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Abstract. The preconvective environment on days with or-

dinary, widespread, and severe thunderstorms in Southwest

Germany was investigated. Various thermodynamic and ki-

netic parameters calculated from radiosoundings at 12:00

UTC were verified against subsequent thunderstorm observa-

tions derived from SYNOP station data, radar data, and dam-

age reports of a building insurance company. The skill of the

convective parameters and indices to predict thunderstorms

was evaluated by means of probability distribution functions,

probabilities of thunderstorms according to an index thresh-

old, and skill scores like the Heidke Skill Score (HSS) that

are based on categorical verification.

For the ordinary decision as to whether a thunderstorm

day was expected or not, the best results were obtained

with the original Lifted Index (80% prediction probability

for LI≤−1.73; HSS=0.57 for LI≤1.76), the Showalter In-

dex, and the modified K-Index. Considering days with iso-

lated compared to widespread thunderstorms, the best per-

formance is reached by the Deep Convective Index. For days

with severe thunderstorms that caused damage due to hail,

local storms or floods, the best prediction skill is found again

for the Lifted Index and the Deep Convective Index, but also

for the Potential Instability Index, the Delta-θe Index, and a

version of the CAPE, where the lifting profile is determined

by averaging over the lowest 100 hPa.

1 Introduction

The prediction of thunderstorms is one of the most difficult

issues in weather forecasting. Deep convective clouds de-

velop on a rather small spatial and temporal scale in the order

of 1–10 km and 1–12 h. So far, operational numerical models

with horizontal resolutions of about 10 km have often failed
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to predict not only the location and the time of convection

initiation (Anquetin et al., 2005; Meißner et al., 2007), but

also the type and intensity of thunderstorms. Severe thun-

derstorms are frequently associated with heavy rainfall, hail,

or local storms that are a major cause of natural disasters

particularly over mountainous terrain that favor the initiation

or the triggering of convection (Orville, 1965; Banta, 1990;

Barthlott et al., 2006). Improving the prediction of thunder-

storms, especially of severe ones, consequently is a challeng-

ing task that may help to prevent or mitigate damage.

The general requirements for a preconvective environment

are well known and were summarized by many authors, for

example by Doswell (1987) or Houze (1993): 1) Any kind

of instability over a layer of sufficient depth, 2) a moist layer

at lower levels, and 3) a mechanism that triggers the con-

vection. To quantify the first two conditions, various ther-

modynamic and kinematic parameters have been designed

in the past decades. These so-called convective parameters

and indices reflect the potential for thunderstorm develop-

ment according to the prevailing properties of the air mass.

In many studies, the efficiency of the various indices derived

from the observed vertical profiles for thunderstorm predic-

tion was investigated, for example by Schulz (1989), Lee

and Passner (1993), Fuelberg and Biggar (1994), Huntrieser

et al. (1997), Haklander and Van Delden (2003), and Man-

zato (2005). However, little attention has been paid so far

to the index-based prediction of severe thunderstorms. The

present study aims at evaluating several convective indices

with respect to their skills and efficiency to predict thunder-

storms of variable severity. The study tries to give some use-

ful insight into the characteristics of the preconvective envi-

ronments that are decisive for the initiation of thunderstorms.

The area under investigation is located in the northern

parts of the federal state of Baden-Württemberg in South-

west Germany (Fig. 1). The terrain exhibits a certain com-

plexity with some rolling terrain and the low mountain ranges

of the Black Forest and Swabian Jura. Local wind systems
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Fig. 1. Area under investigation with the radiosonde station

Stuttgart-Schnarrenberg, SYNOP stations, range of the radar (solid

circle), and area of the considered insurance data (dotted circle).

often develop at the slopes and in the larger valleys (Koß-

mann and Fiedler, 2000), which may trigger the initiation of

convection. It is well known that this region favors the de-

velopment of deep convection (Meißner et al., 2007), often

associated with damage due to hail, local storms, or floods

(Kunz and Kottmeier, 2005). To obtain comprehensive in-

formation about both thunderstorm days and the intensity of

the thunderstorms, observation data from different networks

were used in this study: Data from SYNOP stations, radar

data, and damage reports from a building insurance company.

The paper is structured as follows: The data sets and their

characteristics as well as the derived convective indices will

be specified in Sect. 2. Section 3 will describe the methods

applied for the evaluation of the various indices. The skills

of the indices to predict thunderstorms in terms of statistical

parameters, probabilities of occurrence, and skill scores will

be discussed in detail in Sect. 4. The last Sect. 5 will give a

summary of the results and some conclusions.

2 Data sets

The prevailing preconvective environment is described by

various convective and thunderstorm indices derived from

radiosonde observations at 12:00 UTC at the station of

Stuttgart-Schnarrenberg (315 m a.s.l.; see Fig. 1) of German

Weather Service (Deutsche Wetterdienst (DWD)). Substan-

tial cold air advection on higher levels, often associated with

cold front passages, may reduce static stability profoundly.

Therefore, days with a temperature decrease of more than

5 K at 850 hPa in the succeeding 00:00 UTC sounding, were

excluded from the analysis (66 days between 1986 and 2003,

i.e. around 2% of all days). This criterion was tested against

other criteria including other levels and checked for synoptic

consistency in several cases.

For the assessment of the indices, information about thun-

derstorm occurrence and their characteristics is necessary

with a high spatial coverage and for a sufficiently long term.

Since these high requirements are not met by a single data

set, data from different kinds of observations were used:

SYNOP station data (SY), radar data (RA), and insurance

data (SV). Depending on the data set, the days were di-

vided into days without thunderstorms and days with dif-

ferent characteristics of thunderstorms. (see Table 1 for

the number of days). Since the analysis is based on the

12:00 UTC soundings thunderstorm occurrence is consid-

ered between 12:00 and 23:50 UTC only. This was not taken

into account for the insurance data as they have no time in-

dication. All examinations are restricted to a 6-month period

between April and September, when severe thunderstorms in

Germany occur almost exclusively.

2.1 Synoptic station data (SY)

Data measured by all DWD SYNOP stations with a dis-

tance of less than 75 km around the radiosonde station be-

tween 1986 and 2003 were used to determine thunderstorm

days (red circles in Fig. 1: Stuttgart, Freudenstadt, Stötten,

Öhringen, Karlsruhe, and Ulm). Days with more than 50%

data set to false, e.g. no observer present, were excluded from

the list. Such days totaled 236 days or 7.2%. In the SYNOP

report, the present and past weather types at and around a

station are hourly encoded by the ww-code, a two-digit num-

ber between 00 and 99. The following numbers indicate the

occurrence of thunderstorms: ww=13, 17, 29, 91–99. If any

of these numbers is recorded at any station, the day is consid-

ered a thunderstorm day (SY). Figure 2a shows the monthly

means of thunderstorm days according to the observations at

the SYNOP stations with a distinct maximum in July and a

minimum in November.

2.2 Radar data (RA)

Based on the high-resolution data from the C-band radar of

IMK between 1998 and 2001, days with various thunder-

storm intensities could be distinguished. The radar situated

at the Forschungszentrum Karlsruhe (FZK) covers a range

of 120 km in radius (Fig. 1). It has a spatial resolution of

1 km×1 km and a temporal resolution of 10 min. Days with

less than 50 scans, i.e. less than 490 min observing time, were

excluded from the study.

To determine intensities and characteristics of the convec-

tive cells in the whole area, the tracking algorithm TRACE-

3D (Handwerker, 2002) was applied to the raw 3-D radar

data. The algorithm identifies convective cells by specific
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Table 1. Numbers of thunderstorm days derived from observational data for different definitions: Thunderstorm days according to SYNOP

data (SY); days with all kinds of thunderstorms (RA1), widespread (RA2), and severe (RA3) thunderstorms according to the radar data (RA);

days with damage due to hail (SV1) and widespread hail (SV2); days with damage due to storm/flood (SV3) and widespread storm/flood

(SV4) according to the data of the SV insurance company (SV).

SY RA1 RA2 RA3 SV1 SV2 SV3 SV4

Non-thunderstorm days 2.251 461 – – 3.170 – 3.099 –

Thunderstorm days 807 117 86 60 124 21 195 39

radar signatures and follows them in space and time using

successive radar images. For each scan, the algorithm deter-

mines the total number of cells, maximum reflectivity, and

the volume and spatial extension of the convective area.

A day was classified as a thunderstorm day, if more than 6

scans during the relevant period, 3 of them consecutive, met

the following conditions: Maximum reflectivity ≥60 dBZ,

number of cells ≥6, convective area ≥60 km2, and convec-

tive volume ≥120 km3 (RA1). If all these criteria were ful-

filled for 15 scans with 5 of them consecutive, the day was

classified as a day with widespread thunderstorms (RA2). Fi-

nally, if the same conditions were valid as for RA1, but with

a maximum reflectivity of ≥65 dBZ and a convective area of

≥100 km2, the days were categorized as severe thunderstorm

days (RA3). The different criteria were adjusted and tested

manually by convective signatures in summertime reflectiv-

ity images (MaxCappi).

The classification scheme for the radar data did not re-

veal any thunderstorm day between November and March

(Fig. 2a) because of the low vertical extension of convection

and the low reflectivity for ice particles. But also for the

other months, the number of thunderstorm days according to

the radar data is lower compared to that determined from the

SYNOP data. Hence, the criteria for defining a thunderstorm

day are more stringent for the radar data in comparison to the

SYNOP data.

2.3 Insurance data (SV)

Another classification of days with severe thunderstorms was

based on loss data of the SV Sparkassen–Versicherung build-

ing insurance company (hereinafter referred to as SV) for

the period 1986–2003. Between 1960 and 1994, a build-

ing insurance against natural hazards – earthquakes, land-

slides, floods, storms, hail, or avalanches – was obligatory in

Baden-Württemberg and offered exclusively by the monopo-

list Gebäudeversicherung Baden–Württemberg. This results

in a good representativeness of the loss data, even though the

number of policies, now taken out by the successor SV, had

decreased successively since the abolishment of the obliga-

tion in 1994.

Separated into five-digit postal code zones, the data com-

prise the date of each damage event, the number of notifica-

tion of claims, and the kind of the hazard. The total number
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Fig. 2. Monthly mean of thunderstorm days as defined by SYNOP

station data and radar data (top) and number of hail or storm/flood

days according to the SV insurance data (bottom).

of policies per year and per postal code zone allows for a data

correction to account for the yearly variability of the portfolio

and especially for the aforementioned decrease after 1994.

In this study, data of loss due to hail or due to floods and

storms associated with severe thunderstorms were used for

all postal code zones within a region of less than 75 km in ra-

dius around the radiosonde station (Fig. 1). A day was classi-

fied as a hail day (SV1) or storm/flood day (SV3) when more

than 10 claims (corrected) were settled on that day. This

www.nat-hazards-earth-syst-sci.net/7/327/2007/ Nat. Hazards Earth Syst. Sci., 7, 327–342, 2007



330 M. Kunz: The skill of convective indices to predict thunderstorms

lower threshold was necessary, because some damage notifi-

cations were ascribed to a wrong day. To separate local from

widespread events, a second threshold was defined by the

80% percentile of the frequency distribution of the number

of claims per day. This gives a threshold of 330 claims per

day for widespread/strong hail days (SV2) and 165 claims

for widespread storm/flood days (SV4).

Damage-causing thunderstorms as reflected by the insur-

ance data occur almost exclusively between May and August

(Fig. 2b). The absolute maximum for days with hail is found

in July, for storm/flood in June.

2.4 Radiosonde data and convective indices

From the Stuttgart radiosonde observations at 12:00 UTC,

various convective and thunderstorm indices that were con-

sidered to be predictors for expected thunderstorm devel-

opment, intensity of thunderstorms, or thunderstorm prob-

ability were calculated. The soundings contain profiles of

air pressure, geopotential height, temperature and dewpoint

temperature, wind speed and wind direction. As the ra-

diosonde data are archived only on constant pressure levels

as well as on significant levels, where the gradient of one

of the observed variables changes noticeably, all soundings

were interpolated into equidistant increments of 10 m.

During the observation period between 1 April 1986 and

30 September 2003, a total of 3256 complete soundings, that

is more than 98.9% of all possible soundings in that period,

were performed. Some vertical profiles exhibit incomplete

humidity or wind data, especially at upper air levels. If it

was not possible to calculate a certain convective index from

such an incomplete sounding, this index was excluded from

further examinations, but not the other indices on that day.

The theoretical concept underlying most of the different

indices is to represent conditional and/or latent and/or poten-

tial instability. The state of a layer is referred to as condi-

tionally instable when the environmental lapse rate curve is

between the dry and the moist adiabatic lapse rate curves on

a thermodynamic diagram (Haurwitz, 1941). Parameters that

account for this are the Vertical Totals (VT) or the Boyden In-

dex (BOYD). A state is referred to as latent instability when

the actual lapse rate above the level of free convection (LFC)

is lower than the moist-adiabatic lapse rate. In this concept,

conditional instability in a relatively dry environment can be

caused by a moist air parcel rising from below the LFC. This

is the underlying mechanism for the Convective Available

Potential Energy (CAPE), the Lifted Index (LI), Showalter

Index (SHOW), and Deep Convective Index (DCI). Finally,

a state of an unsaturated column of air where the equivalent

potential temperature θe decreases with height is called po-

tential instability (Emanuel, 1994). If such a column is lifted

entirely until complete saturation, it will become unstable re-

gardless of its initial stratification. This kind of instability

is described by the KO Index (KO), the Potential Instability

Index (PII), and the Wet Microburst Index or Delta-θe Index

(DTeI).

Other indices are a combination of the three different con-

cepts: The Total Totals (TT), K-Index (K), S-Index (S),

or the Jefferson Index (JEFF). Kinematic information in

terms of wind shear, wind speed, or wind direction at dif-

ferent levels is incorporated in the Severe Weather Threat

Index (SWEAT), the SWISS Index (SWISS), and the Bulk-

Richardson Number (RIB). Information about hail size if ex-

pected can be derived from the Wet Bulb Zero height (WBZ).

All indices used in this study and the respective equations are

listed in Table A1 in the Appendix. A detailed description of

most of the indices can also be found in the study of Haklan-

der and Van Delden (2003).

3 Methods

3.1 Probability distributions

A possibility to assess the skill of the various indices and to

estimate the range of values for the different categories of

days is to compare the probability distribution functions. A

predictor is most efficient if the probability distributions of

the particular categories are clearly separated, i.e. if the over-

lap between the distributions is small. To obtain an overview

of the indices’ efficiency for direct comparison, the distribu-

tion functions were also characterized by three different per-

centiles: The median and the 15.9% and 84.1% percentiles

whose distance is twice the standard deviation σ in case of a

normal distribution, i.e. approximately 68% of all values lie

in between.

3.2 Probability of thunderstorms

The probability of thunderstorms occurring during a 12-h pe-

riod simply can be determined by counting all days with and

without thunderstorm observations for a specific index value.

For this, an ordered list from high to low index values with

the corresponding thunderstorm observations has to be cre-

ated at first. From this list, the 1st to the k-th day is taken

to calculate a mean index value with a standard deviation

and the ratio of thunderstorm days to the total number k of

days in this interval. By considering the elements “correct

forecast” a and “false alarm” b of the contingency table (see

Table 2 and next section) only, this ratio may be regarded the

thunderstorm probability. The fixed interval with k days is

shifted for about one day and so on, until the end of the list

is reached, giving (n−k+1) thunderstorm probabilities and

associated mean values for a sample size n. The interval size

k for the SY data (n=3.058) was set to 200, for the RA3 data

(n=518) to 20, and for the insurance data (n=3.294) to 100.

The different interval sizes are due to the varying number of

thunderstorm days in the data sets.

To estimate the thunderstorm probability for a compari-

son of all indices, mean values and standard deviations for
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Table 2. Contingency table for a dichotomous categorical verifica-

tion of forecasts.

Observation

YES NO

YES a b
Fore- correct event forecast false alarms

cast c d
NO surprise events non-events

discrete probabilities P were quantified. They cannot be de-

rived directly from the graphs because of a lacking unam-

biguous relation between probabilities and index values, i.e.

the same probability may be obtained at several thresholds.

Hence, the method of Haklander and Van Delden (2003) was

applied who estimated the thresholds for a specific thunder-

storm probability P by determining the least index value

λhigh (with standard deviation σhigh), where the probability

reaches P , and the least index value beyond, λlow (with stan-

dard deviation σlow), where the probability stays ≥P . Fi-

nally, the mean value λ and the corresponding standard devi-

ation σ are given by:

λ(P ) = 0.5
[

(λhigh + σhigh) + (λlow − σlow)
]

, (1)

σ(P ) = 0.5
[

(λhigh + σhigh) − (λlow − σlow)
]

.

3.3 Categorical verification and skill scores

An objective method to assess the prediction skill of the var-

ious indices and to find appropriate thresholds is provided

by the categorical verification. The data sets are entered

into a 2×2 contingency table (Table 2), with four elements

a to d based on whether an event was observed (YES/NO)

and predicted (YES/NO). These methods are widely used

for the verification of weather forecasts (Wilks, 1995), but

in many studies also for the evaluation of thunderstorm in-

dices, e.g. by Doswell et al. (1990), Lee and Passner (1993),

or Huntrieser et al. (1997). Whereas the observations (pre-

dictands) match a type of binary scheme – like thunderstorm

occurrence vs. no thunderstorm occurrence –, the various pa-

rameters as predictors may assume a wide range of values.

By defining an appropriate threshold, also the index values

are separated into two parts. For indices that associate higher

values with a higher thunderstorm potential (e.g. CAPE or

DCI), a thunderstorm day is only predicted, when the thresh-

old is reached or exceeded. For indices that associate lower

values with a higher thunderstorm potential (e.g. LI or KO)

it is just reverse.

The problem then is to find an appropriate threshold,

where the correct event forecasts a are maximized and both

false alarms b and surprise events c are minimized. Fig-

ure 3 (top) illustrates the changes of the numbers in the cat-
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Fig. 3. Number of events for the different elements of the contin-

gency table according to Table 2 (top) and skill scores (bottom) as a

function of the Lifted Index LI100, verified using the SYNOP data.

egories a to d as a function of the Lifted Index LI100 (ver-

tical profile averaged over the lowest 100 hPa). For solving

this optimization problem, several skill measures were intro-

duced in the past. The index value, at which an appropriate

skill score reaches its maximum, is then assigned the opti-

mal threshold for the distinction of thunderstorm and non-

thunderstorm days. For the evaluation of thunderstorm in-

dices, both the Heidke Skill Score HSS (Heidke, 1926) and

the True Skill Statistic TSS (Hanssen and Kuipers, 1965)

are used frequently (see Appendix B for a description of the

scores). Both skill scores receive a value of 1 for a perfect

forecast, 0 for a totally random forecast, and a negative value

for a worst forecast.

An example of the behavior of several scores as a func-

tion of the LI100 is given in Fig. 3 (bottom). As the thresh-

old increases, both the Probability of Detection POD and the

False Alarm Rate FAR increase more or less monotonically

as the correct forecasts a and the false alarms b increase at

the same time. In contrast to this, the curves for HSS, TSS,

and the Critical Success Index CSI exhibit a distinct maxi-

mum for slightly different values of LI100. Hence, the as-

signed optimal threshold is subject to the applied skill score.
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Fig. 4. Relative frequency distribution and range of the values be-

tween the 15.9% and 84.1% percentiles for the Lifted Index LI100

(a and b) and the Deep Convective Index DCIS (c and d). Blank

squares in (b) and (d) indicate the mean values, filled squares the

median; the percentiles correspond to twice the distance of the stan-

dard deviation for a normal distribution.

The optimal thresholds according to the TSS frequently ex-

hibit a lower thunderstorm potential of the atmosphere than

the values for HSS. In most cases, the FAR for the maxi-

mum TSS exceeds that of HSS. Following Doswell et al.

(1990), who demonstrated that for very rare events (<1%)

TSS approaches the Probability of Detection POD that only

accounts for the observed events, the HSS was used here for

the assessment of the prediction skill of the indices.

4 Assessment of the convective indices

4.1 Probability distributions and mean values

First, the skills of the various indices are assessed by means

of probability distribution functions and related percentiles

as described in Sect. 3.1. Figures 4a and b show the prob-

ability distributions of the Lifted Index LI100 and the Deep

Convective Index DCIS (based on the surface Lifted Index

LIS) for non-thunderstorm and thunderstorm days according

to SYNOP data (SY), severe thunderstorm days according

to radar data (RA3), and days with hail damage (SV1) and

storm/flood damage (SV3). It should be noted that the area

below the distributions corresponds to 100%. For both in-

dices, the probability distributions for the SYNOP data over-

lap in a relatively small area only. For LI100, the size of the

area that is not jointly covered reaches 62%, for DCIS 45%.

When comparing thunderstorm days and days with severe

thunderstorms, e.g. SY with SV1 data, the non-overlapping

area is 37% for LI100 and 35% for DCIS.

Almost the same characteristics are obtained by the per-

centiles of the particular categories of predictands (Figs. 4b

and d). Again, the LI100 yields the clearest distinction of

all categories. For example, the range of values captured

by the lower and upper percentiles (i.e. 68% of all days)

for days with hail and storm/flood damage lies completely

outside the range of non-thunderstorm days according to the

SYNOP data. Furthermore, days with widespread and/or se-

vere thunderstorms are also indicated by smaller (for LI100)

or higher (for DCIS) index values – at least on the average for

various events. The range of values between the percentiles

defined is shown in Fig. 5 for all convective indices used in

this study. Most of the indices separate the different days

quite well. The worst indices according to the distribution

functions are SWISS12, HI, and SWEAT.

An estimation of expected hail size, if applicable, is given

by the WBZ height. According to the SV1 (and SV3) loss

data, the potential for large hail is highest for WBZ heights

between 2500 and 3500 m. Below as well as above this

range the hail size rapidly diminishes, resulting in an unam-

biguous relation between thunderstorm potential and WBZ

height. Since only in a few cases the WBZ exceeds a height

of 3800 m on days without thunderstorms, the upper range

can be neglected in the distributions function.
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percentiles of the distribution function evaluated for days without

thunderstorms (SYN), with all kinds of thunderstorms (SY), with

severe thunderstorms (RA3), hail damage (SV1), and storm/flood

(SV3) damage.

4.2 Probability of thunderstorms

Now, the thunderstorm probabilities are derived as a function

of the index values λ, as described in Sect. 3.2. By way of
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Fig. 6. Probability of thunderstorms as a function of the Lifted

Index LI100 (top) and the Deep Convective Index DCIS (bottom)

for days of different categories.

example, Fig. 6 shows the probabilities for the Lifted Index

LI100 and the Deep Convective Index DCIS. As expected, the

probability of all kinds of thunderstorm days increases with

decreasing LI100 and vice versa for DCIS. Highest proba-

bilities of up to 80% are reached when distinguishing be-

tween thunderstorm and non-thunderstorm days (SY) only.

For example, for a mean LI100 of −3.0 K, a highest proba-

bility of 85% was reached, i.e. 170 of the 200 days in this

interval were thunderstorm days (Fig. 6a). When consider-

ing the insurance data (SV1 and SV3), however, the com-

puted probabilities of damage due to hail or storm/flood are

significantly lower than for the other data sets. Considering

a mean value of −3 K for LI100, the probability of damage

by storm/flood is 49.5%, by hail 34.7% (Fig. 6a). This is

mainly due to the fact that it is only distinguished between

days with and without damage, regardless of whether thun-

derstorms occurred on that day or not. The highest prob-

abilities are reached for the decision between ordinary and

severe thunderstorms according to the radar data. Probabil-

ities above 90% are reached, whereas the curves also show

a strong variability. This is mainly caused by the fact that
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drawn as λ(P )±σ(P )) for different convective indices according to

days with thunderstorms (SY), hail damage (SV1), and storm/flood

damage (SV3). Indices with a maximum probability of less than

60% for the SYNOP data are not shown.

Table 3. Thunderstorm indices with optimal thresholds and dif-

ferent skill scores for the thunderstorm prediction verified against

SYNOP data between 1986 and 2003. The table shows the 12 in-

dices with the highest HSS.

Index Threshold HSS TSS POD CSI FAR

SY: thunderstorm vs. non-thunderstorm days

LI100 ≤1.76 K 0.57 0.62 0.81 0.53 0.39

SHOW ≤2.51 0.55 0.58 0.75 0.51 0.38

LIS ≤−0.22 K 0.49 0.54 0.73 0.47 0.43

Kmod ≥33.9 K 0.48 0.49 0.65 0.45 0.40

PII ≥−0.17 K km−1 0.47 0.52 0.72 0.46 0.44

TT ≥48.1 K 0.47 0.49 0.67 0.45 0.42

Jeff ≥27.9 K 0.46 0.50 0.70 0.45 0.44

CAPEmul ≥159 J kg−1 0.46 0.47 0.63 0.44 0.41

CAPECCL ≥380 J kg−1 0.46 0.48 0.65 0.44 0.42

K ≥26.1 K 0.46 0.47 0.63 0.44 0.42

KO ≤−0.31 K 0.46 0.50 0.72 0.45 0.45

VT ≥26.9 K 0.46 0.50 0.71 0.45 0.45

severe thunderstorms in the radar data are comparably rare

(60 days) due to the comparatively small sample size. Con-

sequently, the results should be interpreted with care.

Discrete thunderstorm probabilities P as a function of the

thresholds, as described in Sect. 3.2, are shown in Fig. 7

and additionally listed in Table C1 in the Appendix for the

SYNOP data (SV1) and the insurance data (SV1 and SV3).

The results for the radar data were omitted because of their

lacking of representativeness due to the small sample size

of events that is too low for the probability analysis. The

highest probabilities are reached when separating between

thunderstorm and non-thunderstorm days, regardless of their

intensities (SY). Two indices, namely, LI100 and Kmod, reach

a thunderstorm probability of more than 80%; thirteen of the

19 indices reach probabilities of more than 70%. Note that

the bar’s length in the figure is proportional to the standard

deviation σ(P ) that is determined by the distance between

λhigh and λlow (see Eq. 1). As expected, the probabilities of

the occurrence of damage are significantly lower than those

of the occurrence of all kinds of thunderstorms. Only 15 of

the 19 indices reach a probability of more than 30% for hail;

for storm/flood events, the number even decreases to 10.

4.3 Prediction skills and appropriate thresholds

An objective method to assess the prediction skill of the in-

dices is provided by the categorical verification as described

in Sect. 3.3. Both the optimal thresholds and the ranking

of the indices regarding their prediction skill are determined

by the maximum of the Heidke Skill Score HSS. The results

of the categorical verification are listed in Table 3 for the

SYNOP data, in Table 4 for the radar data, and in Tables 5

and 6 for the insurance data.

Although the ranking of the indices depends on the ob-

served thunderstorm characteristics and, hence, differs from
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Table 4. Same as Table 3, but for radar data between 1998 and

2001.

Index Threshold HSS TSS POD CSI FAR

(a) RA1: thunderstorm vs. non-thunderstorm days

Kmod ≥36.3 K 0.50 0.48 0.57 0.42 0.39

SHOW ≤2.10 0.48 0.55 0.73 0.43 0.49

LI100 ≤0.28 K 0.47 0.49 0.62 0.41 0.45

K ≥28.1 K 0.46 0.46 0.56 0.40 0.43

DCI100 ≥16.2 K 0.42 0.46 0.62 0.38 0.51

CAPEmul ≥520 J kg−1 0.41 0.45 0.62 0.37 0.52

DCIS ≥18.7 K 0.39 0.45 0.64 0.36 0.54

Jeff ≥29.2 K 0.39 0.41 0.56 0.35 0.51

CAPELFC ≥520 J kg−1 0.39 0.43 0.60 0.36 0.53

PII ≥−0.15 K km−1 0.39 0.49 0.74 0.37 0.57

LIS ≤−2.42 K 0.38 0.42 0.58 0.35 0.53

DTeI ≥1.34 K 0.37 0.42 0.60 0.34 0.55

(b) RA2: widespread vs. isolated thunderstorm days

DCI100 ≥12.2 K 0.41 0.39 0.87 0.74 0.17

LIS ≤−1.32 K 0.38 0.40 0.81 0.71 0.16

S ≥41.8 K 0.37 0.39 0.78 0.68 0.15

DCIS ≥14.1 K 0.36 0.34 0.88 0.74 0.18

WBZ ≥2458 m 0.33 0.31 0.86 0.72 0.19

SHOW ≤2.10 0.33 0.33 0.81 0.69 0.18

LI100 ≤0.63 K 0.33 0.35 0.77 0.67 0.17

KO ≤0.08 K 0.31 0.30 0.85 0.71 0.19

Kmod ≥33.5 K 0.31 0.31 0.83 0.70 0.18

K ≥26.3 K 0.31 0.33 0.78 0.67 0.17

DTeI ≥0.65 K 0.31 0.35 0.73 0.64 0.16

CAPELFC ≥329 J kg−1 0.30 0.32 0.77 0.66 0.18

(c) RA3: severe vs. non-severe thunderstorm days

DTeI ≥0.93 K 0.43 0.43 0.83 0.60 0.32

DCIS ≥22.3 K 0.42 0.42 0.65 0.53 0.25

SHOW ≤0.83 0.40 0.40 0.73 0.56 0.30

LIS ≤−2.42 K 0.38 0.38 0.77 0.56 0.32

LI100 ≤0.33 K 0.36 0.36 0.80 0.57 0.34

PII ≥0.03 K km−1 0.36 0.36 0.80 0.57 0.34

CAPELFC ≥732 J kg−1 0.35 0.35 0.67 0.51 0.31

KO ≤−1.00 K 0.35 0.34 0.83 0.57 0.36

DCI100 ≥12.9 K 0.34 0.34 0.90 0.59 0.37

CAPEmul ≥922 J kg−1 0.34 0.34 0.57 0.47 0.28

VT ≥27.0 K 0.33 0.33 0.75 0.54 0.35

WBZ ≥2507 m 0.33 0.32 0.88 0.58 0.38

table to table, the highest skill scores are generally achieved

with the traditional Lifted Index LI100, the Showalter In-

dex SHOW, and the modified K-Index Kmod. The most ap-

propriate indices for the prediction of severe thunderstorms

in descending order are: LI100, DCIS, DCI100, PII, DTeI,

CAPECCL, SHOW, and CAPEmul. In contrast, lowest skill

scores are reached in general by the Humidity Index HI, the

Bulk-Richardson number RIB, the Jefferson Index JEFF, the

S-Index, and the Boyden Index BOYD (not listed in the ta-

bles).

For the prediction of a thunderstorm day (SY in Table 3

and RA1 in Table 4a), the Lifted Index LI100, the Showal-

ter Index SHOW, and the modified K-Index Kmod, perform

Table 5. Same as Table 3, but for hail days according to the insur-

ance data between 1986 and 2003.

Index Threshold HSS TSS POD CSI FAR

(a) SV1: hail vs. non-hail days

LI100 ≤−2.07 K 0.39 0.44 0.48 0.27 0.62

CAPECCL ≥1763 J kg−1 0.36 0.41 0.45 0.24 0.66

CAPEmul ≥1474 J kg−1 0.36 0.39 0.43 0.24 0.65

CAPELFC ≥1474 J kg−1 0.35 0.39 0.42 0.23 0.66

DTeI ≥10.3 K 0.35 0.34 0.36 0.23 0.62

DCI100 ≥25.7 K 0.34 0.40 0.44 0.23 0.68

LIS ≤−4.19 K 0.34 0.47 0.52 0.23 0.71

DCIS ≥29.2 K 0.33 0.33 0.36 0.22 0.63

PII ≥1.90 K km−1 0.33 0.30 0.32 0.22 0.59

SHOW ≤−0.85 0.31 0.33 0.36 0.20 0.69

Kmod ≥38.9 K 0.27 0.38 0.44 0.18 0.77

KO ≤−6.32 K 0.26 0.29 0.33 0.17 0.74

(b) SV2: widespread vs. isolated hail days

PII ≥2.71 K km−1 0.31 0.25 0.29 0.24 0.40

SWEAT ≥287 0.31 0.23 0.25 0.23 0.29

DCIS ≥35.4 K 0.30 0.22 0.24 0.22 0.29

SHOW ≤−3.97 0.30 0.22 0.24 0.22 0.29

LI100 ≤−4.21 K 0.29 0.27 0.38 0.25 0.58

CAPECCL ≥2431 J kg−1 0.27 0.30 0.48 0.26 0.64

DCI100 ≥30.1 K 0.25 0.27 0.43 0.24 0.64

LIS ≤−5.67 K 0.21 0.27 0.52 0.23 0.70

Kmod ≥42.0 K 0.21 0.19 0.29 0.19 0.63

DTeI ≥11.8 K 0.20 0.23 0.43 0.22 0.69

WBZ ≥3485 m 0.20 0.22 0.38 0.21 0.68

K ≥31.1 K 0.18 0.26 0.57 0.23 0.73

best. The differences between both tables concerning the

ranking of the indices and their optimal thresholds are mainly

due to the different criteria that were used for the defini-

tion of a thunderstorm day. For the radar data, the criterion

is more stringent, as already reflected by the lower num-

ber of radar-defined thunderstorm days (Fig. 2). Consid-

ering the widespread vs. isolated thunderstorm day scheme

(RA2 in Table 4b), the ranking of the indices is slightly dif-

ferent with highest scores for the Deep Convective Index

DCI100, the surface Lifted Index LIS, and the S-Index. The

defined thresholds indicate a higher thunderstorm potential

compared to those discussed above.

For the prediction of severe thunderstorms that are asso-

ciated with damage due to hail (SV1 and SV2 in Table 5)

or storm/flood (SV3 and SV4 in Table 6), the highest skill

scores are obtained again for the Lifted Index LI100 and

the two versions of the Deep Convective Index, DCIS and

DCI100, but also for the CAPE in association with very high

thresholds (e.g. ≥1763 J kg−1 for CAPECCL). The listed

thresholds of the indices for hail days reveal the highest con-

vective potential compared to all other data sets. Also the

thresholds for widespread damage days (SV2 and SV4) gen-

erally exhibit a higher thunderstorm potential compared to

the other damage days (SV1 and SV3). Another interesting

result is that indices that were designed for the prediction of
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Table 6. Same as Table 3, but for storm/flood days according to the

insurance data between 1986 and 2003.

Index Threshold HSS TSS POD CSI FAR

(a) SV3: storm/flood vs. none storm/flood days

LI100 ≤−1.96 K 0.42 0.39 0.42 0.29 0.52

DCI100 ≥25.3 K 0.40 0.39 0.42 0.28 0.55

DCIS ≥25.4 K 0.39 0.45 0.51 0.27 0.63

CAPECCL ≥1763 J kg−1 0.37 0.34 0.37 0.26 0.56

PII ≥1.05 K km−1 0.36 0.45 0.52 0.26 0.67

CAPEmul ≥806 J kg−1 0.35 0.49 0.57 0.25 0.69

Kmod ≥38.0 K 0.35 0.47 0.55 0.25 0.69

SHOW ≤0.54 0.35 0.53 0.63 0.25 0.70

DTeI ≥4.34 K 0.35 0.48 0.56 0.25 0.69

CAPELFC ≥1495 J kg−1 0.34 0.30 0.33 0.23 0.57

LIS ≤−4.12 K 0.34 0.37 0.42 0.24 0.65

KO ≤−3.39 K 0.32 0.50 0.61 0.23 0.73

(b) SV4: widespread vs. isolated storm/flood days

DCIS ≥31.8 K 0.38 0.36 0.46 0.33 0.47

LI100 ≤−3.24 K 0.34 0.33 0.44 0.30 0.50

DCI100 ≥25.7 K 0.34 0.46 0.74 0.35 0.61

KO ≤−6.01 K 0.31 0.37 0.59 0.31 0.60

CAPEmul ≥1400 J kg−1 0.30 0.39 0.67 0.32 0.62

DTeI ≥7.20 K 0.30 0.41 0.72 0.32 0.63

CAPECCL ≥2486 J kg−1 0.30 0.27 0.36 0.26 0.50

LIS ≤−4.63 K 0.30 0.38 0.64 0.31 0.62

PII ≥1.95 K km−1 0.29 0.31 0.49 0.29 0.59

CAPELFC ≥1400 J kg−1 0.29 0.37 0.64 0.31 0.63

SHOW ≤−2.00 0.29 0.25 0.33 0.25 0.50

WBZ ≥3218 m 0.25 0.39 0.80 0.30 0.67

severe events, such as SWISS, SWEAT, or WBZ, exhibit no

significantly high scores. Only the SWEAT is listed in sec-

ond position for widespread hail events.

When ranking the indices based on the TSS instead of the

HSS, the results and the optimal thresholds are almost the

same for the SYNOP and the radar data (not shown). Major

differences between both skill scores are observed for the in-

surance data only (SV1 to SV4 in Table 4). For all indices,

the optimal thresholds determined by the TSS maxima indi-

cate a lower thunderstorm potential of the atmosphere com-

pared to that determined by the HSS maxima. The reason

for the differences is that the TSS is more related to a high

POD than to a low FAR, while HSS emphasizes a low FAR

associated with a higher thunderstorm potential (see Fig. 3).

Consequently, the FAR reaches high values of up to 0.8 for

the TSS maxima. Only when the number of days with thun-

derstorms observed almost equals the number of days with

predicted thunderstorms, are the scores almost the same for

HSS and TSS, as it is the case for RA3 and, partly, RA2.

Regarding the layer that appears to be most relevant to the

thunderstorm potential, a systematic relation cannot be found

for both isolated and widespread thunderstorms. In case of

severe thunderstorms, however, higher scores are obtained

for indices that depend on the lowest layers. The two indices

with the highest scores in the RA3 data directly depend on

temperature and humidity near the surface. For the SV data,

highest scores are reached by indices that either are derived

from properties near the surface (e.g. CAPE or DCIS) or that

are averaged over the lowest 100 hPa (e.g. LI100 or DCI100).

The question, over which layer the temperature and humidity

profile should be averaged to reach highest scores will be

addressed in the next section.

4.4 Sensitivity of skill scores to changes of the lifted profile

A crucial issue for the indices that represent latent instabil-

ity is their direct dependance on the properties of a particular

air parcel that is assumed to be lifted from a certain level.

Especially on high radiation days with a strongly superadia-

batic stratification and a strong increase of the mixing ratio in

the lowest layers, it is questionable whether the values near

the surface in particular may be representative of the whole

lifting process and for a larger region. On such days, the tem-

perature of an air parcel lifted from the surface to a certain

level exceeds that of a parcel lifted from any height between

the surface and the condensation level. Hence, indices that

are related to the lifting profile, like the CAPE or the LI, are

very sensitive to the vertical profiles of temperature and hu-

midity in the lowest layers.

Four convective indices were chosen to examine the sen-

sitivities of the forecasting skill to an averaging of the ini-

tial profiles: the Lifted Index LI, the Deep Convective In-

dex DCI, and two versions of CAPE, once determined by the

LFC, CAPELFC, otherwise by the CCL, CAPECCL. All four

indices are based on the properties of an air parcel that is as-

sumed to be lifted either from the near-surface layer (CAPE,

DCI) or from a layer determined by vertical mixing (LI). To

test the sensitivities of the indices, the mixing ratio, tempera-

ture, and initial level, from where the parcels are assumed to

be lifted, were modified by density-weighted averaging from

the surface to a level between 10 and 100 hPa above.

The Heidke Skill Score HSS results for different initial

values are shown in Fig. 8. As can be seen, a general stan-

dard for averaging that gives best results for all indices and

all kinds of thunderstorm days cannot be derived. In case

of the Lifted Index (Fig. 8a), the best results for SY, RA1,

and SV are obtained by averaging the vertical profile over

the lowest 100 hPa that corresponds to the traditional LI100.

For the prediction of severe thunderstorms only (RA3 and

SV1–SV4), the score then increases with the vertical exten-

sion of the averaging layer. The lowest score is obtained for

the surface-based Lifted Index, LIS – again except for the

two radar data sets.

Even though the Deep Convective Index DCI is directly

based on the LI, the variability of the skill scores for different

averaging levels is obviously higher than that for the LI. For

the decision of thunderstorms vs. no thunderstorms as cap-

tured by both SY and RA1, the scores obtained for the vari-

ous averaging levels of LI differ only marginally. For these

categories, DCI100 scores best. However, when considering
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Fig. 8. Heidke Skill Score HSS for Lifted Index LI (a), Deep Convective Index DCI (b), CAPE from the LFC (c), and CAPE from the

CCL (d). Initial temperature and mixing ratio of the assumed lifted air parcel are averaged over a certain depth (in hPa) above the surface

indicated by the subscription; a subscribed s means no averaging.

the prediction of severe thunderstorms only, the results for

RA3, SV2, and SV4 behave in an opposite way, with high-

est scores for DCI derived from near-surface values without

averaging, DCIS.

No general standard can be derived for the two versions

of CAPE as displayed in Figs. 8c and d. In case of severe

thunderstorms, best results are obtained for CAPELFC when

the profile is averaged over the lowest 100 hPa. Thus, high

CAPE values resulting from a superadiabatic stratification of

the layers directly above the surface are reduced. Note that

the prediction skill of CAPECCL for SY and SV – except for

SV2 – is not very sensitive regarding the averaging layer.

Even though the results for CAPE differ from case to case

in this analysis, it is recommended to average the vertical

profile over the lowest 100 hPa for the assumed lifted parcel

– at least for the prediction of severe thunderstorms.

5 Discussion and conclusions

The aim of this study is to assess the skill of various con-

vective or thunderstorm indices derived from radiosonde ob-

servations at 12:00 UTC for the prediction of thunderstorm

occurrence. To obtain comprehensive information about both

thunderstorm occurrence and intensity, different kinds of ob-

servation data sets were used. Data from SYNOP stations

allow to determine days without and with thunderstorms for

a long term, but with a low spatial coverage. Radar data

exhibit additional information about thunderstorm properties

in terms of maximum intensity, number of cells, and spatial

extension of the convective area, but are available for some

years only and cover a very large region of 120 km in radius.

Loss data from a building insurance company facilitate the

identification of days with extreme thunderstorms associated

with hail or storm/flood damage. By bringing together the

different data sets, the prediction skill and appropriate thresh-

olds of the various convective indices for thunderstorms with

different intensities are assessed comprehensively.

Frequency distributions of the index values and derived

percentiles already revealed the efficiency of the indices and

yielded an estimate regarding the range of values for the dif-

ferent thunderstorm categories. Most of the indices showed

quite a good separation of the ranges of values according

to the different categories of days, especially LI100, LIS,

SHOW, DTeI, and PII.

The categorical verification divided the investigated data

sets into a 2×2 contingency table to assess the prediction
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skill of the different indices. By considering the elements of

the table associated with an index-based thunderstorm fore-

cast only, the probability of thunderstorms was derived. To

decide on thunderstorm vs. non-thunderstorm days, the LI100

and Kmod reach a probability of more than 80%. Considering

days with damage due to hail or storm/flood only, the proba-

bilities obtained are significantly lower. For the prediction of

hail days, probabilities of more than 40% are reached for the

two versions of LI and DCI, for all three versions of CAPE,

for SHOW, DTeI, PII, and Kmod. For the storm/flood days,

the same probability is reached by CAPECCL and DTeI only.

Using all the information of the contingency table, the

Heidke Skill Score HSS was used to determine appropriate

thresholds for a thunderstorm forecast and to rank the indices

according their prediction skill. For the decision between

thunderstorm and non-thunderstorm days, LI100 and SHOW

score best with values of 0.57 and 0.55 for HSS. For the de-

cision on severe vs. non-severe thunderstorms, an HSS value

in excess of 0.4 is reached by DTeI, DCIS, and SHOW only.

Considering damage days, the index with the highest score

differs from one data set to another. The six indices with the

highest skill scores for the loss data sets are in descending

order: LI100, DCIS, DCI100, PII, DTeI, and CAPECCL. Most

of the indices that scored best in terms of the maximum HSS

also reached a high thunderstorm probability, despite the fact

that these two parameters consider different elements of the

contingency table.

The study of both the maximum thunderstorm probability

and the skill scores reveals that the prediction of thunder-

storm days with different characteristics cannot be achieved

by a single convective index that fits best to the observations.

The skill of the indices rather depends on the thunderstorm

intensity and the objective of the investigation. That also

applies to the problem of finding an appropriate threshold.

When summarizing the results, the indices with the highest

skills for thunderstorm prediction based on the 12:00 UTC

sounding are LI100, DCIS, SHOW, DTeI, PII, and CAPE. In

contrast to this, the prediction efficiency is found to be poor-

est for HI, RIB, S, TT, and BOYD.

When assessing the skill of the indices, it must be taken

into account that several indices were designed for the pre-

diction of a special kind of thunderstorm. The Boyden In-

dex BOYD originally was designed to assess the thunder-

storm probability during frontal passages in the UK. The

Bulk-Richardson number RIB was created to estimate the

thermodynamic and dynamic forcing of convective devel-

opment that may help to separate single- or multicell thun-

derstorms from supercell thunderstorms. This explains the

low skills of both indices in our study. Several other indices

were designed to forecast severe thunderstorms, such as DCI,

SWEAT, or the SWISS Index. However, when considering

severe thunderstorms only, a high prediction skill was found

for DCI, but not for the two other ones.

Regarding the theoretical concept underlying the different

indices, latent instability (represented by LI, DCI, CAPE,

SHOW) or potential instability (represented by KO, PII,

DteI) are the most important conditions for the onset of con-

vection. As regards the decision between thunderstorm and

non-thunderstorm days according to the SYNOP data, also

indices that combine the two concepts (TT, K, JEFF, S) reach

high probabilities as well as high skill scores. In contrast to

this, the combined indices exhibit poor benchmarks when

considering days with severe thunderstorms only. Here,

higher scores are obtained only by indices representing latent

or potential instability and based on temperature and humid-

ity values either from a near-surface level or averaged over

the lowest 100 hPa. Indices considering additional dynamic

information like the RIB or the SWISS Index exhibit signif-

icantly smaller skills for all types of thunderstorm days. It

is interesting to note that several other indices are more suit-

able to predict thunderstorms than the KO Index that was

designed and is still used by the DWD.

The study revealed that an index-based prediction of

severe thunderstorms that are associated with hail or

storm/flood damage is a big challenge. Skill scores for the

prediction as well as the maximum probabilities of severe

thunderstorms are quite low compared to the prediction of

thunderstorm vs. non-thunderstorm days. It must be kept

in mind, however, that vulnerability plays a decisive role in

the loss data, since, especially in sparsely populated regions,

not each severe storm causes the minimum number of ten

claims that define a damage day in this study. Besides, hail

events without a sufficient size of the hailstones do not cause

any damage of buildings and, thus, are not recorded by the

data. In the categorical verification scheme, this leads to an

overprediction with high FAR and low skill scores in case

of severe thunderstorms. Although the scores reached are

significantly lower than for all other kinds of thunderstorms,

any information about a possible occurrence of severe thun-

derstorms is very valuable and may help to prevent or reduce

damage.

A limiting factor of the sounding-based prediction concept

arises from the assumption that the atmospheric conditions

are homogeneous for the next 12 h after the sounding. When

air masses with different properties are advected, for exam-

ple, in conjunction with a frontal passage, the sounding can-

not be representative of the whole area and the whole period.

Another constraint of this method results from the neglect of

forced ascent acting on several scales. Local-scale flow ef-

fects and evolving convergence zones over topographically

structured terrain may often trigger the onset of convection.

Synoptic-scale lifting associated with differential vorticity

advection, temperature advection, and/or diabatic heat trans-

fer is an important trigger especially for scattered and severe

thunderstorms. Besides, the horizontal moisture convergence

particularly near the earth surface is decisive for the life cycle

of thunderstorms. It it obvious, that all these effects cannot

be taken into account by analyzing single radiosonde obser-

vations. To overcome these constraints, the convective in-

dices could be combined with appropriate parameters from
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a numerical model. In a recent study, Van Zomeren and van

Delden (2007) combined different versions of the Lifted In-

dex with the vertically integrated moisture flux derived from

weather analysis data from the European Centre for Medium-

range Weather Forecasts (ECMWF). They showed in their

study that the prediction of severe thunderstorm days and

tornado events over Europe improves significantly when em-

ploying the moisture flux in the prediction scheme.

State-of-the-art weather forecast tools include several

models that consider different spatial and temporal scales of

atmospheric disturbances. For the prediction of deep con-

vection, nowcasting models with a lead time of up to 2 h

provide information of thunderstorm intensity and expected

cell tracks that are extrapolated from observation data of re-

mote sensing systems (e.g. KONRAD of DWD). However,

the life cycle of thunderstorms or new cell formation can-

not be forecast. Regional high-resolution weather forecast

models that explicitly resolve deep convection, have typical

lead times around 6–12 h. The quality of convection fore-

cast is high if real-time precipitation data, e.g. from radar

data, are assimilated into the system. Weather prediction for

lead times of more than 12 h, i.e. short–range (up to 3 days)

and medium–range (up to 10 days) weather forecast, is well

covered by several models (e.g. COSMO-LME and GME of

DWD). However, up to now these models still have problems

to predict the life cycle of deep convective clouds due to in-

adequate convection parameterization schemes, error in the

initial conditions, or turbulent closure problem (Hense et al.,

2003).

Convective indices derived from radiosonde observations

may give additional information about atmospheric stabil-

ity and conditions for lead times between 1 and 12 h. This

time range is of great importance to many users and for is-

suing warnings of local convective extreme events associated

with heavy precipitation, hail, severe downdrafts, or even tor-

nados. In the hierarchy of weather prediction models, this

time range is covered by both, nowcasting tools and very

short-range forecasts. Hence, convective indices could be

employed in both systems. They could be included in now-

casting tools to estimate the thunderstorm probability and/or

thunderstorm intensity. And they are still a helpful measure

to better estimate the convective situation for weather fore-

caster since they represent a real state of the atmosphere.

Appendix A

Definition of convective indices

A summary of all convective parameters and indices used in

this study is listed in Table A1.

Appendix B

Skill scores

Based on the definition of the contingency table (Table 2),

the scores for categorical weather elements used in this study

are defined as follows:

Probability of Detection POD

POD =
a

a + c
(B1)

The range of POD is from 0 to 1, with 1 for a perfect forecast;

POD increases with overforecasting events; it includes no

false alarms.

False Alarm Rate FAR

FAR =
b

a + b
(B2)

The range of FAR is 0 to 1, with 0 for a perfect forecast; FAR

increases with underforecasting events.

Critical Success Index CSI

CSI =
a

a + b + c
(B3)

The range of CSI is 0 to 1, with 1 for a perfect forecast;

CIS includes both false alarms and surprise events; however,

events with different frequencies cannot be compared.

Frequency Bias FBI

FBI =
a + b

a + c
(B4)

The range of FBI is between 0 and ∞, with 1 for a perfect

forecast. FBI is the ratio between all events forecasted and

all events observed; the FBI does not include the non-event

forecasts d.

Heidke Skill Score HSS

HSS =
a + d − R

a + b + c + d − R
(B5)

with R =
(a + b) × (a + c) + (c + d) × (b + d)

a + b + c + d

The range of HSS is from −∞ to 1, with 1 for a perfect

forecast; R is the chance. Surprise events and false alarms

are included as well as the effect of a reference forecast. The

HSS is based on the hit rate as the basic accuracy measure

and follows the form of a generic skill score (Wilks, 1995).

True Skill Statistic (Hanssen-Kuiper discriminant): TSS

TSS =
a × d − b × c

(a + c) × (b + d)
(B6)
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Table A1. Summary of convective parameters and indices: T and T d are the temperature and dewpoint temperature (◦C), θe and θw are

the equivalent potential and wetbulb potential temperature (K), Z is the geopotential height (pgm), and Rd is the gas constant for dry air

(J/kg K). The subscript indicates a certain constant pressure level, the character s the surface; an arrow in the subscription indicates the

lifting of an air parcel (e.g. T ′
x→y indicates the temperature T of a parcel at the y-level, which was initially lifted dry adiabatically from the

x-level to its condensation level and moist adiabatically thereafter).

Index name Equation Reference Comment

A: Indices describing conditional instability

Vertical Totals VT=T850−T500 Miller (1972)

Boyden Index BOYD=0.1(Z700−Z1000)−T700−200 Boyden (1963)

B: Indices describing latent instability

Lifted Index LI100=T500−T ′
i→500

Galway (1956) i: p, T and T d averaged over the lowest

100 hPa

Deep Convective Index DCI=(T +T d)850−LIS Barlow (1993) LIS: Surface Lifted Index (no mixing)

Showalter Index SI=T500−T ′
850→500

Showalter (1953)

Convective available poten-

tial energy

CAPELFC=Rd

∫ EL
LFC (T ′

v−Tv) dlnp Moncrieff and Miller (1976) T ′
v is the virtual temperature of an air parcel

lifted from the surface to the level of free con-

vection (LFC) up to the equilibrium level (EL)

CAPECCL=Rd

∫ EL
CCL(T ′

v−Tv) dlnp same as above, but the air parcel is lifted moist

adiabatically from the cumulus condensation

level (CCL)

CAPEmul=Rd

∫ EL
i (T ′∗

v −Tv) dlnp defined for a parcel with T , T d, and p at a

level where θe reaches its highest value in the

lowest 250 hPa

C: Indices describing potential instability

KO Index KO=0.5(θe500+θe700)−0.5(θe850+θe1000) Andersson (1989) since the local pressure is often below

1000 hPa, we used 950 hPa instead;

Delta-θe DTeI=θeS−θe300 Atkins and Wakimoto (1991) designed to assess the potential for wet mi-

crobursts

Potential Instability Index PII=(θe925−θe500)/(Z500−Z925) Van Delden (2001)

D: Combination of A–C

Total Totals TT=(T +T d)850−2T500 Miller (1972)

K-Index K=(T850−T500)+T d850−(T −T d)700 George (1960) developed for forecasting air mass thunder-

storms

modified K-Index Kmod=(T ∗−T500)+T d∗−(T −T d)700 Charba (1977) T ∗ and T d∗ calculated by averaging between

the surface and the 850 hPa level

Humidity Index HI=(T −T d)850+(T −T d)700+(T −T d)500 Litynska et al. (1976)

Jefferson Index JEFF=1.6θw850−T500−0.5(T700−T d500)−8 Jefferson (1963)

S-Index S=TT−(T −T d)700−8 where 8=0 for VT≥25, 8=2 for 25>VT>22,

and 8=6 for VT≤22; designed to indicate the

thunderstorm potential from April to Septem-

ber

Wet Bulb Zero Height WBZ Miller (1972) hight where the wetbulb profile transitions

from a positive to a negative temperature; in-

dicates the potential for hail

E: Indices considering kinematic properties

SWISS Index SWISS12=LIS−0.1WSh0−3+0.1(T −T d)650 Huntrieser et al. (1997) where WSh0−3 is the wind sheer in the low-

est 3 km agl; the index was designed for the

12:00 UTC sounding in Switzerland

Severe Weather Threat In-

dex

SWEAT = 12T d850+20(TT−49)+2f850+f500+

125[sin(d500−d850)]+0.2

Miller (1972) where f and d are wind speed in knots and

direction in (0–360◦) on the indicated levels;

the first two terms must be greater or equal

than zero; the last term is set to zero if any of

the conditions are not met: 130◦≤d850≤250◦,

210◦≤d500≤310◦, d500>d850, and both f850
and f5000≥15 knots. SWEAT was designed

for the prediction of severe thunderstorms

The range of TSS is the same as for HSS. It equally empha-

sizes the yes/no events. TSS approaches the POD for very

rare events. It is formulated similarly to the HSS, except

for the reference hit rate in the denominator being that for

random forecasts that are constrained to be unbiased. Hence,

if the Frequency Bias FBI is near unity, then TSS≈HSS.
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Appendix C

Climatological means and standard deviations of the indices

Table C1. Mean and standard deviation of the indices for specific probabilities of thunderstorm occurrence, derived for

thunderstorm days (SY), days with hail damage (SV1), and days with storm/flood damage (SV3).

Thunderstorm days Hail days Days with storm/flood

Index SY SV1 SV3

—————————————- —————————— ——————————

80% 70% 60% 50% 40% 30% 20% 40% 30% 20%

VT (K) 30.0 27.8 29.9 29.0

±1.50 ±0.52 ±1.23 ±0.16

BOYD 99.0 97.9 100 98.9

±0.63 ±0.35 ±0.44 ±0.58

LIS (K) −5.28 −2.74 −1.48 −6.38 −5.11 −3.91 −6.13 −4.76

±0.87 ±0.34 ±0.71 ±0.87 ±0.39 ±0.25 ±0.66 ±0.53

LI100 (K) −1.73 −1.38 −0.14 0.70 −2.26 −1.97 −1.31 −2.22 −2.02

±0.38 ±0.30 ±0.23 ±0.20 ±0.28 ±0.26 ±0.14 ±0.27 ±0.24

DCIS (K) 28.7 23.2 21.7 31.8 28.7 24.4 31.2 28.6

±1.90 ±0.93 ±0.86 ±1.76 ±3.10 ±1.19 ±1.43 ±2.06

DCI100 (K) 26.6 22.4 19.1 28.1 25.4 23.9 28.8 25.4

±2.01 ±1.58 ±1.11 ±2.69 ±0.82 ±1.85 ±1.68 ±0.81

CAPELFC (J kg−1) 1836 706 339 1786 1601 1055 1808 1625

±632 ±112 ±64.9 ±225 ±163 ±485 ±229 ±171

CAPECCL 2049 1350 685 2166 1872 1459 2613 2335 1872

±385 ±388 ±242 ±339 ±142 ±359 ±478 ±288 ±142

CAPEmul (J kg−1) 1793 670 340 2095 1529 1005 1855 1529

±589 ±135 ±60.3 ±539 ±139 ±450 ±283 ±139

SHOW 0.26 0.78 1.37 −2.20 −1.15 −0.09 −2.47 −1.01

±0.26 ±0.21 ±0.31 ±0.89 ±0.31 ±0.64 ±1.18 ±0.30

KO (K) −4.79 −2.42 −6.45 −4.19 −6.75

±0.64 ±1.27 ±0.86 ±0.96 ±0.64

DTeI (K) 6.80 0.57 10.15 9.00 5.33 13.62 10.72 9.04

±1.12 ±0.59 ±1.13 ±1.06 ±3.41 ±2.49 ±1.24 ±1.07

PII (K km−1) 1.63 1.00 0.51 1.98 1.71 1.12 2.13 1.58

±0.32 ±0.24 ±0.30 ±0.21 ±0.16 ±0.10 ±0.24 ±0.32

TT (K) 53.8 50.8 49.6 52.9

±1.35 ±1.12 ±0.35 ±1.88

K (K) 32.1 30.0 28.1 33.7 30.8 32.8

±0.84 ±0.51 ±0.42 ±0.73 ±1.04 ±0.61

Kmod (K) 40.6 38.8 37.3 36.1 41.6 40.6 38.2 40.7

±1.08 ±0.58 ±0.52 ±0.49 ±0.84 ±0.48 ±1.11 ±0.54

Jeff (K) 32.0 30.5 29.1 31.8

±0.52 ±1.20 ±0.23 ±0.21

S (K) 49.9 43.2 46.4

±0.89 ±1.30 ±1.74

WBZ (m) 3427 3247 3534 3274 3533

±111 ±113 ±139 ±114 ±140

SWISS12 0.05 0.99 -2.70 -4.97

±0.45 ±0.34 ±1.03 ±1.47
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