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Abstract

Skyline is a freely-available, open-source Windows client application for accelerating targeted 

proteomics experimentation, with an emphasis on the proteomics and mass spectrometry 

community as users and as contributors. This review covers the informatics encompassed by the 

Skyline ecosystem, from computationally-assisted targeted mass spectrometry method 

development, to raw acquisition file data processing, and quantitative analysis and results sharing.
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I. Introduction

Since the completion of the Human Genome project (Consortium 2001; Venter et al. 2001; 

Consortium 2005), a wealth of functional genomic techniques have emerged as the focus of 

research shifts to assigning function and understanding the regulation of each of the 

identified gene products. The focus of these efforts is to better understand how the 

information stored in a genome encodes all the complexity necessary to sustain a complex 

multicellular organism (Lander 2011). Nothwithstanding impressive gains in these 

technologies, interpretation of their results is limited without corresponding data on proteins, 

the primary functional macromolecules encoded by the genome. This limitation is 

highlighted by the observation that measurements performed at the nucleic acid level tend to 

correlate very poorly with those performed at the protein level (Greenbaum et al. 2003; 

Schrimpf et al. 2009), especially in cases when experimental noise is not considered (Csardi 

et al. 2015). A combination of factors likely contribute to the poor protein-transcript 

correlation, including the variable lifetime of each protein dictated by its respective synthesis 

and degradation rates; the existence of multiple different forms of each transcript product 

due to post-translational modifications; and finally, the temporal/spatial regulation imparted 

by protein complexes and the highly compartmentalized nature of cellular processes. 
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Accordingly, the direct analysis of proteins, albeit more technically challenging, is 

absolutely crucial to a complete understanding of gene regulation and systems biology.

A. Introduction to quantitative mass spectrometry proteomics

To meet these ends, tandem mass spectrometry (MS/MS) has emerged as the dominant 

analytical platform for the direct characterization of the protein fraction from complex 

biological matrices (Ong and Mann 2005). To date, a majority of mass spectrometry-based 

proteomic workflows have utilized a “bottom-up” approach in which proteins are digested 

with an endoprotease prior to analysis. The resulting peptide mixture is typically separated 

via nano-flow reverse-phase liquid chromatography, ionized, and emitted directly into a 

mass spectrometer for analysis.

Both absolute and relative quantitative measurements, reviewed in detail elsewhere (Ong and 

Mann 2005), are possible via several of the commonly applied MS acquisition methods. 

Targeted acquisition methods, including selected reaction monitoring (SRM) (Picotti and 

Aebersold 2012), also known as multiple reaction monitoring (MRM) (H. Zhang et al. 

2011), and parallel reaction monitoring (PRM) (Peterson et al. 2012), quantify peptides from 

a preprogrammed list of precursor-fragment pairs and scheduled isolation windows based on 

previously-determined chromatography elution times. Data-independent acquisition (DIA) 

(Venable et al. 2004) such as Sequential Window Acquisition of all Theoretical Fragment 

ion spectra (SWATH) (Gillet et al. 2012) forgo preprogrammed precursor-fragment pairs, 

widening the isolation windows to activate all ions in a pre-specified mass-to-charge (m/z) 

range. (A detailed review of DIA methodology can be found elsewhere (Chapman, Goodlett, 

and Masselon 2014; Bilbao et al. 2015), including peptide-centric approaches to DIA (Ting 

et al. 2015).) It is also possible, through MS1 filtering informatics techniques (Schilling et 

al. 2012), to use data dependent acquisition (DDA) for quantitative analysis as opposed to 

conventional detection analysis.

The type of acquisition influences the selectivity, reproducibility, repeatability, limit of 

detection, dynamic range, and data density of the assay (Domon and Aebersold 2010). 

Additionally, acquisition type places specific requirements on assay development and 

influences the computational strategy for analyzing data. A variety of individual informatics 

tools have been developed to aid in assay development and to process the data collected with 

various acquisition types, reviewed elsewhere (Cham, Bianco, and Bessant 2010; Colangelo 

et al. 2013). Many freely available informatics tools, however, struggle with community 

adoption, due to issues with limited end user design, and lack a complete pipeline spanning 

method development through data analysis for an experiment.

B. Overview of the Skyline ecosystem for quantitative mass spectrometry informatics

Properties such as easy access, large dataset management, integration with other commonly 

used tools, intuitive data visualization, timely issue resolution, documentation, support, as 

well as facilitated sharing of data files and the methods used to collect them (Codrea et al. 

2007) are important aspects that influence software adoption. With these needs in mind, the 

freely-available and open-source Skyline ecosystem was developed with a user-friendly 

interface, comprehensive file compatibility, vendor-neutral data processing, intuitive 
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visualization, and reasonable computational requirements (MacLean et al. 2010). The 

original objective of the Skyline project was to create a single informatics tool to generate 

MS methods and to analyze the data collected for chromatography-based quantitative MS 

experiments. In addition to these core functions, Skyline now invites the community to share 

their own informatics tools through an external tool store (Broudy et al. 2014) for software 

tools that support point-and-click installation and can be run from the Skyline Tools menu. 

Furthermore, the introduction of additional software to the Skyline ecosystem such as 

Chorus for sharing raw MS files (http://chorusproject.org) and Panorama for sharing Skyline 

processed experimental results (Sharma et al. 2014), has helped facilitate large-scale MS 

datasets and inter-laboratory collaborations.

The Skyline ecosystem is unique among freely-available, open source mass spectrometry 

proteomics software in its end-to-end support of the targeted proteomic mass spectrometry 

workflow. A Skyline document is first used for assay development, aiding in instrument 

method creation for targeted and DIA experiments (Figure 1). Skyline exports the methods 

for use in mass spectrometry acquisition on a broad range of instruments from 6 different 

mass spectrometer vendors (Table 1). Without need of any file conversion, Skyline then 

supports importing raw data from most LCMS capable instruments, calculating peak areas in 

a vendor-neutral manner. Peak area data may be explored within the Skyline document using 

core analyses, comparing peptide retention times, peak areas, sample groups, underlying 

chromatograms and even mass spectra when available. Further analyses are possible, 

including those made available by external tools integrated into the Skyline ecosystem and 

through data report exports that researchers can process using their own tools, and custom 

code in R, MATLAB, Python, etc. Although a freely-available, open source academic 

project, Skyline’s engineering includes rigorous nightly testing to ensure any code changes 

made during the day are compatible with the program’s many other various functions. This 

level of thoroughness ensures the mass spectrometry community receives an informatics 

toolkit that is consistent and highly maintained, allowing researchers to upgrade with 

confidence as the software is adapted and changed.

Today, over 8,700 mass spectrometrists are registered Skyline users with more than 64,000 

installations since first public release, and over 1,100 publications have cited the original 

Skyline paper. We next describe how the community uses the Skyline ecosystem, and the 

informatics employed by the Skyline ecosystem, from assay development, to data processing 

and visualization, and finally dissemination of results.

II. Assay development

The requirements for developing an effective quantitative MS proteomics assay are specific 

to the type of experiment and the peptide targets being assayed. For all experiments, prior to 

MS acquisition, it is obligatory to create a program for the instrument that defines the 

instrument parameters and defines how the data is to be collected by the instrument. In 

addition, depending on the acquisition mode of the instrument (i.e., SRM/MRM, PRM, DIA 

and DDA), multiple decisions must be made to optimize the acquisition of the data (Figure 

1). For example, the experiments with the most intensive assay development, scheduled 

SRM/MRM and PRM type experiments, necessitate selection of target peptides and their 
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transitions (SRM only) prior to acquisition, validation of transitions by MS/MS spectra, 

potentially optimization of individual parameters (such as collision energy - CE) and 

determination of retention times (RT) for optimal MS instrument scheduling. On the other 

hand, for DIA experiments, the only required step pre-acquisition is calculating isolation 

window schemes. Although this review is focused on the Skyline ecosystem for quantitative 

proteomics, we note that the ecosystem also works for generalized small molecules (Tang et 

al. 2015) and briefly describe considerations for non-peptide targets. In this section, we 

describe the steps required for assay development, noting which steps are necessary for 

which experiment types.

A. Peptide and transition selection for targeted experiments

Many proteomics hypotheses are rooted in biological observations, and so selecting proteins 

of interest and peptides that are exclusively representative of those proteins is often the first 

experimental design step in targeted bottom-up proteomic experiments, such as SRM/MRM 

and PRM. Selection of peptides for targeted assays is a complex process, involving 

consideration of (1) specific peptides or amino acid modifications of interest, (2) biological 

influences on the protein of interest, (3) chemical influences on peptide suitability for MS 

experiments, and (4) for SRM/MRM experiments, the selection of fragment ions for 

quantitation.

1. Specific peptides or amino acid modifications of interest—In the first case, 

specific amino acid modifications, especially post-translational modifications at the protein 

level, may dictate a peptide sequence of interest. This is especially seen in targeted 

phosophoproteomics assays, where the phosphosite of interest has previously been 

determined by prior experiments (Schilling et al. 2012, Sherrod et al. 2012, Abelin et al. 

2016). In these cases, it may be easiest to manually enter the peptide sequences of interest. 

Skyline accepts peptides added directly to the document as lists in the Targets window. 

Peptides added as lists may have modifications and even charge states specified in the added 

sequence text. They may also be modified manually within Skyline one at a time, or in bulk 

by changing the Skyline modification settings.

2. Biological influences on the protein of interest—For situations where the peptide 

sequence is not defined by the experiment, Skyline accepts lists of proteins, either entered 

manually, copy-pasted, or as a FASTA file import. After proteins are added to the document, 

Skyline digests the proteins in silico to generate a list of peptides. The result of Skyline’s in 
silico digestion depends on the particular endoprotease specified in the settings of the 

Skyline document. The most common endoproteases used in bottom-up proteomics are Lys-

C, which hydrolyzes specifically at the carboxyl side of lysine; chymotrypsin, which cleaves 

amide bonds on the carboxyl side; and trypsin, which cleaves the carboxyl side of lysine or 

arginine. Other Skyline Peptide Settings that affect results of peptide list generation are 

common biochemical sample preparation concerns such as missed cleavages, oxidized 

methionine, and peptide amino acid length (Anderson and Hunter 2005; Lange et al. 2008; 

Prakash et al. 2009). After endoprotease(s) are selected and biochemical considerations are 

defined in the Peptide Settings in the Skyline document, researchers can add proteins of 
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interest to the Skyline target list and Skyline automatically performs in silico digestion on 

the proteins and the resulting peptides displayed, organized by protein of origin.

A point of consideration for proteomics research with clinical applications is the selection of 

peptides that may have naturally occurring amino acid variations due to individual subjects’ 

genetic backgrounds. Single nucleotide polymorphisms (SNPs) in the genome may give rise 

to amino acid changes in the final proteoform, which may alter a peptide sequence. To help 

guide users collecting data on clinical samples that may include SNP-related variation, 

Skyline provides users with access to the informatics tool Population Variation (Fujimoto et 

al. 2014). Population Variation reveals all human sequence variation within a set of user-

specified peptides or proteins by identifying the minor allele frequency of peptide targets. 

The tool then filters SNP data records from dbSNP by criteria directly relevant to proteomics 

experiments, storing entries with minor allele frequency > 0.01, a non-null protein accession, 

and a protein-influencing mutation (missense, stop-gain, frameshift). The refined list is 

stored as a SQLite database and can be accessed through a Skyline plug-in. Running the 

Population Variation Skyline plug-in outputs a table listing the isoforms and peptide variants 

for all proteins included in the Skyline document. Researchers can use this output to 

consider variant peptide targets to ensure that the assay accurately measures.

3. Chemical considerations of selected peptides—Next, the hypothesis-based, 

biologically considered peptides must be validated for chemical considerations, namely MS 

signal robustness. Peptides from the same protein of interest have a range of MS signal 

response, with some peptides reliably responding strongly and others responding weakly or 

variably to MS conditions (Kuster et al. 2005). These widely ranging responses are dictated 

by sequence-specific physiochemical properties (e.g., length of the amino acid sequence, 

charge, presence of various amino acids, and hydrophobicity) and can be empirically 

determined using prior knowledge from MS experiments (Stergachis et al. 2011) or by using 

predictive algorithms.

Empirical determination of high-responding peptides requires performing preliminary MS 

experiments with the potential targets, often synthesized or purchased, in the intended 

sample matrix (Stergachis et al. 2011). The mass spectrometrist then evaluates the potential 

target peptide and transition pairs for signal response and chemical noise interference. 

Skyline facilitates this empirical evaluation with simple transition deletion and addition 

tools, including ability to Undo these operations, allowing researchers to easily create or 

modify transition lists for targeted assay development. Besides empirical determination, 

however, it is also possible to query past MS experiments to evaluate peptide signal 

response, making use of Skyline-supported online repositories like PeptideAtlas (Desiere et 

al. 2006), Human Proteinpedia (Mathivanan et al. 2008), GPM Proteomics Database (Craig, 

Cortens, and Beavis 2004), and PRIDE (Jones et al. 2008). A caveat to using repositories, as 

opposed to an assay-specific preliminary experiment, is that peptide response is not the same 

across instruments and acquisition types.

In addition to empirical determination, predictive algorithms provide an alternative or 

complementary method to select the target peptides most likely to be high-responding for a 

set of proteins (Mallick et al. 2007; Fusaro et al. 2009; Eyers et al. 2011; Muntel et al. 2015). 
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For researchers interested in using predictive algorithms for SRM/MRM and PRM peptide 

selection, Skyline has implemented the publically available, open-source PREGO algorithm 

Searle et al. (2015) as a plug-in. PREGO (Searle et al. 2015) predicts high responding 

peptides using an artificial neural network on DIA experimental data. The artificial neural 

network was trained using 11 minimally redundant, maximally relevant physiochemical 

properties that describe peptide size, structure, and hydrophobicity. PREGO outperforms 

previous predictive algorithms, correctly predicting more high-responding peptides than 

other algorithms. This performance improvement is believed to stem from a more 

representative training set. As mentioned above, peptide signal response differs between 

instruments and acquisition types. PREGO, being trained on a DIA dataset, may perform 

better because peptide signals in DIA datasets better represent peptide signals in SRM 

datasets. An important note is that these predictive algorithms mentioned above do not 

predict transition signal response, only peptide response.

The final number of peptides required for a quantitative assay depend on the analytical rigor 

of the experiment, the details of the project, and the purpose. A description of these 

considerations and their implications on assay development is described elsewhere (Carr et 

al. 2014).

4. Selection of transitions for SRM/MRM experiments—By definition of the 

method, all transitions for a precursor are measured for a PRM experiment, and therefore 

PRM experiments do not require selection of fragments prior to acquisition. However, 

SRM/MRM experiments target only the transitions preprogrammed for acquisition. 

Selection of optimal transitions is critical for quantitative experiments, as poorly designed 

assays will suffer unreliable, inaccurate, or nonspecific quantitation (Ludwig et al. 2012).

It is common to choose y-type ion fragments, due to high ion abundance compared to the 

alternative, b-type ion fragments (Holstein (Sherwood), Gafken, and Martin 2011). Similar 

to peptide selection, transition selection must be evaluated for chemical considerations, 

namely transition MS signal response and transition selectivity. Transition signal response 

may be assessed empirically through preliminary MS experiments to evaluate potential 

transitions in the appropriate experimental sample matrix and under the experimental 

instrument conditions. The mass spectrometrist must manually confirm that the transitions 

are high-responding and free of interference, and remove any transitions that do not meet 

those criteria. Alternatively, predictive algorithms for thermodynamic peptide fragmentation 

(Z. Zhang 2004; Z. Zhang 2005) may provide computationally-assisted transition selection, 

and computational tools have been designed to aid in SRM method development (Röst et al 

2012), though none have been integrated with Skyline yet.

Current standard practice (Carr et al. 2014) monitors three or more transitions per peptide to 

make a reliable quantitation. However, statistically, if the transition has been evaluated as 

high-responding and free of interference, it is possible to perform quantitative analysis on 

one transition, using the other monitored transitions for confirming the identity of the 

peptide precursor.
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B. Retention time determination for scheduled MS experiments

Most quantitative mass spectrometry experiments hyphenate reversed-phase high 

performance liquid chromatography (RP HPLC) to separate and simplify complex proteomic 

samples. Coupling LC to MS adds a time dimension to the data, as peptides elute off the 

solid-state column at a particular time in the chromatographic gradient. As with other modes 

of reversed phase chromatography, LC-MS peptide RT is dependent on several experimental 

factors, such as the physiochemical properties of the target peptide itself; background matrix 

of the sample; column-specific details including stationary phase material, bed length, and 

temperature; and the chromatography details including gradient percentage and delivery 

speed (Moseley et al. 1991). In the case of liquid chromatography coupled SRM/MRM and 

PRM experiments (LC-SRM/MRM, LC-PRM) on triple-quadrupole mass spectrometers, the 

number of peptide precursor-fragment transitions to be measured may exceed the speed at 

which the instrument can measure them and still maintain a cycle time appropriate for 

quantification (2–3 seconds per cycle maximum). In these cases, “scheduling” methods 

enable measurements of tens to hundreds of individual peptides, by allowing only a subset of 

the targeted peptides to be measured in any given cycle. The acquisition schedule for these 

methods includes precursor m/z, transition m/z, and the RT, or time window during which 

the precursor peptide elutes off the LC column.

Skyline’s ecosystem incorporates several complementary tools to predict peptide RT. The 

first, SSRCalc (Krokhin 2006; Spicer et al. 2007), is based on calculated hydrophobicity, as 

determined from the peptide amino acid sequence, to predict a peptide RT. This approach is 

particularly useful when empirical RT is unknown for a peptide. Alternatively, when peptide 

RT has been previously observed, a standard set of reference peptides can be used to 

calibrate RT prediction for any number of target peptides of interest on new columns or 

chromatography methods. In this approach, termed indexed retention time (iRT) (Escher et 

al. 2012), the reference peptides act as anchor points across a range of hydrophobicities, 

allowing the HPLC run-time to be calibrated and the assay-specific peptides to be aligned to 

the observed iRT reference peptide anchors. The iRT method is particularly useful in 

interlaboratory and large-scale experiments, projects which typically necessitate use of 

multiple LC systems and columns. For these projects, the iRT workflow integrated into 

Skyline provides a simple method to transfer chromatography empirical knowledge from 

one system to another, or to easily transition to a new column when the previous is replaced.

After predicting peptide RT through either method, or simply by using prior measurements 

that have already been imported, Skyline can export an acquisition table including all 

relevant information for a scheduled LC-SRM/MRM or LC-PRM method, including start 

and end times for peptide elution. The priority for these experiments is to capture the 

entirety of the chromatogram peak as the peptide elutes from the column, but with as narrow 

a window as possible. The mass spectrometer is limited in the number of peptide precursors 

it can measure at any given time, as dictated by the speed of the instrument (duty cycle), and 

the number of transitions to measure at that time, as dictated by predicted RT and the width 

of the scheduling time window. In order to assay as many peptides as possible, it is 

necessary to adjust the scheduling windows to reflect the instrument’s speed and the number 

of transitions eluting at each time point. Skyline facilitates this adjustment with a 
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visualization option in the retention time pane that displays the number of transitions eluting 

over the chromatographic gradient under several potential scheduling window widths.

C. Instrument parameter optimization

Determining the optimal set of MS instrument parameters for a targeted experiment is 

necessary in order to create an effective assay. One parameter of particular importance to 

targeted experiments is collision energy (CE). Optimized CE increases fragment ion 

intensity, which confers stronger, more reliable signal response (Sherwood et al. 2009). 

Computational estimation of optimal CE based on precursor m/z and a simple linear 

equation (Equation 1) is useful for both triple quadrupole (Picotti et al. 2010) and 

quadrupole time-of-flight instruments (Griffin et al. 1991; Prakash et al. 2009). An 

automated pipeline for optimizing CE specifically for quantitative assays is integrated in 

Skyline to achieve maximum fragment ion intensity (MacLean et al. 2010) and therefore 

strongest, most reliable signal response for the peptides in the assay. Recent versions have 

added the ability to store optimized parameter values in a library for future re-use and easier 

sharing.

Equation 1

Generalized equation for predicting optimal collision energy.

D. MS/MS spectral library creation

Although not strictly required for assay development, inclusion of spectral libraries in 

quantitative proteomics aids in downstream data processing. In spectral library searching, 

spectra acquired by tandem mass spectrometry (MS/MS) are compared with previously 

identified reference spectra (Craig, Cortens, and Beavis 2005). The benefits to library 

searching as opposed to database searching, in which spectra are compared with spectra 

predicted from amino acid sequences (Eng, McCormack, and Yates 1994), is a more 

accurate comparison of fragment ion intensities and a more efficient spectra search.

The Skyline ecosystem includes a suite of software tools, Bibliospec (Frewen et al. 2006), 

for creating and searching MS/MS peptide spectrum libraries. The Bibliospec 2.0 software 

package is composed of two informatics tools: BlibBuild and BlibFilter. All Skyline 

installations include these tools, and Skyline itself provides user interface for creating 

spectral libraries. The first step in building a spectral library is creating a full redundant 

library of peptide MS/MS spectra matched with known peptide identifications, which is 

performed computationally by BlibBuild and written to sqlite3 database file. To obtain 

peptide identifications for this step, an assortment of available database search programs are 

supported by BiblioSpec 2.0 (Table 2). Second, BlibFilter refines the redundant library to 

choose just one representative spectrum for each peptide, preserving the original retention 

times of the redundant spectra, and then writes a new non-redundant sqlite3 database 

containing this information. BlibFilter choses the one representative spectrum by measuring 
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the similarity between all pairs of redundant spectra for a given peptide, and selecting the 

spectrum with the highest average similarity score.

The Skyline GUI also supports MS/MS spectral library creation. To do so, it takes the best 

scoring PSM from a variety of supported search engines (Table 2) as a reference spectrum, 

picking the most intense in the event of a tie. In addition to creation of spectral libraries, 

Skyline supports several sources of reference libraries, including Peptide Atlas (Desiere et 

al. 2006), the National Institute of Standards and Technology (NIST), and the Global 

Proteome Machine (GPM) (Craig, Cortens, and Beavis 2004). Most Skyline users will 

choose to use their spectral libraries, once created, for targeted method creation and data 

extraction.

E. Skyline for small molecule research

Although this review is focused on the Skyline ecosystem for quantitative proteomics, the 

ecosystem also works for generalized small molecules (Tang et al. 2015), such as lipidomics, 

glycomics, and metabolomics. While some functions do not yet work for non-proteomic 

data, online tutorials detailing with how to make use of the Skyline ecosystem for small 

molecule research, including assay development, are available on-line with the Skyline 

software documentation.

Generally, the Skyline informatics for small molecule assay development mirrors that 

proteomic experiments described above. A notable difference, however, is the way Skyline 

treats ionization. For proteomics data, typically only sequence and charge state are required 

to describe a charged peptide. As such, Skyline assumes ionization by protonation, the most 

typical ionization for these experiments. Ionization of small molecules occurs through many 

means, including sodium addition and hydrogen loss. Therefore, Skyline’s informatics work 

best with manually entered charges states and either generalized ion formulas or manually 

entered m/z values for precursors and products.

F. Isolation window determination for DIA experiments

Unlike targeted experiments, DIA experiments do not require selection of proteins, peptides, 

or transitions prior to acquisition. There are multiple data collection strategies for DIA 

experiments with associated advantages and disadvantages that have been evaluated 

elsewhere (Chapman, Goodlett, and Masselon 2014). The most basic method used with 

Skyline (Egertson et al. 2015) acquires MS and MS/MS data for all molecular species 

between a certain predefined precursor m/z range in specified fragment m/z isolation 

windows. Determining the most appropriate MS/MS isolation scheme requires consideration 

of the particular instrument’s scan rate, resolving power, dynamic range, and sensitivity of 

the mass analyzer (Zhang et al. 2015). For many DIA experiments analyzed with Skyline, 

our lab monitors a precursor m/z range of 500–900 m/z as this m/z range reflects most 

proteotypic peptides. Restricting the total range can allow for smaller, more selective 

precursor isolation windows or shorter cycle times. Skyline is extremely flexible and 

currently supports all commonly used isolation schemes.

For the precursor m/z isolation scheme, window placement is calculated one of two ways: 

integer or optimized. Simple arithmetic division is used for integer window placement. For 
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example, a 20 window isolation scheme with each window covering 5 m/z (20 × 5) for a 

500–600 m/z range are placed at 500–505 m/z, 505–510 m/z, etc. This method requires a 

margin (usually 0.5 m/z) added to the instrument method but ignored during extraction, e.g. 

499.5–505.5 m/z, 504.5–510.5 m/z, etc. Alternatively, optimized window placement 

considers peptide mass distribution and calculates isolation windows that encompass 

“allowable regions” (Egertson et al. 2013). By placing window edges at “forbidden zones” 

where peptide masses do not occur and windows over “allowable regions”, the resulting 

window width and position is optimized for m/z ranges where peptides are most likely 

occur. This algorithm for calculating optimized isolation window placement is integrated 

into Skyline, facilitating quick generation of isolation lists for DIA methods.

G. Final method export and refinement

Once a Skyline document is built with the settings and optimizations described above, the 

final developed assay is exported either as a native method for triple quadrupole instruments 

or as scheduled isolation lists for certain Q-TOF and the Thermo Q-Exactive instruments. 

After acquiring mass spectrometry data, the acquisition files are imported into the Skyline 

document for method refinement such as peptide and transition validation. The cycle of 

export, acquisition, and refinement is repeated until the assay is considered effective, at 

which point final acquisition and quantitative analysis begins.

III. Data processing: Peak detection and integration

Skyline’s targeted data analysis strategy begins when the researcher selects raw mass 

spectrometer acquisition files to import. Skyline derives information from the native, 

vendor-specific file formats or from portable files like mzXML (Pedrioli et al. 2004) or 

mzML and caches the information into a single, high-performance data file. The caching 

step is critical to Skyline’s ability to quickly load large experiments with many data files, 

allowing researchers to process multiple MS runs at the same time. Skyline handles files 

sequentially or in parallel, performing the operations described below on each data file. The 

end result of Skyline’s data processing is a calculated peak area, or area under the curve 

(AUC), for each peptide ion (modified peptide plus charge state) in the Skyline Target list, 

visualizations of the data, and cached chromatogram information for quick recall.

A. Chromatogram extraction

Mass spectrometry data contains three dimensions: m/z, retention time, and intensity. In the 

first step of data processing, Skyline extracts the retention time and intensity information for 

a given m/z (Figure 2, Step 1). For PRM or DIA experiments, this information is calculated 

from the measured spectra as extracted-ion chromatograms (XIC), and for SRM/MRM 

experiments, the measured chromatograms are themselves imported. No file conversion is 

necessary prior to this step; raw files from the instrument are directly imported. It should be 

noted, however, that several settings in Skyline affect the chromatogram extraction process, 

such as retention time window width and parameters for instrument resolving power for 

profile spectra or mass accuracy for centroided spectra, therefore researchers should be sure 

that the Skyline document is prepared with the appropriate instrument and experimental 

details before importing data. These settings can be exported and imported from other 
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Skyline documents, aiding repeatability in data processing and ensuring the proper 

instrument and experimental details are preserved across laboratory sites and experiments.

B. Resampling

For all tandem mass spectrometry data acquisition types, the time intervals between MS2 

scans are irregular. For example, in an SRM/MRM experiment, the rate of MS2 scans 

depends on the number of transitions scheduled for collection at a given time and the dwell 

time for each. For its purposes, Skyline requires all chromatogram time, intensity points for 

a peptide to be placed on a uniform scale with a consistent interval. Even for DIA, this 

requires some adjustment of MS1 with MS2 scans and ions for multiple charge states or 

isotope labeling. To place these points, a linear interpolation of each raw chromatogram is 

performed. Skyline calculates an interval that captures as much information about the peak 

as possible (Figure 2, Step 3). Intervals placed too wide distort the shape of the peak, while 

intervals too narrow are costly in storage and processing time. The end product of 

resampling is an interval width that works best for the dataset, avoiding as much distortion 

as possible.

C. Peak detection

The resampled data is then searched for areas that represent peaks. Peak detection is 

performed by the Chromatogram Retention time Alignment and Warping for Differential 

Analysis of Data (CRAWDAD) Peaks algorithm. (Finney et al. 2008, Finney 2012) 

CRAWDAD finds the maxima and minima by points were the first derivative is equal to 

zero, then takes the second derivative in the retention time dimension, noting the point at 

which the second derivative is equal to zero in order to find inflection points. This set of 

points (local maxima, local minima, and inflection points) define a detected peak. In the 

absence of spectral library retention time information for peptide spectrum matches (IDs) 

within the files being analyzed (usually for DDA, PRM or DIA - with initial processing by 

tools like DIA-Umpire (Tsou et al 2015)), Skyline takes only the 20 most intense peaks for 

each transition from CRAWDAD. When ID times are present, Skyline also includes all 

CRAWDAD detected peaks containing IDs, or aligned IDs in runs which do not contain any 

IDs for the target being analyzed. This results in an initial set of raw peak detections for each 

individual chromatogram with boundaries set at the inflection points and peak areas in 

interval units.

D. Peak grouping

Next skyline creates peak groups for each targeted modified peptide or molecular structure, 

combining the raw peaks for its chromatograms and grouping them by retention time 

overlap. Peak grouping is based on elution profile similarity (Figure 2, Step 4), with apex 

RT, start RT, and end RT drawn from the local maxima and inflection points from the 

previous step. It should be noted that different charge states and isotopes (heavy labeled 

peptides, medium labeled peptides, endogenous or light peptides) are each considered 

together. After grouping, the individual peak boundaries are replaced with a single boundary 

for each entire peak group. This boundary may be adjusted outward from the original 2D 

inflection point boundary, using Savitzky-Golay smoothing and combined information of all 

chromatograms contributing to the peak group. Peak statistics are also recalculated to reflect 

Pino et al. Page 11

Mass Spectrom Rev. Author manuscript; available in PMC 2019 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the new agreed-upon boundary values and interval unit areas are multiplied by the number of 

seconds in the chosen interval to yield an ion count estimate (ions/second * seconds = ions).

E. Peptide identification

During the peptide identification step, commonly called “peak picking”, the top 10 results 

from peak grouping are evaluated for probability that they represent the peptide. For each of 

the 10 considered peak groups, a number of peak group features are calculated. These 

features, derived both from the CRAWDAD calculate statistics and raw chromatogram data, 

are weighted with particular coefficients, and summed to give a final score to the peak 

group. The seven scores and corresponding coefficients in Skyline’s default peak picking 

model are log intensity (1.0), coelution count (1.0), identified count (20.0), library intensity 

correlation (3.0), shape score (4.0), weighted co-elution (−0.05), and retention time delta 

from prediction (−0.7). The peak group with the highest score is identified (“picked”) as the 

peak for that peptide.

Many of these scoring features used in the Skyline default peak picking strategy are similar 

to those used in the mProphet method (Reiter et al. 2011). Researchers also have the ability 

to use other peak picking algorithms, such as the mProphet model itself, after initial data 

import by using a Re-integrate command to generate and apply these models, using decoys 

and semi-supervised machine learning. As evident from the exceptionally high weight given 

to the identification count feature, if external tools for peptide identification are used to 

identify a time of peptide elution within the data, Skyline will give very high priority to 

finding a peak at that time, using retention time alignment between runs to propagate ID 

times between runs.

F. Peak area calculation

In Skyline, the peak area, or area under the curve (AUC), refers to the total integrated area 

within the peak boundaries, minus the background area (in intensity for seconds of time 

units - or ion count where intensity is ions per second). Background area is defined as the 

total integrated area of the minimum of background height and intensity at each point, where 

background height is the minimum intensity of the two points where the chromatogram 

crosses the integration boundaries, which is assumed to be the level of intensity contributed 

not by the transitions themselves but from chemical noise (background) in the measurement. 

The background area is subtracted from the total integrated area within the peak boundaries 

to return the final reported peak area. Although Skyline allows display of chromatograms 

with various smoothing options (2D, 1D, Savitzky-Golay) applied, it uses the interpolated 

points displayed in the unsmoothed graphs to calculate peak area. Total area values sum the 

AUC values of individual chromatograms, rather than performing a separate AUC 

calculation on a summed chromatogram.

IV. Core analyses and visualizations

Once raw acquisitions are processed, Skyline creates visual displays of the data. 

Chromatograms for each peptide in the Skyline document are displayed with visualizations 

of the boundaries and indicators for the retention time and dot product of each picked peak. 
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Retention times for the top 10 peaks detected in the RT window are also shown, allowing 

researchers to see other candidates that were considered in peak picking.

A. Data curation and quality assessment

Visualizations in Skyline allow researchers to quickly identify issues in data, explore causes, 

and evaluate solutions to resolve the issues. One common example of this functionality of 

data visualization in Skyline is “peak picking”. Although automated peak detection and 

boundary setting are generally reliable, it is important to manually curate data to ensure 

reliable quantification (Bereman et al. 2012). Here, Skyline’s visualizations facilitate 

determination of which peptides can be robustly measured in a specific target matrix, which 

transitions for a peptide are the best transitions for the measurable peptides, and whether a 

given peak actually measures the peptide of interest. The picked peak is marked by a solid 

black arrowhead in Skyline’s chromatogram window (Figure 3a). Evaluation of peptide 

identification (“peak picking”) is computationally-aided by display of iRT-predicted RT, 

relative transition intensities compared to library intensities. Dot product values are 

calculated (Stein and Scott 1994; Tabb et al. 2003), correlating peak intensities of the 

transitions with the library spectrum for that peptide (dotp - and between precursor isotope 

peak intensities and expected isotope distribution - idotp - and between analyte peak 

intensities and those for matching isotope labeled reference peptides - rdotp) and 

establishing a measure of confidence in peak detection (Prakash et al. 2009; Sherwood et al. 

2010). Peak boundaries are also displayed as dashed vertical lines, shown in Figure 3a, and 

researchers are able to adjust the boundaries as they deem appropriate. Skyline recalculates 

peak statistics, including peak area integration, with the new boundaries or peak picking.

Critically for quantification, Skyline allows convenient evaluation of transitions. Skyline 

gives the option to display for each peptide all transitions included in the document, 

precursors-only (M, M+1, M+2, etc.), products-only, a single transition, or a total ion 

chromatogram, summing all transitions, for each precursor. The individual fragments 

measured for a peptide are visualized as different colored chromatograms (Figure 3a). The 

ability to simply delete or add transitions for a peptide precursor in the Target window, and 

easily undo such changes, lets researchers visually evaluate transitions for characteristics 

such as intensity, co-elution with interference, shouldering, and other qualities undesirable 

for accurate, robust quantification. For MRM experiments with heavy-paired peptide targets, 

the Automated Detection of Inaccurate and Imprecise Transitions in Peptide Quantification 

(AuDIT) algorithm (Abbatiello et al. 2010) employed by the Skyline External Tool QuaSAR 

automatically suggests transitions for removal based on similar criteria. In addition to the 

chromatogram view, clicking on a chromatogram opens a Full-Scan view of normal 2D 

spectra (intensity by m/z).

B. Native, real-time updating visualizations

Statistics for data are shown as visual graphs in embeddable live plot windows. Statistics 

include plots of retention time, peak area, mass error, and group comparisons. The retention 

time display is user-defined to show a floating column chart by replicate or peptide, a linear 

regression plot of the peptide elution times by SSRCalc or iRT score, or a scheduling 

window with the number of expected transitions over time for multiple scheduling window 
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widths. Retention time data can be plotted by Replicate Comparison or Peptide Comparison, 

allowing researchers to evaluate various aspects of their data. Specifically, replicate 

comparisons can be sorted as they are in the document or by acquired time helping to make 

the impact of instrument run order more easily understood. For example, when the retention 

times are displayed as Replicate Comparison for an experiment, it is clear if a particular run 

deviates significantly from others (Figure 3c), which may indicate a potentially mis-picked 

peak. Options for display of peak areas allow the researcher to specify between displaying a 

bar chart of total peak areas, peak areas normalized to heavy peptide isotope pairs, user-

specified global standards (Figure 3d), maximums, or the total peak area; or to view bar 

graphs of coefficient of variance (CV) (Figure 3b). Similar to notably deviating retention 

time values, an outlying peak area may prompt a researcher to visually examine that 

replicate or peptide.

In addition to retention time and peak area data, mass error graphs are available for 

inspecting mass error summary information. Mass error is calculated in Skyline as a 

weighted mean of the mass error in all the integrated points across the annotated 

chromatogram. When visualized as a Replicate Comparison, this data is helpful for detecting 

interference at the transition level. As a Peptide Comparison, researchers may sort by mass 

error to get an overview of all targeted peptides. Unique to the mass error visualization 

options are a histogram (for display of mass error at the full document scope or each 

replicate for detecting calibration issues and a 2D histogram with m/z and retention time 

dimensions available for increased visibility of instrument calibration issues.

For instances where displaying data in the form of Replicate or Peptide Comparison is 

inadequate, Skyline offers options for grouping and ordering of peptides by a number of 

characteristics, including custom annotations that researchers can add based on experimental 

details or sample characteristics. The Group Comparisons feature natively calculates 

differential statistics for proteins in a table or graph view within Skyline. For many 

proteomics studies, correcting for multiple hypothesis testing is required. To calculate 

statistically significant differential expression, Group Comparisons employs a user-specified 

cut-off for the Benjamini-Hochberg adjusted p-value to account for false discovery rate 

(Benjamini and Hochberg 1995).

In experiments where absolute quantification of the analyte target is necessary, Skyline 

allows for internal single point calibration to a reference and also multiple point calibration 

curves via the Calibration Curve feature. The Calibration Curve feature works with data 

from a dilution series of isotope-labeled reference peptides. This external calibration curve is 

used to regress the known concentration of each reference peptide target against the intensity 

measured for that target, allowing conversion of intensity measurements into absolute 

quantitative values. Although this method requires multiple injections to gather the external 

calibration curve data, the Calibration Curve feature accounts for linear peptide responses 

that have nonstandard slopes or intercepts. At this time, the feature provides conversion of 

measured intensity values to absolute quantitation values like concentration, not for 

determining limits of detection or limits of quantitation.
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C. Skyline informatics considerations for ion mobility spectrometry

In experiments involving gas-phase ion mobility spectrometry (IMS) separations in place of 

or hyphenated with LC, the additional dimension of drift-time is introduced to the data 

(Baker et al. 2015). For these datasets, as a single LC RT has multiple associated drift-times, 

Skyline considers drift-time data in processing, allowing chromatogram extraction to be 

limited to specified drift time ranges, and visualization. Spectra from which chromatogram 

points are extracted can be visualized in a 3D heat map plot (intensity by m/z and drift time), 

displayed when the chromatogram is clicked on. As fragments have the same drift-time as 

their precursor (potentially slightly offset by a constant fragmentation factor) a drift time 

value and extraction range allow Skyline to ignore signal outside a targeted drift range, 

improving selectivity. Skyline’s incorporation of IMS considerations and continuing 

optimization of IMS informatics holds promise for analysis of large, multi-dimensional 

datasets involving IMS.

V. Additional analyses: external tools

A. Goals for External Tools

One distinguishing aspect of the Skyline ecosystem is the ability for researchers to 

contribute their data processing software packages through the external tools framework 

(Broudy et al. 2014). Through this framework, researchers can conveniently and quickly 

distribute their programs to the community. The ultimate goal is to provide a common, 

convenient hub that connects the data found in a Skyline document with the community’s 

many informatics methods. Although Skyline itself is built from the C# programming 

language, the installable tools framework includes extra support for tools using the R or 

Python programming languages. To date, nine external tools from community researchers 

are integrated in the Skyline ecosystem with applications ranging from assay development to 

biological inference (Table 3).

B. External tools for assay development

Generating a specific hypothesis for a quantitative MS experiment often begins with prior 

knowledge from previous proteomics experiments. The Biodiversity Library Plugin (Payne 

et al. 2015) enables fast, convenient survey and retrieval of existing proteomics data for an 

organism and biological pathway of interest. Researchers can query spectra for over 3 

million peptides and 230,000 proteins, annotated with KEGG pathways, from 118 

organisms. These functionalities allow researchers to quickly compile a list of potential 

assay proteins on the basis of a biological function.

As mentioned in the computationally-assisted assay development section, selecting target 

peptides for an SRM/MRM or PRM poses a significant challenge. One such challenge in 

clinical applications is natural genetic variation, which may confound MS experiments that 

attempt to measure a specific protein. The Population Variation external tool (Fujimoto et al. 

2014) enables researchers to explore possible variants for their protein of interest by 

surveying the dbSNP and 1000 Genome project for mutations. The PREGO external tool 

(Searle et al. 2015) is an algorithm that ranks peptides by their predicted response level, 

intended to facilitate the selection of peptides that will produce the most intense MS signal.
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C. External tools for acquisition monitoring

It is necessary to control for LC-MS performance variations during acquisition in order to 

ensure accurate, reproducible measurements. Aspects such as retention time, 

chromatographic peak width, mass measurement, and ion intensity all influence the 

robustness of an assay and are affected run to run by minor, necessary adjustments like 

column changing. The external tool Statistical Process Control in Proteomics (SProCoP) 

(Bereman et al. 2014) allows for semi-automated real time evaluation of an assay, including 

both chromatographic and mass spectrometric performance. SProCop assesses metrics such 

as retention time reproducibility, peak asymmetry, targeted peptide ion intensity, and mass 

measurement accuracy, constructing control charts and boxplots that a researcher monitors 

throughout the lifetime of an experiment to ensure reproducibility between LC-MS runs.

D. External tools for quantitative statistical analysis

The experimental workflow used to generate samples for mass spectrometry each require 

specialized data analysis strategies. The combination of sample generation method (labeled 

versus label-free) and the spectral acquisition method (DDA, SRM/MRM and PRM, or DIA) 

require different informatics approaches. The external tool MSstats (Choi et al. 2014) 

considers these data properties to calculate the relative quantification of proteins and 

peptides. MSstats begins with data processing and visualization of the identified and 

quantified spectral peaks. It then performs statistical modeling and inference using linear 

mixed models, customized to the method of sample generation and MS acquisition. Finally, 

researchers can specify a particular statistical power for their experiment, and MSstats 

determines the minimal number of replicates required to achieve that statistical power by 

considering the dataset as a pilot experiment.

Other external tools are designed for use with specific acquisition methods. For DDA 

analyses, an MS1 filtering approach through the external tool MS1Probe (Schilling et al. 

2012) enables high throughput statistical quantification of peptide analytes. The external tool 

QuaSAR (Mani, Abbatiello, and Carr 2012) produces figures of merit (limit of detection, 

LOD; limit of quantitation, LOQ) for statistical characterization of stable isotope dilution 

MRM-MS assays (SID-MRM-MS) generated with heavy labeled stable-isotope peptide 

standards. Within the QuaSAR external tool, AuDIT (Abbatiello et al. 2010) performs 

automated filtering of transition validation, improving sensitivity and specificity for peptide 

quantitation by SID-MRM-MS. For label-free quantitative DIA analyses, Skyline exported 

custom reports can be used to optimize fragment selection and detect interferences using the 

nonoutlier fragment ion (NOFI) ranking algorithm (Bilbao et al 2015).

In addition to the tools described above, Skyline also enables the export of results for 

analysis in other software suites. The MPPReport tool, for example, creates a results file 

designed for import into Agilent’s Mass Profiler Professional multivariate statistics software 

package. Researchers can create their own custom reports with a wide range of values to 

view, edit, and export. Exported custom reports enable researchers to perform their own 

statistical analyses in Excel, R, Matlab, Java, C++, and other languages, and formats of 

custom reports can be saved as templates to share and re-use in future analyses.
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E. External tools for biological inference

The ultimate goal of many MS proteomics experiments is deriving biological information. 

Towards this end, researchers have developed several tools to facilitate the visualization and 

biological importance of peptide and protein measurements. The external tool Protter 

(Omasits et al. 2014) combines known annotations of protein structure and function with 

experimental MS data to give researchers an interactive visualization of protein topology. 

Protter is especially powerful for visualization of membrane protein topology.

VI. Methods and results sharing

Skyline, being designed for the mass spectrometry proteomics community, is ideal for 

interlaboratory collaborations and experimental results comparisons in a vendor-neutral 

manner. With these types of collaborations in mind, the Skyline ecosystem grew to include 

storage and sharing applications.

A. Panorama and CHORUS projects for raw and Skyline file storage and sharing

Panorama (Sharma et al. 2014), a web-based application for storing, sharing, analyzing and 

reusing targeted Skyline assays, allows laboratories to communicate the details for 

replicating or reproducing targeted Skyline experiments. To this end, during the development 

of Panorama, data integrity, security, and scalability were stressed. Storing Skyline 

documents in Panorama does not confer any loss of information and data can be made public 

or kept private at the discretion of the researcher.

It is possible to automate entire informatics pipelines, from acquisition to Panorama 

publishing, using the command-line version of Skyline, called SkylineRunner. An exemplary 

case of informatics automation is AutoQC, a completely automated pipeline designed to 

monitor system suitability in bottom-up proteomics (Bereman et al 2016). As a mass 

spectrometer runs, AutoQC imports quality control acquisitions into Skyline, extracts 

multiple identification-free metrics, and uploads the data to a Panorama Skyline document 

repository. Users can view system suitability metrics in the web-based interface, including 

Levey-Jennings and Pareto plots.

In addition to the Panorama module, the CHORUS platform was developed to provide 

storage, analysis, and sharing function for raw mass spectrometry files with a simple user 

interface. When raw data is placed into CHORUS, it is uploaded to the Amazon Web 

Services (AWS) cloud and translated into a distributed data structure. By utilizing AWS 

cloud computing and the unique distributed file format, accessing DIA data remotely from 

CHORUS is faster than from the local hard drive. When researchers wish to request data 

from the cloud, Skyline requests the extracted ion chromatograms, CHORUS generates the 

chromatograms, and then returns a Skyline cache. In addition to this scalable data access and 

remote extraction of chromatograms, CHORUS also provides a browser-based vendor-

neutral spectrum and chromatogram viewer, integrated protein database searching and 

quantitative analysis tools. CHORUS is intended to facilitate community-driven mass 

spectrometry proteomics, and is therefore a not-for-profit public/private partnership.
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B. CPTAC: an exemplary use case scenario

The Clinical Proteomic Technologies Assessment for Cancer (CPTAC) program (Abbatiello 

et al. 2015) exemplifies the strengths of Skyline for methods and results sharing in large, 

multi-site collaborations. As part of the CPTAC efforts to improve cancer diagnosis, 

treatment, and prevention with LC-MRM-MS methodologies, the Skyline ecosystem has 

been utilized to develop targeted proteomics assays that are precise, accurate, reproducible, 

and transferable between laboratories, across expertise levels, and over instrument platforms. 

CPTAC scientists utilized the Skyline ecosystem for computationally-assisted methods 

development, taking ease of simple transition evaluation, retention time scheduling, and 

method export. Additionally, because Skyline’s analysis pipeline is instrument-independent, 

the CPTAC researchers were able to integrate data across LC-MS platforms. Further, 

informatics tools developed by the CPTAC team to quantitatively analyze the data, namely 

QuaSAR, have been integrated into the Skyline ecosystem as external tools. From assay 

development to quantitative data analysis, the Skyline ecosystem helped to enable scientists 

of the CPTAC consortium accomplish their goals for a robust, sensitive absolute 

quantification assay across laboratory sites, instrument platforms, and operators.

VII. Perspectives

The Skyline informatics ecosystem described above has become a powerful tool in the 

quantitative measurement and analysis of peptides by mass spectrometry. Skyline’s 

generalized, vendor-neutral design provides the base for an informatics toolkit that expands 

to fit the needs of the community. As new needs arise from the community, Skyline 

frequently releases software developments in the form updates for Skyline-daily, the beta 

release version of Skyline. Areas of orthogonal interest such as small molecule research, 

analytical methods for rigorous quantitation, and statistical techniques are inspiring new 

Skyline developments. Important future goals are adapting Skyline’s informatics for big data 

mass spectrometry proteomics through parallelization of file processing. These 

developments will be vital in obtaining the robust, sensitive quantitative measurements 

required to better understand the systems biology of cells, organisms, and disease states.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Generalized workflow for quantitative MS assay development
Six main steps are outlined, beginning with the development of a hypothesis and continuing 

through additional analyses, with examples of the associated Skyline ecosystem features.
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Figure 2. Data processing pipeline in Skyline
Skyline derives information from native, vendor-specific file formats or from portable files, 

producing peak area calculations, and visualizations of the data.
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Figure 3. Real-time updating visualizations natively embedded in Skyline
(a) Skyline chromatogram visualizations show the intensity at each resampled retention time 

point for all fragment ions (displayed as different colored lines identified in the legend) of a 

precursor, enabling researchers to assess Skyline’s automated peak picking or adjust 

integration boundaries if necessary. (b) Calculation of coefficient of variation (CV) informs 

researchers of the reproducibility of peptide peak areas (shown here as the peak area ratio to 

a global standard) over multiple acquisitions or custom-annotated groups of acquisitions. (c) 

Real-time updating visualization of precursor retention time across acquisitions enables 

quick identification of mis-picked peaks over many MS acquisition runs. Out of 42 

replicates, the peptide shown here appears to elute three minutes late in one replicate (eighth 

from the left, marked with arrow) compared to all other replicates, an observation that may 

prompt the researcher to evaluate that picked peak in the chromatogram visualization pane. 

(d) Peak area is displayed here as the percentage contributed by each fragment ion of the 

precursor which allows the researcher to quickly evaluate data quality. For example, the 

boxed replicate (eighth run from the left, marked with arrow) displays a noticeably different 

distribution of contributed fragment peak areas, indicating that the picked peak group for 

this replicate may require further examination.
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Table 1
Proprietary file formats supported by Skyline

Vendors and instruments supported by the Skyline ecosystem are specified along with their respective 

proprietary file format and general acquisition types. (QqQ: triple quadrupole; Q-TOF: quadrupole time of 

flight; IMS-TOF: ion mobility spectrometry-time of flight; Q-OT: quadrupole-Orbitrap; Q-LIT: quadrupole-

linear ion trap)

Vendor File extension Instruments Supported Acquisitions Supported

Agilent .d (directory) QqQ, Q-TOF, IMS-TOF DDA, SRM, DIA

Bruker .d (directory) Q-TOF DDA, PRM, DIA

Sciex .wiff (file) QqQ, Q-TOF DDA, SRM, PRM, DIA

Shimadzu .qgd QqQ SRM

Thermo .raw (file) QqQ, Q-OT, Q-LIT DDA, SRM, PRM, DIA

Waters .raw (directory) QqQ, Q-TOF, IMS-TOF SRM, PRM, DIA
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Table 2

Peptide spectrum matching pipelines supported by Skyline with BiblioSpec for spectral library-building.

Peptide spectrum matching pipeline Type Creator Peptide ID file Spectrum file

Mascot Proprietary Matrix Science 
(Perkins et al 1999)

.dat

ByOnic Proprietary Protein Metrics, Inc. 
(Bern, Cai, and 
Goldberg 2007)

.mzid .MGF, .mzXML, .mzML

Comet/SEQUEST/Percolator Open source Dept Genome 
Sciences, University 
of Washington (Eng, 
Jahan, and Hoopmann 
2013; Eng, 
McCormack, and 
Yates 1994; Kall et al 
2007)

.perc.xml (.sqt) .cms2, .ms2

ID Picker (Myrimatch) Open source MSRC 
Bioinformatics, 
Vanderbilt University 
(Tabb, Fernando, and 
Chambers 2007)

.idpXML .mzXML, .mzML

MaxQuant Andromeda freeware Max Planck Institute 
(Cox et al 2011)

msms.txt

Morpheus Open source Coon lab, University 
of Wisconsin-
Madison (Wenger and 
Coon 2013)

.pep.xml, .pep.XML, .pepXML .mzXML, .mzML

MS-GF+ freeware Pevzner lab, UCSD 
(Kim et al 2010)

.mzid, .pepXML .MGF, .mzXML, .mzML

OMSSA Open source NCBI (Geer et al 
2004)

.pep.xml, .pep.XML, .pepXML .mzXML, .mzML

PEAKS DB Proprietary Bioinformatics 
Solutions, Inc. (Zhang 
et al 2012)

.pep.xml, .pep.XML, .pepXML .mzXML, .mzML

Proteomics Identifications (PRIDE) EMBL-EBI (Martens 
et al 2005)

.pride.xml

Protein Pilot Proprietary SCIEX (Shilov et al 
2007)

.group.xml

Protein Prospector Open source UCSF Mass 
Spectrometry Facility 
(Baker and Clauser)

pepXML/mzXML

Proteome Discoverer Proprietary Thermo .msf

Scaffold Proprietary Proteome Software 
(Searle 2010)

.mzid .MGF, .mzXML, .mzML

Spectrum Mill Proprietary Agilent .pep.xml, .pep.XML, .pepXML .mzXML, .mzML

Trans-Proteomic Pipeline (TPP) Open source Aebersold lab, 
Institute for Systems 
Biology (Deutsch et 
al 2015)

pepXML/mzXML

X! Tandem Open source Global Proteome 
Machine Organization 
(Craig and Beavis 
2004)

.xtan.xml

ProteinLynx Global SERVER 
(PLGS) - MSe

Proprietary Waters final_fragment.csv
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Peptide spectrum matching pipeline Type Creator Peptide ID file Spectrum file

Custom .ssl
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Table 3

Community-built informatics tools integrated into the Skyline ecosystem.

Tool Creator Integration Date Purpose

BiodiversityPlugin Computational Proteomics Group, Pacific 
Northwest National Laboratory (Payne et al 
2015)

2015 Jun 10 mass spectrometry data retrieval by 
organism and biological pathway

MPPReport Agilent Technologies 2014 Sep 9 data export for use in Agilent’s Mass 
Profiler Professional multivariate statistics 
software

MS1Probe Gibson Lab, The Buck Institute for Research on 
Aging (Schilling et al 2012)

2014 Apr 16 high throughput statistical quantification of 
MS1 Filtering datasets

MSstats Vitek Lab, Purdue University (Choi et al 2014) 2015 Jul 30 statistical relative quantification of proteins 
and peptides in global, targeted, and data-
independent proteomics

Population Variation Computational Proteomics Group, Pacific 
Northwest National Laboratory (Fujimoto et al 
2014)

2013 Dec 20 protein variant lookup from dbSNP and the 
1000 Genome project

Prego MacCoss lab, University of Washington (Searle et 
al 2015)

2015 Jun 23 peptide SRM response prediction

Protter Wollscheid Lab, ETH Zurich (Omasits et al 2014) 2015 Dec 19 transmembrane protein topology 
visualization

QuaSAR Carr Lab, Broad Institute of MIT and Harvard 
(Mani, Abbatiello, and Carr 2012)

2014 Oct 23 QC, statistical analysis, and visualization of 
data from quantitative MRM-MS

SProCoP Bereman Lab, North Carolina State University 
(Bereman et al 2014)

2014 Dec 3 Visualization, detection, and identification 
of assignable causes of variation in LC-MS
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