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Abstract

This set of lecture notes is concerned with the following pair of ideas and

concepts:

1) The Skorokhod Embedding problem (SEP) is, given a stochastic process

X = (Xt)t≥0 and a measure µ on the state space of X, to find a stopping

time τ such that the stopped process Xτ has law µ. Most often we take the

process X to be Brownian motion, and µ to be a centred probability measure.

2) The standard approach for the pricing of financial options is to pos-

tulate a model and then to calculate the price of a contingent claim as the

suitably discounted, risk-neutral expectation of the payoff under that model.

In practice we can observe traded option prices, but know little or nothing

about the model. Hence the question arises, if we know vanilla option prices,

what can we infer about the underlying model?

If we know a single call price, then we can calibrate the volatility of the

Black-Scholes model (but if we know the prices of more than one call then

together they will typically be inconsistent with the Black-Scholes model). At

the other extreme, if we know the prices of call options for all strikes and

maturities, then we can find a unique martingale diffusion consistent with

those prices.

If we know call prices of all strikes for a single maturity, then we know the

marginal distribution of the asset price, but there may be many martingales

with the same marginal at a single fixed time. Any martingale with the given

marginal is a candidate price process. On the other hand, after a time change

it becomes a Brownian motion with a given distribution at a random time.

Hence there is a 1-1 correspondence between candidate price processes which

are consistent with observed prices, and solutions of the Skorokhod embedding

problem.

These notes are about this correspondence, and the idea that extremal

solutions of the Skorokhod embedding problem lead to robust, model inde-

pendent prices and hedges for exotic options.

1 Motivation

Consider the problem of pricing and hedging a one-touch digital option on an un-

derlying. The standard approach to such a problem is to postulate a stochastic
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model for the underlying, perhaps the Osborne-Samuelson-Black-Scholes (exponen-

tial Brownian motion) model, and to price the option as the discounted expectation

under the risk-neutral measure. In perfect frictionless markets this approach is jus-

tified by the theory of replication, and allows either counter-party in a transaction

to eliminate the market risk.

However, the success of a replicating strategy is predicated on the fundamental

truth of the model on which it is based. Although market risk (the known unknown)

is eliminated, model risk (the unknown unknown) remains. The classical hedging

strategies remove hedging risk, but leave agents exposed to Knightian uncertainty.

If the problem at issue is to price and hedge the exotic digital option then it

seems reasonable to assume that simpler, vanilla options (such as call options) would

also be traded. Then, at the very least, the volatility in the exponential Brownian

motion can be calibrated with reference to the price of a traded call. However, this

leads to a potential inconsistency, since many calls may be traded, each with their

distinct volatilities. Ideally we should use a model which calibrates perfectly to the

full spectrum of traded calls. However, in principle there are many such models, and

associated with each model which is consistent with the market prices of (liquidly)

traded options, there may be a different price for the exotic. Instead, one might

attempt to characterise the class of models which are consistent with the market

prices of options. This is a very challenging problem, and a less ambitious target

is to characterise the extremal elements of this set, and especially those models for

which the price of the exotic is maximised or minimised.

Suppose the one-touch digital option is written on a forward price (St)0≤t≤T ,

and that the payoff is given by F̃ = IA where I is the indicator function and

A = {St ≥ B, for some t ∈ [0, T ]}. Here the payoff is made at time T , we take

0 to be the current time and we assume that the barrier B is above the initial

price B > S0, and that S is right continuous. If we write HB for the first time

the underlying reaches the barrier then we have HB = inf{u > 0 : Su ≥ B}, and

F̃ = I{HB≤T}.

The key observation is contained in the following inequality which is valid for

any K < B:

I{HB≤T} ≤ (ST −K)+

B −K
+

(SHB
− ST )

B −K
I{HB≤T}. (1)

Note that (1) is a path-wise inequality. The left-hand-side is the payoff of the

option. The two terms on the right-hand-side have simple financial interpretations

as the payoff from 1/(B − K) call options with strike K (with maturity taken to

match that of the exotic), and the gains from trade from a forward transaction in S,

struck the first time, if ever, that the underlying crosses the barrier. Provided the

call with strike K is traded, and provided it is possible to invest forward in S, then

the right-hand-side of (1) describes a super-replicating strategy for the one-touch-

digital; furthermore by no-arbitrage it determines an upper bound on the price of

the one-touch-digital given by C(K)/(B −K), where C(k) is the traded price of a

call option on the forward strike with k. (By definition, the forward transaction is

costless).

Since the strike K in (1) is arbitrary we can optimise over K. If we write the
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arbitrage-free price of the one-touch digital as P(F̃ ) then

P(F̃ ) ≤ inf
C(K)

B −K
(2)

where the infimum is taken over traded strikes K < B.

In deriving this bound the only assumption that has been used is that it is

possible to generate constant multiples of the payoff (SHB
− ST )I{HB≤T} at zero

cost, which we interpret as an investment in the forward market. Note that we have

imposed no probabilistic structure, we have not written down a stochastic model

(Ω,F ,F = (Ft)t≥0,P) nor have we postulated the existence of a martingale measure

Q. Instead, the bound is based on the ability to hedge using simple strategies in

the forward market, and to take a static initial positions in vanilla securities at

their prevailing time-0 market price. In this sense the resulting bound is model-

independent. The explicit modelling of the dynamics of S has been replaced by the

requirement that the model is consistent with observed call prices, (which places

implicit conditions on the stochastic properties of the underlying price process) and

δ-hedging is replaced by super-hedging with a portfolio of call options.

The quantity D = infK<B
C(K)
B−K gives a model-independent bound on the price

of a digital option, in the sense that if we introduce any model for the underlying

for which call prices are given by the pricing function C(k), then the discounted

expected payoff of the option under (any) martingale measure is less than D.

The question immediately arises: is this bound best possible? We will show

in Section 2.7 below, by demonstrating a model which matches call prices and for

which the price of the one-touch digital is equal to the bound, that this is indeed

the case, and the bound is tight. (The model we give may not be realistic, but

unless it can be ruled out, the bound D cannot be refined.)

Return to the characterisation problem of describing the models which are con-

sistent with observed option prices. It turns out that knowledge of the prices of puts

and calls is equivalent to knowledge of the marginal distribution of the underlying

asset under the measure used by the market for pricing. Further, if we assume

temporarily that the market uses a pricing measure under which the forward price

is a martingale, then the problem is to find a martingale with a given law at time

T . However, any martingale is a time-change of Brownian motion. Hence the

characterisation problem is reduced to the following: find stopping times such that

the stopped Brownian motion has the given law. This is the classical Skorokhod

embedding problem (SEP), first introduced (and solved) by Skorokhod [54].

The idea of relating the range of no-arbitrage prices of exotics to the prices of

vanilla puts and calls via solutions of the Skorokhod embedding problem was first

developed by Hobson [31] in the context of lookback options. The example above of

a one-touch barrier option, which allows perhaps for the simplest exposition of the

theory, is from Brown et al [10]. Recent applications include Cox and Oblój [18, 19]

to two-sided barrier options, Hobson and Neuberger [35] to forward-starting strad-

dles and Dupire [24] and Carr and Lee [12] to volatility options, but, in principle,

the method applies to a wide range of path-dependent derivatives. The connection

between model independent option price bounds and the Skorokhod embedding
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problem can be exploited in both directions. Existing solutions to the SEP (see

Oblój [43] for a comprehensive survey) can be used to give bounds on the prices

of financial options; conversely questions about the range of no-arbitrage prices for

path-dependent options motivates the search for further solutions of the SEP.

2 Model Independent Option Pricing

2.1 The classical approach

The standard approach in derivative pricing is to begin by postulating a model

(or a parametric family of models) for the price process (Pt)t≥0, supported on a

filtered probability space (Ω,F ,F = (Ft)t≥0,P)). The price of a contingent claim

with payoff FT = F (Pt; 0 ≤ t ≤ T ), payable at T , is calculated as a discounted

expectation:

EQ[e−rTFT ] = EQ[e−rTF (Pt; 0 ≤ t ≤ T )].

Here Q is an equivalent (local) martingale measure. In a complete market, the

rationale for this pricing rule is supported by the replication (martingale represen-

tation)

e−rTFT = EQ[e−rTFT ] +

∫ T

0

θt(dPt − rPtdt), Q a.s.

(Note that since Q is equivalent to P, any statement which holds Q almost surely,

also holds P almost surely.) The quantity θt determines the investment or hedge in

the risky asset.

For example, in the exponential Brownian motion parametric family of models

we have that the asset price P follows

dP

P
= σdW + γdt

and then for a call option with strike K, maturity T and payoff FT = (PT −K)+

we have the price C(K,T ;P0; r, γ, σ), as given by the Black-Scholes formula.

Here the quantities K and T are characteristics of the derivative, P0 is the

observed initial value of the asset, r is assumed known (or observed from bond

prices), the drift γ is irrelevant, since we price under the risk-neutral measure, and

the volatility σ is estimated from historical data.

When the derivative has a payoff which is convex in the the price process Pt (for

example, a call option) then the model price C = C(σ) is increasing in σ. Hence in

practice, the volatility is selected via a calibration process in which the price of a

liquidly traded option Ctraded is used to determine the implied volatility σI as the

solution to Ctraded = C(σI). In this sense the real purpose of the pricing function

C(K,T ) is as an extrapolation device. See Figlewski [26] for a discussion of other

choices of extrapolation functions.

2.2 Model misspecification and incomplete markets

In a complete market the price EQ[e−rTFT ] and the hedge (or replication strategy) θt

are uniquely determined, and replication is perfect provided that the model provides
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an exact description of reality.

Clearly, this last provision never holds. However, we have the following reassur-

ing result, see Bergman et al [6], El Karoui et al [25], Hobson [32] and Janson and

Tysk [37].

Theorem 2.1 Suppose that the goal is to price and hedge a claim on PT with convex

payoff function FT = F (PT ). Suppose that the claim is priced and hedged under a

diffusion model dPt = Ptσ̂(Pt)dBt + rPtdt and that the model is sufficiently regular

that the solution, denoted P̂ , is such that (e−rtP̂t)t≥0, is a true martingale. The

model is Markovian, so that we may write the replicating hedge of the claim F as

θ̂t = θ̂(Pt, t).

Now suppose that the real-world dynamics are such that dPt = PtσtdBt + rPtdt

and that σt ≤ σ̂(Pt). Then

ÊQ[e−rTFT ] +

∫ T

0

θ̂(Pt, t)(dPt − rPtdt) ≥ e−rTF (PT ), Q a.s.,

where ÊQ denotes the fact that expectation has been calculated under a martingale

measure for the model with volatility σ̂.

The content of the theorem is that if an agent uses a model which overestimates

volatility, then provided she uses both the model price and the model hedge, then she

will still succeed in super-replicating the option on a path-wise basis. We will extend

this idea of path-wise super-replication so that it does not rely on an assumption

that the true volatility is bounded by a model volatility, but rather so that super-

replication holds whatever the behaviour of the underlying.

In general, in incomplete markets there are several alternative criteria which can

be used for option pricing. One alternative is to select arbitrarily (or otherwise) a

martingale measure, perhaps by fixing the market prices of risk of those Brownian

motions orthogonal to those driving the traded assets to be zero. Alternatively,

utility indifference pricing incorporates the agents’ attitudes to risk to find a price

at which an option seller will be prepared to enter into a contract for sale of a

derivative. The extreme version of utility indifference pricing is super-replication,

whereby the agent is not willing to accept any risk.

These approaches are all conditional on an assumption that the dynamics of

P follow a given model, or family of models. Often, (e.g. in the case of utility

indifference pricing) the investor needs knowledge of the drift parameter γ (which

is notoriously difficult to estimate) as well as the volatility σ.

2.3 A reverse approach: recovering a model from prices

The starting point of our philosophy is to take option prices (at least those of liquidly

traded options) as exogenously given by the market, and to use those prices to learn

about the stochastic properties of the underlying.

Since market prices are determined under the measure used by the market for

pricing, the conclusions we draw are already phrased in a fashion whereby they can

be used for pricing other derivatives.
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Figure 1: No arbitrage considerations force that the call price curve C is a decreasing

convex function of k (for maturity T fixed) with C(0) = P0 and C(k) ≥ (P0 −
Ke−rT )+.

Lemma 2.2 (Breeden and Litzenberger [8]) Fix T ∈ (0,∞). Suppose that

call prices with maturity T are known for every K ∈ (0,∞). Then assuming call

prices are calculated as the discounted expected payoff under a model Q, so that

C(K,T ) = EQ[e−rT (PT −K)+],

we have

Q(PT > K) = erT
∣

∣

∣

∣

∂

∂K
C(K,T )

∣

∣

∣

∣

, (3)

and, provided C is twice-differentiable in K

Q(PT ∈ dK) = erT
∂2

∂K2
C(K,T ) (4)

If the law of PT under Q has atoms, then Q(PT > K) is given by the right

derivative in (3), and Q(PT ≥ K) by the left derivative. In this case (4) must be

understood in a distributional sense. However, for the present we assume that there

are no atoms and C is smooth.

It follows from the Lemma that call prices, as represented by the set of decreasing

convex functions are in one-to-one correspondence with the marginal laws of PT

under the pricing measure. The above result applies for individual maturities. If

we also have information about the dependence of option prices on maturity we can

recover a price process.

Theorem 2.3 (Krylov [39], Gyöngy [28], Dupire [23]) Suppose call prices are

known for every K ∈ (0,∞) and every T ∈ (0, T ). Assuming that C(T,K) is suffi-

ciently differentiable, there exists a unique diffusion of the form

dPt = Ptσ(Pt, t)dBt + rPtdt

such that

E[e−rT (PT −K)+] = C(K,T )

In particular, σ(p, t) solves

1

2
K2σ(K,T )2CKK − rKCK − CT = 0.
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The idea in Krylov [39] is to take any process (Yt)t≥0 and to show that there

exists a diffusion process Xt with the same marginal distributions. Gyöngy refined

the analysis and derived the relationship σ(k, t)2 = E[(dY )2t |Yt = k]. Dupire has

a slightly different starting point in that rather than assuming the existence of a

process Y he begins with the call price surface C(K,T ).

The Dupire construction gives a unique Markovian martingale which agrees with

the doubly infinite family of call option prices. In principle, it is then possible to

give the prices of any other derivatives. However, the diffusion assumption is a

strong assumption (and is inconsistent with stochastic volatility, for example), and

although the Dupire diffusion calibrates perfectly to the initial structure of call

prices, there is no guarantee that it will match derivative prices at any later time.

(We consider in Section 6.3, the existence of other martingales which also match

the marginals implicit in the call price function.)

Both the Breeden and Litzenberger [8] and Dupire [23] results give us informa-

tion about how the marginal distributions of the asset (under the pricing measure)

can be determined from call prices. More generally, given any set of option prices

we can ask:

• is there a model consistent with those prices? (i.e. can we find (Ω,F ,F,Q)

such that EQ[e−rTFT ] = f for each claim F with associated traded price f)

• if such a model exists is it unique?

• if there is no such model, is there an arbitrage?

2.4 Notation

It is very convenient to remove the impact of interest rates by switching to a notation

in which prices are expressed in discounted terms. Define St = e−rtPt, then (St)t≥0

is the forward price, and is a martingale under a pricing measure. Furthermore, we

write C(k) for the time-zero price of an option on the forward S with strike k (and

maturity T ):

C(k) = EQ[(ST − k)+] = EQ[e−rT (PT − kerT )+] = C(kerT )

where C denotes the price of a call option on PT . Then Q(ST > k) = |C′(k+)|.
When written without a superscript C denotes the traded set of options prices.

However, under a martingale model for which ST ∼ µ, we also have that call prices

are given by

Cµ(k) = E[(X − k)]+, X ∼ µ;

and we use C with a subscript to denote call prices which correspond to ST having

a given law. Later we use Pµ to denote put prices under law µ:

Pµ(k) = E[(k −X)]+, X ∼ µ.

In the financial context, µ will be the law of a positive random variable, often

with mean 1. However, the quantities Cµ and Pµ are well defined for any µ with first

moment, and we will frequently consider the case where µ is the law of a centred

random variable.
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2.5 The pricing problem

The goal of the next two sections is to develop a formal framework within which we

can attempt to determine model-independent bounds and hedging strategies. Our

set-up is an extension of the framework developed by Föllmer and Schied [27] and

especially Cox and Ob lój [18, 19].

Let ΩS describe the space of possible paths for the asset price process. A natural

candidate is to let ΩS be the space of continuous non-negative trajectories with a

given initial value S0. The advantage of using this choice is that we can then

define the natural filtration associated with the coordinate process, and then first

hitting times will be stopping times with respect to this filtration. Note that we do

not want to specify the probability triple (and especially the probability measure)

exogenously, but rather to construct models (and measures) which are consistent

with observed prices. See Cox and Ob lój [19] for further discussion on this issue.

Suppose we are given a family Θ of admissible trading strategies (θt)0≤t≤T

with associated terminal gains from trade processes Gθ =
∫ T

0 θtdSt. The space

GΘ = {Gθ; θ ∈ Θ} represents a space of costless, forward transactions. Implicitly,

we are assuming zero transactions costs for trades on the forward market, or at

least that such costs are negligible on strategies that we class as admissible.

Suppose we are given a family {Fα, α ∈ A} of traded payoffs (random variables),

and suppose that V is a vector space with basis Fα, α ∈ A.

Suppose we are also given a map (pricing functional), P : V ⊕ GΘ → R such

that P is both linear, and monotone:

P(v +Gθ) = P(v);

P(λ1F1 + λ2F2) = λ1P(F1) + λ2P(F2);

F1 ≥ F2 ⇒ P(F1) ≥ P(F2).

Note that the monotonicity plays the role of a no-arbitrage condition. The idea

is that P represents the prices at which the traded payoffs can be bought in the

market. In the analysis we will assume that these payoffs can be bought and sold at

the same price, but once we attempt to value a hedging portfolio of traded payoffs

we can use the market bid or ask prices as appropriate.

Now suppose we add a family of payoffs {Fα̃; α̃ ∈ Ã}, and let Ṽ be the vector

space with basis {Fα;α ∈ A} ∪ {Fα̃; α̃ ∈ Ã}. The problem is to decide when P can

be extended to a linear function from Ṽ ⊕Gθ to R.

Definition 2.4 The family {Fα;α ∈ A} is the set of vanilla securities.

The family {Fα̃; α̃ ∈ Ã} is the set of exotic securities.

Equivalently the set {Fα;α ∈ A} is the set of payoffs whose prices are precisely

determined by the market, and the set {Fα̃; α̃ ∈ Ã} is the set of payoffs for which

we wish to determine a price, relative to the prices of the vanilla securities.

We have not yet been specific about the set of admissible trading strategies

Θ, and the definition of Θ may be chosen according to the context. We certainly

want to exclude strategies which allow for arbitrage. The main example is when

Θ is the linear space generated by θτ = (θτt )0≤t≤T for stopping times τ , where
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θτt = I{t∈(τ,T ]}. These are the gains from trade obtained from simple combinations

of forward contracts. However, in Section 5.1 we will want to allow for more general

strategies.

2.6 The hedging problem

Definition 2.5 We say ΠV is a static vanilla portfolio if

ΠV =
n
∑

i=1

παi
Fαi

n <∞, α1, . . . αn ∈ A

We say Π is a semi-static portfolio if Π is the sum of a static vanilla portfolio

and an admissible trading portfolio.

Definition 2.6 Π is a semi-static superhedging portfolio for F̂ if Π is a semi-static

portfolio and Π ≥ F̂ almost surely.

Lemma 2.7 If P(Fα) = fα for α ∈ A and if Π =
∑n

i=1 παi
Fαi

+ Gθ is a semi-

static superhedging portfolio for F̂ , then for any extension P from V to Ṽ we must

have

P(F̂ ) ≤
n
∑

i=1

παi
fαi

Proof.

If P can be extended to the linear space spanned by {Fα : α ∈ A} ∪ F̂ then

P(F̂ ) ≤ P(Π) =

n
∑

i=1

παi
fαi

by monotonicity and linearity. �

Remark 2.8 In the set-up of Section 2.3 an implicit assumption is that option

prices are both bid and ask prices and that there are zero transaction costs. This is

a necessary assumption in order to identify a precise correspondence between prices

and probabilities under the risk-neutral measure for use in the pricing problem.

However, once we have identified a candidate model-independent super-replicating

strategy involving vanilla options, in the hedging problem we can use market bid

or ask prices (depending on whether the hedge involves a short or long position) as

appropriate. In this way the theory extends to situations in which there are bid-

ask spreads, even on liquidly traded securities. Note, moreover, that the position in

vanilla securities is static over time, so these transaction costs are incurred once only,

and unlike classical model-dependent δ-hedging, the semi-static hedging strategy

remains feasible in a model with transaction costs.

By restricting the class of admissible trading strategies in the forward, we can

also allow for transaction costs on the forward. For example, in the next section

we could restrict the class of admissible trading portfolios to those which involve

at most a single forward transaction, and therefore incur transaction costs at most

once.
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2.7 An example: a digital option

We return to the example first discussed in the opening section; namely given the

prices of call options what are the possible prices of a one-touch digital option, a

security which makes a unit payment at T if ever St ≥ B for some t ≤ T .

We assume that forward contracts with maturity T are traded at zero cost, and

that

Θ =

{

θ : θt =

p
∑

i=1

γiI{τi<t≤T}

}

p ∈ N, γi ∈ R

where (τi)i≤p are stopping times. In fact the only property we need for Θ is that

Θ ⊇ {cI{HB<t≤T}; c ∈ R}.

We assume that the vanilla options are precisely the set of call options with

maturity T , parameterised by the strike K, and that a continuum of such calls

are traded (one for each possible strike), together with the bond which pays a

unit value at time T . In the notation of this section, {Fα;α ∈ A} = {FK ;K ∈
R+} = {(ST − K)+;K ∈ R+}, and for K ∈ (0,∞) the payoff FK = (ST − K)+

has price fK = C(K). Note that to preclude arbitrage in the vanilla options we

must have that C is a decreasing convex function, and that by our assumption that

S is a forward price C(0) = S0, C′(S0) ≥ −1 and C(K) ≥ (S0 − K)+. We also

make the very natural assumption that limK↑∞ C(K) = 0. (As observed by Davis

and Hobson [20] this does not follow from no arbitrage alone, but rather from a

martingale assumption, and can be violated if the asset price allows a bubble, see

e.g. Cox and Hobson [16]. Davis and Hobson [20] introduce the notion of a weak

arbitrage and Cox and Oblój [19] introduce the parallel notion of a weak free lunch

with vanishing risk, which they use to describe some of the consequences of the

failure of this assumption.)

Now we consider the contract F̃ = I{HB≤T} with B ≥ S0. For any K < B we

have (recall (1))

F̃ ≤ 1

(B −K)
FK +Gθ

where FK is the payoff of a vanilla option (ST−K)+, and θt = −I{HB<t≤T}/(B−K)

so that Gθ = (SHB
−ST )/(B−K). There are two cases to be checked, namely when

the left-hand-side is zero or one. If the barrier is not reached, then the left-hand-

side is null and there is only one non-zero term on the right-hand-side, which is

non-negative. If the barrier is reached, then the second term on the right-hand-side

of (1) is present and moreover SHB
≥ B (with equality if S is continuous). Taking

the value (ST −K) rather than the positive part (ST −K)+ again only makes the

right-hand-side smaller, and leads to equality in (1) on (HB ≤ T ).

It follows immediately that P(F̃ ) ≤ C(K)/(B − K), and since K is arbitrary

we conclude P(F̃ ) ≤ infK<B C(K)/(B − K) = C(K∗)/(B − K∗) =: D, where

K∗ = arg infK<B(C(K)/(B −K)).

Now we want to argue that this bound is best possible in the given framework.

To do this we exhibit a model under which the fair prices (ie expected values) of

the vanilla securities are equal to the bound D. Since we are interested in pricing

issues, it makes sense to work directly in a martingale measure, so that there is no

distinction between P and Q.
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S0

a

T/2

K̂(B)

T

Figure 2: A jump model which matches options prices, and for which the maximum

value of the digital option is attained. The price process is constant except for

jumps at T/2 and T . Those paths which are at B (respectively a) at T/2 end up

above (below) K̂(B) after the jump at time T .

Write µ for the law of ST . Let b(K) = E[ST |ST ≥ K] =
∫

y≥k
yµ(dy)/

∫

y≥k
µ(dy);

b is called the barycentre function. By definition it is left-continuous, increasing and

b(K) ≥ K ∨ E[ST ], at least for K smaller than the upper bound on the support of

µ, where it is defined. Furthermore, if µ has a density then b(K) is continuous.

Given B there exists K̂ = K̂(B) such that b(K̂+) ≥ B ≥ b(K̂) and then we can

find a set A with

(ST > K̂) ⊆ A ⊆ (ST ≥ K̂)

for which B =
∫

A
yµ(dy)/

∫

A
µ(dy), or in other words

0 =

∫

A

(y −B)µ(dy) =

∫

A

(y − K̂)µ(dy) + (K̂ −B)µ(A).

It follows that µ(A) = C(K̂)/(B − K̂) so that

P(ST > K̂) ≤ C(K̂)

B − K̂
≤ P(ST ≥ K̂).

Let a =
∫

Ac yµ(dy)/
∫

Ac µ(dy), and let ST/2 take the values B or a with probabilities

(x− a)/(B − a) and (B − x)/(B − a) respectively.

On the set ST/2 = B, let ST have the law µ restricted to A. Similarly, on

ST/2 = a, let ST have the law µ restricted to Ac.

Suppose St is constant except for a pair of jumps at T/2 and T . See Figure 2.

Then, by construction, E[ST ;A] = BP(A) and E[ST ;Ac] = aP(Ac) so that St is a

11



S0

S0 k

C(k)

KK∗ B

Figure 3: The minimiser K∗ = K∗(B) is chosen such that the tangent to C at K∗

crosses the x-axis at B.

martingale. Moreover, if prices P are given by expectation with respect to P then

P(F̃) = P(HB ≤ T ) = P(ST/2 = B) = µ(A) =
C(K̂)

B − K̂
.

It remains to show that K̂ is a minimiser of C(K)/(B−K). This can be deduced

from the fact that the bound P(F̃ ) ≤ C(K)/(B−K) holds for any martingale model

with the correct marginals. We have

P(HB ≤ T ) = µ(A) =
C(K̂)

(B − K̂)
≥ inf

K<B

C(K)

(B −K)
≥ sup P̃(HB ≤ T ) ≥ P(HB ≤ T )

where the supremum is taken over martingale models, denoted by P̃, with the correct

marginal laws at time T . Hence there is equality throughout and K̂ is a minimiser.

The above analysis exhibits a pure-jump model for which ST ∼ µ (and the

price of the barrier option is equal to the robust upper bound C(K∗)/(B −K∗)).

Although potentially the simplest model, it is not unique. Indeed, we can construct

a continuous price process model with the same properties.

Let (W 0
t )t≥0 be Brownian motion, started at zero, and for α < 0 < β, let H0

α,β =

inf{u : W 0
u /∈ (α, β)}. Then W 0

H0
α,β

∈ {α, β} and P(W 0
H0

α,β

= α) = β/(β − α) =: p,

and we have embedded a two-point distribution in Brownian motion. Now set

Xu = W 0
u/(1−u)∧H0

α,β

; then X is a martingale with X1 ∼ pδα + (1 − p)δβ .

With this in mind, define Hs
a,B = inf{u : W s

u /∈ (a,B)} where W s
t = S0 + W 0

t ,

and S0 = s. By construction S0 +W 0
Hs

a,B
∈ {a,B}. If we set

St = S0 +W 0
2t/(T−2t)∧H0

a−s,B−s
= W s

2t/(T−2t)∧Hs
a,B

then (St)0≤t≤T/2 is a continuous martingale which takes values in {a,B} at time

T/2. To complete the construction (i.e. to construct the process St over (T/2, T ])

we need to discuss how to embed any centred distribution in Brownian motion (and

not just a two point distribution). This is the Skorokhod embedding problem.

12



3 The Skorokhod Embedding Problem

3.1 The classical Skorokhod embedding problem

Suppose we are given a stochastic process X = (Xt)t≥0 on a filtered probability

space (Ω,F ,F = (F)t≥0,P, (Xt)t≥0). Suppose X has state space I.

The Skorokhod embedding problem (SEP) for (X,µ) is, given µ on I, to find

(where possible) a stopping time τ such that the law of the stopped process is µ. We

write τ ∈ T̄ (X,µ). The classical version of the problem takes X ≡W , a Brownian

motion on R, started at 0, and µ a centred probability measure, in which case we

suppress W from the notation and write τ ∈ T̄ (µ).

Oblój [43] provides a comprehensive survey of the literature of solutions to the

Skorokhod embedding problem. He lists more than twenty solutions, some of which

we will discuss below.

In the sequel the key properties of Brownian motion that we will use are the fact

that Brownian motion leaves any interval in finite time almost surely, (so Ha :=

inf{u : Wu = a} < ∞ a.s.); the martingale property; the consequent fact that for

a < x < b, Px(Ha < Hb) = (x − a)/(b − a); and the fact that Brownian motion

has no intervals of constancy. Only occasionally will we use the speed of Brownian

motion, but then we have that Ex[Ha ∧Hb] = (b− x)(x − a).

We shall often decompose Brownian motion into its constituent excursions away

from zero, which are parameterised by the local time Lt. See Rogers [49] for an

introduction to Brownian excursion theory. If we write Jt for the maximum process

Jt = sup0≤s≤t{Ws} (we reserve the notation Mt for martingales, and St for forward

prices) then by Lévy’s Theorem (Lt, |Wt|) ∼ (Jt, Jt−Wt), and there is an equivalent

decomposition of a Brownian path into the excursions below the maximum. The

local time is parameterised in such a way that the rate of excursions with maximum

(in modulus) greater than a is a−1, for any positive a.

3.2 Doob’s solution

Our first solution is attributed by Rogers and Williams [50] to Doob, and is not

intended as a genuine solution to the SEP, but rather to show that without some

refinements on the class of solutions to the SEP, the problem is trivial.

Given µ, define Fµ to the the distribution function Fµ(x) = µ((−∞, x]) = P(X ≤
x|X ∼ µ). Let Φ be the distribution function of a standard normal distribution,

and let Z = F−1
µ (Φ(W1)). Then Z has law µ:

P(Z ≤ x) = P(F−1
µ (Φ(W1)) ≤ x) = P(W1 ≤ Φ−1(Fµ(x))) = Fµ(x).

Now let τ = inf{u ≥ 1 : Wu = F−1
µ (Φ(W1))}. Then Wτ ∼ F−1

µ (Φ(W1)) ∼ µ. See

Figure 4.

Note that in general F−1
µ (Φ(x)) 6= x and thus, conditional on W1 = x, the

expected value of τ is infinite. Then, unless µ has a standard normal distribution,

E[τ ] = ∞. In particular, (Wt∧τ )t≥0 is not uniformly integrable.
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Wt

W1

t

τ

F−1
µ (Φ(W1))

Figure 4: The Doob construction. Run the Brownian motion until time 1. Condi-

tional on the value at time 1, construct a new target level and run the Brownian

motion until it first reaches this level. For a carefully chosen rule for selecting the

target level, this construction embeds µ.

3.3 Hall’s solution

Let c =
∫∞

0 xµ(dx). By the centring property we must also have c =
∫ 0

−∞ |x|µ(dx).

Choose a pair of random variables U ∈ (−∞, 0), V ∈ [0,∞) with joint law ρ where

ρ(du, dv) =
(|u| + v)

c
µ(du)µ(dv)

(For example, if µ is a uniform distribution on (−1, 1) then c = 1/4 and ρ(du, dv) =

(|u| + v).)

Then, conditional on (U = u, V = v), let τu,v = inf{t ≥ 0 : Wt /∈ (u, v)}. We

claim that τ = τU,V embeds µ. See Figure 5.

We have, for u < 0,

P(Wτ ∈ du) =

∫

v∈[0,∞)

P(U ∈ du, V ∈ dv)P(Wτu,v
= u|U ∈ du, V ∈ dv)

=

∫ ∞

v=0

ρ(du, dv)
v

|u| + v
= µ(du)

(
∫ ∞

v=0

µ(dv)
v

c

)

= µ(du).

A similar calculation applies for v > 0, and the Hall embedding is a solution of the

SEP for (W,µ).

For this construction we can also calculate E[τ ]. Again conditioning on the

exogenous random variables U and V ,

E[τ ] = E[E[τU,V |U, V ]]

14



Wt

t

τ

U

V

Figure 5: The Hall construction. Given random variables U < 0 < V , we stop the

Brownian motion the first time it leaves the interval [U, V ]. For the appropriate

joint distribution of (U, V ), this leads to an embedding of µ.

=

∫ 0

−∞

∫ ∞

0

dv|u|vρ(du, dv)

=

∫ 0

−∞

µ(du)

∫ ∞

0

µ(dv)
|u|2v + |u|v2

c

=

∫ 0

−∞

u2µ(du)

∫ ∞

0

µ(dv)
v

c
+

∫ 0

−∞

|u|
c
µ(du)

∫ ∞

0

µ(dv)v2

=

∫ ∞

−∞

u2µ(du),

so that at least in the case where µ has finite variance, E[τ ] is equal to that variance.

As we shall see below this is best possible. In this sense, the Hall solution is optimal;

however, it has the undesirable feature of requiring independent randomisation.

3.4 Properties of good solutions

Briefly we return to the general setting of a stochastic process X on I, and let τ

and σ be stopping times.

Definition 3.1 The stopping time τ is minimal if σ ≤ τ and Xσ ∼ Xτ implies

σ = τ almost surely.

Minimality is a natural concept for good solutions of the SEP in a general

context, but now we return to the Brownian setting.

Theorem 3.2 (Monroe [42]) 1. Minimal stopping times exist; given τ there

exists a minimal stopping time σ with Wσ ∼Wτ .
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2. Hitting times are minimal; all stopping times with finite expectation are min-

imal.

3. Suppose τ is such that E[Wτ ] = 0. Then τ is minimal if and only if Wt∧τ is

uniformly integrable.

The equivalence between uniformly integrable stopping times and minimal stop-

ping times in the centred case allows us to translate an analytic condition which

is useful for concluding that E[Wσ∧τ ] = 0 into a path-wise condition describing

good stopping times, where the adjective ‘good’ might better be expressed as ‘not

obviously inefficient’.

We prove some of Theorem 3.2.

Proof that stopping times with finite expectation are minimal.

If E[τ ] <∞ then E[Wτ ] = 0 and E[W 2
τ ] = E[τ ]. If σ ≤ τ and Wσ ∼Wτ , then

E[σ] = E[W 2
σ ] = E[W 2

τ ] = E[τ ]

and τ = σ almost surely.

Corollary 3.3 If µ has a second moment and τ ∈ T̄ (µ) then either E[τ ] =
∫

x2µ(dx)

or E[τ ] = ∞.

Proof that if Wt∧τ is uniformly integrable, then τ is minimal.

Suppose that σ ≤ τ and Wσ ∼Wτ . Then for all a,

E[Wτ − a;Wτ ≥ a] = E[Wσ − a;Wσ ≥ a] = E[Wτ − a;Wσ ≥ a]

where we use the identity in law, and the martingale and uniformly integrability

properties. Now E[Wτ −a;A] is maximised over sets A ⊂ Ω by choices A for which,

modulo null sets (Wτ > a) ⊆ A ⊆ (Wτ ≥ a). But E[Wτ − a;Wσ ≥ a] attains this

maximum and hence modulo null sets, (Wτ > a) ⊆ (Wσ ≥ a) ⊆ (Wτ ≥ a). Hence

Wτ = Wσ almost surely.

Now let η be any other stopping time with σ ≤ η ≤ τ . Then

Wη = E[Wτ |Fη] = E[Wσ |Fη] = Wσ = Wτ , almost surely.

Hence W is constant on (σ, τ), and since W has no intervals on constancy we must

have σ = τ as required. �

In the centred Brownian case we write τ ∈ T (µ) if τ ∈ T̄ (µ) and τ is minimal.

Corollary 3.4 If µ is centred and has support contained in an interval I and if

τ ∈ T (µ) then τ is less than or equal to the first exit time from I.

3.5 The Azéma-Yor solution

The Azéma-Yor [3] solution is based on a stopping rule which is the first entrance

of the joint process (Wt, Jt) into a domain DJ
µ . Let β be an increasing (but not

necessarily continuous, nor strictly increasing) process such that β(j) ≤ j. (If j0
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b(w)

w Wt

Jt

Wτ Jτ

Figure 6: The Azéma-Yor embedding. The figure shows a plot of the excursions of

Wt down from the maximum, represented by the horizontal lines in (Wt, Jt) space.

The Azéma-Yor stopping time is the first time that the Brownian path crosses the

line given by the barycentre b.

is such that β(j0) = j0 then we insist that β(j) = j for all j ≥ j0.) Let b be the

left-continuous inverse to β so that b = β−1, and let τβ = inf{t > 0 : Wt ≤ β(Jt)}.

See Figure 6.

Our approach is based on Rogers [49]. By the representation of the Brownian

path in terms of excursions down from the maximum we have that the probability

that Jτ is greater than j is equal to the probability that no excursion down from

the maximum gets below β(J·) before J reaches j. Let n denote Itô excursion

measure and let Az be the set where the excursion down from the maximum when

the maximum equals z gets below β(z): Az = {max0<u<ξz
(ez(u)) > z − β(z)}.

Here ξz is the lifetime of the excursion down from the maximum which occurs when

the maximum is at z, and (ez(u))0<u<ξz
is an excursion away from 0 of Brownian

motion. Then

P(Jτ ≥ j) = P(n (∪z≤jAz) = 0) = exp

(

−
∫ j

0

dz

z − β(z)

)

where we use the fact that the rate of excursions whose maximum modulus exceeds a

is a−1, and the fact that for a Poisson random variable Z of mean λ, P(Z = 0) = e−λ.

Having described the construction it remains to describe how to choose β so

that τ is a solution of the Skorokhod embedding problem for (W,µ). Note that the

law of Jτ has a continuous density, except perhaps for an atom at j0. Moreover, for

j such that β(j) < j,

(Wτ > β(j)) ⊆ (Jτ ≥ j) ⊆ (Wτ ≥ β(j)), (5)

and, at least where b is continuous, we have

P(Wτ ≥ w) = exp

(

−
∫ b(w)

0

dz

z − β(z)

)

, (6)

and, if b is differentiable,

−P(Wτ ∈ dw)

P(Wτ ≥ w)
= − b′(w)

b(w) − w
.
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If Wτ ∼ µ then P(Wτ ≥ w) = µ([w,∞)) =: µ̄(w), and if w is a continuity point

then (b(w) − w)µ(dw) = b′(w)µ̄(w). It follows that

d

dw

(
∫ ∞

w

zµ(dz)

)

= −wµ(dw) = b′(w)µ̄(w)−b(w)µ(dw) =
d

dw

(

b(w)

∫ ∞

w

µ(dz)

)

.

Integrating, and using the fact that at w equal to the lower limit on the support of

µ we have
∫∞

w
zµ(dz) = 0 we find that b is equal to the barycentre function:

b(w) =

∫∞

w zµ(dz)
∫∞

w
µ(dz)

= EX∼µ[X |X ≥ w]. (7)

Example 3.5 If µ ∼ U [−1, 1] then b(w) = (w + 1)/2 (for −1 ≤ w ≤ 1) and

β(j) = 2j − 1 for 0 ≤ j ≤ j0 = 1.

If E1 is an exponential random variable rate 1 and µ is the centred distribution

given by µ ∼ (E1 − 1) then b(w) = w + 1 (for w > −1) and β(j) = j − 1 for

j < j0 = ∞.

If µ = (pδ1 + pδ−1 + (1 − 2p)δ0) with p < 1/2 then for w ≤ −1, b(w) = 0; for

−1 < w ≤ 0, b(w) = p/(1−p) and for 0 < w < 1, b(w) = 1. Then β is also piecewise

constant (for j ≤ 1): for 0 ≤ j < p/(1−p) we have β(j) = −1; for p/(1−p) ≤ j < 1

we have β(j) = 0, and β(j) = j for j ≥ 1.

We have that the Azéma-Yor construction gives a solution of the SEP for (W,µ).

The question arises, is it minimal? By Monroe’s result (Theorem 3.2), it is equiva-

lent to ask if Wt∧τ is uniformly integrable, and for the Azéma-Yor stopping rule it

is possible to verify by calculation that this is the case.

By a Theorem of Azéma, Gundy and Yor [2] a (necessary and) sufficient con-

dition for uniform integrability is that limx↑∞ P(supt≤τ |Wt| ≥ x) → 0. For the

Azéma-Yor stopping time,

P(sup
t≤τ

|Wt| ≥ x) = P(H−x < Hb(−x))

+P(Hb(−x) < H−x)P

(

sup
t≤τ

Wt ≥ x

∣

∣

∣

∣

Hb(−x) < H−x

)

=
b(−x)

x+ b(−x)
+

x

x+ b(−x)

P(Wτ ≥ β(x))

P(Wτ ≥ −x)
.

Now b(−x) → 0 and µ̄(−x) → 1 so that

lim
x↑∞

xP(sup
t≤τ

|Wt| ≥ x) = lim
x↑∞

xµ̄(β(x)) = lim
y↑∞

b(y)µ̄(y)

= lim
y↑∞

E[Y |Y ≥ y]P(Y ≥ y) = lim
y↑∞

E[Y ;Y ≥ y] = 0.

Thus, if we are given µ and we define the barycentre function and its inverse,

and the Azéma-Yor stopping time relative to this inverse, then Wt∧τ is uniformly

integrable. However, if we consider a general increasing function β (for example,

β(j) = 1 − 1/j), then there is no reason for the corresponding stopping rule to be

associated with a uniformly integrable stopped process Wt∧τ .

Note that from (7) we have

(b(w) − w)P(Wτ ≥ w) =

∫ ∞

w

(z − w)µ(dz) = E[(Wτ − w)+].
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Furthermore, by Doob’s submartingale inequality, for any uniformly integrable stop-

ping time, and any j,

0 = E[Wτ − j; Jτ ≥ j] = E[Wτ − w; Jτ ≥ j] + (w − j)P(Jτ ≥ j)

≤ E[Wτ − w,Wτ ≥ w] + (w − j)P(Jτ ≥ j). (8)

Then

P(Jτ ≥ j) ≤ inf
w<j

E[(Wτ − w)+]

j − w
= inf
w<j

Cµ(w)

j − w
. (9)

This is suggestive of the model independent bound infK<B C(K)/(B−K) from (2).

There is equality in (8) if and only if

(Wτ > w) ⊆ (Jτ ≥ j) ⊆ (Wτ ≥ w). (10)

Comparing (10) with (5) we see that there is equality in (8) for the Azéma-Yor

construction provided w = β(j). We have the following result:

Proposition 3.6 Amongst all minimal solutions of the SEP for (W,µ) the Azéma-

Yor stopping rule maximises P(Jτ ≥ j) simultaneously for all j.

It is crucial in the proposition that we restrict attention to uniformly integrable

stopping times. If we consider all embeddings then the problem is degenerate, and

for each j > 0 there is an embedding for which P(Jτ ≥ j) = 1. To see this run the

Brownian motion until the first return to zero after the first hit on j, and then use

a favourite embedding thereafter.

A corollary of the proposition is that there exists a model for which the forward

price is continuous and the price of a one-touch digital option is equal to the upper

bound C(K∗)/(B−K∗). Moreover, the bound is attained by a process in which the

sets where the maximum is large correspond exactly to the sets where the terminal

value is large.

3.6 Solutions of the SEP and candidate price processes

Let (Mt)t≥0 be a continuous martingale, null at 0, such that MT ∼ µ. Then by the

Dambis-Dubins-Schwarz Theorem (see e.g. Revuz and Yor [48, Theorem V.1.6]),

Mt = W〈M〉t
so that 〈M〉T is a solution of the SEP for (W,µ).

Conversely, if τ ∈ T (µ) then

Mt = Wt/(T−t)∧τ

is a martingale with MT ∼ µ.

Further, if µ is an integrable but non-centred measure (with mean mµ), then we

can construct a centred measure µ0 by a parallel shift µ0((−∞, x]) = µ((−∞, x +

mµ]). If M0
T and W 0

τ embed µ0, then mµ +M0
T and mµ +W 0

τ embed µ.

Putting these two ideas together, there is a one-to-one correspondence between

minimal solutions of the Skorokhod Embedding Problem, and candidate martingale

price processes whose marginal distribution at T is consistent with call prices. If µ

is supported on R+, then by Corollary 3.4, (Mt)0≤t≤T is non-negative.
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3.7 Azéma martingales, the Azéma-Yor embedding and super-

replication

Suppose we are given an increasing (differentiable) function F (j), and consider the

problem of maximising E[F (Jτ )] over minimal embeddings of µ. For ease of expo-

sition suppose that µ is such that the barycentre b and its inverse β are continuous.

Given a positive function h define H(j, w) =
∫ j

0 h(r)(r − w)dr. The Azéma

martingale is H(Jt,Wt) =
∫ Jt

0
h(r)(r −Wt)dr. It is easy to see from Itô’s formula

that

dH(Jt,Wt) = −
(

∫ Jt

0

h(r)dr

)

dWt + h(Jt)(Jt −Wt)dJt.

The final term in this expression is zero since Jt = Wt whenever the finite variation

process Jt is not constant, and hence H(Jt,Wt) is a martingale.

We aim to design H such that

arg maxj{F (j) −H(j, w)} = b(w).

This requires the choice h(j) = F ′(j)/(j − β(j)) and then

H(j, w) =

∫ j

0

F ′(r)
(r − w)

r − β(r)
dr = F (j) − F (0) +

∫ j

0

F ′(r)
(β(r) − w)

r − β(r)
dr,

so that

F (j) −H(j, w) = F (0) +

∫ j

0

F ′(r)
(w − β(r))

r − β(r)
dr.

We want to maximise this expression. Note that the integrand is positive for β(r) <

w (i.e. r < b(w)) and negative for β(r) > w (i.e. r > b(w)). Hence the expression

is maximised at j = b(w) and

F (j) −H(j, w) ≤ F (0) +

∫ b(w)

0

F ′(r)
(w − β(r))

r − β(r)
dr ≡ G(w)

where the above is taken as the definition of G. In particular, F (j) ≤ G(w)+H(j, w)

(uniformly in j > 0, w ∈ R) and applying this result at (Jτ ,Wτ ) we obtain

F (Jτ ) ≤ G(Wτ ) +H(Jτ ,Wτ ),

on a path-by-path basis, with equality for the Azéma-Yor embedding.

Taking expectations, then provided τ is such that H(Jt∧τ ,Wt∧τ ) is uniformly

integrable, it follows that E[F (Jτ )] ≤ E[G(Wτ )]. If we further restrict attention to

minimal stopping times which are solutions of the SEP for (W,µ) then

sup
τ∈T (µ)

E[F (Jτ )] ≤
∫

R

G(x)µ(dx).

Although we have derived this result for differentiable F and regular µ it is clear

that it can be extended to arbitrary (increasing) functions. For example, for the

increasing function F (j) = I{j≥B} we have

sup
τ∈T (µ)

P[Jτ ≥ B] ≤ E

[

Wτ − β(B)

B − β(B)
I{W>β(B)}

]

.

This yields another proof of Proposition 3.6.
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3.8 The Perkins solution

The Azéma-Yor stopping time is based on a stopping rule which compares the value

of the Brownian motion to a function of the running maximum. The stopping time

has the property that it maximises the law of the maximum amongst the class of

uniformly integrable embeddings.

The Perkins [47] embedding has the property that it minimises the law of the

maximum of the stopped Brownian motion, amongst all embeddings. (There is no

need to impose a minimality criterion here; if τ is not minimal then there exists

σ ≤ τ with Wσ = Wτ and then Jσ ≤ Jτ ). In fact the Perkins embedding has

the property that it simultaneously minimises the law of the maximum Jτ and

maximises the law of the minimum Iτ = inf{Ws : 0 ≤ s ≤ τ}.

Our interpretation of the Perkins construction is based on the following path-

wise inequality, which plays an analogous role to (1):

I{HB≤τ} ≥ I{Wτ≥B} +
(Wτ −B)+

(B −K)
− (K −Wτ )+

(B −K)
+
WHB

−Wτ

(B −K)
I{HB≤τ} (11)

There is equality in (11) if on HB > τ we have K ≤ Wτ < B and on HB ≤ τ we

have either Wτ ≥ B or Wτ ≤ K.

Under the assumption that τ is minimal, taking expectations in (11) we find

P(Jτ ≥ B) ≥ P(Wτ ≥ B) +
1

B −K
(Cµ(B) − Pµ(K)) (12)

where Pµ(K) = EX∼µ[(K −XT )+]. Since (12) holds for any K we can find a best

bound of this type by taking the supremum over K < B, and then we find that K

is chosen to maximise
Cµ(B) − Pµ(K)

B −K
. (13)

The final bound is

P(Jτ ≥ B) ≥ |C′
µ(B−)| + sup

K<B

1

B −K
(Cµ(B) − Pµ(K)) . (14)

If we can find a model such that the bound is attained, then it will follow that (14)

is a best bound.

Fix B and suppose X ∼ µ. Then there exists K̂ and A with (X < K̂) ∪ (X ≥
B) ⊆ A ⊆ (X ≤ K̂) ∪ (X ≥ B) such that

0 =

∫

A

(k −B)µ(dk) =

∫

k≥B

(k −B)µ(dk) +

∫

A\(X≥B)

(k −B)µ(dk). (15)

Suppose τ1 is such that Wτ1 ∈ {K̂, B}. On Wτ1 = B we embed the mass µ restricted

to A; on Wτ1 = K̂ we embed the mass µ restricted to Ac. Let τP be this second

embedding, then τP embeds µ. By construction, (JτP
≥ B) ≡ (Wτ1 = B), and from

(15), Cµ(B) = (B − K̂)(µ(A) − µ([B,∞))) + Pµ(K̂). Then,

P(JτP
≥ B) = µ(A) = µ([B,∞)) +

Cµ(B) − Pµ(K̂)

(B − K̂)

≤ µ([B,∞)) + sup
K<B

Cµ(B) − Pµ(K)

(B −K)

≤ inf
τ∈T (µ)

P(Jτ ≥ B)

≤ P(JτP
≥ B)
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It

γ(i)

α(j)

Wτ

Jt

(Jt, It)

Figure 7: The Perkins embedding. Given monotonic α(j) and γ(i), the stopping

rule τ = inf{u : Wu 6∈ {α(Ju), γ(Iu)} is such that when W is stopped it is either at

a new maximum, or at a new minimum.

Hence, there is equality throughout, and K̂ maximises (13).

The above construction gives a solution of the Skorokhod embedding which

minimises P(Jτ ≥ B) for a fixed B. The Perkins embedding has the property that

it minimises P(Jτ ≥ B) over all embeddings simultaneously for all B > 0. (It also

minimises P(Iτ ≤ C) for all C < 0, where It = inf{Wu;u ≤ t}.) Define

α(j) = arg maxα<0

Cµ(j) − Pµ(α)

j − α
γ(i) = arg minγ>0

Pµ(i) − Cµ(γ)

γ − i

Let τ = inf{U : Wu /∈ (α(Ju), γ(Iu))} Then Wτ ∼ µ and P(Jτ ≥ B) attains the

lower bound from (14) uniformly in B. See Figure 7.

3.9 Financial interpretation of the Perkins construction

Suppose that St is a forward price, and that calls are traded with maturity T on S.

Suppose that such calls are traded with a continuum of strikes K with prices C(K)

which are consistent with no-arbitrage. This is equivalent to assuming we know the

marginal distribution of ST .

One candidate model for which option prices are given by C is when the price

process (St)0≤t<T is constant and then there is a jump at T , taken such that

E[(ST−K)+] = C(K). For this price process, for B > S0, P(JST ≥ B) = P(ST ≥ B),

where JSt = sup0≤u≤t Su. This is the lowest possible value for P(JST ≥ B) given the

law of ST .

Now suppose that the price process St is assumed to be continuous. The effect

of this assumption is to ensure that if we buy S the first time that the price gets to
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level B or above, then the price paid is B.

Consider the one-touch digital option with barrier B > S0 and maturity T . In

particular, consider the payoff F̃ = I{sup0≤t≤T St≥B}, and consider the problem of

finding a highest, model-independent, lower bound on the price of this option.

In the setting of the general theory we have FK = (ST −K)+, with fK = C(K),

and Θ ⊇ {cI(HB ,T ]}. Then, modulo translation to non-centred random variables,

the analysis of the previous section applies and

P(F̃ ) ≥ |C′(B−)| + sup
K<B

C(B) − P (K)

(B −K)
,

with equality for any model for which (ST < K̂(B)) ⊆ (HB ≤ T ) \ (ST ≥ B) ⊆
(ST ≤ K̂(B)) where K̂(B) = arg maxK<B(C(B) − P (K))/(B −K).

3.10 Barrier options

As another example of a model-independent bound for an exotic option consider a

knock-in barrier call option on the forward price St with maturity T , strike K and

barrier B > max{S0,K}. The option has payoff (ST −K)+I{HB≤T}, paid at T .

If we place ourselves in the setting of Section 2.7 then we have the fundamental

inequality, for k ∈ [K,B);

(ST −K)+I{HB≤T} ≤ B −K

B − k
(ST − k)+ +

k −K

B − k
(SHB

− ST )I{HB≤T}.

The first term is a semi-static hedging strategy in calls, and the second is the result

of a forward investment in the underlying. This yields the price bound on the

barrier option

P((ST −K)+I{HB≤T}) ≤ (B −K) inf
k∈[K,B)

C(k)

B − k
(16)

Recall the definition of the barycentre function b in (7) and its inverse β. To

emphasize the dependence of these quantities on the law µ representing the marginal

distribution of ST we use a subscript and write bµ and βµ. Then, for K ≥ βµ(B)

we find that the infimum in (16) is attained at k = K and the upper bound on the

knock-in barrier option is equal to the price of the call without the knock-in feature.

However, for K < βµ(B) the upper bound is strictly less than the call, and is equal

to (B−K)C(βµ(B))/(B−βµ(B)). It is possible to construct a model based on the

Azéma-Yor embedding and a time-change to show that this price can be attained.

For the lower bound, if there are no assumptions on the underlying then we have

the trivial inequality

(ST −K)+I{HB≤T} ≥ (ST −K)+I{ST ≥B}

with associated price bound

P((ST −K)+I{HB≤T}) ≥ C(B) + (B −K)|C′(B−)|.

This price bound is attained for a jump model with a single jump at time T .
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If we are prepared to assume that the underlying price process is continuous then

we can refine the lower bound. (This assumption has the effect that SHB
≡ B, so

that if we go short the forward the first time that the underlying equals or exceeds

the barrier, then the gains from trade are (B − ST )). For k ∈ [K,B) we have the

inequality

(ST −K)+I{HB≤T} ≥ (ST −K)+ − B −K

B − k

{

(ST − k)+ − (ST − B)+
}

+(B −K)I{ST ≥B} +
k −K

B − k
(ST∧HB

−B)

(To see this, split into two cases, (HB ≤ T ) and (HB > T ), and observe that the

right-hand-side is piecewise linear, so that it is sufficient to check that the inequality

holds where there are changes in value or kinks, i.e. at K, k and B.) Then

P((ST −K)+I{HB≤T}) ≥ C(K) + (B −K)|C′(B−)|

− inf
k∈[K,B)

{

B −K

B − k
(C(k) − C(B)) +

(k −K)(B − S0)

(B − k)

}

This bound can be attained by a time-change of the Perkins solution to the Sko-

rokhod embedding problem.

See Brown et al [9] for a further discussion of barrier options, including knock-

out barriers, and knock-in and knock-out puts, and Cox and Oblój [18, 19] for a

discussion of two-sided barriers.

3.11 Potential theory and the Chacon-Walsh embedding

To date we have supposed that the initial law of W is trivial (and then by a parallel

shift we may as well assume that W0 ∼ δ0). Now we suppose that W0 ∼ µ0. Given

centred probability measures µ0 and µ1, we ask when does there exist a stopping

time τ such that

W0 ∼ µ0,Wτ ∼ µ1 and Wt∧τ is uniformly integrable? (17)

Clearly, if we can decide when it is possible to solve (17), and if we can find construc-

tions where they exist, then we can solve the iterated problem: given (µi)0≤i≤n find

an increasing sequence of stopping times 0 = τ0 ≤ τ1 ≤ . . . ≤ τn (where possible)

such that

Wτi
∼ µi, Wt∧τn

is uniformly integrable. (18)

Theorem 3.7 (Röst [52]) A necessary and sufficient condition for the existence

of a solution to (17) is Cµ0(K) ≤ Cµ1(K) for all K.

Proof. Necessity follows from an application of the conditional Jensen’s inequality.

Since (w −K)+ is convex as a function of w,

Cµ1(K) = E[(Wτ −K)+] = E[E[(Wτ −K)+|F0]] ≥ E[(W0 −K)+] = Cµ0(K).

Sufficiency follows from one of the constructions given below. �
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Cµ1 (k)
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Figure 8: Given a pair of call price functions satisfying the no-arbitrage conditions,

there exists a model for the forward price which is consistent with those prices

provided the call prices are increasing in maturity.

Uµ(x)

a1

a2

b1

b2

Figure 9: Potentials in the Chacon-Walsh picture.

Put-call parity is a consequence of the identity (y−k)+−(y−k)− = y−k. Given

also (y−k)++(y−k)− = |y−k| we have 2(y−k)+ = |y−k|+(y−k). Hence Cµ0(K) ≤
Cµ1(K) is equivalent to Uµ0(K) ≥ Uµ1(K) where Uη(K) = −EX∼η|X −K| is the

potential (or minus the price of a straddle). Then the fact that C is a convex

function, with Cη(k) ≥ k− implies that Uη is concave and Uη(x) ≤ −|x|. Kinks

in the derivative U ′
η correspond to atoms of η; conversely straight segments of Uη

correspond to intervals where η places no mass.

The Chacon-Walsh solution of the SEP is based on potentials. We return to the

case where W0 = 0 and µ is a centred probability measure, but it is immediate from

the inductive nature of the construction that provided the potentials are decreasing,

then the same construction will work as an embedding for any initial law.

Let U0(x) = Uδ0(x) = −|x|, and τ0 = 0.

Fix a1 < 0 < b1. Set τ1 = inf{t > τ0 : Wt /∈ (a1, b1)}, µ1 ∼ L(Wτ1) and

U1 ≡ Uµ1 . Then U1(x) = −|x| for x ≤ a and x ≥ b, and U1(x) = a1 − (b1 + a1)(x−
a1)/(b1 − a1) for x ∈ (a1, b1). See Figure 9.

We now proceed inductively. Fix an < bn. Set τn = inf{t > τn−1 : Wt /∈
(an, bn)}, µn ∼ L(Wτn

), Un ≡ Uµn
. Then Un is a continuous concave function with

Un(x) = Un−1(x) outside (an, bn) and Un linear on (an, bn).
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Figure 10: The Dubins construction in the Chacon-Walsh picture. Shown are the

potentials at the first and second stages of the iteration, together with the starting

and terminal potentials.

The idea is to choose the points (an, bn) appropriately in such a way that Un ↓
Uµ. Then the increasing sequence of stopping times τn converges (to τ say) and

Wτ ∼ µ.

There is a large amount of freedom in the choice of the sequence (an, bn). A

natural choice is given by the Dubins [22] solution to the SEP. In the Dubins con-

struction the sequence (an, bn) is defined as follows.

Let A0 = {0}. Given Uµ let (a(0), b(0)) be the x-coordinates of the points where

the tangent to Uµ at x crosses Uδ0(x) = −|x|. (If there is an atom of µ at zero, then

Uµ has a kink there, and there are many candidate tangents to Uµ. We are free to

choose any of these; for definiteness we can choose the tangent with slope equal to

the right derivative of Uµ at x0.) Set A1 = {a(0), b(0)} and let µ1 be the law with

corresponding potential U1(x) = min{U0(x), Uµ(0) + xU ′
µ(0+)}. See Figure 10.

Given Uµ, An and potential Un, for each x ∈ An let (a(x), b(x)) be the x-

coordinates of the points where the tangent to Uµ (with slope U ′
µ(x+)) intersects

Un. Note that if xi < xj ∈ An then a(xi) ≤ b(xi) ≤ a(xj) ≤ b(xj). Then let

An+1 = {a(xi), b(xi);xi ∈ An}, and µn+1 the law with corresponding potential

Un+1 = minxi∈An
{Un(x), Un(xi) + (x− xi)U

′
n(xi+)}.

The Azéma-Yor embedding [3] can also be phrased in terms of a Chacon-Walsh

potential picture. Rather than considering a sequence of intervals, consider a contin-

uum of intervals, parameterised by j, such that b(j) = j and a(j) is the x-coordinate

of the point where the tangent to Uµ passes through the point (j,−j). (Note that

a(j) is not necessarily unique, but it is increasing, so we can make it unique by

making the function a right continuous.) We have

τj = inf{t ≥ τj−;Wt /∈ (a(j), j)}

A few lines of calculus show that a(j) is the inverse barycentre function.

3.12 The Skorokhod solution in the potential picture

Skorokhod’s solution [54] of the Skorokhod embedding problem can also be repre-

sented in the Chacon-Walsh picture. The construction is similar to the Hall solution,
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−L

V−(L)

V+(L)

Figure 11: The Skorokhod embedding in the potential picture. The points V±(l)

are determined by the (unique) tangents to Uµ which pass through (0,−l).

and the idea is to choose a single exogenous random variable L, to use that random

variable to define an interval, and to set τ to be the first time that Brownian motion

leaves that interval.

Let c =
∫

(0,∞)
xµ(dx), so that Uµ(0) = −2c. For l ∈ (0, 2c), let V+(l) be the

x-coordinate of the point in R+ such that the tangent to Uµ at V+(l) crosses the

y-axis at y = −l. (If Uµ has linear sections then there may be an interval of such

V+(l), in which case we take the largest. With this definition the increasing function

V+(l) is right-continuous.) Similarly, define the decreasing function V−(l) to be the

x-coordinate of the point in R− such that the tangent to Uµ at V+(l) crosses the

y-axis at y = −l. See Figure 11.

If µ has a continuous distribution function then we take L to have distribution

given by P(L ≥ l) = µ((V−(l), V+(l)), for 0 ≤ l ≤ 2c. More generally, to allow

for atoms we take P(L ≥ l) to equal one half the difference in slopes between the

tangents joining (V−(l), Uµ(V−(l))) with (0,−l) and (0,−l) with (V+(l), Uµ(V+(l))).

Finally we set τl = inf{u : Wu /∈ (V−(l), V+(l))}, and then WτL
∼ µ.

Rather than prove this result, we give an example. Suppose µ is the law of a

uniform random variable on (−1, 1). Then Uµ(x) = −(x2 + 1)/2, c = 1/4, and

V±(l) = ±
√

1 − 2l. Then, by symmetry, for w ∈ (0, 1),

P(WτL
≤ w) − P(WτL

≥ 0) =
1

2
P(V+(L) ≤ w) =

1

2
P(L ≥ (1 − w2)/2) =

w

2

as required.

Remark 3.8 The original Skorokhod construction assumes the existence of a non-

negative exogenous random variable Z, and then sets τ to be the first time the

Brownian motion leaves the interval (ρ(Z), Z) for a non-positive decreasing function

ρ. From our representation of the Skorokhod solution in the potential picture we

see Z ∼ V+(L) and ρ(z) = V−(V −1
+ (z)).

3.13 The Bass solution

Whereas our philosophy has been to construct solutions of the Skorokhod embedding

problem for Brownian motion with the aim of generating models for the martingale
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price process via a time-change, Bass [5] constructs a (time-inhomogeneous) mar-

tingale diffusion such that X1 ∼ µ, and then uses this to construct a solution of the

SEP for (W,µ). As such the Bass construction is interesting in the finance context

because it gives directly (a family) of diffusion processes with marginal law µ at

time 1.

Suppose that on (Ω,F ,F = (Ft)0≤t≤1,P), the diffusion process Z solves the

stochastic differential equation dZt = η(Zt, t)dBt + γ(Zt, t)dt with Z0 = z, and is

such that the law of Z1 is known and given by the atom-free centred distribution

function FZ . Suppose further that we can calculate the time-1 law of Zt from

any starting point (Zt, t)0≤t<1. (The simplest case is when Z is itself a Brownian

motion, but other constructions could be based on a Brownian bridge, a Bessel

process or an Ornstein-Uhlenbeck process.) Given µ, (and associated distribution

function Fµ), fix g(z) = F−1
µ (FZ(z)). Then g is increasing and g(Z1) ∼ µ.

Now set Xt = E[g(Z1)|Ft]. Then Xt = h(Zt, t), for a function h which is

increasing in its first argument, and has inverse Zt = H(Xt, t) say. Then X1 ∼ µ

and

dXt = h′(Zt, t)η(Zt, t)dBt = a(Xt, t)dBt

where a(x, t) = h′(H(x, t), t)η(H(x, t), t). Note that X0 = E[g(Z1)] = 0.

Given a Brownian motion W and the function a, define the increasing additive

functional Γ and its inverse A via

Γ0 = 0,
dΓu
du

=
1

a(Wu,Γu)2
, At = inf{u : Γu > t}.

Set Xt = WAt
. Then, with u = At,

dAt
dt

=
1

dΓu/du
= a(Wu,Γu)2 = a(Xt, t)

2,

and for some Brownian motion Ŵt,

dXt =
√

dAt/dt dŴt = a(Xt, t)dŴt.

Finally, since X1 ∼ µ, we have WA1 ∼ µ and hence τ = A1 is a solution of the

Skorokhod embedding problem for (W,µ).

3.14 A general schematic for solutions

Solutions of the Skorokhod embedding problem can be classified, very approxi-

mately, into three main types.

The first type (such as Dubins [22] and also Azéma-Yor [3]) fall under the general

heading of potential theoretic constructions, and have a pictorial representation in

the Chacon-Walsh [13] picture. It is also possible to place the original embedding

due to Skorokhod in this category.

For the second type of embedding the aim is to solve the SEP subject to an

additional optimality criterion. In particular, given some functional H(Wt; 0 ≤ t ≤
τ), the aim is to solve the SEP for (W,µ) such that H is maximised, in the sense

of first order stochastic dominance, or sometimes in the weaker sense of maximised
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in expectation. As we have seen, the Azéma-Yor [3] and Perkins [47] embeddings

fall into this category, but so do the Root/Röst [51, 53] constructions (based on the

additive functional t), the Vallois [55, 56] embedding (based on the local time) and

the Ob lój-Yor [44] solutions (based on the age of the excursion), amongst others.

We will discuss the Root and Röst solutions in detail below, because of the direct

financial interpretations.

Finally, there are miscellaneous embeddings which fall into neither of the above

categories. These include the Hall [29] and Bass [5] solutions described above, and

also the Bertoin-Le Jan [7] solution.

4 Other applications of the Skorokhod Embedding

Problem

4.1 The central limit theorem

These notes are primarily concerned with the connection between Skorokhod em-

beddings and derivative pricing and hedging. However, there is one other important

application which deserves comment, namely the use of Skorokhod embeddings to

prove the Central Limit Theorem.

Let X1, X2, . . . be a sequence of independent identically distributed random

variables, with law µ such that µ has mean zero and variance 1. Let Sn =
∑

k≤nXk.

Let B(i) be Brownian motions, and let τ (i) be any of the minimal embeddings of

µ in B(i) described to date. The times τ (i) are independent identically distributed

random variables with mean 1, and B
(i)

τ (i) are independent. The sequence (Xi)i≥1 =

(B
(i)

τ (i))i≥1 has the properties listed in the previous paragraph.

Let T0 = 0 and Tj =
∑

i≤j τ
(i). Now define a Brownian motion (Wt)t≥0 by

Wt =
∑

i≤j

B
(i)

τ (i) +B
(j+1)
t Tj ≤ t < Tj+1 (19)

Then WTn
= Sn, and by Brownian scaling, Sn/

√
n = WTn

/
√
n ∼WTn/n.

The idea is that, since Tn/n → 1 and since at fixed times Brownian motion

has Gaussian marginals, then in the limit Sn/
√
n will inherit a standard normal

distribution.

Theorem 4.1 With the notation and hypotheses of this section Sn/
√
n converges

in law to a standard normal distribution.

Proof. Let W be the Brownian motion defined in (19). Let Z
(n)
t = Wnt/

√
n. Then,

for each n, Z(n) is a Brownian motion. By the above construction we have

Sn√
n

=
WTn√
n

= Z
(n)
Tn/n

∼ ZTn/n,

for a Brownian motion Z. Fix ǫ > 0 and choose δ > 0 so that

P

(

sup
t:|1−t|<δ

|Zt − Z1| > ǫ

)

<
ǫ

2
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By the strong law of large numbers Tn/n→ 1 almost surely, so that we can choose

N large, such that for all n ≥ N ,

P(|Tn/n− 1| > δ) <
ǫ

2

Combining these last two displayed equations we conclude that

P(|WTn
/
√
n−Wn/

√
n| > ǫ) = P(|ZTn/n − Z1| > ǫ) < ǫ

Then P(Wn/
√
n < x − ǫ) − ǫ ≤ P(Sn/

√
n < x) ≤ P(Wn/

√
n < x + ǫ) + ǫ and the

result follows.

4.2 Non-centred target laws

There is a very easy way to embed integrable, but non-centred, target laws in

Brownian motion started at zero — simply run Brownian motion until it hits the

mean, and thereafter use a favourite embedding for a centred distribution. Such an

embedding is minimal, see Cox and Hobson [17]. Note however that whereas in the

centred case if µ has support in an interval I = [a, b] then for a minimal embedding

τ ≤ Ha ∧ Hb, in the non-centred case this is no longer true. If the mean of the

target distribution is positive then it is no longer possible to have an embedding for

which τ ≤ Hz almost surely, for any z < 0. (If it were, then (Wt∧τ )t≥0 would be

bounded below and Fatou’s lemma would imply that the law of Wτ had negative

mean.)

4.3 Embeddings in time-homogeneous diffusions

Suppose that X is a time-homogeneous diffusion with state space I ⊆ R with

absorbing or inaccessible endpoints, and consider the SEP for (X,µ). The two

fundamental questions are: when is it possible to embed µ, and if it is possible, how

can it be done?

In fact the problem can easily be reduced to the case of Brownian motion. The

relevant insight is due to Azéma and Yor [4], see also Pedersen and Peskir [46] and

Cox and Hobson [15].

Suppose that X solves dX = a(X)dB + b(X)dt. If s solves a(x)2s′′(x)/2 +

b(x)s′(x) = 0, then s is a scale function for X and Y = s(X) is a local martingale

with state space s(I). We have dY = s′(s−1(Y ))a(s−1(Y ))dB. We can choose s

such that s(x0) = 0 and then by the Dambis-Dubins-Schwarz Theorem Yt = WΓt

for some Brownian motion W , where Γt = 〈Y 〉t.
Let ν be the image of µ under s. If we can solve the problem for (W, ν) then we

can construct a solution τ for (Y, ν) via time-change, and then τ is a solution of the

SEP for (X,µ). Thus, if Wτ ∼ µ and if A is the inverse to Γ, then YAτ
= Wτ ∼ ν,

and XAτ
∼ s(YAτ

) ∼ µ.

Note that there is no reason to expect that ν is centred as a measure on R. By

the remarks in the previous section we can construct embeddings for non-centred

target distributions provided we do not impose any restrictions that τ is less than

the first exit time from some interval. However, for the purposes of embedding in
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non-martingale diffusions we must have that τ is smaller than the first exit time

from s(I). If we set mν =
∫

R
xν(dx), then we find that the answer to the question

about whether ν can be embedded in Y depends on the joint properties of s(I) and

mν :

if s(I) = R, then there is a solution for the SEP for any ν,

if s(I) = (−a,∞) then there is a solution for the SEP for ν if and only if mν ≤ 0,

if s(I) = (−∞, b) then there is a solution for the SEP for ν if and only if mν ≥ 0,

if s(I) = (−a, b) then there is a solution for the SEP for ν if and only if mν = 0.

5 The Root and Röst solutions and options on

volatility

5.1 The Root and Röst embeddings

Return to the classical setting of minimal solutions of the SEP for (W,µ) where

µ is a centred probability measure. Suppose µ has finite variance. Then there

are embeddings τ such that E[τ ] =
∫

R
x2µ(dx), (and as described in Corollary 3.3

above, for any embedding either E[τ ] =
∫

R
x2µ(dx), or τ has infinite expectation).

In particular, it does not make sense to attempt to find the solution of the SEP for

which E[τ ] is minimised; any minimal stopping time will satisfy this criterion. The

task of maximising E[τ ] over minimal stopping times is equally trivial.

However, the problem of searching for the embedding which minimises (over

all stopping times) the variance of τ , or alternatively the embedding which max-

imises (over uniformly integrable stopping times) the variance of τ leads to a unique

solution.

Since we are looking for an embedding which optimises a functional of t evaluated

at the stopping time, it is plausible that the stopping rule should depend on the

joint distribution of Wt and the additive functional t.

Given b : R → R+, define R ≡ Rb = {(t, x); t ≥ b(x)}. Let τb = inf{u : (u,Wu) ∈
Rb}. We will describe the function b (and sometimes the region Rb) as a barrier.

Theorem 5.1 (Root [51], Röst [53]) 1. Given a centred probability measure

µ there exists b such that τb is a solution of the SEP for (W,µ); moreover τb

is minimal.

2. τb minimises the variance of τ amongst all embeddings of the law of Wτb
.

More generally τb minimises E
[∫ τ

t∧τ h(Ws)ds
]

for all non-negative functions

h and times t.

The embedding property of the solution is due to Root [51], and henceforth

we will label this solution as the Root solution. The optimality properties were

conjectured by Kiefer [38] and proved by Röst [53]. Taking h = 1 we find that the

Root solution minimises the residual expectation E[(τ − t)+] ≡ E[(τ − τ ∧ t)] for

all t. Since any convex function can be decomposed into a positive combination of

such functions (and since E[τ ] is invariant across minimal embeddings) it follows

that the Root barrier solution minimises E[f(τ)] for any convex f .
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b(x)

Rb

Figure 12: The Root barrier solution. Given b : R → R+, or equivalently R ≡
Rb = {(t, x); t ≥ b(x)}, let τb = inf{u : (u,Wu) ∈ Rb} be the time of first entry by

(u,Wu) into the shaded region. The idea is to choose b such that Wτ ∼ µ.

Example 5.2 1. Suppose µ ∼ N(0, 1). Then the barrier is given by b(x) = 1,

Rb = {(t, x); t ≥ 1} and τb = 1.

2. Suppose µ ∼ (δ−1 + δ+1)/2. Then Rb = {(x, t) : x ≤ −1, x ≥ 1}, and

τb = H±1.

3. Suppose µ ∼ pδ−1 + pδ+1 + (1 − 2p)δ0 for 0 ≤ p ≤ 1/2. Then Rb = {(x, t) :

x ≤ −1, x ≥ 1} ∪ {(0, t); t ≥ t0(p)}. The quantity t0(p) does not have a

simple expression, but it is clear that t0(0) = 0, t0(1/2) = ∞ and that t0(p)

is strictly increasing in p. Hence the existence of a barrier which embeds µ is

guaranteed.

There is also a converse to the Root embedding, which is based on a reverse

barrier. The embedding is attributed to Röst by Meilijson [41], see also Oblój [43].

We assume that µ has no atom at zero. The construction can be extended to

include an atom at 0 by independent randomisation.

Theorem 5.3 (Röst) Given b : R → R+, define R̄ ≡ R̄b = {(t, x); t ≤ b(x)}. Let

τ̄b = inf{u : (u,Wu) ∈ R̄b}. Then,

1. given a probability measure µ with no atom at 0, there exists b such that τ̄b is

a solution of the SEP for (W,µ); moreover τ̄b is minimal;

2. τ̄b maximises the variance of τ amongst all uniformly integrable embeddings

of the law of Wτ̄b
. More generally τ̄b maximises E[

∫ τ

t∧τ
h(Ws)ds] for all non-

negative functions h and times t.

Remark 5.4 In fact both the Root and Röst embeddings can be extended to any

continuous Markov process (Xt)t≥0, and the optimality properties still hold. This

will be clear from the fact that the proofs we sketch below do not use any properties

of Brownian motion beyond the Markov property and continuity of paths.
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Wt

τ

t

Figure 13: The Röst reversed barrier. The embedding τ is the first time Brownian

motion W enters the shaded region.

Sketch of proof of Theorem 5.1. Suppose µ consists of a finite collection of

atoms at locations X = {x0 < x1 < . . . < xN < xN+1}, with associated probabili-

ties {p0, p1, . . . , pN , pN+1}. Suppose also that µ is centred, so that
∑N+1
i=0 xipi = 0.

We search for an embedding for (W,µ) of barrier form. Since the embedding is

minimal, by Corollary 3.4 we must have that the process is stopped before it leaves

the interval [x0, xN+1]. Furthermore, the process should only stop at the points

xi ∈ X , hence the barrier R must be of the form R = {(x, b);xi ∈ X , b ≥ bi}.

Moreover, we must have b0 = 0 = bN+1.

Let γ = {γ1, . . . , γN} be a vector in RN+ , and augment it with the values γ0 =

0 = γN+1. Let τγ = inf{u : Bu = xi, u ≥ γi; 0 ≤ i ≤ N + 1}. Set Γµ =

{γ : P(Bτγ
= xi) ≤ pi; 1 ≤ i ≤ N}. Note that if γ ∈ Γµ we must have P(Bτγ

=

x0) + P(Bτγ
= xN+1) ≥ p0 + pN+1 to compensate. Then γ ∈ Γµ if the associated

stopping rule never embeds more than allowed under µ at any point in the interior

of the support of µ. The excess mass is embedded at the endpoints.

We claim that if γ̂ and γ̃ are elements of Γν then so is γ where γ
i

= γ̂i ∧ γ̃i. To

verify the claim, fix i ∈ {1, . . . , N}. Without loss of generality we may assume that

γ̂i ≤ γ̃i. Then τγ = τγ̂ on Bτγ
= xi, and τγ ≤ τγ̂ otherwise. See Figure 14. Thus

(ω : Bτγ
= xi) ⊆ (ω : Bτγ̂

= xi) and P(Bτγ
= xi) ≤ pi. Since i was arbitrary, the

claim is proved.

It follows from the claim that Γµ has a minimal element. Moreover, this minimal

element must embed µ; if not then for some i we must have P(Bτγ
= xi) < pi, and

for this i we can reduce the value of γ slightly without violating the condition

P(Bτγ
= xi) ≤ pi and only making the values of (P(Bτγ

= xj))j 6=i smaller.

It remains to extend from atomic distributions µn to general µ. Root [51]

achieves this by mapping [0,∞] × [−∞,∞] to [0, 1] × [−1, 1] and putting a dis-
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Wt

xi

x0

xN+1

t

τ

Figure 14: The embedding property of the Root barrier for atomic measures µ on a

finite number of points. The stopping time τγ is the first time the Brownian path is

at one of the xi at a time later than γi. If γ is such the probability of stopping at xi

is less than pi, then making γi smaller, will increase the probability that Bτγ
= xi,

but can only decrease the probability of stopping at any other point.

tance metric on barriers expressed as sets in the new space. Given the images of

the barriers associated with µn, there must be a convergent subsequence in the

compact space [0, 1] × [−1, 1]. This must take the form of a barrier, and mapping

back to the original space we obtain the solution of the SEP for µ.

�

Sketch of proof of optimality of the Root construction.

Fix x and t and suppose that τ ∈ T (µ). We show that the Root barrier stop-

ping time maximises E[Lxt∧τ ] (simultaneously for all x and t) amongst all minimal

solutions of the Skorokhod embedding problem for µ.

If so, then the Root stopping time maximises E[
∫ t∧τ

0 h(Ws)ds] for all positive

h, and since E[
∫ τ

0
h(Ws)ds] is constant across minimal embeddings of µ, it also

minimises E[
∫ τ

t∧τ h(Ws)ds].

Let τ be any embedding of µ and suppose that there are paths with (Wτ ∈
dx, τ < t) and (Wσ ∈ dx, t ≤ σ < τ). Then we can take the terminal mass of Wτ

from those paths which pass through (σ, x) and embed that mass by extending the

paths from (τ, x) which are currently stopped at (Wτ ∈ dx, τ < t). See Figure 15.
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Wt

tτ σ

dx

Figure 15: Optimality of the Root construction. If for some (x, t) there are paths

which stop at (x, τ) with τ < t, and there are other paths which continue from

(x, σ) with t < σ < τ , then by shifting the continuations of paths from (x, σ) so

that they are continuations from (x, t) with t < τ , we can only increase the time

spent at x before time t. We stop some paths which pass through (x, σ) early, and

extend other paths at (x, τ) to compensate.

This modification of the stopping rule must increase the value of the local time

Lxt∧τ .

Hence, if τ is optimal, in the sense that it maximises E[Lxt∧τ ] amongst minimal

solutions of the Skorokhod embedding problem for µ, then for any pair (x, t) we

have that either the stopping rule never involves stopping paths at x before t, or,

no paths cross x after t.

Let Rt = {x : no paths cross x after t}. Then Rt is increasing in t and R =

∪t≥0Rt defines a barrier.

�

The justification for the embedding property and optimality of the Röst reverse

barrier is similar. Suppose τ is such that there are paths with (Wσ ∈ dx, σ < τ < t)

and (Wτ ∈ dx, τ > t). Then we can take (some of) the terminal mass of Wτ from

those paths which aren’t stopped at σ (but do stop by time t) and embed that mass

by continuing paths from (x, τ) which are currently stopped at (Wτ ∈ dx, τ < t).

This modification of the stopping rule must decrease the value of the local time

Lxt∧τ .

Remark 5.5 Note that the proofs of the embedding property and of the optimality

of the Root and Röst constructions do not rely on any properties of Brownian

motion, beyond the Markov property and the continuity of paths. We will exploit

this fact when we discuss applications to the pricing of volatility derivatives below.
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βt− α

t

τ

Wt

Figure 16: The law µ is such that Brownian motion stopped the first time it hits

the straight line x = βt− α has law µ.

Example 5.6 Suppose, that for α, β > 0

µ(dx) =
α
√
βe−βx

2/(2(x+α))

√
2π(x + α)3/2

dx; x > −α

The associated barrier function is b(x) = (x + α)/β, which corresponds to the

straight line x = βt− α. See Figure 16.

Suppose h is the convex function h(t) = eηt (with η < β2/2) and consider the

problem of minimising E[h(τ)] over stopping times τ which are solutions of the SEP

for (W,µ).

Define the constants φ = β −
√

β2 − 2η (note that φ > 0) and λ = 2ηeφα/φ2,

and set M(t, x) = λ− λeφx−φ
2t/2, so that M(0, 0) = 0 and M = (M(t,Wt))t≥0 is a

martingale.

Define Γ(x) = inft>0[eηt −M(t, x)]. The infimum is attained at t solving

ηeηt =
λφ2

2
eφx−φ

2t/2

(at least for x > −α) which reduces to

t =
2φ(x+ α)

(φ2 + 2η)
=
x+ α

β
= b(x),

where we use (φ− β)2 = β2 − 2η so that φ2 + 2η = 2φβ. It also follows that

Γ(x) =

(

1 +
2η

φ2

)

eη(x+α)/β − 2η

φ2
eφα.

Then, by construction,

h(t) ≥M(t, x) + Γ(x), ∀t, x,

with equality at t = (x+ α)/β. In particular, at t = τ we have h(τ) ≥M(τ,Wτ ) +

Γ(Wτ ) so that for any τ with M(t ∧ τ,Wt∧τ ) uniformly integrable,

E[h(τ)] ≥ E[Γ(Wτ )].
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Further, for all τ which are solutions to the Skorokhod embedding problem for µ

we have

E[eητ ] ≥
∫

R

Γ(x)µ(dx) = eαφ

with equality for the Root embedding τ = inf{u : Wu = βu − α}.

5.2 Pricing options on volatility

Let (Pt)t≥0 be the price process of an asset, (not necessarily a forward price) and

suppose Pt is continuous. Denote the quadratic variation by 〈lnP 〉t. The problem

is to derive robust, model independent bounds on the prices of call options on

volatility, and, following Dupire [24] and Carr and Lee [12] the idea is to use to

Root and Röst stopping times, and their optimality properties.

Suppose interest rates are deterministic. (For ease of exposition we will assume

that they are constant, and equal to r.) Then (St)t≥0 given by St = e−rtPt is a

forward price process, which we may assume to be a martingale under a pricing

measure. Note that lnSt = lnPt − rt so that 〈lnP 〉t = 〈lnS〉t.
Write Xt as shorthand for lnSt. Then

〈X〉T =

∫ T

0

(

dSu
Su

)2

=

∫ T

0

(

dPu
Pu

)2

.

On the other hand,

XT −X0 =

∫ T

0

dSu
Su

− 1

2

∫ T

0

(

dSu
Su

)2

,

so that

〈X〉T = −2 lnST + 2 lnS0 +

∫ T

0

2

Su
dSu.

Suppose that call options are traded for all strikes so that lnST is effectively a

traded asset. Suppose further that the strategy θt = 2/St is an admissible dynamic

hedging strategy. Then the integrated squared volatility 〈X〉T has a model free

price equal to 2(lnS0 − lnST ).

Now consider call options on 〈X〉T = 〈lnP 〉T . In particular, consider the security

with payoff (〈X〉T −Q)+.

Without loss of generality we may assume that P0 = S0 = 1, so that X0 = 0.

The goal is to derive model-independent bounds on the price of (〈X〉T − Q)+,

assuming that the law of ST is given (by µ say).

Define Mt =
∫ t

0 dSt/St. Then Xt = Mt − 〈M〉T /2 = Mt − 〈X〉T /2. We know

that the continuous local martingaleM can be written as a time-change of Brownian

motion: Mt = W〈X〉t
for some Brownian motion W . We also have

St = eXt = eW〈X〉t
−〈X〉t/2 = Z〈X〉t

where (Zu)u≥0 is the exponential Brownian motion Zu = eWu−u/2.

Since ST ∼ µ we have Z〈lnS〉T
∼ µ, so that 〈lnS〉T is a solution of the Skorokhod

embedding problem for (Z, µ). Conversely, if σ is a solution of the SEP for (Z, µ),

and if St = Zσ∧(t/(T−t)) then

ST = Zσ ∼ µ and 〈lnS〉T = 〈X〉T = σ.
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If σ is the Root solution of the SEP for (Z, µ) then we say that (St)0≤t≤T given

by St = Zσ∧t/(T−t) is the Root model. This model is consistent with observed call

prices as represented by µ. Then, combining the time-change with Theorem 5.1 and

Remark 5.4 we have the following theorem.

Theorem 5.7 (Dupire [24], Carr-Lee [12]) Suppose call prices satisfy C(K) =

Cµ(K) for some distribution µ with mean S0. Let σR be the Root barrier solution

of the Skorokhod embedding problem for (Z, µ).

Let ((St)0≤t≤T ,P
R) be a model for the forward price for which St = ZσR∧(t/(T−t)).

Let ((St)0≤t≤T , P̃) be any alternative model for which St is a martingale and ST ∼ µ.

Then, for any Q ≥ 0,

ER[(〈lnS〉T −Q)+] ≤ Ẽ[(〈lnS〉T −Q)+]

and the price of a call option on quadratic variation for a given set of vanilla call

prices is minimised under the Root model.

The Röst (reverse barrier) construction gives an upper bound.

5.3 A path-wise hedging strategy for volatility options

Theorem 5.7 gives bounds on the prices of call options on volatility, but it does not

give an associated super-replicating or sub-replicating strategy. In particular, it does

not give a path-wise inequality which could be used to enforce the bounds, in the

way that the inequality (1) enforces no-arbitrage bounds on the prices of one-touch

digitals. We show below that, subject to solving a variant on the heat equation

with a rather strange ‘boundary condition’, a sub-replicating strategy exists.

Let call prices (for all strikes and maturity T ) be such that ST ∼ µ. (By scaling

we may assume that S0 = 1 and µ has support R+ and mean 1.) Suppose that the

Root solution to the Skorokhod embedding problem for (Z, µ) is associated with

the barrier bµ. Consider the problem of pricing an option with payoff h(〈lnS〉T )

with h(t) convex.

Theorem 5.8 Suppose there exists m(t, z) such that m(0, 1) = 0, z2

2 m
′′ + ṁ = 0

and such that

arg inft≥0[h(t) −m(t, z)] = bµ(z).

Suppose further that θ given by

θt = m′(〈lnS〉t, St)

is admissible, in the sense that Gθ =
∫ T

0 θtdSt ∈ GΘ.

If we define Γ(z) = inft>0{h(t) −m(t, z)} = h(bµ(z)) −m(t, bµ(z)) then

h(〈lnS〉T ) ≥ Γ(ST ) +Gθ,

path-wise, and thus

P(h〈lnS〉T ) ≥
∫

R+

Γ(s)µ(ds),

with equality for the Root model.
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Proof. Since h(t) −m(t, z) ≥ Γ(z) uniformly in t and z we have

h(〈lnS〉T ) ≥ Γ(ST ) +m(〈lnS〉T , ST ).

But, by Itô’s formula, and using d〈lnS〉t = (dSt)
2/S2

t ,

m(〈lnS〉T , ST ) = m(0, 1) +

∫ T

0

[

ṁ d〈lnS〉t +m′dSt +
S2
t

2
m′′ (dSt)

2

S2
t

]

=

∫ T

0

m′(〈lnS〉t, St)dSt

= Gθ.

�

Example 5.9 Suppose h(t) = t and m(t, z) = 2 ln z + t. Then m(0, 1) = 0 and

ṁ+ z2m′′/2 = 0. Furthermore, h(t)−m(t, z) is independent of t so that, for any µ

with Root barrier bµ(z),

Γ(z) = inf
t
{h(t) −m(t, z)} = h(bµ(z)) −m(bµ(z), z) = −2 ln z.

Then, provided θ given by θt = (2/St) is admissible we have

P(〈lnS〉T ) = P(−2 lnST ) =

∫

R+

(−2 ln s)µ(ds)

and the fair price of a security paying 〈lnS〉T is model independent.

Example 5.10 In this second example the payoff is non-linear and Theorem 5.8

gives a model-independent bound, rather than the unique no-arbitrage price. We

show how to construct a sub-replicating strategy which enforces the lower bound.

The example is based on Example 5.6.

Suppose that h(t) = eηt. Suppose further that ST ∼ µ where

µ(dz) =
α
√
γ√

2π(α+ ln z)3/2
exp

(

(α− (2γ − 1) ln z)2

8γ(α+ ln z)

)

dz, z > e−α.

Then bµ(z) = (α + ln z)/γ.

Fix v = e−α and let ψ be the smallest root of ψ2−(1+2γ)ψ+2η = 0. (We assume

that η is small enough so that this equation has a solution.) Define φ = ψ(ψ− 1)/2

and λ = ηφ−1v−ψ .

Now set m(t, z) = λ − λzψe−φt. If b(z) = arg inft>0[h(t) − m(t, z)] then b(z)

solves

ηeηb(z) = φλzψe−φb(z).

The choices of constants are such that b(z) = bµ(z). Provided θ given by θt =

−λψSψ−1
t e−φ〈X〉t is an admissible strategy then, in the notation of Theorem 5.8,

Γ(ST )+Gθ is a sub-replicating strategy for the volatility option with payoff h(〈X〉T ).

The model-independent lower bound on the price of the option is
∫

R+ Γ(s)µ(ds),

where Γ(s) = h(b(s)) −m(b(s), s).
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6 Multiple stopping times; option price data for

several maturities.

To date we have assumed that there are a continuum of option prices available, for

vanilla European options of a single maturity. But what if options trade with two

(or more) maturities? Are the option prices consistent with no arbitrage? Can the

call prices from an earlier maturity be used to refine the price bounds? Is it possible

to derive bounds for forward starting options?

In terms of the Skorokhod embedding problem, the equivalent problems relate

to the existence and properties of solutions when the initial law of the Brownian

motion is non-trivial. Recall from Theorem 3.7 that there exist solutions of the

Skorokhod embedding problem for centred initial and terminal laws if and only if

Cµ(x) ≤ Cν(x). This has an immediate Corollary in the finance setting; a necessary

and sufficient condition for the absence of arbitrage between a pair of (decreasing,

convex) call price functions is that for each fixed strike (in the bond numeraire), call

prices are increasing in maturity. (There are extensions of this result to the case

where only a finite number of strikes are traded, in which case the answer depends on

the ability to extrapolate between the traded strikes to generate convex (in strike)

call price functions whose prices are increasing in maturity. See Bühler [11], Davis

and Hobson [20] or Cousot [14].)

So, suppose µ and ν are such Cµ(x) ≤ Cν(x), or equivalently Uµ(x) ≥ Uν(x).

The aim is to find stopping rules τ which maximise a functional F (Wt, 0 ≤ σ ≤
t ≤ τ) (or in the forward-starting version of the problem F (Wt, σ ≤ t ≤ τ)) where

Wσ ∼ µ and Wτ ∼ ν. the question arises: what are the appropriate generalisations

of the Azéma-Yor (or Perkins, Root, Röst . . . ) embeddings to non-zero initial

law? In the financial context, new derivatives become relevant, such as the forward-

starting straddle option with payoff |ST2−ST1 |. An analysis of this can be considered

as a first step towards pricing the discrete time Asian option with payoff (
∑

i≤n STi
−

K)+, and thence its continuous time analogue.

6.1 Maximising the law of the maximum, with intermediate

constraints

Consider the problem: find

sup
τ

P(Jτ ≥ j)

where the supremum is taking over uniformly integrable stopping times τ such that

there exists σ ≤ τ for which

W0 ∼ δ0, Wσ ∼ µ, Wτ ∼ ν. (20)

This is directly linked to finding candidate models for which ST1 ∼ µ and ST2 ∼ ν.

It turns out that there are two cases, an easy case, and a hard case.

In the easy case, the barycentres bµ and bν are ordered so that bµ(x) ≤ bν(x) for

all x. See Figure 17. Then the inverse barycentres βµ and βν satisfy βν(j) ≤ βµ(j).

In particular, if we define σ = τbµ
= inf{u : Wu ≤ βµ(Ju)} and τ = τbν

= inf{u :

Wu ≤ βν(Ju)} then σ ≤ τ embed µ and ν respectively.
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WtWσ

Jt

Jσ

Wτ Jτ

Figure 17: A pair of barycentres. In this case the barycentres are ordered and it is

possible to find σ and τ with σ ≤ τ where both separately represent the Azéma-Yor

construction of the associated measure.

Moreover, since τ is the Azéma-Yor embedding for ν, τ maximises P(Jτ ≥ j) over

all minimal solutions of the Skorokhod embedding problem for (W, ν), and hence

must maximise P(Jτ ≥ j) over the smaller set of embeddings which are subject to

the intermediate constraint.

Unfortunately, although Uµ(x) ≥ Uν(x) is a necessary condition for bµ(x) ≤
bν(x), ∀x, it is not sufficient. Suppose for example µ ∼ (δ−1 + δ1)/2 and ν ∼
pδ−2 + (1 − 2p)δ0 + pδ2. For 1/4 ≤ p ≤ 1/2 we have −1 = Uµ(0) ≥ Uν(0) = −4p

and then Uµ(x) ≥ Uν(x) for all x. However, for −1 < x < 0 we have bµ(x) = 1 and

bν(x) = 2p/(1 − p) so that in order to have bµ(x) ≤ bν(x) we must have p ≥ 1/3.

For p < 1/3 the barycentres are not ordered.

It follows that the intermediate constraint Wσ ∼ µ has an impact on the possible

values of P(Jτ ≥ j). For more on this situation, and the implications for model-

independent bounds, see Brown et al [9].

A similar situation arises if we try to extend the Perkins [47], Root [51], Röst [41]

or Vallois [55, 56] constructions to multiple time points. All these constructions

utilise a stopping rule based on the first hitting time of the joint process (Wu, Au)

of a domain, where At is an additive functional of the Brownian path. If these

domains posses a natural ordering, then the construction of optimal stopping times

σ, τ satisfying (20) is straightforward. Otherwise the construction of the optimal

stopping rule (i.e. the one which maximises Aτ ) is much more challenging. See

Figure 18 for an illustration in the Root barrier case.

6.2 Maximising the law of the maximum, with non-trivial

initial law

Now consider the problem:

sup
τ

P(Jτ ≥ j)

where the supremum is taking over stopping times τ such that

W0 ∼ µ, Wτ ∼ ν (21)
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b1(x)

Rb1

b̂2(x)

Rb̂2

b̃2(x)

Rb̃2

Figure 18: A pair of Root barriers. Suppose we try to solve the problem (20)

of constructing an embedding τ of ν subject to the existence of σ ≤ τ for which

Wσ ∼ µ. Let b1 with associated stopping region Rb1 embed µ; for (different) ν̂ and ν̃

let b̂2 and b̃2 be the associated Root barriers. If the barriers are ordered, e.g. b̂2 ≥ b1,

then we can define σ = inf{u : (u,Wu) ∈ Rb1} and τ̂ = inf{u : (u,Wu) ∈ Rb̂2
and

the problem is solved. But, if the barriers are not ordered (e.g. b1 and b̃2), then a

more complicated construction is needed.

Uµ1

Uµ2

Wτ W0

Figure 19: Potential theory picture of Azéma-Yor story with non-trivial starting

law. The idea is to run excursions down from the current maximum along tangents

to the potential Uµ2 which intersect Uµ1 at the current value of the maximum. See

Hobson [32].

42



where µ and ν are centred probability measures with Uµ(x) ≥ Uν(x).

An alternative but equivalent problem is to search for pairs of stopping times

σ ≤ τ for which (20) holds, but to only calculate the maximum over the interval

(σ, τ). This corresponds to searching for model-independent derivative prices for

forward-starting options, e.g. for barrier options where the option is knocked-in

only if it is crossed in the period (T1, T2).

Several generalisations of solutions of embeddings to the situation with non-zero

initial laws are known. Hobson [32] shows how to adapt the potential picture to

extend the Azéma-Yor embedding to this case (see Figure 19) and Hobson and Ped-

ersen [36] consider the extension of the Perkins embedding, and give an application

to bounds on the prices of barrier options. Indeed, in the case of a Root [51] barrier

solution, the same form of construction still holds, and τ = inf{u : (u,Wu) ∈ Rb}
is an embedding for a suitably chosen barrier b depending on both µ and ν.

6.3 Maximising the law of the maximum, with a continuum

of marginals

Suppose we are given the marginal distributions of a martingale X for every t. For

there to exist a process with those marginals we must have that the potentials are

decreasing in t, (or equivalently the call option prices are increasing in maturity). By

the results of Krylov [39], Gyöngy [28] and Dupire [23], if the marginals arose from a

continuous process then we can identify a unique diffusion with the same marginals.

Now we ask, what other processes might have lead to the same marginals? The

Dupire construction gives a canonical process with a given set of marginals, but it

is not unique.

In particular, suppose Xt ∼ N(0, t), and that Xt is a martingale. Clearly one

process with these marginals is Brownian motion, and Brownian motion is the

unique continuous Markovian martingale with N(0, t) marginals.

Following Oleszkiewicz [45] we can define a fake Brownian motion to be a martin-

gale with marginals Xt ∼ N(0, t), which is not Brownian motion. Given Dupire’s

result, in order to find such a process we need to relax either the assumption of

continuity of paths, or the Markov assumption.

It is apparent from the discussion in Section 6.2 that several of the construction

methods for solutions of the Skorokhod embedding problem for multiple time points

extend to the setting of a family of marginals with parameter t, at least under some

restrictions on that family. A first example is the Azéma-Yor construction.

Let µt ∼ N(0, t), and let bt := bµt
. By scaling we have that bt(x) = b1(x

√
t), so

that the family bt is increasing in t for each fixed x. In particular, if τt = inf{u :

Wu ≤ βt(Ju)} then τt is an increasing family of stopping times such that τt embeds

µt. This is the Madan and Yor [40] fake Brownian motion. The resulting process is

a Markovian martingale, for which paths have strictly decreasing continuous parts

interleaved with positive jumps.

By extending the methods of Section 6.1 from two to a continuum of time-points

we can also use the Perkins [47] or Vallois [55, 56] construction to generate other

fake Brownian motions. (Note however that the generalisation of the Root [51]
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construction does not give a fake Brownian motion, since the barriers are simply

vertical lines and the resulting stopping times are τt ≡ t.)

Interest in the problem of finding fake Brownian motions began with a paper

by Hamza and Klebaner [30]. They use a remarkably clever decomposition and

recombination of the normal distribution to produce a pure-jump martingale with

Gaussian marginals. They also asked the question if there existed continuous (non-

Brownian) martingales with Gaussian marginals. This was answered in the affirma-

tive by Albin [1]. Finally, Oleszkiewicz [45] gave an elegant and simple construction

of a continuous fake Brownian motion. In essence this construction makes use of

the fact that Rt sin ΘAt
is a Brownian motion where (Rt)t≥0 is a two-dimensional

Bessel process, (Θu)u≥0 is a Brownian motion on the unit circle, and (At)t≥0 is

the increasing additive functional such that At =
∫ t

0
R−2
s ds. The idea is to write

Xt =
√
tR sin(U + Wln t) where R has the same distribution as R1, U is uniform

distribution on [0, 2π) and W is Brownian motion.

The existence of fake Brownian motions implies that although the Dupire [23]

construction gives a model which is consistent with the continuum of traded op-

tion prices (assuming such a family exists) — and perhaps gives the canonical model

consistent with these prices — it is not the unique model with this property. Hence,

although the Dupire diffusion might be used to give a guide price for exotic deriva-

tives, these prices are not the unique prices consistent with no-arbitrage.

6.4 Model independent bounds on basket options

Underlying the discussion in these notes is a philosophy whereby the prices of exotic

options are related to the prices of vanilla (traded) options by the construction of

super-hedges involving those vanilla options. The (primal) pricing problem is related

to a (dual) hedging problem.

The same philosophy can be applied in other contexts, one such being the pricing

of basket (exotic) options, given the prices of (vanilla) call options on the individual

constituents of the basket. It turns out that the model independent upper bound

on the price of a basket option is associated with a model when the assets are

co-monotonic, see Dhaene et al [21] or Hobson et al [34].

7 Closing remarks

In a mature market, the prices of liquidly traded vanilla options are not the expec-

tations of the payoff under a stochastic model, but rather they are fixed by supply

and demand, or market sentiment. From a derivative pricing perspective the objects

of interest become the less liquid exotic derivatives which must be priced relative

to the vanilla options.

In the standard case where the vanilla options are precisely the puts and calls,

knowledge of vanilla prices is equivalent to knowledge of the marginal distribution

of the underlying asset. Then, finding candidate models which fit option prices is

equivalent to finding solutions of the Skorokhod embedding problem, and finding
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the range of no-arbitrage prices for an exotic option is equivalent to finding extremal

embeddings which maximise functionals on the Brownian paths.

The associated no-arbitrage bounds may be quite wide. (Conversely, see Brown

et al [10], and Example 5.10 above, in some special cases the upper and lower

bounds coincide, and there is a unique model-independent no-arbitrage price for

the exotic option.) However, each bound is associated with a model which achieves

the bound, and by investigating features of this model it is possible to determine the

characteristics of models which lead to high option payouts. (For example, for the

model which attains the upper bound on the price of a lookback option, the overall

maximum is an increasing function of the time-T price. Whilst in exponential

Brownian motion model the correlation between the final value and the maximum

is not perfect, the correlation is quite strong, and therefore for realistic parameter

values the model price can be expected to be quite close to the theoretical upper

bound.)

The second major advantage of the Skorokhod-embedding-model-independent-

bound approach is that since no assumptions are made on the model the resulting

strategies must be very simple. Even if an agent believes in a particular stochastic

model there may be advantages (especially in the form of lower transaction costs) in

following a semi-static hedging strategy involving calls, when compared with a delta-

hedging strategy with infinite trading. Cox and Oblój [18] compare the performance

of a model independent hedge with the Black Scholes hedge for no-touch options,

and conclude that the robust hedge frequently outperforms the classical delta-hedge,

even when transaction costs are small.

The optimal strategy involves purchasing an initial portfolio of traded options,

but this portfolio is held constant over time, and there is no assumption that el-

ements of the portfolio can be sold at intermediate times. Hence the success of

any super-replicating strategy is not contingent upon any model for movements of

option prices over time.
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tinues. Séminaire de Probabilités, XIV, Lecture Notes in Math., 784, 53–61, Springer,

Berlin, 1980.
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[19] Cox, A.M.G, and Oblój, J.; Robust pricing and hedging of double no-touch options,

Preprint, 2009. arXiv:0901.0674

[20] Davis, M.H.A and Hobson, D.G.; The range of traded options prices, Math. Finance,

17, 1–14, 2007.

[21] Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R. and Vyncke, D.; The concept of co-

monotonicity in actuarial science and finance: applications, Insurance: Mathematics

and Economics, 31, 133–161, 2002.

[22] Dubins, L. E.; On a theorem of Skorohod, Ann. Math. Statist., 39, 2094–2097, 1968.

46



[23] Dupire, B.; Pricing with a smile, Risk Magazine, 18–20, 1994.

[24] Dupire, B.; Arbitrage bounds for volatility derivatives, Presentation at PDE and

Mathematical Finance KTH, Stockholm, 2005.

[25] El Karoui, N., Jeanblanc, M. and Shreve, S.E.; Robustness of the Black-Scholes

formula, Mathematical Finance, 8, 93–126, 1998.

[26] Figlewski, S.; Assessing the incremental value of option pricing theory relative to an

informationally passive benchmark. J. Derivatives, Fall, 80–96, 2002.
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