOT occupafion means by 1970 COC and gender.

Although the DOT contains over 1 2,000 occupational titles created originally during the 1 930s, many of these

occupations correspond to extraordinarily narrowly defined manufacturing jobs that are no longer represented in

employment.
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We next required a method to consistently assign these means to COC occupations for 1960, 1980, and

1990.

To generate DOT means by 1960 occupation, we developed a crosswalk from the 1970 to 1960 COC
occupational classification schemes using information in Priebe and Greene (1972). Our crosswalk

(available on request) provides a set of 21 1 consistent 1960- 1970 occupations that represent the

lowest common level of aggregation needed to obtain a consistent occupation series. We applied the

1970 COC means to our 1970 Census sample by occupation and gender and calculated weighted

gender-occupation means across the 21 1 consistent 1960 - 1970 occupational categories. These means

provide our DOT task measures for 1960 occupational categories.

To generate DOT means for 1980 and 1990 occupations required an additional step. Because there is not

a close correspondence between the 1970 and 1980 COC coding schemes, it was not possible to

develop a bridging crosswalk as we did for 1960 - 1970. Instead, we employed a special Census sample

prepared for the Committee on Occupational Classification and Analysis chaired by Donald Treiman

and kindly supplied to us by Michael Handel. This file contains 122,141 observations from the 1980

Census that have been individually dual coded with both 1970 and 1980 COC occupation codes based

on occupational and other demographic information supplied by Census respondents. To calculate

DOT means by 1980 occupation, we merged the 1970 COC-DOT means describe above to the Treiman

file by gender and 1970 COC occupation, achieving a 97 percent match rate. We next appended to the

Treiman file a set of consistent occupation codes for the years 1980 to 1998 developed by Autor, Katz

and Krueger. These codes resolve minor changes to the COC schemes employed in the 1980 and 1990

Censuses and corresponding CPS files. Finally, to form DOT means by 1980 COC, we calculated labor-

supply weighted means of each DOT measure within consistent 1980 COC occupation gender

categories. These steps provide a set of by-gender DOT means for each of 485 DOT occupations that

are consistent for 1980 - 1998.

A. 3. Computing DOT Task Means by Consistent 1960 - 1998 Industry

To compute DOT task means overall, by industry, and by industry-education cell for 1960 - 1998, we
assigned the consistent DOT occupational task means for 1960 - 1998 by gender and occupation to

each observation in our Census and CPS samples for 1960 - 1998. Using labor supply in FTEs as

weights, we calculated means of each DOT measure for each occupation-industry-education-year cell.

These means provide the primary outcome measures for our analysis.

To attain compatibility between changing Census Industry Codes for 1960 - 1998, we use a crosswalk

developed by Autor, Katz, and Krueger (1998) providing 140 consistent CIC industries spanning all

sectors of the economy. This crosswalk includes all CIC industries and attains consistency by

aggregating where necessary to the lowest common level of consistent industry definition among 1970,

1980 and 1990 CIC standards.

A. 4. Calculating Within-Occupation Changes in DOT Task Measures: 1977 - 1991

To measure within-occupation changes in task content, we employed the 1991 Revised Fourth Edition

of the Dictionary of Occupational Titles (available in electronic form as National Academy of Sciences,

1981). Based on a study of select industries to determine which jobs had undergone the most significant

occupational changes since the 1977 publication of the DOT 4* edition, DOT analysts introduced.

Hence, 1 980 COC codes vary within 1 970 COC codes and vice versa in this hand-coded sample.
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revised, and eliminated occupational definitions for occupations that were observed to have most

substantively changed between 1977 and 1991. In total, 2,452 occupations were reviewed, updated,

and/or added. In addition, 646 nominal titles were revised, 136 titles combined, and 75 deleted.

We use the Conversion Tables ofCode and Title Changes: Fourth to Revised Fourth Edition Dictionary

ofOccupational Title, kindly provided by the North Carolina Employment Security Commission, to

construct a crosswalk between the 1991 DOT and 1977 DOT occupation codes. Using this crosswalk,

we applied the DOT 1991 task variables to our 1971 CPS file, yielding a match rate of over 99.9

percent. Of these matched occupations, 73 percent had been updated between 1977 and 1991 by DOT
examiners. We then calculated DOT means by 1970 and 1980 COC occupations and gender using a

procedure identical to that described in A. 3. Because we use identical procedures for processing both

DOT files, the within-occupation variation in DOT task measures that we exploit stems exclusively

from re-evaluation of occupational content by DOT examiners, rather than from changes in the relative

size of DOT sub- occupations within CIC occupations.

A. 5. Composite Task Indicatorsfrom the DOT

To verify that our results are robust to plausible alternative selections of DOT variables, we formed

composite indicators of our intended constructs using Principal Components Analysis. As described in

the text, we chose a short list of alternative DOT variables that appeared relevant to each of our

conceptual categories. These choices are (including our preferred DOT measures):

Non-Routine Cognitive/Analyfic Tasks: GED-MATH, GED-REASON, NUMER, INTELL

Non-Routine Cognitive/Interactive Tasks: DC?, GED-LANGUAGE, REPCON (-), AND DEPL

Routine Cognitive Tasks: STS, COLORDIS, MANDEX, AND MVC

Routine Manual Tasks: FINGDEX, MOTOR, FORM

Non-Routine Manual Tasks: EYEHAND, CLERICAL (-), SPATIAL

Note that a (-) sign next to variable means that it was considered to be opposite to the intended construct

and hence a suitable candidate for the PCA.

Using these variables (standardized with mean zero and variance one), we performed a PCA for each

set to identify the linear combinations that maximized common variation subject to the constraint that

the sum of squared vector weights is equal to one. Consistent with our treatment of DOT measures

above, we conducted PCAs separately for males and females using the occupation-by- gender data set

described in section A.2 and weighting by the occupational distribution of employment in the 1970

Census. In every case, we used the first principal component as the gender- and occupation-specific

composite indicator of the task measure. (In almost very case, only the first eigenvector was above one.)

To aggregate these task composites to the industry by year level, we followed steps exactly analogous

to those used for the non-composited DOT variables. Models that use these composites in place of the

direct DOT task measures are found in Panel B of Table 2 and in Appendix Table 5.

A. 6. Computer Usage Datafrom the Current Population Survey

Industry computer use frequencies were calculated from the October 1984 and 1997 School Enrollment

Supplements to the Current Population Survey (CPS) as the weighted fraction of currently employed
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workers ages 1 8 - 65 who answered yes to the question, "Do you use a computer directly at work?"

within consistent CIC industries. A computer is defined as a desktop terminal or PC with keyboard and

monitor and does not include an electronic cash register or a hand held data device. 61,712 and 56,247

observations were used to calculate these frequencies in 1984 and 1997 respectively.

A. 7. Computer and Capital Investment Measuresfrom the National Income and Products Accounts

We used data on capital stock (equipment and structures) and investment in computer equipment from

the National Income and Product Accounts (NIPA) to measure capital stock and computer capital

holdings at the industry level between 1950 - 1997. To reduce measurement error, all variables in the

NIPA were constructed as 5-year centered averages of the respective data category. All NIPA stock and

investment variables are measured in real dollars. Deflation of NIPA measures is performed by the

Bureau of Economic Analysis using primarily Producer Price Indexes (PPI's). PPI's for computer

investment are based on quality adjustment, price linking, and hedonic regression methods. As
denominators for capital/FTE and computer investment/FTE variables, we used Census and CPS
samples to calculate FTEs by industry by year.

We used two sources ofNIPA data to form estimates of capital stock and computer investment. For the

years 1950 - 1990, we relied on the 1993 revision of the NIPA (U.S. Department of Commerce, 1993).

In this data set, we measure computer investment using the Office Computing and Accounting

Machinery (OCAM) variable. Because this NIPA revision set only provides data to 1989, we utilized

the as-of-yet incomplete 1999 revision to the NIPA (U.S. Department of Commerce, 1999) to form

industry capital stock and computer investment measures for 1990 - 1997. In the 1999 NIPA release,

computer investment is calculated as the sum of data on investment in mainframe and personal

computers, computer storage devices, and computer peripherals. Because final capital stock measures

by industry are not yet availabfe in the 1999 NIPA data, we estimated each industry's capital stock as

the sum of all individual asset items by industry by year.

In pairing these two NIPA series, we make every effort to maintain consistency. In particular, we
rescale the revised NIPA variables for 1990 such that they are identical in weighted mean to the

previous release of the NIPA. We then apply this scaling factor to all NIPA measures from 1990 -

1998. In addition, we examined the sensitivity of our results to this pairing by re-estimating the NIPA
models in Table 6 excluding the years 1990 - 1998 (i.e., the years that use the revised NIPA data). Our

results (available on request) are quite insensitive to this exclusion.

To match CPS and Census data to the NIPA, we relied on a crosswak developed by Autor, Katz and

Krueger (1998) and revised for this analysis to accommodate small changes in the NIPA sector scheme

made during the recent NIPA revision. The resulting aggregation of NIPA and CIC data contains 47

consistent industries covering all industrial sectors excluding Government and Private Households,

spanning the 1960 - 1998 CIC standards. Of these 47, we exclude from our analysis agriculture and

government dominated services (5 NIPA industries).
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Table 1: Potential Impact of Computerization on Four Categories of

Workplace Tasks.

Routine Tasks Non-Routine Tasks

A. Visual/Manual

Examples • Picking and sorting engineered

objects on an assembly line.

• Reconfiguring production lines

to enable short runs.

• Janitorial services.

• Truck driving.

Computer

Impact

Examples

Computer

Impact

• Computer control makes capital • Limited opportunities for

substitution feasible. substitution or complementarity.

B. Information Processins/Cosnitive

• Bookkeeping;

• Filing/retrieving textual data;

• Processing procedural

interactions/ transactions (e.g.,

bank teller)

• Substantial substitution.

• Medical diagnosis;

• Legal writing;

• Persuading/selling.

Strong complementarities.



Table 2: The Impact of Industry Task Content in 1959 on Industry Computer Adoption

between 1959 and 1997.

Dependent Variable: Percentage of Industry Employees Using a Computer on the Job in 1997

1. Non-Routine 2. Non-Routine

Cognitive/ Cognitive/ 3. Routine 4. Routine 5. Non-Routine

Analytic Interactive Cognitive Manual Manual

A. Specifications Using Individual DOT Task Measures

(1) 1959 DOT Industy 9.94

Task Measure (1.70)

-2.09

(1.89)

5.52

(1.84)

8.16

(1.77)

-10.13

(1.69)

R' 0.20 0.01 0.06 0.13 0.21

(2) 1959 DOT Industy 6.37 -3.89 6.43 6.60 -8.06

Task Measure (1.89) (1.68) (1.61) (1.62) (1.61)

1959 Industry 7.00 10.89 10.78 9.12 8.22

College Grad. (1.89) (1.68) (1.61) (1.62) (1.61)

R^ 0.27 0.24 0.29 0.30 0.33

B. Specifications Usins Alternative Composite DOT Task Measures

(3) 1959 Industry 13.59

Task Composite (1-50)

8.04

(1.77)

-0.66

(1.90)

5.86

(1.83)

-13.59

(1.50)

R^ 0.37 0.13 0.00 0.07 0.37

(4) 1959 Industry 12.75 3.18 1.70 4.96 -11.41

Task Composite (2.14) (2.06) (1.73) (1.64) (1.52)

1959 Industry 1.19 8.40 10.62 9.79 6.28

College Grad. (2.14) (2.06) (1.73) (1.64) (1.52)

R' 0.37 0.22 0.22 0.26 0.44

n is 140 consistent 3-digit CIC occupations. DOT industry means are calculated using 1960 Census IPUMS

and DOT 1977 job content measures. To aid comparison between panels A and B, all DOT and composite

variables are standardized with mean zero and variance one. Mean of dependent variable is 45.4 percentage

points. Industry computer use 1997 calculated from October 1997 CPS. Details of construction of composite

DOT measures are provided in the Data Appendix.



Table 3. Means of Dictionary of Occupational Titles Job Task Measures:

Overall and by Gender, 1960 - 1998.

Task Measure

1. Non-Routine 2. Non-Routine

Cognitive/ Cognitive/ 3. Routine 4. Routine 5. Non-Routine

Analytic Interactive Cognitive Manual Manual

A. Overall

Census 1960 3.61 2.40 4.53 3.78 1.37

Census 1970 3.72 2.40 4.70 3.90 1.29

CPS 1980 3.76 2.46 4.61 3.90 1.24

CPS 1990 3.87 2.68 4.40 3.83 1.17

CPS 1998 3.97 2.89 4.11 3.75 1.16

^ Males and Females

Male Female Male Female Male Female Male Female Male Female

Census 1960 3.81 3.05 2.82 1.20 4.43 4.81 3.60 4.29 1.56 0.82

Census 1970 3.93 3.23 2.91 1.27 4.51 5.12 3.64 4.48 1.50 0.80

CPS 1980 3.95 3.46 2.94 1.71 4.47 4.84 3.62 4.34 1.55 0.74

CPS 1990 3.99 3.70 2.99 2.25 4.36 4.45 3.60 4.14 1.49 0.72

CPS 1998 4.07 3.84 3.10 2.62 4.24 3.95 3.58 3.97 1.48 0.73

Sources: All employed workers ages 18-64, Census IPUMS 1960 and 1970, CPS MORG 1980, 1990, and

1998, and Dictionary of Occupational Titles 1977. See Data Appendix for details.



Table 4. Between- and Within- Industry Decomposition of the Change in Skill Use: 1960 - 1998:

Dependent Variable is 10 x (Annualized Change in DOT Task Measure).

Task Measure

1. Non- 2. Non-

Routine Routine 5. Non-

Cognitive/ Cognitive/ 3. Routine 4. Routine Routine

Data Source Analytic Interactive Cognitive Manual Manual

A. Overall Task Shift

1960-70 Census-Census 0.107 0.005 0.166 0.119 -0.079

1970-80 Census-Census 0.095 0.114 0.000 0.014 -0.076

1980-90 CPS-CPS 0.108 0.215 -0.219 -0.067 -0.071

1990 - 98 CPS-CPS 0.130 0.266 -0.353 -0.105 -0.014

B. Betyveen- and Within-Industry Components

1960-70 Census-Census

1970-80 Census-Census

1980-90 CPS-CPS

1990-98 CPS-CPS

Btwn Wthin Btwn Wthin Btwn Wthin Btwn Wthm Btwn Wthin

0.078 0.029 -0.056 0.061 0.088 0.077 0.068 0.051 -0.062 -0.017

0.069 0.026 0.002 0.112 0.033 -0.033 0.024 -0.010 -0.031 -0.045

0.040 0.068 0.017 0.198 -0.100 -0.118 -0.001 -0.066 -0.034 -0.037

0.025 0.105 0.028 0.238 -0.100 -0.253 -0.009 -0.097 -0.004 -0.010

Shift-share analysis based on 140 CIC industries made consistent for 1960 - 1998. Samples are constructed for

all employed workers from Census and CPS samples listed above. All calculations weighted by labor supply in

FTEs (product of sample weight and annual hours worked). Observations use DOT 1977 occupational task

content measures paired to Census and CPS samples. See Data Appendix for fiirther details.



Table 5. OLS Estimates of the Relationship between Industry Computerization and Industry

Task Input, 1960 - 1998. Dependent Variables: 10 x (Annual Change in Task Measure)

Task Measure Estimate A. 1960-70 B. 1970-80 C. 1980 - 90 D. 1990 - 98

1 . A Non-Routine A Computer 0.055 -0.025 0.257 0.390

Cognitive/ Analytic 1984 - 97 (0.147) (0.132) (0.143) (0.156)

Intercept 0.016 0.032 0.003 0.005

(0.038) (0.035) (0.039) (0.043)

R^ 0.00 0.00 0.02 0.04

Mean Task A 0.029 0.026 0.068 0.105

2. A Non-Routine A Computer 0.532 0.483 0.786 0.758

Cognitive/ Interactive 1984 - 97 (0.239) (0.257) (0.276) (0.258)

Intercept -0.066 -0.008 0.000 0.043

(0.062) (0.069) (0.075) (0.071)

R^ 0.03 0.03 0.06 0.06

Mean Task A 0.061 0.112 0.198 0.238

3. A Routine Cognitive A Computer -0.152 -0.485 -0.740 -0.980

1984 - 97 (0.238) (0.289) (0.309) (0.294)

Intercept 0.114 0.087 0.068 -0.002

(0.062) (0.077) (0.083) (0.080)

R^ 0.00 0.02 0.04 0.07

Mean Task A 0.077 -0.033 -0.118 -0.253

4. A Routine Manual A Computer 0.055 -0.290 -0.241 -0.397

1984 - 97 (0.081) (0.101) (0.128) (0.114)

Intercept 0.038 0.062 -0.005 0.005

(0.021) (0.027) (0.035) (0.031)

R^ 0.00 0.06 0.03 0.08

Mean Task A 0.051 -0.010 -0.066 -0.097

5. A Non-Routine A Computer 0.022 -0.183 -0.087 0.230

Manual 1984-97 (0.064) (0.114) (0.105) (0.079)

Intercept -0.022 0.001 -0.015 -0.069

(0.017) (0.030) (0.028) (0.022)

R^ 0.00 0.02 0.00 0.06

Mean Task A -0.017 -0.045 -0.037 -0.010

n is 140 consistent GIG industries. Standard errors are in parentheses. Weighted mean of A computer use 1984 -

1997 is 0.252. Estimates are weighted by mean industry share of total employment (in FTEs) over the endpoints

of the years used to form the dependent variable. Computer use is the change in fraction of industry workers

using a computer at their jobs estimated from October 1984 and 1997 GPS samples. Samples used are Census

IPUMS for 1960, 70, and 80 and GPS MORG 1980, 90, and 98 samples.



Table 6. OLS Stacked First-Difference Estimates of the Relationship between Computer

Investment, Capital Intensivity, and Task Input in Three-Digit Industries 1960 - 1998.

Dependent Variable: 10 x (Annual Change in Task Measure)

Task Measure

1. A Non-Routine 1. A Non-Routine

Cognitive/ Cognitive/

Analytic Interactive

(1) (2) (3) (4)

3. A Routine

Cognitive

(5) (6)

4. A Routine

Manual

(7) (8)

5. A Non-Routine

Manual

(9) (10)

Log(CI/L) 0.228 0.202 0.854 0.822 -0.676 -0.623 -0.328 -0.275 0.254 0.201

(0.091) (0.106) (0.244) (0.245) (0.204) (0.187) (0.086) (0.070) (0.043) (0.049)

A Log(K/L) 0.033

(0.056)

0.041

(0.133)

-0.069

(0.109)

-0.068

(0.040)

0.068

(0.028)

1970-80 -0.027 -0.020 0.002 0.011 -0.040 -0.055 -0.019 -0.034 -0.044 -0.028

(0.035) (0.035) (0.067) (0.066) (0.094) (0.091) (0.022) (0.022) (0.016) (0.018)

1980-90 -0.032 -0.018 -0.132 -0.114 -0.002 -0.032 -0.024 -0.054 -0.106 -0.076

(0.048) (0.050) (0.117) (0.103) (0.116) (0.122) (0.031) (0.036) (0.021) (0.022)

1990-98 -0.035 -0.020 -0.141 -0.123 -0.041 -0.072 -0.012 -0.042 -0.104 -0.074

(0.047) (0.053) (0.108) (0.105) (0.111) (0.111) (0.039) (0.039) (0.023) (0.027)

Intercept 0.152 0.127 0.473 0.443 -0.236 -0.185 -0.102 -0.052 0.106 0.056

(0.050) (0.062) (0.119) (0.127) (0.116) (0.111) (0.044) (0.037) (0.023) (0.031)

R-squared 0.061 0.067 0.172 0.173 0.145 1.147 0.285 0.296 0.095 0.111

Mean A Dep. Variable

1960-70 0.042 0.064 0.089 0.055 -0.015

1970-80 0.038 0.151 -0.019 0.003 -0.033

1980-90 0.080 0.195 -0.122 -0.070 -0.043

1990-98 0.096 0.255 -0.216 -0.084 -0.021

n is 492: 123 consistent CIC industries times 4 decade changes. Standard errors in parentheses are

heteroskedasticity consistent and allow for clustering of errors within NIPA-year sectors (42 clusters per decade).

Private households, government, and government-dominated services are excluded due to NIPA data limitations.

1960-70, 70-80 use Census IPUMS samples, and 1980-90 and 1990-98 use GPS MORG samples. Log(CI/L) is

0.1 * log computer investment per FTE over decade in 1,000s of 1987$. A Log(K/L) is annualized change in the

log capital/FTE ratio over deacde. Weighted mean of log(CI/L) is -0.480 in 1960-1970, -0.379 in 1970-1980, -

0.172 in 1980-90, and -0.91 in 1990-97. Weighted mean of A(K/L) log capital per worker is 0.439 in 1960-1970,

0.099 1970-1980, 0.100 in 1980-90, and 0.222 in 1990-98. Estimates are weighted by mean industry share of

total employment (in FTEs) over the endpoints of the years used to form the dependent variable.



Table 7. OLS Estimates of the Impact of Industry Computerization on Industry

Task Input Overall and among High School Graduates, 1980 - 98.

Dependent variable: 10 x (Annualized Change in DOT Task Measure)

Task Measure

1. A Non- 2. A Non-

Routine Routine 5. A Non-

Cognitive/ Cognitive/ 3. A Routine 4. A Routine Routine

Analytic Interactive Cognitive Manual Manual

A. Overall Within-Industrv Task Shifts

A Computer 0.400 1.008 -1.128 -0.402 0.080

Use '84-'97 (0.154) (0.268) (0.321) (0.137) (0.086)

Intercept 0.004 0.016 0.043 0.000 -0.041

(0.032) (0.056) (0.067) (0.029) (0.018)

Mean A 0.082 0.212 -0.177 -0.079 -0.026

R^ 0.046 0.093 0.082 0.058 0.006

B. Within-Industrv Task Shifts Among High School Graduates

A Computer -0.011 0.796 -2.297 -0.833 0.056

Use '84-'97 (0.134) (0.259) (0.396) (0.154) (0.108)

Intercept -0.039 -0.037 0.162 0.019 0.001

(0.028) (0.054) (0.082) (0.032) (0.023)

Mean A -0.041 0.118 -0.286 -0.144 0.012

R^ 0.000 0.064 0.197 0.176 0.002

n is 140 consistent CIC industries. Standard errors are in parentheses. Computer use is

measured as ten times the change in industry computer use frequency from the 1984 and

1997 CPS (weighted mean 0.198). Dependent vanables formed from CPS MORG 1980

and 1998 samples using DOT 1977 occupational task content measures. Models are

weighted by mean industry share of total employment (in FTEs) over the endpoints of the

years used to form the dependent variable.



Table 8. Contribution of Computerization to Task Upgrading

Within and Between Education Groups, 1980 - 1998.

Dependent Variable: 10 x (Annualized Within-Industry Change in DOT Task Measure)

l.ANon- 2. A Non-

Routine Routine 5. A Non-

Cognitive/ Cognitive/ 3. A Routine 4. A Routine Routine

Analytic Interactive Cognitive Manual Manual

Overall change 80 - 98 0.152 100% 0.388 100% -0.321 100% -0.143 100% -0.045 100%)

Due to computerization 0.143 94% 0.359 93% -0.402 125% -0.143 100% 0.029 -64%

Within education groups 0.069 45%, 0.269 69% -0.258 81%) -0.131 91%) 0.019 -43%

HS dropouts 0.003 2% 0.034 9%o -0.026 8%) -0.009 6% -0.009 20%>

HS graduates 0.050 33%, 0.125 32% -0.141 44%o -0.051 35% 0.010 -22%

Some college 0.019 12%o 0.066 17%) -0.126 39%o -0.057 40% -0.004 9%

College plus -0.003 -2% 0.044 11%) 0.035 -11% -0.014 10% 0.022 -50%

Between education group 0.074 49% 0.090 23% -0.144 45%) -0.013 9% 0.009 -21%

The dependent variable is ten times the annualized within-industry change in each measvire of task input. The

component due to computerization is calculated using regression estimates from Table 7 and Appendix Table 6.

Two columns of figures are provided for each task measure. The left hand column displays displays the

annualized change measure and the right hand column displays the percentage of the overall change explained.



Table 9. OLS Estimates of Relationship Between Changes in Dictionary of Occupational

Titles Task Content Measures 1977 - 1991 and Occupational Computerization 1984 - 1997.

Dependent Variable: 10 x (Annualized Within-Occupation Change in Task Measure)

Task measure

1. A Non- 2. A Non-

Routine Routine 5. A Non-

Cognitive/ Cognitive/ 3. A Routine 4. A Routine Routine

Analytic Interactive Cognitive Motor Motor

(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

A Computer 0.30 0.33 0.96 0.97 -2.96 -3.07 0.04 0.06 0.27 0.28

Use 84-97 (0.12) (0.12) (0.36) (0.36) (0.54) (0.54) (0.12) (0.12) (0.12) (0.12)

A College Grad -0.57

Emp. Share 84-97 (0.34)

-0.14

(1.04)

2.35

(1.57)

-0.42

(0.35)

-0.10

(0.35)

Intercept -0.09 -0.08 -0.08 -0.08 0.13 0.11 -0.02 -0.02 -0.12 -0.12

(0.03) (0.03) (0.08) (0.08) (0.12) (0.12) (0.03) (0.03) (0.03) (0.03)

R^ 0.01 0.02 0.02 0.02 0.06 0.07 0.00 0.00 O.OI 0.01

Wtd. Mean

Dep. Var.

-0.03 0.09 -0.40 -0.02 -0.07

Notes, n is 470 consistent 3-digit CIC occupations. Dependent variable is the change in the occupational

DOT skill content measure between the DOT 1977 and DOT 1991 revisions. Computer use and college

graduate employment are measured as ten times the change in occupational computer use and college-

plus graduate frequencies from the 1984 and 1997 CPS (weighted means 0.181 and .018 respectively).

Estimates are weighted by the occupational share of employment in 1984.



Table 10. Demand Shift Calculations: Estimated Change in Log College vs,. Non-College

Relative Demand Due to Task Shifts Induced by Computerization: 1970 - 1998.

A. Change in DOT task input measures predicted by computerization (from Tables 6, 7 and 9)

Intensive

Extensive margin Margin Sum
NIPA Data CPS Data

Task measure 70-80 80-90 90-98 80-98 80-98

0.405

70-98 80-98

1. N.R. Cognitive/Interactivt 0.086 0.263 0.266 0.359 1.020 0.764

2. N.R. Cognitive/Analytic 0.023 0.070 0.071 0.143 0.126 0.290 0.268

3. Routine Cognitive -0.068 -0.208 -Olhh -0.402 -1.246 -1.733 -1.648

4. Routine Manual -0.033 -0.101 -0.102 -0.143 0.016 -0.220 -0.128

5. Non-Routine Manual 0.019 0.070 0.074 0.029 0.116 0.278 0.144

B. Predicted change in college share of employment (in percentage points)

Intensive

Extensive margin Margin Sum
NIPA Data CPS Data

Task measure 70 - 80 80 - 90 90 - 98 80-98 80-98

2.46

70-98 80-98

1. Routine tasks 0.13 0.39 0.39 0.76 3.36 3.22

2. Non-routine tasks 0.15 0.44 0.45 0.99 0.81 1.85 1.80

3. All tasks 0.28 0.87 0.88 1.75 3.27 5.29 5.02

Actual A college emp. 5.74 4.27 2 56 6.83 6.83 12.57 6.83

C. 100 X Annual shifts in log (College/Non-College) demand

Intensive

Extensive margin Margin Sum
NIPA Data CPS Data

Shift measure 70-80 80-90 90-98 80-98 80-98

6.69

70-98 80-98

C.E. S. estimated demand 3.26 4.60 2.09 6.69 9.95 6.69

shift usingo=1.4

Shift implied by task A's 0.22 0.51 0.45 1.01 1.85 2.86 2.77

Coefficients for fixed coefficient demand shifts calcuations are estimated from a regression of

occupational college employment shares on DOT means using the 1970 Census. Changes in DOT skill

measures predicted by computerization are from Tables 6 and 7 ('extensive margin') and Table 9

('intensive margin'). Observed change in college employment (in FTEs) are estimated from Census 1970,

Census 1980, Morg 1980, Morg 1990, Feb. 1990, and Morg 1998 samples for all employed workers.

Constant Elasticity of Substitution estimates of changes in log(college/non-college) relative demand is

based on Autor, Katz, and Krueger (1998) Table 2, updated to 1998 using CPS Morg 1998 sample.
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Appendix Table 2: Means of Dictionary of Occupational Titles Job Content Measures Overall

and by Education Group at Mid-Point of 1960 - 1998 Sample.

Task Measure

1. Non-Routine 2. Non-Routine

Cognitive/ Cognitive/ 3. Routine 4. Routine 5. Non-Routine

Analytic Interactive Cognitive Manual Manual

A. Overall

Overall 3.76 2.46 4.61 3.90 1.24

HS Dropouts 2.55 1.32 -----4.93 3.72 1.80

HS Graduates 3.34 1.75 5.30 4.09 1.26

Some College 3.97 2.45 4.87 4.02 1.10

College Plus 5.36 4.76 2.86

B. Males and Females

3.57 0.87

Male Fem Male Fem Male Fem Male Fem Male Fem

Overall 3.95 3.46 2.94 1.71 4.47 4.84 3.62 4.34 1.55 0.74

HS Dropouts 2.76 2.11 1.55 0.84 5.25 4.26 3.59 4.00 2.12 1.12

HS Graduates 3.45 3.20 2.17 1.20 5.14 5.50 3.69 4.61 1.77 0.60

Some College 4.07 3.82 2.97 1.68 4.38 5.58 3.62 4.61 1.42 0.62

College Plus 5.67 4.75 5.30 3.69 2.86 2.87 3.52 3.67 0.85 0.92

Sources: CPS MORG 1980, all employed workers ages 18-64 and Dictionary of Occupational Titles, 1977.



Appendix Table 3. Estimates of the Relationship between Industry Computerization and

Industry Task Input 1960 - 1998 Using Composite Task Measures.

Dependent Variables: 10 x (Annual Change in Task Measure)

Task Measure Estimate A. 1960-70 B. 1970-80 C. 1980-90 D. 1990-98

1. A Non-Routine A Computer 0.060 -0.047 0.157 0.376

Cognitive/ Analytic 1984-97 (0.143) (0.127) (0.130) (0.134)

Intercept 0.057 0.070 0.030 0.001

(0.037) (0.034) (0.035) (0.037)

R^ 0.00 0.00 0.01 0.05

Mean Task A 0.071 0.059 0.070 0.097

2. A Non-Routine A Computer 0.178 0.017 0.112 0.318

Cognitive/ 1984 - 97 (0.118) (0.092) (0.120) (0.106)

Intercept 0.012 0.051 0.047 0.006

(0.030) (0.024) (0.032) (0.029)

R^ 0.02 0.00 0.01 0.06

Mean Task A 0.054 0.056 0.075 0.087

3. A Routine A Computer -0.031 -0.239 -0.106 -0.181

Cognitive 1984-97 (0.075) (0.106) (0.097) (0.116)

Intercept 0.022 0.025 -0.030 -0.039

(0.019) (0.028) (0.026) (0.032)

R^ 0.00 0.04 0.01 0.02

Mean Task A 0.015 -0.034 -0.060 -0.086

4. A Routine Manual A Computer 0.101 -0.390 -0.321 -0.341

1984 - 97 (0.102) (0.121) (0.130) (0.113)

Intercept 0.016 0.040 -0.002 -0.007

(0.026) (0.032) (0.035) (0.031)

R^ 0.01 0.07 0.04 0.06

Mean Task A 0.040 -0.010 -0.083 -0.095

5. A Non-Routine A Computer -0.027 0.004 0.138 0.274

Manual 1984 - 97 (0.057) (0.090) (0.093) (0.075)

Intercept -0.008 0.004 -0.034 -0.056

(0.015) (0.024) (0.025) (0.021)

R^ 0.00 0.00 0.02 0.09

Mean Task A -0.014 0.005 0.001 0.014

n is 140 consistent CIC industries. Standard errors are in parentheses. See Table Notes to Table 5 for

details on estimation. See Data Appendix for details on construction of composite variables.



Appendix Table 4. OLS Estimates of the Impact of Industry Computerization on Industry

Task Input by Education Group, 1980 - 98.

Dependent variable: 10 x (Annualized Change in Task Measure)

Task Measure

1. A Non- 2. A Non-

Routine Routine 5. A Non-

Cognitive/ Cognitive/ 3. A Routine 4. A Routine Routine

Analytic Interactive Cognitive Manual Manual

A. High School Dropouts

A Computer 0.066 0.682 ~ - -XJ.522 -0.185 -0.185

Use '84-'97 (0.215) (0.476) (0.559) (0.162) (0.150)

Intercept -0.076 -0.201 0.068 0.014 0.015

(0.045) (0.099) (0.117) (0.034) (0.031)

Mean A -0.063 -0.068 -0.034 -0.022 -0.021

R^ 0.001 0.015 0.006

B. Some College

0.010 0.011

A Computer 0.210 0.748 -1.433 -0.649 -0.044

Use '84-'97 (0.161) (0.281) (0.369) (0.152) (0.107)

Intercept -0.052 -0.046 0.101 0.032 0.008

(0.034) (0.058) (0.077) (0.032) (0.022)

Mean A -0.011 0.100 -0.178 -0.095 -0.001

R' 0.012 0.049 0.099 0.117 0.001

C . College Graduates

A Computer -0.035 0.496 0.395 -0.154 0.254

Use '84-'97 (0.176) (0.388) (0.396) (0.135) (0.125)

Intercept 0.000 -0.009 -0.160 -0.007 -0.059

(0.037) (0.081) (0.083) (0.028) (0.026)

Mean A -0.007 0.088 -0.083 -0.037 -0.010

R^ 0.000 0.012 0.007 0.009 0.029

Standard errors are in parentheses, n in panels A, B and C is 139, 140, and 139 consistent industries

respectively. Industries that did not have employment in the relevant educational category in both 1980 and

1998 were excluded. Data sources are GPS MORG 1980 and 1998 and DOT 77 job task measures.

Estimates are weighted by mean industry share of total employment (in FTEs) in 1980 and 1988.

Computer use is measured as ten times the change in industry computer use frequency from the 1984 and

1997 GPS (weighted mean 0.198).
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