
INTRODUCTION

PRODUCTION OF THE HORMONE MELATONIN IN
HUMANS IS CONCURRENT WITH NOCTURNAL SLEEP,
AND THE EVENING INCREASE IN MELATONIN LEVELS
CORRESPONDS WITH THE ONSET OF SELF-REPORTED
EVENING SLEEP PROPENSITY. Inhibition of nighttime mela-
tonin production by β-adrenergic receptor-blocking agents or by
exposure to bright light attenuates the usual nighttime decrease in
body temperature and reduces sleep propensity; these effects are
reversed by the administration of melatonin.1

Melatonin exerts its action through membrane-associated
receptors, and 2-[125I]-melatonin is the radioligand of putative
melatonin receptors in neuronal and nonneuronal tissues from
vertebrate species. In human, 2 subtypes of high-affinity mela-
tonin receptors have been cloned and designated as MT1 (also
designated as Mel1a)2 and MT2 (Mel1b)3 by the International
Union of Pharmacology. 4 The MT1 and MT2 receptors in the
suprachiasmatic nucleus (SCN) may be involved in the effect of
melatonin on circadian rhythms.5,6 In chick brain, both Mel1a

(80% amino acid identity to the human MT1) and Mel1c (distinct
from the human MT1 and MT2) receptors were cloned. To date,
Mel1c receptors have not been found in mammals.

Melatonin exerts its effects through the high-affinity MT1 and
MT2 receptors in signal transduction pathways involving an
inhibitory G protein, leading to inhibition of intracellular adenyl
cyclase and decreased intracellular cAMP levels.5,7 In addition to
these high-affinity MT1 and MT2 receptors, it has been reported
that there exists a nanomolar binding site (designated as MT3 by
the International Union of Pharmacology) in hamster brain and
kidney.8-10 Recently, the MT3 binding site has been characterized
as a melatonin-sensitive form of quinone reductase 2 (QR2),11 an
enzyme related to the detoxifying enzyme NAD(P)H: quinone
oxidoreductase 1 (QR1, EC 1.6.99.2), and it shows wide tissue
distribution, including in the kidney, liver, brain, heart, and skele-
tal muscle in mammals. The profile of the MT3 binding site is
completely different from those of the high-affinity MT1 and
MT2 receptors.12

Exogenous administration of melatonin has been shown to
decrease the time to sleep onset, but it has no consistent effect on
sleep efficiency and total sleep,13-15 which may be attributed to its
short half-life. A controlled-release melatonin has been shown to
improve initiation of sleep and to increase sleep efficiency and
total sleep time in clinical trials in elderly people with insom-
nia.16,17 This suggests that a high-affinity MT1/MT2 receptor ago-
nist with a longer half-life than that of melatonin might be a use-
ful therapy for sleep disorders in this population.

Until specific information on the function of the MT3 binding
sites is available, a specific MT1/MT2 receptor agonist without an
affinity for MT3 binding sites is desirable. With this in mind, we
have found that (S)-N-[2-(1,6,7,8-tetrahydro-2H-indeno[5,4-
b]furan-8-yl)ethyl]propionamide (ramelteon, TAK-375, Figure
1) has a high affinity for human MT1 and MT2 receptors, while
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showing negligible affinity for the MT3 binding site in the ham-
ster brain.18 Here, we report in vivo preclinical pharmacology of
ramelteon in freely moving cats.

METHODS

Subjects

Male and female cats were obtained from KEARI (Hashimoto,
Japan) and housed individually in a room maintained at 22°C to
27°C with a 12-hour light-dark cycle (lights on at 7:00 AM).
They were fed once daily (9:00 AM) and water was available ad
libitum. On the experiment day, however, they were fed after
completion of the experiment. The methods for care and use of
the animals and the experimental protocols were approved by the
Experimental Animal Care and Use Committee of Takeda
Pharmaceutical Company Ltd. (Osaka, Japan).

Measurement of Sleep and Wakefulness in Freely Moving Cats

Fourteen adult cats (5 males and 9 females) weighing 2.5 to 6.1
kg at time of surgery were used. Cats were placed on a stereotaxic
apparatus under pentobarbital (40 mg/kg, intraperitoneal) anes-
thesia. Electrodes for electroencephalogram (EEG) recording
were implanted bilaterally in the frontal and parietal cortexes and
hippocampus according to the cat brain atlas of Snider and
Niemer.19 Stainless-steel screws were used as cortical electrodes.
The depth bipolar recording electrode consisted of twisted stain-
less-steel wires (0.3 mm in diameter) insulated except at the tips
(0.5 mm). Two insulated stainless electrodes were implanted into
the back cervical muscles to record electromyogram (EMG) data.
Stainless-steel screws were fixed over the bony orbit to record
electrooculogram (EOG) data.

The cats were allowed to recover from surgery for at least 7
days before habituation to the test chamber and EEG recording.
The test chamber (65 × 35 × 45 cm), constructed of metal with 1
Plexiglas wall, was located in a constantly illuminated, ventilat-
ed, soundproofed, and electrically shielded room. Cats were well
accustomed to the test chamber and EEG-recording procedure
before testing. Each cat was transferred to the test chamber in the
experimental room, attached to the cables, and EEG, EOG, and
electromyogram (EMG) findings were recorded for 9 hours
(from 1 hour before treatment to 8 hours after treatment with
vehicle, ramelteon, or melatonin). Ramelteon (0.0001, 0.001,
0.01, and 0.1 mg/kg), melatonin (0.001, 0.01, 0.1, and 1.0
mg/kg), or vehicle was orally administered between 9:30 AM and
10:30 AM. During recording, each cat was observed from outside
the experimental room using a video monitor, and behavioral and
postural changes were recorded continuously throughout the
experiment. Each potential, amplified and filtered with a poly-
graph (Nihondenki-Sanei, Osaka, Japan), was recorded using a
magnetic pen recorder. The EEG power spectral analysis was
also performed continuously by means of a fast Fourier transform
system equipped with a personal computer (PC-9821, NEC,
Tokyo, Japan); these data were recorded on a magnetic optical
disc.

The sleep-wakefulness stage for each cat throughout the mon-
itoring period was classified as 1 of 3 stages using the following
criteria: (1) wakefulness (marked tonic EMG activity, low-volt-
age fast cortical EEG with a low power delta wave spectrum, a
regular hippocampal theta rhythm, and slow EOG activity); (2)

slow-wave sleep (SWS, markedly reduced EMG activity, spin-
dles and slow waves of high-voltage cortical EEG with a high
power delta wave spectrum, and reduced EOG activity); or (3)
rapid eye movement (REM) sleep (almost complete absence of
EMG activity, low-voltage fast cortical EEG with a low power
delta wave spectrum, an extremely regular hippocampal theta
rhythm, and frequently observed high-voltage EOG due to rapid
eye movement).

Drugs and Drug Administration

(S)-N-[2-(1,6,7,8-tetrahydro-2H-indeno-[5,4-b]furan-8-
yl)ethyl]propionamide (ramelteon, TAK-375, Figure 1) was syn-
thesized at Takeda Pharmaceutical Company Ltd. (Osaka, Japan).
Melatonin was purchased from Sigma Chemical Co. (St. Louis,
MO). Ramelteon and melatonin were each suspended in 0.5%
(weight per volume) methylcellulose solution. Ramelteon or
melatonin solution was administered orally to each cat in a
gelatin capsule. In the control trial, each cat was given a capsule-
containing vehicle. Each dose of ramelteon or melatonin was
compared with vehicle control in a crossover design. The interval
between the trials was more than 7 days in order to avoid the
carry-over effects from the previous trial.

Data and Statistical Analyses

For statistical analysis, 1-way and 2-way analyses of variance
(ANOVA) and paired t tests were used. In posthoc tests, Holm
correction was utilized for the multiple comparisons. 

RESULTS

Effects of Ramelteon on Time Spent in Sleep Stages 

The effects of ramelteon on sleep and wakefulness in freely
moving cats are shown in Figure 2. Results are presented as the
mean percentage of time spent in each sleep-wakefulness stage
(ie, wakefulness, SWS, and REM sleep) at each 2-hour period
after administration. Ramelteon (0.1 mg/kg, PO) significantly
decreased the percentage of wakefulness [F1,7 = 47.8, P < .01]
and increased the percentage of SWS [F1,7 = 31.4, P < .01] and
REM sleep [F1,7 = 8.85, P < .05]. Similarly, lower doses of
ramelteon (0.001 and 0.01 mg/kg, PO) significantly decreased
the percentages of wakefulness [F1,7 = 10.0, P < .05 and F1,7 =
27.6, P < .01, respectively], and increased the percentages of
SWS [F1,7 = 6.96, P < .05 and F1,7 = 21.9, P < .01, respectively],
although there were no significant differences in the percentages
of REM sleep. The lowest dose of ramelteon (0.0001 mg/kg, PO)
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Figure 1—Chemical structure of ramelteon (TAK-375).
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had no significant effect on the sleep-wakefulness stage in freely
moving cats. 

Effects of Ramelteon on Duration of Sleep

The duration of sleep-promoting action of ramelteon was eval-
uated using the posthoc test on the reduction of wakefulness.

Significant reductions in wakefulness were observed at 2, 4, and
6 hours with the highest doses (0.1 and 0.01 mg/kg) of ramelteon
(P < .01, paired t test with Holm correction). Treatment with
0.001 mg/kg of ramelteon resulted in significant decreases in the
stage of wakefulness at 6 hours after administration. 
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Figure 2—Effects of ramelteon on sleep and wakefulness in freely moving cats. Each value shows the mean percentage of time spent in the stages
of wakefulness, slow-wave sleep (SWS), or rapid eye movement (REM) sleep during each block of 2 hours after drug administration with SEM.
Eight of 14 cats were randomly used in each dose group. *P < .05, **P < .01, compared with the vehicle-treated control (analysis of variance). #P
< .05, ##P < .01, compared with the vehicle-treated control (paired t test with Holm correction).
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Effects of Ramelteon on Sleep Latency 

Sleep latency (time to first SWS lasting more than 1 minute)
was also measured in each group (Figure 3). At the highest dose
of ramelteon (0.1 mg/kg, PO), median sleep latency was 24 min-
utes in the ramelteon group compared with 60 minutes in the
vehicle-treated group, but the difference was not statistically sig-
nificant [F1,6 = 5.28, crossover ANOVA design, P = .06] because
of large individual variance. Lower doses of ramelteon also
showed a tendency to reduce sleep latencies compared with
respective controls; median latencies were 17 minutes with
ramelteon 0.0001 mg/kg (vs 41 minutes with control, F1,6 = 2.74,
P = .15); 23 minutes with 0.001 mg/kg (control: 36.5 minutes,
F1,6 = 1.69, P = .24) and 9 minutes with 0.01 mg/kg (control: 38
minutes, F1,6 = 3.09, P = .13). Thus, ramelteon reduced the sleep
latency, but the effect was not statistically significant.

Effects of Melatonin on Time Spent in Sleep Stages 

The effects of melatonin on sleep and wakefulness in freely
moving cats are shown in Figure 4. The highest dose of mela-
tonin (1 mg/kg, PO) reduced the percentage of wakefulness [F1,7

= 54.8, P < .01] and increased SWS [F1,7 = 98.4, P < .01] com-
pared with the vehicle-treated control, although it had no signifi-
cant effect on REM sleep. Lower doses of melatonin (0.01 or 0.1
mg/kg, PO) significantly increased SWS sleep compared to con-
trol [F1,7 = 5.93, P < .05 and F1,7 = 6.07, P < .05, respectively].
The lowest dose of melatonin did not affect sleep or wakefulness
in freely moving cats. 

Effects of Melatonin on Sleep Duration 

The duration of the sleep-promoting action of melatonin was
shorter than that of ramelteon, with a significant reduction of
wakefulness at 2 hours only for the highest dose of melatonin (1
mg/kg) (P < .01, paired t test with Holm correction). There were
no significant differences between lower doses of melatonin and
vehicle.

Effects of Melatonin on Sleep Latency

Treatment with melatonin (0.001 to 1 mg/kg, PO) showed no
significant effect on sleep latency (Figure 5), and an apparent ten-
dency to decrease the latency was not observed even at the high-
est dose of melatonin. The median sleep latencies were 23.0 min-
utes for melatonin 1 mg/kg and 23.5 minutes for the vehicle-
treated group.

DISCUSSION

Ramelteon exhibited a sleep-promoting action in freely mov-
ing cats studied during the daytime. Based on the minimum
effective dose, ramelteon was about 10 times more potent than
exogenous melatonin. This finding is consistent with the demon-
strated in vitro affinity of ramelteon and melatonin for high-affin-
ity MT1 and MT2 receptors, Ki values of ramelteon and mela-
tonin for MT1, MT2 receptors using 2-[125I]-melatonin binding
being 14.0 and 80.7 pmol for the MT1 receptor, and 112 and 383
pmol for the MT2 receptor, respectively.18 Since in vitro studies
indicate that ramelteon has a low affinity for the MT3 binding site,
the Ki value of ramelteon for the MT3 receptor being 2,650 nmol,

or other receptors and does not inhibit any enzyme tested,18,20 the
sleep-promoting action of ramelteon can be attributed to its ago-
nistic action at high affinity melatonin receptors. The sleep-pro-
moting effect of ramelteon also lasted longer than the effect of
melatonin, as indicated by the significant reduction in the stage
of wakefulness observed for 6 hours after the administration of
ramelteon (0.001, 0.01, and 0.1 mg/kg) and for 2 hours after
administration of the highest dose of melatonin (1 mg/kg). The
exact mechanisms of the long-lasting action of ramelteon, how-
ever, require further studies.

The effects of melatonin on sleep have been studied in noctur-
nal and crepuscular species. In rats, some studies have found that
high pharmacologic doses of melatonin (2.5-10 mg/kg, intraperi-
toneal) increase SWS and REM sleep21,22; however, other inves-
tigators studying rats and hamsters found that melatonin did not
promote sleep but, rather, promoted wakefulness.23,24 These
inconsistent findings may derive from a crucial difference in tem-
poral patterns of melatonin secretion relative to sleep and wake-
fulness in rodents. 

In cats, the sleep-promoting effects of melatonin may be more
stable. Microinjection of high doses of melatonin (15-30 µg) into
the preoptic area or nucleus centralis medialis of the hypothala-
mus (but not the reticular formation) produced sleep lasting 2 to
3 hours,25 and melatonin injected into the third ventricle induced
non-REM sleep with REM sleep suppression.26 In the present
study, oral administration of melatonin and ramelteon at low
doses produced marked SWS and REM sleep in freely moving
cats. Taken together, these data indicate that the cat model is use-
ful for the study of the sleep-promoting action of melatonin or
melatonin-receptor agonists. 

Recently, Zhdanova et al27 (using actigraphic recording of
motor activity the evaluate sleep and wakefulness) showed that
the oral administration of low doses of melatonin (0.005-0.32
mg/kg) promoted sleep in 3 species of monkeys, suggesting that
monkeys are also an adequate animal model for studying mela-
tonin’s action on sleep. We have shown by polysomnographic
recordings that melatonin and ramelteon, administered orally in
monkeys just before the nighttime, reduced sleep latency and that
ramelteon, but not melatonin, increased total sleep time.28

In humans, benzodiazepine-receptor agonists have been shown
to decrease the duration of REM sleep after a single or repeated
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Figure 3—Effects of ramelteon on sleep latency in freely moving cats.
Sleep latency (time to first slow-wave sleep epoch lasting more than 1
minute) for each dose of ramelteon compared with the vehicle control.
Each bar indicates the median sleep latency of each group.

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/27/7/1319/2696824 by guest on 20 August 2022



administration,29,30 and the decrease of REM sleep, especially in
the first half of the night, may be related to the effect of these
agents on cognition.31 Newer benzodiazepine-receptor agonists,
including zopiclone, zaleplon, and zolpidem, also have been
shown to decrease REM sleep or REM density in the first half of

the night32,33; however, zolpidem appears to have the least effect
of the 3 on sleep architecture,34 and the cognitive impairment
associated with zolpidem seems milder than that found with the
use of other γ-aminobutyric acid (GABA)ergic agonists.35

However, it has been reported that a higher dose of zolpidem (15
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Figure 4—Effects of melatonin on sleep and wakefulness in freely moving cats. Each value shows the mean percentage of time spent in the stages
of wakefulness, slow-wave sleep (SWS), or rapid eye movement (REM) sleep during each block of 2 hours after drug administration with SEM.
Eight of 14 cats were randomly used in each dose group. *P < .05, **P < .01, compared with the vehicle-treated control (analysis of variance). ##P
< .01, compared with the vehicle-treated control (paired t test with Holm correction).
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mg) still decreases REM sleep.36 In this study of sleep in cats,
ramelteon and melatonin did not decrease REM sleep, but, rather,
ramelteon increased both REM and SWS. We have previously
shown that ramelteon does not impair learning and memory in
rats.37 In clinical trials, it has been shown that melatonin induces
qualitatively good sleep and increases REM sleep15,38 without
affecting cognitive function.39

In humans, the circadian rhythm for the release of melatonin
from the pineal gland is closely synchronized with the habitual
hours of sleep. Melatonin has been suggested to have a dual
effect on sleep, a sleep-promoting action and a phase-shifting
property. Exogenous melatonin shifts the human circadian
rhythm according to a phase-response curve. In the rat SCN brain
slice, bath-applied melatonin induces concentration-dependent
advances of the neuronal firing rate,40 which is circadian time-
dependent of application. The targeted deletion of the MT1 recep-
tor did not significantly alter the melatonin-induced phase shift-
ing effect in a study of C57BL/6J mice; however, the melatonin-
mediated acute inhibition of neuronal firing rate in the SCN was
abolished.41 The suppression of the neuronal activity by mela-
tonin might be important in defining the SCN sensitivity to
entraining stimuli, and, in diurnal species, may contribute to the
regulation of sleep.6 Conversely, Dubocovich et al42,43 reported
that MT2 melatonin-receptor antagonists block melatonin-medi-
ated phase advances of circadian rhythms. These findings imply
an essential role of MT2 receptors in the phase-shifting action of
melatonin. 

In spite of all this research, the mechanisms behind the sleep-
promoting action of melatonin are still unknown. GABAA recep-
tors are widely distributed in the SCN and may serve both presy-
naptic and postsynaptic roles in controlling the mammalian cir-
cadian rhythms.44,45 Wang et al21 have shown that bicuculline, a
specific antagonist of the GABAA receptor, abolishes the mela-
tonin-induced increase in SWS and REM sleep and the decrease
in wakefulness in rats. Also, exogenous melatonin has been
shown to increase in GABA contents in certain regions of the
brain, including the hypothalamus and the pineal gland in rats,46

and to potentiate GABAA receptor-mediated current in cultured
neurons of chick spinal cord.47 Furthermore, GABA and musci-
mol, a GABAA receptor agonist, inhibited neuronal discharge of

the SCN during both subjective day and subjective night in a con-
centration-dependent manner in rat SCN slices, the effect being
reversed by GABAA-receptor antagonists.48 Melatonin also
inhibited the neuronal firing of the SCN, possibly due to activa-
tion of MT1 receptors. Thus, sleep-promoting action of melatonin
and ramelteon might be derived from activation of GABAergic
system in the SCN, in which MT1 receptors may be involved.
However, flumazenil, a benzodiazepine-receptor antagonist, did
not block the sleep effect of melatonin in human49 or in zebrafish,
50 suggesting that the action of melatonin may not be derived
from activation of the benzodiazepine receptor. Ultimately,
species-specific differences in the mechanisms of sleep promo-
tion by melatonin or melatonin-receptor agonists cannot be
excluded. Sleep induced by high doses of melatonin in rats may
be qualitatively different from that observed in humans. Thus,
further studies are required. 

Benzodiazepine-receptor agonists are commonly used for the
short-term treatment of insomnia despite evidence of altered
sleep architecture and their association with varying degrees of
memory impairment, cognitive impairment, motor impairment,
incoordination, daytime sleepiness, rebound insomnia, tolerance,
and dependence. Thus far in animals, ramelteon has been shown
to promote sleep (in this study in cats) and has not been associat-
ed with impairment of learning behavior or motor function, or
with rewarding properties in other animal models.37 In addition, a
recent Phase II clinical trial found that ramelteon decreased laten-
cy to persistent sleep and increased total sleep time and sleep effi-
ciency (as measured by polysomnography) in subjects with pri-
mary chronic insomnia.51 Further investigations are needed to
fully explore the potential of this novel agent for the treatment of
sleep disorders.
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Figure 5—Effects of melatonin on sleep latency in freely moving cats.
Sleep latency (time to first slow-wave sleep epoch lasting more than 1
minute) for each dose of melatonin compared with the vehicle control.
Each bar indicates the median sleep latency of each group.
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