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Introduction

The decoration of dome interiors, in some cases similar to the decoration of pavement,
windows, and walls, is closely related to geometrical properties of shapes, in both two- and
three-dimensional space, known to artists several centuries ago. Based on existing domes, we
cannot trace this art back beyond ten centuries, for there were many natural and social
disasters that destroyed them. However, we may be reasonably certain of a much earlier
existence of such sophisticated designs of dome interiors based on references in earlier
literature as well as the level of geometry available in those times.

Mathematics had its crude beginnings perhaps fifty centuries ago, in the civilizations of the
Middle East. For the Babylonians and the Egyptians it was a practical tool, essential in day-to-
day living. Greeks, beginning with Thales of Miletus, established mathematics based on
deductive reasoning rather than by trial and error. Pythagoras and his disciples continued the
systematization effort initiated by Thales over the next two centuries. Euclid, a disciple of the
Platonic school, was the last in the chain of great mathematicians of classical Greeks that brought
earlier efforts to axiomatize the geometry to conclusion in his 13-volume book, The Elements.
Liking the challenge, the Greeks set very tight limits on which tools were permissible for
construction, essentially utilizing the compass and straight edge. With a few notable exceptions,
almost all of the figures that were dealt with could be constructed using these two tools.

The works on geometry and geometrical constructions were translated and then collected
later on in the Middle East somewhere between the seventh to the fourteenth century.
Scholars such as Persian mathematician al-Khwarizmi, who was a member of the “House of
Wisdom” in Baghdad in the early part of the eighth century, produced several manuscripts on
arithmetic, algebra, and the use of Hindu numerals. Their translations of Greek geometry and
collections of the methods from Hindus and Hebrews helped preserve important knowledge
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for later study in the West. The word algorithm is from the Latin translation of al-Khwarizmi
and algebra comes from the title of one of his books. Alhazen, another Middle-Eastern
mathematician, was the first to correct the understanding of seeing an object. Greeks thought
that to see an object, light from the eye goes to the object. He correctly reversed this concept,
providing the basis for the science of perspective. His treatise on optics was translated into
Latin in 1270 as Opticae thesaurus Alhazeni libri vii.

The flourishing of geometry and geometrical designs and the challenge of using only
compass and straight edge for creating intricate structures were in harmony with the beliefs
of religious scholars of the Islamic empire that included North Africa, Spain, and a part of
Eastern Europe and the Middle East. Artists were forbidden to represent people and living
objects in their works, for these representations were perceived as idols replacing God. During
a trip to Spain in 1936, Escher visited the Alhambra, a structure by Moors from North Africa
that had first intrigued him in 1922. Afterwards he remarked, “This is the richest source of
inspiration that I have ever struck… What a pity it is that the religion of the Moors forbade
them to make graven images!”1

Two points must be emphasized here. First, even though the flourishing of tiling designs
occurred during the Islamic Empire, this art is much older, as it was used in Babylonian
constructions and handcrafts of the early Central Asian civilizations. Second, the practice of
using geometrical designs rather than idols could possibly be traced to a much earlier period.
Herodotus, in the fifth century BC, wrote: “It is not customary amongst Persians to have idols

Figure 1. 
Stucco dome interior with another dome at

the center.

Figure. 2. 
Stucco dome interior in a private house in

Kashan.
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made and temples built and alters erected, they even consider the use of them a sign of folly.”2

Herodotus’ quote referred to temples for idol worship. Zoroastrian temples of ancient Persian
tradition have been uncovered and dated as early as 2000 BC by archeologists.

The art of stucco

Stucco is a typically Persian art form for the decoration of dome interiors. In most cases it
has accompanied the art of tessellation, ceramics, and mirror works. The fine work of
elaborately carved stucco has survived for centuries and can be found in cities including
Esfahan, Mashhad, and Kashan in Iran. Examples of stucco dome interiors similar to the
Persian style are also located in the western hemi-sphere in the Alhambra in Granada, Spain.

A circular dome was generally supported on a square base with various corner squinch
designs. The transition of interior designs from the building below to the dome above is
achieved by constructions of several three dimensional shapes, such as wings of a star having
the center as the center of the dome. In a stucco dome interior, the three-dimensional cuts as
triangles, diamonds, or stars are designed in such a way that they have some corners toward
the center. This gives a feeling of attraction of all other points on the dome toward the center.
This reminds us of an attractor in a dynamical system -- a stable point that all states near it
are attracted to. Figure 1 is an example of a stucco dome interior. The attractor of the design
is inside a second dome. This second dome is above several windows that are constructed

Figure 3. 
Entrance portal of the Shah Mosque, Esfahan.

Figure 4. 
Brick pattern construction interior dome in

Kashan.
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around a cylinder. In the summer, these windows allow a flow of air. People of the past used
to cover these windows with bushes similar to tumbleweeds, compacted and drenched in
water. The hot and strong summer wind of cities close to deserts would remove the drops of
water from the bushes. This action takes energy and, as a result, a flow of cold air would come
inside the building. It is worth mentioning that such a dome with a cooler system was usually
built over the main room at the center, surrounded by smaller rooms containing smaller
domes. In some cases, the pattern in the dome interior reveals more than one attractor. For
instance, Figure 2 shows a dome with four attractors surrounding the main one at the center.
Besides these five attractors, the dome has another twelve attractors in twelve holes with
centers on the circumference of a circle larger than the circle that contains the center of four
attractors. Figure 3 is a work of stucco that has been combined with the art of tiling. It is the
entrance portal of the Shah Mosque, Esfahan, built by Shah Abbas the Great between 1611
and 1629. Figure 4 illustrates an example of a dome interior that uses the idea of attractors in
combination with a brick pattern construction.

Self-similarity in stucco

Let us study the stucco dome interior design in Figure 5 in detail. The entire dome is an eight-

winged star that has one attractor. Its symmetries comprise the dihedral group of order 16, D8.

This star has been divided into a second group of stars. These are stars with 4, 5, 6, and 7 wings

made from mirrors. The 7-winged stars, heptagrams, are irregular, not all sides and angles are

congruent. The stars are connected with geometrical cuts that are surrounded with stars with

sharper wings that are pointed toward the center. In some cases, when the artist uses tiles instead

of mirrors in order to cover the surface of each five-winged star, we have another sequence of

stars that resembles the entire dome as we can see in Figure 6 and Figure 7. In this stage, because

of limitation on the size of each tile, the artist does not continue to produce the next series of

smaller stars. However, the idea of self-similarity is evident. We observe that the attractor of the

five-winged design is at the center of a ten-winged star and it has the dihedral group of

symmetries of order 10, D5. Figure 8 shows the design behind the work in the previous figure.

The design can be constructed using only a compass and straight edge. To do this, the first step

is to construct the surrounding five-winged star in Figure 8. This star can be constructed by

dividing a circle into ten equal arcs. To accomplish this, we divide a circle into five arcs as

illustrated in Figure 9 and then divide each arc in half using a compass and straight edge. We

also may directly divide it into ten arcs as in Figure 10.3 It is worth mentioning that the larger

part of the golden cut of the radius of a circle divides the circle into 10 equal arcs.4 We connect

the endpoint of one of these ten arcs in Figure 10, calling the first point A, to the fourth

endpoint D, clockwise, and continue. We can then construct a 3/10 star polygon (Figure 11).

Number 3 indicates the number of vertices skipped between each pair of connected vertices,

while 10 is the total number of vertices. Using this star polygon we can construct the five-winged

star that we needed. This star polygon may be seen to be composed of five rhombi, one of which

is rhombus AKFL in Figure 11. In Figure 12 we consider one of the five rhombi that construct

this star (in fact, only one fourth of this rhombus can create the entire star design by using
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Figure 5. 
Mirror work stucco dome interior.

Figure 6. 
Ali-Gholi Agha Mosque, Esfahan.

Figure 8. 
“Skeletal” design of the five-winged star.

Figure 7. 
Kaseh Garan School, Esfahan.
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Figure 9. 
The division of a circle into five equal arcs.

Figure 10. 
The division of a circle into ten equal arcs.

Figure 11. 
Construction of a five-winged star with acute

angle of 72 degrees. The star polygon also
comprises five rhombi such as ALFK.

Figure 12. 
Division of the rhombus using a compass and

straight edge.
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Figure 13. 
Dome interior of the Marble Place, Tehran.

Figure 14. 
Rosette design of 12 circles. a) reference circle;

b) radial circles; c) centrum ring.

reflective and rotational symmetries). We divide the obtuse angle into six equal angles and the

acute angle into four. To do this, if we look at Figure 11, we notice that the acute angle, such as

<A, is an inscribed angle opposite to arc DH, clockwise. This arc has been divided into four

equal arcs DE, EF, FG, and GH. Join A to these points and divide the acute angle to four equal

angles. The obtuse angle is equal to angle <IAC in figure 11. This angle is opposite to arc CI,

clockwise, which is divided into six equal arcs. With the same procedure as for the acute angle,

we can divide this angle into six equal angles.

Let O be the intersection of two diagonals. Two lines C-4 and B-3 meet at E. We make an

arc with the center of C and radius CE to find point F on DC. From F, we draw a line that is

parallel to C-5. This line and D-1 meet at G. From G we make a parallel to D-3 to meet CD

on H and C-5 on Z. We find L on CD such that DH = LC. From H we make a line parallel to

AC and from the intersection of this line we make a parallel line to A-1. This gives us the

quadrilateral with side HG. K is the midpoint of DC. From K we make two parallels, one with

AC and the other with B-3. From L we make a line parallel to AC to meet C-5 on M and D-1

on N. R is the intersection of LR that is parallel to B-3 and AC. T is the intersection of C-4 and

a line from N parallel to C-1. The intersection of a line from L parallel to B-3 and the line C-

5 gives us a point. S is the intersection of AC and the parallel line from this point to C-1.
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Figure 15. 
A dome interior design and its constuction based

on the division of the circle into sixteen parts.

Figure 16. 
The construction for the dome interior in

Figure 15.

Rosette dome interiors

Figure 13 shows the interior of the dome of the Marble Palace in Tehran. The dome is
closely modeled on the Sheik Lotfolah mosque in Esfahan, built by Shah Abbas early in the
seventeenth century. The circular rosette pattern is created based on the arrangement of
overlapping circles (Figure 14). Sixteen congruent circles, called radial circles, are arranged so
that they have a point in common. Therefore, the centers of each radial circle lie on a circle,
called the centrum ring, which is itself congruent with any of the radial circles. The common
point is the center of the centrum ring. The outer circle, which is concentric with the centrum
ring and whose radius is equal to the diameter of the radial circles, is the reference circle.
Changing the number of radial circles or increasing the diameter of the radial circles with
respect to the radius of the reference circle, produces different rosettes.5 Figures 15 and Figure
16 present the design of another dome interior based on the division of a circle into 16.

The designs for dome interiors, and other designs for walls and pavements, were constructed by
artist-geometers. They were very familiar with the Euclidean geometry theorems and properties.
These designs were normally gathered by stucco makers and other artist-constructors, who would
pass them along to the next generation. The designs were graphed on a scroll. Ink pens were used
for major lines. However, all circles were sketched with a compass without lead. Both end points
of the compass were sharp metal. The metal etched barely visible grids onto the scroll. Then using
straight edge, they drew the design with ink. Today, these scrolls have been disappearing.
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Figure 18. 
General view of Khayyam’s Mausoleum.

Figure 17. 
Dome Interior of Kahayyam’s Mausoleum.

The missing regular heptagon

Even though a number such as seven has mystical and religious importance in eastern
cultures, we don’t observe any dome design or any other wall or floor designs that incorporate
the regular heptagon or regular seven-winged stars. In fact, the geometrical structures of designs
introduced in previous sections include regular 3, 4, 5, 6, 8, and 10 but misses 7-and 9-gons.
The reason for it may very well be related to the idea of the constructable regular polygons.

The ancient mathematicians discovered how to construct regular polygons of 3, 4, 5, 6, 8
and 10 sides using a compass and straight-edge alone. The list of other constructable regular
polygons known to them included 15-gons and any polygon with twice sides as a given
constructable polygon. No matter how much effort was expended in the exercise,
mathematicians were not successful in constructing a regular heptagon by compass and
straight-edge or in proving that the construction is impossible until 1796 when Gauss, then
a 19-year old student, proved the impossibility of its construction.

In fact, he proved that, in general, construction of a regular polygon having an odd number
of sides is possible when, and only when, that number is either a prime Fermat number (a
prime of the form 2k + 1, where k=2n) or is made up by multiplying together different Fermat
primes. Such a construction is not possible for 7 nor 9. Gauss first showed that a regular 17-
gon is constructible, and after a short period he completely solved the problem. It was this
discovery, announced on June 1, 1796 but made on March 30th, that induced the young man
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to choose mathematics instead of philology as his life work. He requested that a regular 17-
sided polygon to be engraved on his tombstone. The Cyclotomic Extensions is a topic that
ties together results from modern algebra and ancient geometric construction problems. In
this topic, Gauss’ claim can be proved in a fairly short argument using Galois Theory. Of
course, Gauss did not use Galois theory in his proof because of the simple reason that the
proof occurred 15 years before Galois was born!6

A jug of wine, a loaf of bread – and thou

Omar Khayyam, born in 1048 in Neyshabur, a city in Persia, was a mathematician and an
astronomer. Nonetheless, his fame in the western hemisphere mainly comes from a paraphrase
version of his Rubaiyat by Edward Fitzgerald, a collection of his quatrains, pieces of verse
complete in four rhymed lines. He is chiefly responsible for revising the Jalali Solar Calendar
which is still in official use in Iran. In his native home and the northern neighboring
countries, which in a time constituted the Soviet Union, he is regarded as “the proof of Truth”,
the highest praise for a scientist.

In Khayyam’s time, universities flourished in the Islamic world and many observatories
were built. He was a professor at the Neyshabur Nazamieh, one of a series of university
colleges founded by his contemporary Nezam Ol-Molk, a celebrated vice-minister. Khayyam
studied and obtained original results in algebra. His work continued many of the main lines
of development in 19th-century mathematics. Not only did he discover a general method of
extracting roots of arbitrary high degree, but also his Algebra contains the first complete
treatment of the solution of cubic equation.

Much of Khayyam’s work in geometry centered around Euclid’s fifth postulate, the parallel
postulate. He contributed the idea of a quadrilateral with two congruent sides perpendicular
to the base. The parallel postulate would be proved, he recognized, if he could show that the
remaining two angles were right angles. In this he failed, but his question about the
quadrilateral became the standard way of discussing the parallel postulate.

Although the question of Khayyam’s personal religious beliefs remains a vexed one, the
balance of scholarly opinion is that he was an orthodox theologian who wrote his quatrains as a
private exercise in skepticism. He died in 1122. His mausoleum, built in recent years, is in
Neyshabur. The entire mausoleum consists of a dome, open from every direction (Figures 17
and 18). Its design reflects a combination of traditional patterns and contemporary construction.

Conclusion

In Persian architecture, it was geometry that provided diverse stylistic developments for
constructions and designs; not only to serve a function, but also to evoke an emotional
response by harmonization of the constructional elements, such as domes and columns and
decorative elements. The artists and architects of those times transferred the geometry into the
art of harmonization, engaging feelings and emotions. The sophisticated geometry involved
in dome interiors shows how artists try to express their feelings and emotions, as well as their
beliefs and philosophy, through complex geometrical designs involving repetition, rhythm,
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pacing, scale, and color combination. The construction of stucco domes shows that they also
were aware of the geometry of 3-dimensional Euclidean space. The designs reveal, through
self-similarity, that the artists had a sense of fractal geometry.

Notes

1. D. Seymour and J. Britton, Introduction to Tesselations, p. 183.
2. F. Mehr, The Zoroastrian Tradition, p. 15.
3. Figure 10 is after a figure from De re Aedificatoria by Renaissance architect Leon Battista Alberti, first published

in 1485. Cf. Leon Battista Alberti, The Ten Books of Architecture, Plate 21.
4. For examples in art illustrating the influence of the division of a circle into ten and five arcs, cf. Kappraff,

Connections: The Geometric Bridge Between Art and Science, pp. 90 - 91. 
5. For more about the rosette, see Williams, “Spirals and the Rosette in Architectural Ornament”; Williams,

Italian Pavements: Patterns in Space, pp. 123-129.
6. A proof appropriate for an amateur mathematician can be found in Kazarinoff, Ruler and the Round or Angle

Trisection and Circle Division. Gauss’ approach can be found in Disquisitiones Arithmeticae and in Dickson,

“Constructions with Ruler and Compasses; Regular Polygons”.
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