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ABSTRACT

Let G be the fundamental group of the complement of the torus knot of type
(m,n). This has a presentation G = 〈x, y |xm = yn〉. We find the geometric
description of the character variety X(G) of characters of representations of G

into SL(2, C).
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Introduction

Since the foundational work of Culler and Shalen [1], the varieties of SL(2, C)-charac-
ters have been extensively studied. Given a manifold M , the variety of representations
of π1(M) into SL(2, C) and the variety of characters of such representations both con-
tain information of the topology of M . This is specially interesting for 3-dimensional
manifolds, where the fundamental group and the geometrical properties of the mani-
fold are strongly related.

This can be used to study knots K ⊂ S3, by analysing the SL(2, C)-character
variety of the fundamental group of the knot complement S3 − K. In this paper, we
study the case of the torus knots Km,n of any type (m, n). The case (m, n) = (m, 2)
was analysed in [3] and the general case was recently determined in [2] by a method
different from ours.
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1. Character varieties

A representation of a group G in SL(2, C) is a homomorphism ρ : G → SL(2, C). Con-
sider a finitely presented group G = 〈x1, . . . , xk|r1, . . . , rs〉, and let ρ : G → SL(2, C)
be a representation. Then ρ is completely determined by the k-tuple (A1, . . . , Ak) =
(ρ(x1), . . . , ρ(xk)) subject to the relations rj(A1, . . . , Ak) = 0, 1 ≤ j ≤ s. Using the
natural embedding SL(2, C) ⊂ C

4, we can identify the space of representations as

R(G) = Hom(G, SL(2, C))

= {(A1, . . . , Ak) ∈ SL(2, C)k | rj(A1, . . . , Ak) = 0, 1 ≤ j ≤ s} ⊂ C
4k .

Therefore R(G) is an affine algebraic set.
We say that two representations ρ and ρ′ are equivalent if there exists P ∈ SL(2, C)

such that ρ′(g) = P−1ρ(g)P , for every g ∈ G. This produces an action of SL(2, C) in
R(G). The moduli space of representations is the GIT quotient

M(G) = Hom(G, SL(2, C))// SL(2, C) .

A representation ρ is reducible if the elements of ρ(G) all share a common eigen-
vector, otherwise ρ is irreducible.

Given a representation ρ : G → SL(2, C), we define its character as the map
χρ : G → C, χρ(g) = tr ρ(g). Note that two equivalent representations ρ and ρ′ have
the same character, and the converse is also true if ρ or ρ′ is irreducible [1, Proposition
1.5.2].

There is a character map χ : R(G) → CG, ρ 7→ χρ, whose image

X(G) = χ(R(G))

is called the character variety of G. Let us give X(G) the structure of an algebraic
variety. By the results of [1], there exists a collection g1, . . . , ga of elements of G such
that χρ is determined by χρ(g1), . . . , χρ(ga), for any ρ. Such collection gives a map

Ψ : R(G) → C
a , Ψ(ρ) = (χρ(g1), . . . , χρ(ga)) .

We have a bijection X(G) ∼= Ψ(R(G)). This endows X(G) with the structure of an
algebraic variety. Moreover, this is independent of the chosen collection as proved in
[1].

Lemma 1.1. The natural algebraic map M(G) → X(G) is a bijection.

Proof. The map R(G) → X(G) is algebraic and SL(2, C)-invariant, hence it descends
to an algebraic map ϕ : M(G) → X(G). Let us see that ϕ is a bijection.

For ρ an irreducible representation, if ϕ(ρ) = ϕ(ρ′) then ρ and ρ′ are equivalent
representations; so they represent the same point in M(G).

Now suppose that ρ is reducible. Consider e1 ∈ C2 the common eigenvector of
all ρ(g). This gives a sub-representation ρ′ : G → C∗ of G. We have a quotient
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representation ρ′′ = ρ/ρ′ : G → C∗, defined as the representation induced by ρ in
the quotient space C2/〈e1〉. As characters, ρ′′ = ρ′−1. The representation ρ′ ⊕ ρ′′

is the semisimplification of ρ. It is in the closure of the SL(2, C)-orbit through ρ.
Clearly, χρ(g) = ρ′(g) + ρ′(g)−1. Now if ρ and ρ̃ are two reducible representations
and ϕ(ρ) = ϕ(ρ̃), then their semisimplifications have the same character, that is

χρ(g) = χρ̃(g) ⇒ ρ′(g) + ρ′(g)−1 = ρ̃′(g) + ρ̃′(g)−1 .

Therefore ρ′ = ρ̃′ or ρ′ = ρ̃′−1. In either case ρ and ρ̃ represent the same point in
M(G), which is actually the point represented by ρ′ ⊕ ρ′−1.

2. Character varieties of torus knots

Let T 2 = S1 × S1 be the 2-torus and consider the standard embedding T 2 ⊂ S3. Let
m, n be a pair of coprime positive integers. Identifying T 2 with the quotient R

2/Z
2,

the image of the straight line y = m
n x in T 2 defines the torus knot of type (m, n),

which we shall denote as Km,n ⊂ S3 (see [4, Chapter 3]).
For any knot K ⊂ S3, we denote by G(K) the fundamental group of the exterior

S3 − K of the knot. It is known that

Gm,n = G(Km,n) ∼= 〈x, y |xm = yn 〉 .

The purpose of this paper is to describe the character variety X(Gm,n).
In [3], the character variety X(Gm,2) is computed. We want to extend the result

to arbitrary m, n, and give a simpler argument than that of [3].
After the completion of this work, we became aware of the paper [2] where the

character varieties of X(Gm,n) are determined (even without the assumption of m, n
being coprime). However, our method is more direct than the one presented in [2].

To start with, note that

R(Gm,n) = {(A, B) ∈ SL(2, C) |Am = Bn} .

Therefore we shall identify a representation ρ with a pair of matrices (A, B) satisfying
the required relation Am = Bn.

We decompose the character variety

X(Gm,n) = Xred ∪ Xirr ,

where Xred is the subset consisting of the characters of reducible representations
(which is a closed subset by [1]), and Xirr is the closure of the subset consisting of
the characters of irreducible representations.

Proposition 2.1. There is an isomorphism Xred
∼= C. The correspondence is defined

by

ρ =

(

A =

(

tn 0
0 t−n

)

, B =

(

tm 0
0 t−m

))

7→ s = t + t−1 ∈ C .
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Proof. By the discussion in Lemma 1.1, an element in Xred is described as the char-
acter of a split representations ρ = ρ′ ⊕ ρ′−1. This means that in a suitable basis,

A =

(

λ 0
0 λ−1

)

and B =

(

µ 0
0 µ−1

)

.

The equality Am = Bn implies λm = µn. Therefore there is a unique t ∈ C with
t 6= 0 such that

{

λ = tn,
µ = tm.

(Here we use the coprimality of (m, n)). Note that the pair (A, B) is well-defined up
to permuting the two vectors in the basis. This corresponds to the change (λ, µ) 7→
(λ−1, µ−1), which in turn corresponds to t 7→ t−1. So (A, B) is parametrized by
s = t + t−1 ∈ C.

Lemma 2.2. Suppose that ρ = (A, B) ∈ R(Gm,n). In any of the following cases:

(a) Am = Bn 6= ±Id,

(b) A = ±Id or B = ±Id,

(c) A or B is non-diagonalizable,

the representation ρ is reducible.

Proof. First suppose that A is diagonalizable with eigenvalues λ, λ−1, and suppose

that λm 6= ±1. Then there is a basis e1, e2 in which A =

(

λ 0
0 λ−1

)

, which is

well-determined up to multiplication of the basis vectors by non-zero scalars. Then

Bn = Am =

(

λm 0
0 λ−m

)

is a diagonal matrix, different from ±Id. Therefore B must be diagonal in the same

basis, B =

(

µ 0
0 µ−1

)

, with λm = µn. This proves the reducibility in case (a).

Now suppose that A = λId, λ = ±1. Then Bn = λmId, so it must be that B is
diagonalizable. Using a basis in which B is diagonal, we get the reducibility in case
(b).

Finally, suppose that A is not diagonalizable. Then there is a suitable basis on

which A takes the form A =

(

λ 1
0 λ

)

, with λ = ±1. Clearly

Bn = Am = λm

(

1 mλ
0 1

)
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and so

B =

(

µ x
0 µ

)

,

with µ = ±1, µn = λm and µnx = λm. In this basis, the vector e1 is an eigenvector
for both A and B. Hence the representation (A, B) is reducible, completing the case
(c).

Proposition 2.3. Let Xo
irr be the set of irreducible characters, and Xirr its closure.

Then

Xo
irr

∼= {(λ, µ, r) |λm = µn = ±1, λ 6= ±1, µ 6= ±1, r ∈ C − {0, 1}}/Z2 × Z2 ,

Xirr
∼= {(λ, µ, r) |λm = µn = ±1, λ 6= ±1, µ 6= ±1, r ∈ C}/Z2 × Z2 .

where Z2 × Z2 acts as (λ, µ, r) ∼ (λ−1, µ, 1 − r) ∼ (λ, µ−1, 1 − r) ∼ (λ−1, µ−1, r).

Proof. Let ρ = (A, B) be an element of R(Gm,n) which is an irreducible represen-
tation. By Lemma 2.2, A is diagonalizable but not equal to ±Id, and Am = ±Id.
So the eigenvalues λ, λ−1 of A satisfy λm = ±1 and λ 6= ±1. Analogously, B is
diagonalizable but not equal to ±Id, with eigenvalues µ, µ−1, with µn = ±1, µ 6= ±1.
Moreover,

λm = µn .

We may choose a basis {e1, e2} under which A diagonalizes. This is well-defined
up to multiplication of e1 and e2 by two non-zero scalars. Let {f1, f2} be a basis under
which B diagonalizes, which is well-defined up to multiplication of f1, f2 by non-zero
scalars. Then {[e1], [e2], [f1], [f2]} are four points of the projective line P1 = P(C2).
Note that the pair (A, B) is irreducible if and only if the four points are different.

The only invariant of four points in P1 is the double ratio

r = ([e1] : [e2] : [f1] : [f2]) ∈ P
1 − {0, 1,∞} = C − {0, 1} .

So (A, B) is parametrized, up to the action of SL(2, C), by (λ, µ, r). Permuting the
two basis vectors e1, e2 corresponds to (λ, µ, r) 7→ (λ−1, µ, 1 − r), since

([e2] : [e1] : [f1] : [f2]) = 1 − ([e1] : [e2] : [f1] : [f2]).

Analogously, permuting the two basis vectors f1, f2 corresponds to

(λ, µ, r) 7→ (λ, µ−1, 1 − r).

Note that this gives an action of Z2×Z2 and Xo
irr is the quotient of the set of (λ, µ, r)

as above by this action.
To describe the closure of Xo

irr, we have to allow f1 to coincide with e1. This
corresponds to r = 1 (the same happens if f2 coincides with e2). In this case, e1 is
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an eigenvector of both A and B, so the representation (A, B) has the same character
as its semisimplification (A′, B′) given by

A′ =

(

λ 0
0 λ−1

)

, B′ =

(

µ 0
0 µ−1

)

.

This means that the point (λ, µ, 1) corresponds under the identification Xred
∼= C

given by Proposition 2.1 to s1 = t1 + t−1
1 , where t1 ∈ C satisfies

{

λ = tn1 ,
µ = tm1 .

(1)

Also, we have to allow f1 to coincide with e2 (or f2 to coincide with e1). This
corresponds to r = 0. The representation (A, B) has semisimplification (A′, B′) where

A′ =

(

λ 0
0 λ−1

)

, B′ =

(

µ−1 0
0 µ

)

.

So the point (λ, µ, 1) corresponds to s0 = t0 + t−1
0 ∈ Xred

∼= C, where t0 ∈ C satisfies

{

λ = tn0 ,
µ−1 = tm0 .

(2)

Proposition 2.3 says that Xirr is a collection of (m−1)(n−1)
2 lines. A pair (λ, µ)

with λm = ±1 and µn = ±1 is given as

λ = eπik/m, µ = eπik′/n,

where 0 ≤ k < 2m, 0 ≤ k′ < 2n. The condition λ 6= ±1, µ 6= ±1 gives k 6= 0, m,
k′ 6= 0, n. Finally, the Z2 × Z2-action allows us to restrict to 0 < k < m, 0 < k′ < n.
The condition λm = µn means that

k ≡ k′ (mod 2).

Denote by Xk,k′

irr the line of Xirr corresponding to the values of k, k′. Then

Xirr =
⊔

0<k<m,0<k′<n

k≡k′ (mod 2)

Xk,k′

irr .

The line Xk,k′

irr intersects Xred in two points. This gives a collection of (m− 1)(n− 1)
points in Xred, which are defined as follows: under the identification Xred

∼= C, these
are the points sl = tl + t−1

l , where

tl = eπil/nm,
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Figure 1 – Picture of X(Gm,n).

and 0 < l < mn, m6 | l, n6 | l. Assume that n is odd (note that either m or n should

be odd). Then from (1) and (2), the line Xk,k′

irr intersects at the points sl0 , sl1 ∈ Xred

where

nl0 ≡ k (mod m), ml0 ≡ n − k′ (mod n) ,

nl1 ≡ k (mod m), ml1 ≡ k′ (mod n) .

These two points are different since k′ 6≡ n − k′ (mod n), as n is odd.

In the case (m, n) = (2, n), this result coincides with [3, Corollary 4.2].

3. The algebraic structure of X(Gm,n)

We want to give a geometric realization of X(Gm,n) which shows that the algebraic
structure of this variety is that of a collection of rational lines as in Figure 1 inter-
secting with nodal curve singularities.

The map R(Gm,n) → C
3, ρ = (A, B) 7→ (tr(A), tr(B), tr(AB)), defines a map

Ψ : X(Gm,n) → C
3 .

Theorem 3.1. The map Ψ is an isomorphism with its image C = Ψ(X(Gm,n)). C is

a curve consisting of (n−1)(m−1)
2 + 1 irreducible components, all of them smooth and

isomorphic to C. They intersect with nodal normal crossing singularities following
the pattern in Figure 1.
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Proof. Let us look first at Ψ0 = Ψ|Xred
: Xred → C3. For a given ρ = (A, B) ∈ Xred,

with the shape given in Proposition 2.1, we have that

Ψ0 : s = t + t−1 7→ (tn + t−n, tm + t−m, tn+m + t−(n+m)) .

This map is clearly injective: the image recovers

{tn, t−n}, {tm, t−m}, {tn+m, t−(n+m)}.

From this, we recover {(tn, tm), (t−n, t−m)} and hence the pair t, t−1 (since n, m are
coprime).

Let us see that Ψ0 is an immersion. The differential is

dΨ0

dt
=

(

nt−n−1(t2n − 1), mt−m−1(t2m − 1), (n + m)t−n−m−1(t2n+2m − 1)
)

. (3)

This is non-zero at all t 6= ±1. As ds
dt 6= 0, we have dΨ0

ds 6= (0, 0, 0). For t = ±1, we

note that ds
dt = t−2(t2 − 1), so

dΨ0

ds
=

(

nt−n+1 t2n − 1

t2 − 1
, mt−m+1 t2m − 1

t2 − 1
, (n + m)t−n−m+1 t2n+2m − 1

t2 − 1

)

,

which is non-zero again.
Now, consider a component of Xirr corresponding to a pair (λ, µ). Take r ∈ C.

Fix the basis {e1, e2} of C
2 which is given as the eigenbasis of A. Let {f1, f2} be the

eigenbasis of B. As the double ratio (0 : ∞ : 1 : r/(r−1)) = r, we can take f1 = (1, 1)
and f2 = (r − 1, r). This corresponds to the matrices:

A =

(

λ 0
0 λ−1

)

,

B =

(

1 r − 1
1 r

) (

µ 0
0 µ−1

) (

1 r − 1
1 r

)

−1

=

(

r(µ − µ−1) + µ−1 (1 − r)(µ − µ−1)
r(µ − µ−1) µ − r(µ − µ−1)

)

.

Therefore:

Ψ(A, B) = (tr(A), tr(B), tr(AB))

= (λ + λ−1, µ−1 + µ, (λµ−1 + λ−1µ) + r(λ − λ−1)(µ − µ−1)).

The image of this component is a line in C3. Its direction vector is (0, 0, 1). At an
intersection point with Ψ0(Xred), the tangent vector to Ψ0(Xred), given in (3), has
non-zero first and second component, since λ = tn, µ = tm and t 6= 0, λ2 6= 1, µ2 6= 1.
So the intersection of these components is a transverse nodal singularity.

Finally, note that the map Ψ : X(Gm,n) → C is an algebraic map, it is a bijection,
and C is a nodal curve (the mildest possible type of singularities). Therefore Ψ must
be an isomorphism.
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Corollary 3.2. M(G) ∼= X(G), for G = Gm,n.

Proof. By Lemma 1.1, ϕ : M(G) → X(G) is an algebraic map which is a bijection. As
the singularities of X(G) are just transverse nodes, ϕ must be an isomorphism.
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References

[1] M. Culler and P. B. Shalen, Varieties of group representations and splittings of 3-manifolds,
Ann. of Math. (2) 117 (1983), no. 1, 109–146.

[2] J. Mart́ın-Morales and A-M. Oller-Marcén, On the varieties of representations and characters of

a family of one-relator subgroups, arXiv:0805.4716.

[3] A-M. Oller-Marcén, The SL(2, C) character variety of a class of torus knots, Extracta Math. 23

(2008), no. 2, 163–172.

[4] D. Rolfsen, Knots and links, Mathematics Lecture Series, vol. 7, Publish or Perish Inc., Houston,
TX, 1990. Corrected reprint of the 1976 original.

497
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