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The Slab Dividing Approach To Solve the Euclidean 

P-Center Problem 

R. Z. Hwang, 1 R. C. T. Lee, 1'2 and R. C. Chang 2'3 

Abstract. Given n demand points on the plane, the Euclidean P-Center problem is to find P supply 

points, such that the longest distance between each demand point and its closest supply point is 

minimized. The time complexity of the most efficient algorithm, up to now, is O(n z e -  1. log n). In this 

paper, we present an algorithm with time complexity O(n~ 

Key Words. Computational geometry, NP-completeness. 

1. Preliminaries. The Euclidean P-Center (EPC) problem is defined as follows. 

Given a set D of n demand points on the plane, find a set S of P supply points 

such that the furthest distance between demand points and their closest supply 

points is as close as possible. There are many applications in the real world for 

this problem. One of them is to find P positions to set up fire departments such 

tha t  the longest distance between each house and its closest fire department is 

minimized. The EPC problem can be formally formulated as follows: 

Given a set of n demand points D = {dl, d 2 ,  . . . ,  dn}, find a set of P supply 

points S = {sl, s2 , . . . ,  sv}, such that 

2ax{lm)nv{dist(di, sj)}}is minimized, 

where dist(di, s j) is the Euclidean distance between d~ and s t. 

Megiddo and Supowit (1984) proved that the EPC problem is NP-hard. Drezner 

(1984) proposed an algorithm with time O(n 2e+1. log n) for this problem, and it 

can be revised to O(n ze - 1. log n) by combining it with the result that the Euclidean 

1-Center problem can be solved in time O(n) (Megiddo, 1983). This combining 

method is similar to that in Drezner (1987) which solved some center problems 

corresponding to the rectilinear distance. 

In this paper we propose a new technique, the slab dividing method, to solve 

the EPC problem with time O(n~ In the next section, we review the paper 
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proposed by Drezner (1984). In Section 3, we state the major idea of the ~iab 

dividing method. The detail steps and proofs are described in Sections 4-7. 

2. Previous Results. [n this section, we shall briefly discuss the method proposed 

by Drezner (1984) from the geometric viewpoint. (The method introduced in this 

section is the same as that in Drezner (1984); only the form of presentation is 

different.) First, we shall define another problem. 

DEFINITION (The P-Circle Covering (PCC) Problem). Given n demand points on 

the plane, find the smallest radius r and a set S of P points, such that the circles 

centered at the points in S with radius r can cover all demand points. 

Given a set D of n demand points on the plane and an optimal solution of the 

EPC problem, let S be the set of the supply points and let r be the longest distance 

between each demand point and its closest supply point in this solution. It is 

obvious that r and S form an optimal solution of the PCC problem for the input 

D. Also, if we obtain an optimal solution of the PCC problem, we have found an 

optimal solution of the EPC problem. In this paper, we call the set S of points in 

an optimal solution of the PCC problem the solution centers and we call the radius 

r the solution radius. In the following paragraphs, we describe the EPC problem 

in terms of the PCC problem. 

There are two major results shown in Drezner (1984) for the PCC problem. 

One is that there are O(n 3) possible radii. This means that we can find O(n ~) radii 

and one of them is the solution radius. The other is that there are O(n z) possible 

circle centers for a given radius r. This means that given a radius r, we can find 

a set S* of O(n 2) points, such that if r is the solution radius, then there exist P 

circles of radius r centered at S', S' c S*, which can cover all demand points, From 

the above two results, we can solve the PCC problem by the following way: Sort 

the possible radii. Then we choose one of them, say r', and we ask the following 

question: Can P circles of radius r' cover the n demand points? To answer this 

question, we first find the set S* of possible circle centers for the radius r' and 

draw circles with radius r' centered at the centers in S'2 Select any combinations 

of P circles and then check whether these P circles cover all the n demand points. 

If there exist P circles which can cover all the n demand points, we choose another 

radius r", r" < r', from the possible radii, otherwise we choose r", r" > r'. (Do the 

binary search on the sorted possible radii.) Then repeat the above steps again, 

until the optimal radius is found. 
Since there are O(n ~) possible circle centers, we have C ~ selections, and 

it takes O(n) time to check whether these P circles cover all points, and 

O(log n 3) = O(log n) to do the binary search on the possible radii. So the time 

complexity is O(n 2e+ 1 -tog n). 

Now let us see how Drezner (1984) showed that there are at most O(n3) possible 

radii. Drezner pointed out that given a set of points, the smallest circle covering 

all these points must be defined by one, two, or three points. For the circle defined 

by three points, these three points define the boundary of a smallest circle enclosing 

all three of them. For the case defined by two points, they form the diameter of 



The Slab Dividing Approach To Solve the Euclidean P-Center Problem 3 

this circle. A circle defined by only one point is a degenerated case, where the 

radius of this circle can be considered as zero and the entire circle contracts to 

one point. Thus it is obvious that for the P circles in an optimal solution of the 

PCC problem, at least one circle is defined by one of the above cases, or else we 

can contract all circles and find another radius which is smaller than the solution 

radius. 

It is obvious that there are C], C~, and C~ circles defined by one, two, and three 

points, respectively. We call these circles the bounding circles. Then the solution 

radius must be equal to one of the radii of the bounding circles. 

Next, let us see how Drezner (1984, 1981) showed that there are at most O(n 2) 

possible circle centers for a given radius r. First draw circles with radius r centered 

at all demand points. Let S* be the set of all intersection points of these circles. 

For any circle centered at the points in S covering a set 13' of demand points, it 

is obvious that we can move this circle (without changing the radius) such that 

at least two points, denoted by d 1 and d2, dl, d 2 ED', are on the circle boundary 

and this circle also covers all points in i)'. Let c' be the new circle center. We 

know that dist(dl, c') = dist(d2, c') = r, so the new circle center c' must belong to 

S*. Therefore given an optimal solution of the PCC problem, we can move all 

circles, such that these new circles are centered at the points in S* and also cover 

all demand points. Thus if there is a set S of P circles with radius r covering all 

demand points then there are P circles with radius r centered at S", S" c S*, which 

also cover all demand points. Since the number of the points in S* is O(n2), we 

conclude that there are O(n 2) possible circle centers for a given radius r. 

In our algorithm, we also use the above two results .and apply the binary search 

approach. Our basic problem is: Given a set D of n demand points and two 

parameters P and r, determine whether there exist P circles of radius r which can 

cover all demand points. We call this problem the (P, r) circle covering problem 

(the (P, r) CC problem). In the next section, we propose a procedure, called 

Procedure CIRCLE_COVER,  which can be used to solve the (P, r) CC problem. 

With this procedure, we have the following algorithm to solve the PCC problem 

(the EPC problem). 

Algorithm P-Center(D, P, r, S) 

Input: A set D of n demand points and a number P. 

Output: Return a minimum radius r, and P circles centered at the points in S 

which can cover all demand points in D. 

Step 1. 

Step 2. 
Step 3. 

Step 4. 

Step 5. 

Step 6. 

Generate a set of possible radii by using the algorithm in Drezner (1984). 

Sort the above radii in increasing order, and name them as rl, r2 . . . .  , rk. 
Let Low := 1 and High. '= k. 

(From this step, we begin a binary search.) 

Let Med := [-(Low + High)/2-]. 

If CIRCLE_COVER(D, P, rMed, S) = "FALSE," 

then Low := Med, else High := Med. 

If High ~ Low 

then go to step 4, 

else return S and r = rMe d. 



4 R.Z.  Hwang, R. C. T. Lee, and R. C. Chang 

Now let us show the time complexity of the above algorithm. From Drezner 

(1984), we know that steps 1 and 2 need O(na.log n) steps. Steps 3-7 perform 

a binary search on O(n 3) radii, so the time needed is also O(n 3 "log n). In the 

next section, we will show that Procedure CIRCLE_COVER can be solved 

in time O(n~ Therefore the time complexity of the above algorithm is 

O(n~ �9 log n = O(n~ 

In the next section, we state the major idea about how to solve the (P, r) CC 

problem in time O(n~ 

3. The Slab Dividing Method.  In this section, we shall introduce our slab dividing 

method to solve the (P, r) CC problem. Note that the (P, r) CC problem is an 

NP-hard problem. Therefore we do not expect that this problem can be solved 

by the traditional divide-and-conquer method (Horowitz and Sahni, 1978; Aho 

et al., 1974; Bentley, 1980). Yet, we shall show later that once an optimal solution 

of a (P, r) CC problem instance is given, we can use part of this solution to divide 

the input data into two subsets Do and De, such that the (P, r) CC problem can 

be solved by first solving the (P, r) CC problems defined on Do and D<, respectively, 

and then merging the sub-solutions. Consider Figure l(a), which contains 54 
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points. Figure l(b) shows an optimal solution of a (9, r) CC problem defined on 

this set of data. Next, we draw a slab with width 2r which divides the solution 

centers into three subsets Sa, Sb, and So, as shown in Figure l(c). Note that the 

solution centers on the boundaries of this slab are assigned to Sb. 

If we remove the demand points covered by Sb and divide the remaining demand 

points into Da and D c, by the centrat line of this slab, as shown in Figure l(d), we 

can see that because of the width 2r, circles of radius r centered at the solution 

centers in Sa (resp. S~) cannot cover the demand points in D c (resp. Da). This 

property guarantees that the two subproblem instances are independent and we 

call this the independent property of the slab. 

Because of the independent property, we can see that given an instance of a 

(P, r) CC problem and a slab with width 2r, if we know the corresponding Sb and 

the numbers of points in S~ and S~ in advance, then we can divide the problem 

into two independent subproblems. One is the (ISa], r) CC problem with Da as 

input; another is the (IS~l, r) CC problem with Dc as input. An optimal solution 

can be obtained by merging Sb and the two solutions in the two subproblems. 

In Sections 4 and 5, we will show that in an optimal solution of a (P, r) CC 

problem instance, there exists a slab with width 2r which divides the solution 

centers into three subsets, S~, Sb, and Sc, where S b is the set of solution centers in 

the median part (including the centers on the two boundary lines), and S, (resp. 

S~) is the set of the solution centers to the left (resp. right) of the slab, such that 

S,, Sb, and Sc satisfy the following properties: 

(1) the number of points in S b is no more than K s -- O(x/-fi); 

(2) the number of points in both S, and Sc is no more than r2P/37. 

The slab which satisfies the above properties is called the dividing slab of this 

optimal solution and the above properties are called the dividing slab properties. 

Our algorithm is based upon two procedures. One is called Procedure 

GEN_SLABS which can generate a set L s of slabs and one of them will be the 

dividing slab of an optimal solution. The other is called Procedure 

GEN_SUPPNTS,  with the set D of all demand points and a slab as inputs. Its 

output is a set of partial solutions. Each partial solution is a set of circle centers. 

Furthermore, if the slab is a dividing slab of an optimal solution, then one of the 

partial solutions will be S b. Therefore, we may call these partial Solutions the 

candidates of Sb. We also guarantee that the size of each candidate, produced by 

Procedure GEN_SUPPNTS,  is no more than O(x/P ). 

According to the above properties and the procedures, we can solve the (P, r) 

CC problem by the following way. First, we call Procedure GEN_SLABS to 

generate a set L s of slabs. Then for each slab l, we generate a set S" of candidates 

of Sb by calling Procedure GEN_SUPPNTS.  For each candidate S~ of Sb in S', 

we draw circles centered at the points in S~. Next remove the demand points in 

D which are covered by these circles and divide the remaining uncovered points 

into two subsets, D a and D c. If l is a dividing slab, from the second property of 

the dividing slab, we know that there exist no more than F2P/3~ circles of radius 

r which can cover all demand points in D,(Dc). Thus, we recursively call Procedure 
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CIRCLE_COVER to find i _< F2P/3] circles of radius r to cover alL points in Da. 

Since the total number of circles in an optimal solution is no more than P, we 

check whether P - i - I S;I circles of radius r can cover all demand points in D~. 

According to the second property, the number P - i - IS~,l will be no more than 

F2P/3]. If we can find the solutions of the two subproblems, we merge back the 

solutions; otherwise we try next instance. The detail steps are stated in the 

following procedure. 

Procedure CIRCLE_COVER(D, P, r, S) 

Input: A set D of n demand points, a number P, and a radius r. 

Output. Return "TRUE,"  and a set of S of solution centers, if P circles of radms 

r can cover all points in D; otherwise return "FALSE." 

Step 1. If P < 3, then use Drezner's algorithm (Drezner, 1984) to solve this 

problem, else do the following steps. 

Step 2. Generate a set L~ of candidates of the dividing slab by using Procedure 

GEN_SLABS. 

Step 3. For each slab 1 in L~ do: 

Step4. Call Procedure G E N _ S U P P N T S  to generate a set S" of sets of 

candidates of S b. 

Step 5. For each set S; in S" do: 

Step 6. Draw the circles of radius r centered at the points in S;. Let D' be 

the set of points in D which are not covered by these circles. Let D~ 

(resp. De) be the set of points to the right (resp. left) of the central 

line of L 

Step 7. For i = 0 to F2P/3-] do: 

Step 8. I f ( P  - i - I S ; 1 )  _< [2P/3-] do: 

Step 9. Call T 1 = CIRCLE COVER(Da, j, r, S~). 

Step 10. Call T z = C I R C L E C O V E R ( D  e, P - i - ]S~,I, r, $2). 

Step ll. If T I = T z = " T R U E , "  then return " T R U E "  and S =  

S 1 k..) 8 2 u S ; .  

Step 12. Return "False." 

Now let us analyze the time complexity of the above procedure. Let T(P) be the 

time complexity of this procedure. The time complexity needed between step 7 

and step 11 can be formulated by using the term T(P) as follows: 

) ot ) o/\ Z (T(it + T(P - i S ; I -  0) -< , , = o  TU) + T(P - i) 

_< 0(2. (F2P/3-I)- T([-2P/3-])) 

= O(P. T(FZP/3-])). 

Because I S;I is bounded by O(x/P ), Step 6 needs O(x/fi) steps to draw the circles, 

O(n" x/@) steps to remove the uncovered demand points, and O(n) steps to divide 
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the uncovered points for each slab. Therefore the time needed between step 6 to 

step 11 is O(n-x/P) + O(P- T([-2P/3-])). 
Because steps 2-5 are concerned with two unknown procedures, for analyzing, 

we will define some notations. Let TI(P) (resp. Ta(P)) be the time complexity of 

Procedure GEN_SLABS (resp. Procedure GEN_SUPPNTS),  and let N~(P) (resp. 

N2(P)) be the number of slabs (resp. the candidates of Sb) generated in Procedure 

GEN_SLABS (resp. Procedure GEN_SUPPNTS).  Now we can see that the time 

needed in this procedure is 

T(P) = TI(P) + NI(P).(T2(P ) + N2(P)'(O(n" x/P) + O(P. T([-2P/3])))). 

Later, in Sections 4 and 7, we will show that 

and 

(1) T~(P) = O(T(P/3) + P3/2.n), 

(2) T2(P ) = O(n~ 

Nl(p  ) = O(x/P), 

N2(P ) = O(n~ 

Based upon the above results, the time complexity becomes 

r(p) = o(v(e/3) + P3/2. n) + o ( , fp) .  + o(e .  rff2P/37)))), 

T(P) = O(xfP" (n~ �9 T([-2P/3])))), 

T(P) = O(n~ r([-2P/3-1)), 

T(P) = O(n~ 

In the next section, we shall discuss Procedure GEN_SUPPNTS and its relative 

complexities T2(P ) and N2(P ). The first and second properties of the dividing slab 

are discussed in Sections 5 and 6, respectively. TI(P), NI(P), and Procedure 

GEN_SLABS are discussed in Section 7. 

4. Generating the Candidates of Sb. In this section, we shall discuss the details 

about Procedure GEN_SUPPNTS.  

From Drezner (1984), we can generate a set of O(n 2) possible solution centers 

for a given radius (see Section 2). From the first property of the dividing slab, we 

know that the number of points in Sb is no more than K~. Combining these two 

results, we can select any i points from the set of possible solution centers as the 

candidate of Sb, where i ranges from 0 to Ks. The following procedure states the 

detailed steps. 

Procedure GEN_SUPPNTS(r ,  I, S") 

Input: A radius r and a slab I. 

Output: A set S" of sets of candidates of S b. If I is a dividing slab, then S b ~ S". 
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Step 1. 

Step 2. 

Step 3. 

Generate the set S* of possible solution centers, for the given radius r, by 

using the method in Drezner (1984) (see Section 2). Let S~ be the set of 

points which belong to S* and are in the slab I. 

For i = 0 to Ks do: 

Enumerate all subsets of i points from S~. Add these subsets into S ~'. 

It is obvious that if l is a dividing stab, then S b must belong to S". Now let us 

analyze the time complexity of the above procedure. From the discussion in 

Section 2, we know that I S* l  = O(n 2) and step 1 takes O(n z) steps. Because 

K s = O ( ~ ) ,  steps 2-3 take C ~ + C ~ + ' "  + ,~K,c~ = O(n ~ and the num- 

ber of candidates generated in Step 3 is als00(n~ Therefore T2(P ) = O(n ~ 

and N2(P) = O(n~ 

5. The First Property of the Dividing Slab. To prove the properties of the dividing 

slab, we arrange the slabs in such a way that their central lines intersect in a 

common reference point and if there are L slabs, the angle between two consecutive 

slabs is n/L, as shown in Figure 2. In this section, we would show that if L is large 

enough, one of these slabs satisfies the first property of the dividing slab. In the 

next section, we show that we can determine a reference point, such that all the 

L slabs can satisfy the second property. 

Before the formal discussion, let us see the example in Figure 3. Assume that 

the right circles in Figure 3 constitute an optimal solution of some (8, r) CC 

problem. We draw four slabs in this figure. We can see that some slabs contain 

more solution centers and some contain less. Here slab 2 contains the smallest 

number of supply points. Later we shall show that if the number of slabs is large 

enough, then one of the slabs will contain no more than Ks = O(\ /P)  solution 

centers. 

Fig. 2 
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slab 2 

s ~  3 

Fig. 3 

Let the number of solution centers inside slab i be denoted as g~ and 

g = mini <_~zL{g~). The first question to ask is: How large should L (L is the number 

of slabs regularly surrounding a reference point) be? Obviously, the larger L is, 

the smaller g is, because a larger L indicates that we are examining a larger number 

of slabs. Consequently, we shall not miss any slab in which only a small number 

of slabs needs be examined. However, it takes time to examine slabs. Therefore, 

we can hardly afford examining too many slabs. In the rest of this section, we 

shall show that an upper bound of g is O(~fP), when L is large enough. 

Consider Figure 4. There are many concentric circles. Each circle has radius 

i. r, i = 1, 2, 3 . . . . .  Let A(i) denote the region between two concentric circles of 

radius i. r and (i - 1). r. Let m z denote the number of solution centers in A(i). Note 

that inside A(i), a solution center may be covered by more than one slab. Let xi 

denote the solution center which is covered by the largest number of slabs in A(i). 
Let V~ denote the number of slabs covering xl. 

m 1 =1 rn 3 = 4  
rn2=2 rn 4 =1 

Fig. 4 
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Let V(i) be an upper bound of V/, let U(i) b e an upper bound of ~ = ~ mi, and 

let K be a number such that for any  k > K ,  U(k) = P. The rest of this section is 

organized as follows. In Lemma 1, we show that g <- ~ f=  l(U(i) - U(i - I)). V(i)/L. 

In Lemma 2, we show that a proper value of V(i) can be determined. Later values 

of U(i) and K are determined in Lemma 5. Finally, in Theorem 1, we combine the 

above results, and conclude that g can be bounded by a number Ks = O(\fP),  

when L = K. 

N o w  we propose the following lemma. 

L E M M A  1. 

P R O O F .  

K 

g <_ ~ (v ( i )  - u(~ - 1))-  V(i)/L. 

/ = l  

L 

g~L<_ ~ gl 
i = l  

<_ Y m,v~. 
i=1 

There must exist a number C, such that for any i > C, m i = O. Therefore 

C 

g 'L  < ~ m i V i =  ~ mi'V~ 
i = l  i = l  

C - 1  

= y ,  m~. y(i)  + mc" V ( C )  

i=1  

< mi. V(i) + U ( C ) -  m i . V(C) 
,=1  / = i  

Note  that U(C) > m, = mc + m,. 
i=1  i=1 / 

C - 1  

m,.  (v( i )  - v ( c ) )  + u ( c ) .  v ( c )  

/=1  

C 2 

= Z m,.  (v( i )  - v ( c ) )  + m e - l ( v ( c  - 11 - v ( o )  + g ( c ) "  V(C) 
i=1 

<_ ~ m j V ( i )  - v ( c ) t  + g ( c  - 1t - mi  

i = l  i = l  

�9 ( v ( c  - 1) - v ( c ) )  + u ( c ) . v ( c )  

C - 2  

= ~ m~(V(i) - v ( c )  - y ( c  - 1) + v ( c ) )  

i = l  

+ U(C -- 1) . (V(C --  1) - V(C)) + U(C). V(C) 
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< 

< 

C - 2  

Z 
i = 1  

m,(V(i )  - V ( C  - 1)) + U ( C  - I ) . ( V ( C  - 1) - V(C))  + U ( C ) .  V ( C )  

C - 3  

E 
i = I  

mi(V( i )  - -  V ( C  - -  2)) + U ( C  - 2 ) . ( V ( C  - 2) - V ( C  - 1)) 

+ U ( C -  1) . (V(C-  1 ) -  V(C)) + U(C).V(C) 

C - 1  

2 
i = 1  

U ( i ) . ( V ( i )  - V( i  + 1)) + U ( C ) .  V(C) .  

Since U(i) is def ined on  i = 1, 2 . . . . .  we  m a y  c o n v e n i e n t l y  set U(0) = 0. Therefore  

C - 1  C - 1  

g" L <_ ~, U(i)" V(i) + U(C)" V(C) - 
i = 1  i = 1  

C C - 1  

= ~,  U ( i l . V ( i ) -  ~ U ( i ) . V ( i  + 11 
i= l i=O 

C C 

= ~ V ( i ) . V ( i ) -  2 V ( i -  1) 'V( i )  
i = 1  i = 1  

( u ( i )  - u ( f  - 1)). v( i ) .  
i = 1  

u ( i ) . v ( i  + 1) - u ( o ) -  v (1 )  

Therefore  

C 

g .  L <_ ~ (U( i )  - U(i  - -  1)). V(i). 

i = 1  

I fK>_C,  

C K 

g .  L < ~ ,  (U( i )  - U(i  - 1)). V(i)  <_ ~ (U(i)  - U(i  - 1)). V(i).  

i = 1  i = 1  

I fK  < C, 

C 

g .  L <_ ~ (U( i )  - U( i  - 1)). V(i)  

i = 1  

K C 

= ~ (U( i )  - U( i  - 1)). V(i) + ~ (U( i )  - U(i  - 1))- V(i)  

i = 1  i = K + I  

K 

= ~ (U(i) - U(i  - I))- V(i). 
i=I 

(Since  U(i)  = U( i  - 1) = P, for any  i - 1 > K.) 
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Therefore 

K 

g <_ ~ (U(i) -- U(i -- t)) o V(i)/L. 
i=1 

[] 

In the next lemma,  we determine a value of V(i). We first define another  term 

Bj, which is like V~, except that  it is defined at the circle of radius j ' r  (where j is 

any positive real number)  instead of a range. Therefore we can see that  the upper  

bound  of max{Bjl i  - 1 _<j _< i} is also an upper  bound  of V~. Now we prove 

L e m m a  2. 

LEMMA 2. I f  we choose V(1) = V(2) = L, and V(i) = [-(2L/~) x (1/(i - 2))-1, for 

i >_ 3, then V(k) is an upper bound of Vk, for any positive integer k. 

PROOF. It  is easy to see that  V1 -< L and V: _< L. Therefore we only consider the 

case when i > 3. Let yj be a point  on the bounda ry  of a circle of radius j ' r  and 

covered by the largest number  of slabs. Let Bj be the number  of slabs covering 

yj. (Note that  j is any positive number ,  and i is a positive integer.) Therefore,  f rom 

the definitions, we know that  

(1) V~. = max{Bj[i  - 1 _<j _< i}. 

Draw a line through yj and the origin. Let 0 be the largest angle as shown in 

Figure 5, such that  any slab which has width 2r and whose central line lies inside 

0 will cover yj. It  is obvious  that  0 < 0/2 < zc/2, when j > 3. 

/ 

Fig. 5 
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An upper  bound  of 0 can be found in the following derivations (when j >_ 3): 

r I 

tan(O/2) x / ( j . r ) 2 _ r 2  x / j 2 - 1  

It is well known that 

x 3 2x s 17x 7 22m. (22m - -  1).Bm x2, . -1  

tan(x) = x + ~-  + ~ -  + ~ -  + ' - -  + (2m)! 
+ -~ 

-7c/2 < x < ~/2, where B m is the Bernoulli number  of m 

x 3 2x 5 17x 7 2 2m" (2 2ra - -  1)" Bm X2m- 1 

tan(x) - x = 3 -  + 1 5  + 3 1 5  + ' "  + (2m)! 
+ .-..  

Since B m >_ O, we know that  tan(x) - x > 0, when - re /2  < x < ~z/2. 

In our  case, 0 < 0/2 < re/2. Therefore 0/2 < tan(0/2) 

1 
0/2 < tan(0/2) < - -  

x/j  2 - 1 

1 1 

x / ( J - - 1 ) ' ( J +  1) , , ~ - - 1 )  2 

2 
O < - -  

j - l  

1 

j - l '  

An upper bound  of 0 has been found. Then we ask another  question: How 

many  slabs among  the L slabs can be put into angle 07 Because there are only L 

slabs, the angle between any two consecutive slabs is ~/L. Therefore the largest 

number  of slabs which can be put into angle 0 is 

(2) Bj  <_ < [-(2L/~z).(1/(j - !))7. 

F rom (1) and (2), we derive that V~ = B i_ !. Therefore, 

Vii = B i - ,  < [-(2L/rO(l / ( i  - 2))7, 

when i _> 3. [ ]  

In the next step, we shall derive a value of U(i). The way to determine U(i) is 

somewhat  complicated. We first present a lemma to show that if a large circle of 

radius (k + 1)- r can be fully covered by i small circles of radius r (that means any 
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area in the large circle is covered by at least one small circle), there are at most i 

solution centers in the area of a circle of radius k.r. 

LEMMA 3. Let Ct and C 2 be two concentric circles of radii k ' r  and (k + 1).r, 

respectively. I f  C2 can be fully covered by i circles of radius r, then there are at most 

i solution centers of the optimal solution in C~ 

PROOF. First, we assume that there are j solution centers of the optimal solution 

in C1, where j > i. We now show that these j solution centers cannot constitute 

an optimal solution. 

The area which is covered by the circles centered at the solution centers inside 

C 1 (radius k.r) is restricted in C2 (radius (k + 1).r), for the radii of these circles 

are only r. Therefore those demand points covered by these circles centered at the 

j solution centers must be distributed inside Cz. 

Because i circles are sufficient to cover all the area of C2, these i circles must 

also cover all demand points inside this circle. Therefore we can choose the centers 

of these i circles as the new supply points. This shows that these j solution centers 

cannot be an optimal solution, because there is a better solution which needs only 

i (i < j) supply points. [] 

Now another problem arises. What  is the relation between i and k in the above 

lemma? To find the relation directly is difficult. Therefore we use an indirect 

method to solve this problem. We know that a circle of radius r can fully cover 

a square of side length x/2- r. Therefore if an area can be fully covered by i squares 

of side length x/2" r, this area can also be covered by i circles of radius r. In the 

following property and the lemma, we discuss the relation between the squares 

and the circle. 

PROPERTY A. A circle of radius r can cover a square of side length w/2 �9 r, and a 

square of side length 2 ' r  can cover a circle of radius r. 

Figure 6 illustrates this property. 

Now we use the above property to derive the next lemma. 

( 
, . 

(a) 

) 
Fig. 6 

26  

(b) 
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LEMMA 4. A circle o f  radius k . r  can be covered by (xf2k + 1) 2 squares o f  side 

length x/~" r. 

PROOF. F rom  proper ty  A, we know that  a circle of radius k . r  can be covered 

by a square of side length 2. k'r.  Because (2. k. r)/(~vf2" r)= x/2" k, [x/2" k-] 2 

squares of side length x /2 .  r are sufficient to cover a square of side length 2" k" r. 

Therefore (xf2k + 1) 2 > [-x/2.k-] z squares of side length x / 2 . r  can cover a circle 

of radius k" r. [ ]  

Now we want to derive a value of U(i). From Lemma 3, we know that if we 

want to find an upper bound  of solution centers in A(k), we should first calculate 

the number  of circles which can cover a circle of radius (k + 1). r. Since Lemma 

4 shows that  (~f2k + 1) 2 squares of side length x / 2 . r  are sufficient to cover a 

circle of radius k" r, we conclude that  there must exist (x/2k + 1) a circles of radius 

r which can cover this circle, for a circle of radius r can cover a square of side 

length ,~/2. r. Therefore we can now determine the value of U(i). 

L E M M A  5. ! f  we choose 

U(k) = min{(,,/2" k + x /2  + 1):, P} 

and 

K = l-x/P/2 - (1 + 1/, ,~)~, 

then U(k) is an upper bound of ~.f= 1 mk, where k is any positive integer, and for any 

i >_ K, U(i) = P. 

PROOF. We know that, for Lemma 4, (xf2k + 1) 2 squares of side length , , f2"r  

can cover a circle of radius k. r, and a circle of radius r can cover a square of side 

length , , /2"r .  Therefore (x/~k + 1) 2 circles of radius r must be able to cover a 

circle of radius k.r,  and (w/2(k + 1) + 1) 2 = (x//2 �9 k + , , ~  + 1) 2 circles of radius 

r must be able to cover a circle of radius (k + 1).r. 

Considering Lemma 3 and the above result, we conclude that  there are at most  

(x/2.  k + , ~  + 1) z solution centers in the circle of radius k . r .  Since the total 

number  of solution centers in the optimal solution is P, 

k 

Z 
i = 1  

rn k _< min{(x//2 �9 k + x /2  + 1) z, P}. 

Therefore if U(k) = min{(x/2" k + x /2  + 1) 2, P}, then Z~=l mk <_ U(k). Since U(k) 

is known, it is easy to derive that K = [ - x / ~  - (1 + 1/x/2)7. V1 
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Now we have already found the values of U(i), V(i), and K. At the beginning 

of this section, we have defined L, which is the number of slabs which we should 

examine. In the next theorem, we combine all the above results together and show 

that when L = K we can derive that an upper bound of g is O(,,/P). 

THEOREM 1. [ f  L = K ,  an upper bound o f  g is Ks  = O(x /P) .  

PROOF. 

~c 'L g <- (U(i) - U(i - 1))" V(i) (from Lemma 1) 
i 

= (U(i) - g ( i -  1)). V(i) L + (U(2) -  U(1)). V(2)/L + (U(1) - U(O))- V(1)/L 
i 

<_ (U(i) - U(i - t)). V(i) L + U(2) (for U(0) = 0 and V(1) = V(2) = L) 
i 

K 

< Z ((',/2' i + x/2 + 1) 2 - (x/2" i + 1)2) �9 V(i) /L + U(2) 
i = 3  

= ~ ( 4 " i + 2 + 2 x f 2  )" ~ +U(2)  
i = 3  

~=3 2) + 1  L + U ( 2 )  

i= 3 n ( i -  2~--) + + U(2). 

Let j = i - 2 

_ ( 4 . j + 1 0 + 2  ~-). 2 _ + + U(2 )  g <  
j = l  ~ ' J  

< y . ( 4 " j + 1 0 + 2 ,  + ~ ( 4 " j +  1 0 + 2  ) + U(2) 
j=l  j=l  

<- Z (4"j + 10 + 2x/2) + 2 (4-j + 10 + 2,,//2) + U(2) 
j ~ l  j = l  

< (K - 2).(8 + 20 + 4x/-2 ) + ~, ((4 . j / L ) +  (K - 2)-(10 + 2x//2) . 
j = l  

+ U(2). 

From Lemma 5, U(2) = 19 + 6 , /2 .  Let cl = U(2), c2 = (8 + 20 + 4V/2)(1/~),  
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c3 = (10 + 2,,f2), and L = K. Then we derive that 

9 < - ( K - 2 ) ' c  2 +  2 \ ( 4 j / K ) + ( K - 2 ) c 3 "  + c l ,  
J 

9 < _ ( K - 2 ) . c 2 + ( K - 2 ) . c 3 . ( 1 ) + 4 . ( K - 2 ) . ( K - 1 ) / 2 K + c l .  

From the above equation, we can see that when L = K, there is an upper bound 

of 9 which is O(K). 
Let 

K, = ( K -  2) 'c2 + (K - 2 ) ' c 3 " ( 1 )  + 4"(K - 2 ) ' ( K -  t)/2K + cl. 

Since K = [-xf-P/2 - (1 + 1 / , ~ ) ] ,  we conclude that 9 < K, = O(K) = O(x/P ). El] 

Now we have shown the first property of the dividing slab. In the next section, 

we will show the second property of the dividing slab. 

6. The Second Property of the Dividing Slab. In the above section, we deliberately 

avoided discussing the problem of determining a proper location of the L slabs. 

We shall now proceed to discuss the problem. Consider the case when L = 1, as 

shown in Figure 7. Assume that an optimal solution of some (P, r) CC problem 

instance is known. We want to find a position to put this slab, such that the 

number of solution centers to the left and to the right of the slab are both no more 

than [-2P/3]. 

To achieve this, we observe that because of the width, the circles of radius r 

centered to the left of the central line of the slab cannot cover the demand points 

to the right of the slab, and vice versa. Therefore, if the number of solution centers 

to the left of the central line of the slabs is not less than LP/3J, then the number 

of solution centers to the right of the slab must be no more than [-2P/3], for the 

total number of solution centers is no more than P, as shown in Figure 8. 

Fig. 7 
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Fig. 8 
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To find the position of a central line, we may conduct a linear scan and 

recursively call Procedure CIRCLE_COVER (see Section 3) to determine whether 

a set of points can be covered by LP/3J circles with radius r. Consider Figure 9. 

We may conduct the linear scanning from both the leftmost and the rightmost 

direcctions toward their opposite directions, and ask whether the set of demand 

points to the left of the left scan line and to the right of the right scan line can be 

covered by exactly LP/3J circles with radius r. Then we can find two scan lines, 

as shown in Figure 10. We call the middle empty area the gap. It can be easily 

seen that if we place a slab centered at any position of the gap, we obtain a slab 

such that the numbers of solution centers to the left and to the right of this slab 

are both no more than F2P/3], as shown in Figure 10. 

In the above discussion we assumed that the direction of the slab is determined; 

we only have to find the proper location. It is easy to see that as long as the 

direction of the slab does not coincide with the direction of a line linking two 

demand poi-+~, this location can always be found. If the direction does coincide 

with the dir__ :ion of a line linking two demand points, we may tilt this direction 

slightly to overcome the trouble. 

Let us now consider the case when L = 2. Using similar reasoning techniques, 

we can determine two gaps perpendicular to each other as shown in Figure 1I. 

There exists a common intersection and we can place the two slabs centered at 

this intersection area, as shown in Figure 12. Then our problem is solved. 

For any number of L, we can perform the same operations. But we can see that 

there is no guarantee that the gaps between all pairs of scan lines will intersect at 

a common area. It is interesting that we can use Helly's theorem (Edetsbrunner, 

1987) to solve this problem. Helly's theorem is presented as follows: 

m 

m 

) "o 
I 
t 

Fig. 9 
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Scan Lines 

Fig. 10 
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THEOREM 2 (Helly's Theorem)  (a simplified version) (Edelsbrunner,  1987; Helly, 

1923). I f  there are n convex sets in a plane, and any three o f  them have a common 

intersection, then all n convex sets have a common intersection. 

Because a half-plane is also a convex set, Helly's theorem can also be stated as 

follows: 

I f  n half-planes do not have a common intersection, then there exist three 

half-planes such that they have no common intersection. 

Now let us see how we can apply Helly's theorem. As shown in Figure 11, the 

intersection of the two gaps can be expressed by the following formula:  

(hi u h 2 u h 3 w h4) ~, 

where hi ,  h2, h3, and h~ are half-planes and h~ denotes the complement  of hi. 

In general, we are given 2 '  L half-planes hi, h 2 . . . .  , h2. L and we are interested 

in knowing whether  (h 1 u h 2 w . . '  u h 2.L) c is empty  or not. We shall prove  the 

following theorem. (Let ~2 denote the entire plane.) 

THEOREM 3. I f  (h 1 ~ h 2 ~ "'" w h2.L) c = ~ ,  then  there  e x i s t  three  half-planes hil, 

hi2, hi3 ~ {hi, h2, . . . ,  h2.L}, such that (hil  kA hi2 ~A hi3 ) = ~2. 

PROOF. Since (h 1 w h 2 u " "  u h2.L) c = ~Z~, we have (hi c~ h~ ~ - . - c ~  h~.L) = ~ .  

According to Helly's theorem, there exist three half-planes, hi1, hlz, 

Fig. ~1 
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Slab 

�9 

 | 
Fig. 12 

hla 6 {hi, h2 . . . . .  h2.L}, such that (h~l ~ h~2 ~ hC3) = ~ .  This implies that 

Theorem 3 shows that if L gaps do not have a common intersection, then there 

must exist three half-planes such that they comprise the entire plane. But each 

half-plane defines a region in which the demand points can be covered by IP/3J  

circles. This means that the entire set of demand points can be covered by at most 

P circles with radius r. We can find these circles by adding up all circles found in 

these three half-planes by calling Procedure CIRCLE_COVER. 

We may conclude that either we have a reference location to put all the L slabs, 

such that each slab satisfies the second property of the dividing slab, or we have 

found no more than P circles which can cover all demand points in D. The detailed 

algorithm about how to draw these slabs and find the reference location is 

described in Procedure GEN_SLABS discussed in the next section. 

7. Procedure GEN_SLABS and Its Relative Complexities. We now present Pro- 

cedure GEN SLABS, which corresponds to the method described in the above 

two sections. In this procedure, we generate a set of slabs and one of them is the 

dividing slab. Or we will find no more than P circles with radius r which can 

cover all the demand points in D. 

Procedure GEN_SLABS(D, P, r, L~, or S) 

Input: A set D of n demand points, a number P, and a radius r. 

Output: Return: A set L s of slabs and one of them is the dividing slab, or K' circles 

of radius r, K' _< P, which can cover all points in D. 

Step 1. Draw a set L, of L slabs regularly surrounding a point in the plane. 

Step 2. Rotate the L slabs, such that no lines connecting any two demand points 

are parallel to any slab. (First, we choose any direction as the L slabs 

direction and test whether there exists any line, which connects any two 

demand points, parallel to any slab direction or not. If such a line exists, 

we then find all angles between slabs and lines. Let the smallest nonzero 

angle be &. It is obvious that if we rotate all the slabs by angle ~/2~ there 

will exist no line connecting any two demand points parallel to any slab 

direction.) 

Step 3. For each slab l~ in L S do: 
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Step 4. 

Step 5. 

Step 6. 

Step 7. 

Step 8. 

Step 9. 

Step 10. 

Step 11 

Step 12. 

Step 13. 

Step 14. 

Step 15. 

Step 16. 

Step 17. 

Step 18. 

Step 19. 

Step 20. 

Find a line L'i which is perpendicular to li. 

Sort all demand points in D by the sequence that they map into LI from 

left to right, denoted as d'~, d~ . . . . .  d',. 

For  j : =  1 to n do: 

Let m:= 2.L.  

T := CIRCLE_COVER({dl,  . . . ,  a~}, LP/3J, r, S m_ 0. 

If T = "FALSE," then j : = j  - 1 and go to next step. 

F o r k : = l t o n d o :  

T :=  CIRCLE_COVER({d;, d '_ l  . . . .  , d~,}, I_P/3J, r, Sin). 

If T = "FALSE," then k := k + 1 and go to next step. 

Draw the line l~,_ 1 (resp. l~,) which is parallel to l~ and passes through 

the point d) (resp. d~,). 

Let hm- 1 (resp. hm) be the half-plane to the left (resp. right) of l~_ 1 (resp. 

l~) including the line 1 m_ 1 (resp. l;~). 

If(h 1 w h 2 w h 3 u ' - '  w h 2.L) = ~2, then do: 

Find ml, m2, and m3, such that (hmx w h,, 2 u h,,3) = N 2. 

Return S = S ~  u S,,2 u S~,3 as a solution of the (P, r) CC problem. 

Else do: 

Find a point p not covered by any of ht, h 2 . . . . .  h2.L. 

Move the set Ls of L slabs, such that their central lines intersect at point 

p. Return Ls. 

The time complexities of the above steps are as follows: The time complexity 

needed in steps 1 and 2 is O(n 2 .L). In Steps 3-14, it takes O(n. L" T([P/3J)), where 

T([P/3A) is the time needed by recursively calling Procedure C I R C L E C O V E R .  

In Steps 15-17, it takes O(L3"n) and in Steps 18-20, it takes O(L) time. Therefore 

TI(P ) is O(n 2. L + n" L" T([_P/3 J) + L 3. n) = O(T([_P/3J) + n. p3/Z). 

Recall that, for the EPC problem (also the PCC problem), we perform the binary 

search on all possible radii before calling Procedure C I R C L E C O V E R .  Therefore 

the total time complexity of the corresponding algorithm for the EPC problem 

(also the PCC problem) is O(T(P)).O(log n) = O(n~ 

8. Conclusions. In this paper, we propose the slab-dividing method solving the 

Euclidean P-Center problem in time O(n~ Lipton and Tarjan (1979, 1980) 

and Mehlhorn (1984) also proposed an algorithm which solved some planar 

NP-hard problems in time O(n~176 We believe that there are still many famous 

NP-hard problems defined on the planar graph or the geometry plane which can 

be solved more efficiently as these cases. 
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