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ABSTRACT

Let G be the fundamental group of the complement of the torus knot of type
(m,n). This has a presentation G = (z,y|z™ = y™). We find the geometric
description of the character variety X (G) of characters of representations of G
into SL(2,C).
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Introduction

Since the foundational work of Culler and Shalen [1], the varieties of SL(2, C)-charac-
ters have been extensively studied. Given a manifold M, the variety of representations
of 71 (M) into SL(2,C) and the variety of characters of such representations both con-
tain information of the topology of M. This is specially interesting for 3-dimensional
manifolds, where the fundamental group and the geometrical properties of the mani-
fold are strongly related.

This can be used to study knots K C S®, by analysing the SL(2,C)-character
variety of the fundamental group of the knot complement 52 — K. In this paper, we
study the case of the torus knots K, of any type (m,n). The case (m,n) = (m,2)
was analysed in [3] and the general case was recently determined in [2] by a method
different from ours.
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1. Character varieties

A representation of a group G in SL(2,C) is a homomorphism p : G — SL(2,C). Con-
sider a finitely presented group G = (x1,...,zk|r1,...,7s), and let p : G — SL(2,C)
be a representation. Then p is completely determined by the k-tuple (Aq,..., Ax) =
(p(x1), ..., p(zk)) subject to the relations 7,;(Aq,..., Ax) =0, 1 < j < s. Using the
natural embedding SL(2,C) C C*, we can identify the space of representations as

R(G) = Hom(G,SL(2,C))
= {(A1,...,Ay) €SL(2,C)" |rj(Ar,...,Ar) =0, 1< j < s} cCH.

Therefore R(G) is an affine algebraic set.

We say that two representations p and p’ are equivalent if there exists P € SL(2, C)
such that p'(g) = P~tp(g)P, for every g € G. This produces an action of SL(2,C) in
R(G). The moduli space of representations is the GIT quotient

M(G) = Hom(G, SL(2,C))// SL(2,C).

A representation p is reducible if the elements of p(G) all share a common eigen-
vector, otherwise p is irreducible.

Given a representation p : G — SL(2,C), we define its character as the map
Xp: G — C, x,(9) =trp(g). Note that two equivalent representations p and p’ have
the same character, and the converse is also true if p or p’ is irreducible [1, Proposition
1.5.2].

There is a character map x : R(G) — CY, p Xp, Whose image

X(G) = x(R(G))

is called the character variety of G. Let us give X (G) the structure of an algebraic
variety. By the results of [1], there exists a collection gy, ..., g, of elements of G such
that x, is determined by x,(g1), ..., Xp(ga), for any p. Such collection gives a map

U R(G)—=C*, W(p) = (Xp(91),- -5 Xp(9a)) -

We have a bijection X (G) = U(R(G)). This endows X (G) with the structure of an
algebraic variety. Moreover, this is independent of the chosen collection as proved in

[1].
Lemma 1.1. The natural algebraic map M(G) — X (G) is a bijection.

Proof. The map R(G) — X (@) is algebraic and SL(2, C)-invariant, hence it descends
to an algebraic map ¢ : M(G) — X (G). Let us see that ¢ is a bijection.

For p an irreducible representation, if ¢(p) = ¢(p') then p and p’ are equivalent
representations; so they represent the same point in M(G).

Now suppose that p is reducible. Consider e; € C? the common eigenvector of
all p(g). This gives a sub-representation p’ : G — C* of G. We have a quotient
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representation p” = p/p’ : G — C*, defined as the representation induced by p in
the quotient space C2?/{e1). As characters, p”” = p’~!. The representation p’ @ p”
is the semisimplification of p. It is in the closure of the SL(2,C)-orbit through p.
Clearly, x,(g9) = p'(g9) + p'(9)~". Now if p and p are two reducible representations
and ¢(p) = ¢(p), then their semisimplifications have the same character, that is

Xp(9) = x5(9) = P'(9) + ' (9) " =7 (9) + 7' (9)".

Therefore p’ = ' or p/ = p/~1. In either case p and p represent the same point in

M (G), which is actually the point represented by p’ @ p'~ 1. O

2. Character varieties of torus knots

Let 7?2 = S' x S' be the 2-torus and consider the standard embedding T2 C S3. Let
m,n be a pair of coprime positive integers. Identifying 72 with the quotient R?/Z?
the image of the straight line y = Za in T2 defines the torus knot of type (m,n),
which we shall denote as K, , C S® (see [4, Chapter 3]).

For any knot K C S3, we denote by G(K) the fundamental group of the exterior
S3 — K of the knot. It is known that

Gm,n - G(Kmn) = <Iay | ™= yn> .

The purpose of this paper is to describe the character variety X (G, n).

In [3], the character variety X (G, 2) is computed. We want to extend the result
to arbitrary m, n, and give a simpler argument than that of [3].

After the completion of this work, we became aware of the paper [2] where the
character varieties of X (G,,,,) are determined (even without the assumption of m,n
being coprime). However, our method is more direct than the one presented in [2].

To start with, note that

R(Gm.n) = {(A, B) € SL(2,C) | A™ = B"} |

Therefore we shall identify a representation p with a pair of matrices (A, B) satisfying
the required relation A™ = B™.
We decompose the character variety

X(Gm,n) = Xrea U Xirr ;

where X,.q is the subset consisting of the characters of reducible representations
(which is a closed subset by [1]), and X, is the closure of the subset consisting of
the characters of irreducible representations.

Proposition 2.1. There is an isomorphism X,.q = C. The correspondence is defined
by
B ([t 0 (0 B 1
p—(A—(O t_">’3_< 0 t_m>>|—>s—t+t eC.
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Proof. By the discussion in Lemma 1.1, an element in X,.4 is described as the char-
acter of a split representations p = p’ @ p’~!. This means that in a suitable basis,

(X0 (pr 0

The equality A”™ = B"™ implies A" = u". Therefore there is a unique ¢t € C with
t # 0 such that
A=t
{ w=t"m.

(Here we use the coprimality of (m,n)). Note that the pair (A, B) is well-defined up
to permuting the two vectors in the basis. This corresponds to the change (\, ) —
(A1, 1), which in turn corresponds to t — t~!. So (A, B) is parametrized by
s=t+tteC. O

Lemma 2.2. Suppose that p = (A, B) € R(Gp,n). In any of the following cases:
(a) A™ = B" # +1d,
(b) A==Id or B = +£Id,
(¢) A or B is non-diagonalizable,

the representation p is reducible.

Proof. First suppose that A is diagonalizable with eigenvalues A\, \~!, and suppose

that \™ # 4+1. Then there is a basis ej, ez in which A = ( g\ )\91 ), which is

well-determined up to multiplication of the basis vectors by non-zero scalars. Then

n_ oam [ AT 0
e (5 ,2)

is a diagonal matrix, different from £Id. Therefore B must be diagonal in the same
basis, B = ( g #91 ), with A™ = ™. This proves the reducibility in case (a).

Now suppose that A = A\Id, A = £1. Then B™ = A™Id, so it must be that B is
diagonalizable. Using a basis in which B is diagonal, we get the reducibility in case
(b).

Finally, suppose that A is not diagonalizable. Then there is a suitable basis on

which A takes the form A = (E)\ }\),with/\_:lzl. Clearly
n_ oam __ym [ 1 mA
oo (1)
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(o=
B_(O u)’

with g = +1, p = A" and pnx = Am. In this basis, the vector e; is an eigenvector
for both A and B. Hence the representation (A, B) is reducible, completing the case
(). O

and so

Proposition 2.3. Let X} be the set of irreducible characters, and X, its closure.
Then

Xo, =2 {wpur) | N"=p" =1L, #xlL p#£1,re C—{0,1}}/Zs x Zs ,
Xirw 2 {p,r) | NP =p" =21, £+, u#+1,r € C}/Zo X Zs .

where Zo x Lo acts as (A, pi,7) ~ AL 1 —7r) ~ A\ p= 1 —7) ~ (AL u=t ).

Proof. Let p = (A, B) be an element of R(G,, ) which is an irreducible represen-
tation. By Lemma 2.2, A is diagonalizable but not equal to +Id, and A™ = +Id.
So the eigenvalues A\, \~1 of A satisfy \™ = +1 and A # 41. Analogously, B is
diagonalizable but not equal to #Id, with eigenvalues p, u~*, with u” = £1, u # +1.
Moreover,

AT ="

We may choose a basis {e1,e2} under which A diagonalizes. This is well-defined
up to multiplication of e; and es by two non-zero scalars. Let { f1, fo} be a basis under
which B diagonalizes, which is well-defined up to multiplication of f1, fo by non-zero
scalars. Then {[e1], [e2], [f1], [f2]} are four points of the projective line P* = P(C?).
Note that the pair (A, B) is irreducible if and only if the four points are different.

The only invariant of four points in P! is the double ratio

r=([ea] : [ea] : [f1] : [fo]) € P — {0,1,00} = C — {0, 1}.

So (A4, B) is parametrized, up to the action of SL(2,C), by (A, s, 7). Permuting the
two basis vectors e, ez corresponds to (A, pu, 1) — (A7, u, 1 —7), since

(le2] : [ea] = [fa] = [f2]) = 1 = ([ea] = [e2] = [fa] = [f2])-

Analogously, permuting the two basis vectors fi1, fo corresponds to
(A,,UJ, T) = ()\a ,u_lv 1- T)'

Note that this gives an action of Zs x Z and X/, is the quotient of the set of (A, u,7)
as above by this action.
To describe the closure of X ., we have to allow f; to coincide with e;. This

corresponds to r = 1 (the same happens if fy coincides with es). In this case, e; is
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an eigenvector of both A and B, so the representation (A, B) has the same character
as its semisimplification (A’, B’) given by

A0 0
(3 0) w5 )

This means that the point (A, u, 1) corresponds under the identification X,.q = C
given by Proposition 2.1 to s; =1 + tl_l, where t; € C satisfies

g
’ 1
Ll o

Also, we have to allow f; to coincide with es (or fa to coincide with ej). This
corresponds to r = 0. The representation (A4, B) has semisimplification (A’, B’) where

! )\ 0 ! _ /,L71 0
(3 0) (50,

So the point (A, i, 1) corresponds to sg = to + to_l € X,eq = C, where ty € C satisfies
A=1t§

1 m 2

{ pot =ty @)

O

Proposition 2.3 says that X, is a collection of % lines. A pair (A, p)
with A" = +1 and pu" = +1 is given as

A= eTri}’c/wz7 W= eﬂ'ik//n7
where 0 < k < 2m, 0 < k' < 2n. The condition A # +1, u # £1 gives k # 0,m,

k' # 0,n. Finally, the Zs x Zs-action allows us to restrict to 0 < k < m, 0 < k' < n.
The condition A™ = u™ means that

k=k (mod 2).
Denote by szrf " the line of X corresponding to the values of k, k’. Then

Xipy = XEF
irr — arr *
0<k<m,0<k’<n
k=k’ (mod 2)

The line Xikr’f/ intersects X,eq in two points. This gives a collection of (m —1)(n —1)

points in X,..4, which are defined as follows: under the identification X,..q = C, these
are the points s; = t; + tl_l, where
t = eﬂil/nm

)
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Xred

—

Xirr

Figure 1 — Picture of X (G, n)-

and 0 <1 < mn, m/l, nfl. Assume that n is odd (note that either m or n should

be odd). Then from (1) and (2), the line Xfr’f/ intersects at the points s, 51, € Xred
where

nlp =k (mod m), mlp=n—Fk (mod n),
k" (mod n).

nly =k (mod m), mly

These two points are different since k' Zn — k' (mod n), as n is odd.
In the case (m,n) = (2,n), this result coincides with [3, Corollary 4.2].

3. The algebraic structure of X(G,,,)

We want to give a geometric realization of X (G,,,,) which shows that the algebraic
structure of this variety is that of a collection of rational lines as in Figure 1 inter-
secting with nodal curve singularities.

The map R(Gm.n) — C3, p= (A, B) — (tr(A), tr(B), tr(AB)), defines a map

U: X(Gpn) — C?.

Theorem 3.1. The map ¥ is an isomorphism with its image C = ¥ (X (Gm.n)). C is
a curve consisting of W + 1 rreducible components, all of them smooth and
isomorphic to C. They intersect with nodal normal crossing singularities following
the pattern in Figure 1.
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Proof. Let us look first at g = W|x,_, : Xyeq — C3. For a given p = (A, B) € X,cq,
with the shape given in Proposition 2.1, we have that
Ugis=t+t L ("7 4™ 4t g ()
This map is clearly injective: the image recovers
{tm ey, {emommy, (et gy,

From this, we recover {(t",#™), (t~™,t~™)} and hence the pair ¢,#~! (since n,m are
coprime).
Let us see that ¥g is an immersion. The differential is
40,
dt
This is non-zero at all ¢ # 41. As % # 0, we have % #(0,0,0). For t = +1, we
note that % = ¢=2(t2 — 1), so

dv, ?n —1 A
o tfnJrl tferl
ds <” 21" 21

= (nt™" N = 1), mtT TN = 1), (n4 m)t TR — 1)) L (3)

, (n+m)

tfnferl t2n+2m -1
t2—1 ’

which is non-zero again.

Now, consider a component of Xj,.,. corresponding to a pair (\, ). Take r € C.
Fix the basis {e,ea} of C? which is given as the eigenbasis of A. Let {f1, f2} be the
eigenbasis of B. As the double ratio (0: 00 :1:7/(r—1)) = r, we can take f; = (1,1)
and fo = (r — 1,r). This corresponds to the matrices:

A0
t= (o)

()62
_ (T(u—u‘l)Jru‘l (1—7“)(/1—#‘1))'
r(p—pt) po—r(p—pt)
Thefef; Z B) = (tr(A),tx(B),tr(AB))

= A+ A Qe AT ) A = AT (= ).

The image of this component is a line in C3. Its direction vector is (0,0,1). At an
intersection point with ¥o(X,cq), the tangent vector to Wo(X,cq), given in (3), has
non-zero first and second component, since A = t™, p=t" and t # 0, \2 # 1, u? # 1.
So the intersection of these components is a transverse nodal singularity.

Finally, note that the map ¥ : X(G,,.,) — C is an algebraic map, it is a bijection,
and C' is a nodal curve (the mildest possible type of singularities). Therefore ¥ must
be an isomorphism. [l
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Corollary 3.2. M(G) = X(G), for G = Gpn.

Proof. By Lemma 1.1, ¢ : M(G) — X (G) is an algebraic map which is a bijection. As
the singularities of X (G) are just transverse nodes, ¢ must be an isomorphism. O

Acknowledgement. The author wishes to thank the referee for useful comments,
specially for pointing out the reference [2].

References

[1] M. Culler and P. B. Shalen, Varieties of group representations and splittings of 3-manifolds,
Ann. of Math. (2) 117 (1983), no. 1, 109-146.

[2] J. Martin-Morales and A-M. Oller-Marcén, On the varieties of representations and characters of
a family of one-relator subgroups, arXiv:0805.4716.

[3] A-M. Oller-Marcén, The SL(2,C) character variety of a class of torus knots, Extracta Math. 23
(2008), no. 2, 163-172.

[4] D. Rolfsen, Knots and links, Mathematics Lecture Series, vol. 7, Publish or Perish Inc., Houston,
TX, 1990. Corrected reprint of the 1976 original.

Revista Matemdatica Complutense
497 2009: vol. 22, num. 2, pags. 489-497



