The Skip Quadtree: A Simple Dynamic
Data Structure for Multidimensional Data

David Eppsteih Michael T. Goodrich Jonathan Z. Sun

Abstract

We present a new multi-dimensional data structure, whichallehe skip quadtree (for point data in
R?) or the skip octree (for point data RY, with constant > 2). Our data structure combines the best
features of two well-known data structures, in that it h&siell-defined “box"-shaped regions of region
quadtrees and the logarithmic-height search and updatarbiécal structure of skip lists. Indeed, the
bottom level of our structure is exactly a region quadtraeotdree for higher dimensional data). We
describe efficient algorithms for inserting and deletingnfmin a skip quadtree, as well as fast methods
for performing point location and approximate range qugerie

1 Introduction

Data structures for multidimensional point data are of ificemt interest in the computational geometry,
computer graphics, and scientific data visualization diteres. They allow point data to be stored and
searched efficiently, for example to perform range quedesijport (possibly approximately) the points that
are contained in a given query region. We are interestedsmptper in data structures for multidimensional
point sets that are dynamic, in that they allow for fast poisertion and deletion, as well as efficient, in that
they use linear space and allow for fast query times.

Related Previous Work. Linear-space multidimensional data structures typicatly defined by hierar-
chical subdivisions of space, which give rise to tree-basadch structures. That is, a hierarchy is defined
by associating with each nodein a treeT a regionR(v) in RY such that the children of are associated
with subregions oR(v) defined by some kind of “cutting” action dr(v). Examples include:

e quadtreed?29]: regions are defined by squares in the plane, which ddigded into four equal-sized
squares for any regions containing more than a single p&@noteach internal node in the underly-
ing tree has four children and regions have optimal aspéoisrévhich is useful for many types of
queries). Unfortunately, the tree can have arbitrary dapttependent even of the number of input
points. Even so, point insertion and deletion is fairly siep

e octreeq19,29]: regions are defined by hypercube&fh which are subdivided into"2qual-sized hy-
percubes for any regions containing more than a single p8imeach internal node in the underlying
tree has 2children and, like quadtrees, regions have optimal aspéiosrand point insertion/deletion
is simple, but the tree can have arbitrary depth.

e k-d trees[8]: regions are defined by hyperrectanglesRfy which are subdivided into two hyper-
rectangles using an axis-perpendicular cutting hypegothrough the median point, for any regions
containing more than two points. So the underlying tree gty and haglogn]| depth. Unfortu-
nately, the regions can have arbitrarily large aspectsatidich can adversely affect the efficiencies

TDept. of Computer Science, University of California, Irgjn CA 92697-3425, USA.
{eppstein,goodrich,zhengsun} (at)ics.uci.edu.

of some queries. In addition, maintaining an efficilertt tree subject to point insertions and removal
is non-trivial.

e compressed quad/octre§?, 9—11]: regions are defined in the same way as in a quadireetiee
(depending on the dimensionality), but paths in the tresisting of nodes with only one non-empty
child are compressed to single edges. This compressiowsahegions to still be hypercubes (with
optimal aspect ratio), but it changes the subdivision pedeom a four-way cut to a reduction to
at most four disjoint hypercubes inside the region. It ale@ds the height of the (compressed)
quad/octree to be at moS{(n). This height bound is still not very efficient, of course.

e balanced box decomposition (BBD) trdds-6]. regions are defined by hypercubes with smaller hy-
percubes subtracted away, so that the height of the dec@tiopdsee isO(logn). These regions have
good aspect ratios, that is, they are “fat” [17, 18], but they not convex, which limits some of the
applications of this structure. In addition, making thisisture dynamic appears non-trivial.

e balanced aspect-ratio (BAR) trefist, 16]: regions are defined by convex polytopes of boundedet
ratio, which are subdivided by hyperplanes perpendicolane of a set of @ “spread-out” vectors so
that the height of the decomposition tre®dogn). This structure has the advantage of having convex
regions and logarithmic depth, but the regions are no lohgperrectangles (or even hyperrectangles
with hyperrectangular “holes”). In addition, making thisugture dynamic appears non-trivial.

This summary is, of course, not a complete review of existitogk on space partitioning data structures
for multidimensional point sets. The reader interestediithker study of these topics is encouraged to read
the book chapters by Asare al. [7], Samet [33—-35], Lee [21], Aluru [1], Naylor [26], Nievgelt and
Widmayer [28], Leutenegger and Lopez [22], Duncan and Gobdi5], and Arya and Mount [3], as well
as the books by de Begg al.[12] and Samet [31, 32].

Our Results. In this paper we present a dynamic data structure for moiidisional data, which we call
the skip quadtreg(for point data inR?) or the skip octree(for point data inRY, for fixedd > 2). For the
sake of simplicity, however, we will often use the term “qtrad” to refer to both the two- and multi-
dimensional structures. This structure provides a hibdieat view of a quadtree in a fashion reminiscent
of the way the skip-list data structure [24, 30] provides erdnichical view of a linked list. Our approach
differs fundamentally from previous techniques for appdyskip-list hierarchies to multidimensional point
data [23, 27] or interval data [20], however, in that the tiattlevel structure in our hierarchy is not a list—
it is a tree. Indeed, the bottom-level structure in our higrg is just a compressed quadtree [2, 9-11].
Thus, any operation that can be performed with a quadtredearerformed with a skip quadtree. More
interestingly, however, we show that point location andrapiate range queries can be performed in a
skip quadtree irD(logn) andO(s!~%logn+ k) time, respectively, wherk is the size of the output in the
approximate range query case, for conseamt 0. We also show that point insertion and deletion can be
performed inO(logn) time. We describe both randomized and deterministic viessa$ our data structure,
with the above time bounds being expected bounds for theoraizeéd version and worst-case bounds for
the deterministic version.

Due to the balanced aspect ratio of their cells, quadtrees many geometric applications including
range searching, proximity problems, construction of weplarated pair decompositions, and quality trian-
gulation. However, due to their potentially high depth, maining quadtrees directly can be expensive. Our
skip quadtree data structure provides the benefits of qeesitogether with fast update and query times even
in the presence of deep tree branches, and is, to our knogyldlag first balanced aspect ratio subdivision
with such efficient update and query times. We believe thatdhta structure will be useful for many of
the same applications as quadtrees. In this paper we deraterte skip quadtree’s benefits for two simple
types of queries: point location within the quadtree its@ifd approximate range searching.

2 Preliminaries
In this section we discuss some preliminary conventions segimithis paper.

Notational Conventions. Throughout this paper we u§efor a quadtree ang, g,r for squares or quarters
of squares associated with the nodeQofWe useSto denote a set of points andy, z for points inRY.

We let p(x) denote the smallest square@ithat covers the location of some poitregardless ik is in

the underlying point set foR or not. Constandl is reserved for the dimensionality of our search sp&fe,
and we assume throughout tliet 2 is a constant. Id-dimensional space we still use the term “square” to
refer to ad-dimensional cube and we use “quarter” for any of tié%lpartitions of a squareinto squares
having the center af as a corner and sharing partr&f boundary. A squareis identified by its centee(r)

and its half side length(r).

The Computational Model. As is standard practice in computational geometry algoritiiealing with
quadtrees and octrees (e.g., see [10]), we assume in thés {hegh certain operations on pointsRY can

be done in constant time. In real applications, these dpesatare typically performed using hardware
operations that have running times similar to operatiorexius compute linear intersections and perform
point/line comparisons. Specifically, in arithmetic ternie computations needed to perform point location
in a quadtree, as well as update and range query operatiormdye finding the most significant binary
digit at which two coordinates of two points differ. This che done inO(1) machine instructions if we
have a most-significant-bit instruction, or by using flogtjpoint or extended-precision normalization. If
the coordinates are not in binary fixed or floating point, spjg@rations may also involve computing integer
floor and ceiling functions.

The Compressed Quadtree. As the bottom-level structure in a skip quadtree is a congaeguadtree [2,
9-11], let us briefly review this structure.

The compressed quadtree is defined in terms of an underlgiagdard) quadtree for the same point set;
hence, we define the compressed quadtree by identifyinghvdsjoares from the standard quadtree should
also be included in the compressed quadtree. Without logemdrality, we can assume that the center of
the root square (containing the entire point set of int¢isshe origin and the half side length for any square
in the quadtree is a power of 2. A poixis contained in a squaneiff —s(p) < x —c(p); < s(p) for each
dimensioni € [1,---,d]. According to whethex; —c(p); < 0 or > 0 for all dimensions we also know in
which quarter ofp thatx is contained.

Define aninteresting squaref a (standard) quadtree to be one that is either the rooteofjtiadtree
or that has two or more nonempty children. Then it is clear #imy quadtree squanecontaining two or
more points contains a unique largest interesting sqgdvehich is eitherp itself of a descendent square
of p in the standard quadtree). In particulargifs the largest interesting square forthenq is the LCA
in the quadtree of the points containedgnWe compress the (standard) quadtree to explicitly stohg on
the interesting squares, by splicing out the non-intargssiquares and deleting their empty children from
the original quadtree. That is, for each interesting squange store 2 bi-directed pointers one for each
d-dimensional quarter op. If the quarter contains two or more points, the pointer gmethe largest
interesting square inside that quarter; if the quarteraioatone point, the pointer goes to that point; and
if the quarter is empty, the pointer is NULL. We call this stiwre acompressed quadtrd@, 9-11]. (See
Fig. 1.)

A compressedi-dimensional quadtre® for n points has siz&®(n), but its worst-case height 3(n),
which is inefficient yet nevertheless improves the arhlirdrad worst-case height of a standard quadtree.
These bounds follow immediately from the fact that there@e) interesting squares, each of which has
sizeO(2%).

ﬁ £

Figure 1: A quadtree containing 3 points (left) and its comsped quadtree (right). Below them are the
pointer representations, where a square or an interesjurays is represented by a square, a point by a solid
circle and an empty quarter by a hollow circle. The 4 childoéeach square are ordered from left to right
according to the |, Il, lll, IV quadrants.

With respect to the arithmetic operations needed whenrdgalith compressed quadtrees, we assume
that we can do the following operations@{1) time:

¢ Given a pointx and a squar, decide ifx € p and if yes, which quarter g containsx.

e Given a quarter of a squagecontaining two pointx andy, find the largest interesting square inside
this quarter.

e Given a quarter op containing an interesting squarend a poin ¢ r, find the largest interesting
square inside this quarter.

A standard search in a compressed quad@yéeto locate the quadtree square containing a given point
X. Such a search starts from the quadtree root and followsatempchild pointers, and returns the smallest
interesting squar@(x) in Q that covers the location of Note thatp(x) is either a leaf node o or an
internal node with none of its child nodes covering the lmradf x. If the quarter ofp(x) covering the
location ofx contains exact one point and it matcheshen we findx in Q. Otherwisex is not in Q, but
the smallest interesting square@ncovering the location of is found. The search proceeds in a top-down
fashion from the root, takin@®(1) time per level; hence, the search tim&ia).

Inserting a new point starts by locating the interestingasgp(x) coveringx. Insertingx into an empty
quarter ofp(x) only takesO(1) pointer changes. If the quarter pfx) x to be inserted into already contains
a pointy or an interesting squarewe insert intdQ a new interesting squacgC p that contains botk andy
(orr) but separates andy (or r) into different quarters af. This can be done i®(1) time. So the insertion
time isO(1), givenp(x).

Deletingx may cause its covering interesting squp(®) to no longer be interesting. If this happens, we
splice p(x) out and delete its empty children frofr Note that the parent node pfx) is still interesting,
since deletingx doesn’t change the number of nonempty quarters of the pafep(x). Therefore, by
splicing out at most one node (with(1) pointer changes), the compressed quadtree is updatedttprre
So a deletion also také3(1) time, givenp(x).

Theorem 1 Point-location searching, as well as point insertion antktien, in a compressed d-dimensional
quadtree of n points can be done ifr time.

Thus, the worst-case time for querying a compressed queadtr® better than that of brute-force search-
ing of an unordered set of points. Still, like a standard dquegs] a compressed quadtree is unique given a
set ofn points and a (root) bounding box, and this unigueness alfovwsonstant-time update operations if

4

we have already identified the interesting square involnetieé update. Therefore, if we could find a faster
way to query a compressed quadtree while still allowing &st updates, we could construct an efficient
dynamic multidimensional data structure.

3 The Randomized Skip Quadtree

In this section, we describe and analyze the randomizedggkidtree data structure, which provides a hier-
archical view of a compressed quadtree so as to allow forikbgaic expected-time querying and updating,
while keeping the expected space bound linear.

Randomized Skip Quadtree Definition. The randomized skip quadtree is defined by a sequence of com-
pressed quadtrees that are respectively defined on a seqoisubsets of the input s8t In particular, we
maintain a sequence of subsets of the input pd@nssich thatg = S, and, fori > 0, § is sampled fron§_;
by keeping each point with probability 1/2. (So, with higlopability, Sogn = 0.) For eachS, we form
a (unique) compressed quadt@gefor the points in§. We therefore view th€);'s as forming a sequence
of levels in the skip quadtree, such ttgtis the bottom level (with its compressed quadtree definethir
entire setS) andS,p, being the top level, defined as the lowest level with an empteudying set of points.
Note that if a square is interesting inQ;, then it is also interesting i@;_1. Indeed, thiscoherence
property between levels in the skip quadtree is what fabtdi fast searching. For each interesting sgpare
in a compressed quadtré€g, we add two pointers: one to the same squmireQ;_, and another to the same
squarepin Q. 1 if p exists inQ;. 1, or NULL otherwise. The sequence @f's andS’s, together with these

auxiliary pointers define the skip quadtree. (See Fig. 2.)
Qo [0,

Figure 2: A randomized skip quadtree consistdQaf Q; andQ,. (ldentical interesting squares in two
adjacent compressed quadtrees are linked by a double-headlsetween the square centers.)

Search, Insertion, and Deletion in a Randomized Skip Quad&e. To find the smallest square Qg
covering the location of a query poirtwe start with the root squan start in Q. (I is the largest value for
which § is nonempty andl is O(logn) w.h.p.) Then we searchin Q, as described in Section 2, following
the parent-child pointers until we stop at the minimum ieting squarg enqd in Q that covers the location
of x. After we stop searching in eac® we go to the copy ofjend in Qi—1 and letpi_1 start = Pi.end tO
continue searching iQ;_1. (See the searching pathyin Fig. 1.)

Lemma 2 For any point X, the expected number of searching stepsmatiy individual Q is constant.

Proof. Suppose the searching path»oin Q; from the root ofQ; is po, P1,- -, Pm- (SeeQq in Fig. 2.)
Consider the probabilityr(j) of Eventj) such thatpy,_; is the last one img, p1,-- -, pm Which is also
interesting inQ;11. (Note thatEven{ j) andEven{j’) are excluding for any # j’.) Thenj is the number
of searching steps that will be performed@ We overlook the casg= 0 since it contributes nothing to
the expected value gf

Since each interesting square has at least two non-emptietgiathere are at leagt+ 1 non-empty
quarters hung off the subpafh,_j, - - -, pm. Event(j) occurs only if one (with probability’r1) or zero (with
probability Prg) quarters among these j + 1 quarters is still non-empty ;1. Otherwise, the LCA of
the two non-empty quarters i@; will be interesting inQj+1. SoPr(j) < Pry+Prg < éjﬂ + 51 ,+1 (E.g.,

considerpm—j = Po in Fig. 2. Note that this is not a tight upper bound.) The expevalue of] is then

J—|—1 122 2 1 B
ZJPr ZJZJH ZJH §Z§+ngéx6.o+z.o_5.o. (1)

Consider an example that eaphhas exact two non-empty quarters, and the non-empty quafrigr
that does not contaipj; contains exact one poir. (For the two non-empty quarters pf, we let each
of them contain exact one point, and choose any ong,a€vent(j) happens ifl; is selected t&., and
another point among the rest— j + 1 points contained ip; is also selected. SBr(j) = % éjﬂ (E.g.,
considerpm_j = p1 in Fig. 2.) The expected value ¢fis then

m) 1 m j2 m J 1
:ZJPr(J):2(254—25)%2(6.0%—2.0):2.0. (2)
Therefore in the worst case, the expectatiorj &f between 2 and 5. (See the appendix for out compu-
tation of the progressions in (1) and (2).) [|

To insert a poink into the structure, we perform the above point locationa®eahich findsp; eng within
all the Q;’s, flip coins to find out whiclf’s x belongs to, then for each containingx, insertx into p; eng in
Qi as described in Section 2. Note that by flipping coins we magterone or more new non-empty subsets
S.1,--- which contains onlyx, and we shall consequently create the new compressed ges@ir, 1, - -
containing onlyx and add them into our data structure. Deleting a poistsimilar. We do a search first to
find pieng in all Qi’s. Then for eachQ; that contains, deletex from p; eng in Q; as described in Section 2,
and remove); from our data structure ®; becomes empty.

Theorem 3 Searching, inserting or deleting any point in a randomizedimiensional skip quadtree of n
points takes expected(logn) time.

Proof: The expected number of non-empty subsets is obvioGglggn). Therefore by Lemma 2, the
expected searching time for any poinQ¢1) per level, orO(logn) overall. For any point to be inserted or
deleted, the expected number of non-empty subsets cargatnis point is obviouslyO(1). Therefore the
searching time dominates the time of insertion and deletion [|

In addition, note that the expected space usage for a skitrgeaisO(n), since the expected size of the
compressed quadtrees in the levels of the skip quadtreesfameometrically decreasing sum thaDig).

4 The Deterministic Skip Quadtree

In the deterministic version of the skip quadtree data sireg we again maintain a sequence of subSei
the input pointsSwith S = Sand build a compressed quadt@eor eachS. However, in the deterministic
case, we make eadl; an ordered tree and sam@efrom S_1 in a different way. We can order thé 2
quarters of each-dimensional square (e.g., by the I, I, I, IV quadrant®Rifias in Fig. 1 or by the lexical
order of thed-dimensional coordinates in high dimensions), and callmpressed quadtree obeying such
order anordered compressed quadtreEhen we build an ordered compressed quadfgéor S = Sand

let Lo = L be the ordered list di in Qg from left to right. Then we make a skip ligt for L with L; being
thei-th level of the skip list. Le§ be the subset ddthat corresponds to thieth levell; of £, and build an
ordered compressed quadti@gefor eachS. Letx; be the copy ok at leveli in £ andp;(x) be the smallest
interesting square iQ; that containsx. Then, in addition to the pointers in Sec. 3, we put a bi-deéc
pointer betweerx; and p;(x) for eachx € S. (See Fig. 3.)

S
T
[\

"L

I Ly
X0

Figure 3: A deterministic skip quadtree guided by a deteisticn1-2-3 skip list.

Lemma 4 The order of Sin Q; is L.
Proof: Noting that an interesting square@ is also an interesting square @_1, the LCA of two points
xandy in Q; is also a CA of them iQ;_;. Therefore the order & in Q; is a subsequence of the order of
S_11in Q;_1. By induction, the order of in Q; isL;, given that the order d& in Qg is Lo. []

The skip list£ is implemented as a deterministic 1-2-3 skip list in [25],iethmaintains the property
that between any two adjacent columns at léwbkere are 1, 2 or 3 columns of height 1 (Fig. 3). There
areO(logn) levels of the 1-2-3 skip list, so searching takadogn) time. Insertion and deletion can be
done by a search plu3(1) promotions or demotions at each level along the searchitig pa

We also binarizeQq by addingd — 1 levels of dummy nodes, one level per dimension, betweeh eac
interesting square and it§' 2juarters. Then we independently maintain a total order ith@der in the
binary Qg) for the set of interesting squares, dummy nodes and pain@.i The order is maintained as
in [13] which supports the following operations: 1) insgrbefore or after somg; 2) deletex; and 3)
compare the order of two arbitraryandy. All operations can be done in deterministic worst case teonhs
time. These operations give a total order out from a linket] Which is necessary for us to searchsn
Because of the binarization @)y and the inclusion of all internal nodes of the binarizZ@glin our total
order, when we insert a poirtinto Qg, we get ay (parent ofx in the binary tree) before or after the insertion
point ofx, so that we can accordingly inserinto our total order.

In the full version, we give details for insertion and dedetin a deterministic skip quadtree (searching
is the same as in the randomized version), proving the fatigw

Theorem 5 Search, insertion and deletion in a deterministic d-dini@mal skip quadtree of n points take
worst case @ogn) time.
Likewise, the space complexity of a deterministic skip dreslisO(n).

5 Approximate Range Queries

In this section, we describe how to use a skip quadtree t@merépproximate range queries, which are
directed at reporting the points 8ithat belong to a query region (which can be an arbitrary costape
havingO(1) description complexity). For simplicity of expressionwever, we assume here that the query

7

region is a hyper-sphere. We describe in the full version twextend our approach to arbitrary convex
ranges with constant description complexity. We xisefor points in the data set anglv for arbitrary points
(locations) inRY. An approximate range query with errer> 0 is a triple(v,r,€) that reports all pointg
with d(v,x) <r but also some arbitrary poingswith r < d(v,y) < (1+¢€)r. That is, the query regioR
is a (hyper-) sphere with centgrand radius, and the permissible error rangeis a (hyper-) annulus of
thicknessr aroundR.

Suppose we have a space partition ffegith depthDt where each tree node is associated with a region
in RY. Given a quenyv,r, &) with regionR and annulug, we call a nodep € T anin, out, or stabbingnode
if the RY region associated with is contained irRU A, has no intersection witR, or intersects botR and
RUA. Let Sbe the set of stabbing nodesTnwhose child nodes are not stabbing. Then the query can be
answered irO(|§Dt + k) time, withk being the output size. Previously studied space partitie@st such
as BBD trees [4—6] and BAR trees [14, 16], have an upper-bam(@ of O(e1~%) and Dt of O(logn),
which is optimal [5]. The ratio of the unit volume &, (er)9, to the lower bound of volume dA that is
covered by any stabbing node is called the packing fungsion of T, and is often used to boun§. A
constanip(n) immediately results in the optimé# = O(g1~9) for convex query regions, in which case the
total volume ofA is O(er9).

Next we'll show that a skip quadtree data structure answeapproximate range query®&X~%logn-+
k) time. This matches the previous results (e.g., in [14, 18]),skip quadtrees are fully dynamic and sig-
nificantly simpler than BBD trees and BAR trees.

Query Algorithm and Analysis. Given a skip quadtre®g,Q1,---,Q; and an approximate range query
(v,r,€) with regionR and annulug\, we define aritical square pc Q; as a stabbing node q; whose child
nodes are either not stabbing, or still stabbing but coves \@lume ofR than p does. If we know the set
C = Cy of critical squares irQp, then we can answer the query by simply reporting, for gaehC, the
points inside every in-node child squaremin Qy. We now show that the size fis O(s*~9) (due to the
obvious constanp of quadtrees).

Lemma 6 The number of critical squares ing@s O(g1~9).

Proof: Consider the inclusion treg for the critical squares i€ (that is, square is an ancestor of square
gin T iff p2q). We call a critical square a branching node if it has at l&éastchildren inT, or a non-
branching node otherwise. A non-branching node either eafidf T, or covers more volume dR than
its only child node inT does, by the definition of critical squares. Note that if twmadtree squares cover
different areas (not necessarily disjoint)Rifthen they must cover different areasfofTherefore for each
non-branching node € T, there is a unique area @éf covered byp but not by any other non-branching
nodes ofT. The volume of this area is cleary(1) of the unit volume(er)® sincep is a hypercube. Thus
the total number of non-branching nodegiis O(e!~%) since the total volume dkis O(er%). So|C| = |T|

is alsoO(g19). n

Next we complete our approximate range query algorithm loyvarg how to find all critical squares in
eachQj. The critical squares if; actually partition the stabbing nodes@finto equivalence classes such
that the stabbing nodes in the same class cover the samefdRemdA. Each class corresponds to a path
(could be a single node) iQ; with the tail (lowest) being a critical square and the he&ddt the root of
Qi) being the child of a critical square. For each such path viear ¢be head red and the tail green (a node
could be double colored). The set of green nodes (critiazéuss) isC;.

Assume we have the above coloring don&jn;. We copy the colors tQ; and call the corresponding
nodesp € Q; initially greenor initially red accordingly. Then from each initially green node we DFS &ear
down the subtree d@; for critical squares. In addition to turning back at eachisiiag node with no stabbing
child, we also turning back at each initially red node. Dgtihe search, we color (newly) green or red to the
nodes we find according to how the colors are defined abover A#t've done the search from all initially

green nodes, we erase the initial colors and keep only theonew.

Lemma 7 The above algorithm correctly finds the setaCall critical squares in Qin O(|Ci1|) time, so
that finds C= Cp in O(|C|logn) time, which is the expected running time for randomized glgdtrees or
the worst case running time for deterministic skip quadiree
Proof: Correctness. If a stabbing nogehas its closest initial red ancestprlower than its closest initial
green ancestqp’, then it will be missed since when searching frpfh) p will be blocked byp'. Let p’ and
p’ be a pair of initially red and green nodes which correspontthéchead and tail of a path of equivalent
stabbing squares i@;,1, andp be a stabbing square @ that is a descendant gf. Note that, ifp covers
less area oR thanp’ andp” do, thenp is also a descendant pf ; otherwise ifp covers the same area of
Rasp andp’ do butpis not a descendant gf’, then p is not critical becaus@” is now contained imp.
Therefore we won’t miss any critical squares.

Running time. By the same arguments as in Lemma 2, the DF8hsdawnward each initially green
nodep has constant depth, because within constant steps we'tlarssgiarey which is a child node op in
Qix1. gis either not stabbing or colored initially red so we’ll gocka [|

Following Lemma 6,7 and the algorithm description, we imraty get

Theorem 8 We can answer an approximate range quéry,) in O(s~%logn+ k) time with k being the
output size, which is the expected running time for randedchikip quadtrees or the worst case running
time for deterministic skip quadtrees.

References

[1] S. Aluru. Quadtrees and octrees. In D. P. Mehta and S.iSadfitors,Handbook of Data Structures and Applicatiopages
19-1-19-26. Chapman & Hall/CRC, 2005.

[2] S. Aluru and F. E. Sevilgen. Dynamic compressed hypesestwith application to the N-body problem. Pnoc. 19th Conf.
Found. Softw. Tech. Theoret. Comput. S@lume 1738 of_ecture Notes Comput. Sghages 21-33. Springer-Verlag, 1999.

[3] S. Arya and D. Mount. Computational geometry: Proxinatyd location. In D. P. Mehta and S. Sahni, editbtandbook of
Data Structures and Applicationpages 63—-1-63—22. Chapman & Hall/CRC, 2005.

[4] S. Arya and D. M. Mount. Approximate nearest neighborriggein fixed dimensions. IfProc. 4th ACM-SIAM Sympos.
Discrete Algorithmspages 271-280, 1993.

[5] S.Aryaand D. M. Mount. Approximate range searchi@amput. Geom. Theory Appl.7:135-152, 2000.

[6] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and#u. An optimal algorithm for approximate nearest neighbor
searching in fixed dimensions. ACM 45:891-923, 1998.

[7] T. Asano, M. Edahiro, H. Imai, M. Iri, and K. Murota. Praxl use of bucketing techniques in computational geomeiry
G. T. Toussaint, editoComputational Geometrypages 153-195. North-Holland, Amsterdam, Netherlar@5.1

[8] J. L. Bentley. Multidimensional binary search treesdi$er associative searchingCommun. ACM18(9):509-517, Sept.
1975.

[9] M. Bern. Approximate closest-point queries in high dims®ns.Inform. Process. Lett45:95-99, 1993.

[10] M. Bern, D. Eppstein, and S.-H. Teng. Parallel congtamncof quadtrees and quality triangulations. Rroc. 3rd Workshop
Algorithms Data Struct.volume 709 oL ecture Notes Comput. Sghages 188-199. Springer-Verlag, 1993.

[11] K. L. Clarkson. Fast algorithms for the all nearest iigrs problem. IrProc. 24th Annu. IEEE Sympos. Found. Comput.
Sci, pages 226232, 1983.

[12] M. de Berg, M. van Kreveld, M. Overmars, and O. SchwapfkdComputational Geometry: Algorithms and Applications
Springer-Verlag, Berlin, Germany, 2nd edition, 2000.

[13] P. F. Dietz and D. D. Sleator. Two algorithms for maintag order in a list. IProc. 9th ACM STO(pages 365-372, 1987.

[14] C. A. Duncan. Balanced Aspect Ratio Tree$h.D. thesis, Department of Computer Science, Johns Hephhiversity,
Baltimore, Maryland, 1999.

[15] C. A. Duncan and M. T. Goodrich. Approximate geomettiery structures. In D. P. Mehta and S. Sahni, editdesydbook
of Data Structures and Applicationpages 26—1-26—17. Chapman & Hall/CRC, 2005.

[16] C. A. Duncan, M. T. Goodrich, and S. Kobourov. Balancegext ratio trees: combining the advantages of k-d trees and
octrees.J. Algorithms 38:303-333, 2001.

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]
[30]
[31]

[32]

[33]

[34]

[35]

A. Efrat, M. J. Katz, F. Nielsen, and M. Sharir. Dynamita structures for fat objects and their applicatid®smput. Geom.
Theory Appl. 15:215-227, 2000.

A. Efrat, G. Rote, and M. Sharir. On the union of fat wesigand separating a collection of segments by a li@emput.
Geom. Theory Appl3:277-288, 1993.

K. Fujimura, H. Toriya, K. Tamaguchi, and T. L. Kunii. ®@ee algorithms for solid modeling. IRroc. Intergraphics '83
volume B2-1, pages 1-15, 1983.

E. N. Hanson and T. Johnson. The interval skip list: Aadsttucture for finding all intervals that overlap a pointWorkshop
on Algorithms and Data Structures (WADSages 153-164, 1991.

D. T. Lee. Interval, segment, range, and priority sharees. In D. P. Mehta and S. Sahni, editdisndbook of Data
Structures and Applicationpages 18-1-18-21. Chapman & Hall/CRC, 2005.

S. Leutenegger and M. A. Lopez. R-trees. In D. P. Mehth@rSahni, editorgiandbook of Data Structures and Applications
pages 21-1-21-23. Chapman & Hall/CRC, 2005.

M. A. Lopez and B. G. Nickerson. Analysis of half-spa@mge search using thed search skip list. In4th Canadian
Conference on Computational Geomefgges 58-62, 2002.

J. I. Munro, T. Papadakis, and R. Sedgewick. Determimgkip lists. InProc. Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA)pages 367-375, 1992.

J. I. Munro, T. Papadakis, and R. Sedgewick. Deterrtimiskip lists. InProceedings of the third annual ACM-SIAM
symposium on Discrete algorithms (SODpages 367 — 375, 1992.

B. F. Naylor. Binary space partitioning trees. In D. Pelda and S. Sahni, editorslandbook of Data Structures and
Applications pages 20-1-20-19. Chapman & Hall/CRC, 2005.

B. G. Nickerson. Skip list data structures for multiginsional data. Technical Report CS-TR-3262, 1994.

J. Nievergelt and P. Widmayer. Spatial data structu@ncepts and design choices. In J.-R. Sack and J. Urrulitars,
Handbook of Computational Geometpages 725-764. Elsevier Science Publishers B.V. Nortlahih Amsterdam, 2000.

J. A. Orenstein. Multidimensional tries used for asatiee searchinglnform. Process. Lett13:150-157, 1982.
W. Pugh. Skip lists: a probabilistic alternative todrated treesCommun. ACM33(6):668—676, 1990.

H. Samet.Spatial Data Structures: Quadtrees, Octrees, and Otheratighical Methods Addison-Wesley, Reading, MA,
1989.

H. Samet. Applications of Spatial Data Structures: Computer Graghitmage Processing, and GISAddison-Wesley,
Reading, MA, 1990.

H. Samet. Spatial data structures. In W. Kim, editddndern Database Systems, The Object Model, Interopetglaitid
Beyond pages 361-385. ACM Press and Addison-Wesley, 1995.

H. Samet. Multidimensional data structures. In M. Jalkgh, editor,Algorithms and Theory of Computation Handbpok
pages 18-1-18-28. CRC Press, 1999.

H. Samet. Multidimensional spatial data structuresDI P. Mehta and S. Sahni, editoréandbook of Data Structures and
Applications pages 16-1-16—29. Chapman & Hall/CRC, 2005.

10

A Appendix

If f(x) > 0is a monotone decreasing function for i, then the progression df(x) can be approximated
by its integral as following:

i—1 [o i

Z f(x)+ f(x)dx < Z f(x) < z f(x)+/ f(x)dx
X=1 X=i X=1 X=1 X=i
By
0 2 ,
and

@ X 1
—dXx=——=(IN2-X+1) |3
/x:i 2 2XIn22() b=

we get (taking = 12)

and (taking = 10)

11

