
JAN ��� ��

The sliding window protocol revisited

Jan L�A� van de Snepscheut

Computer Science

California Institute of Technology

Pasadena� CA �����

Summary

We give a correctness proof of the sliding window protocol� Both safety and liveness properties are
addressed� We show how faulty channels can be represented as nondeterministic programs� The correct�
ness proof is given as a sequence of correctness�preserving transformations of a sequential program that
satis�es the original speci�cation	 with the exception that it does not have any faulty channels� We work
as long as possible with a sequential program	 although the transformation steps are guided by the aim
of going to a distributed program� The �nal transformation steps consist in distributing the actions of
the sequential program over a number of processes�

Key words

communication protocols	 program transformation	 guarded commands	 fairness�

� Introduction

In this note	 we give a correctness proof of the sliding window protocol� We discuss both safety and
liveness properties� We specialize our program to window size � and obtain the alternating bit protocol�
The alternating bit protocol can be traced back to
��� We have been unable to trace back the origins of
the sliding window protocols
�� discusses one of the versions and lists networks using related protocols�

� A faulty channel

A communication protocol is used to provide reliable transmission of data over a faulty communication
channel that garbles	 duplicates	 or loses data� We consider the case in which data is transmitted in one
direction over the faulty channel	 and we assume the presence of a channel in the opposite direction in

JAN ��� ��

order to be able to communicate the need for retransmission of a message� The latter channel is also
faulty� No assumptions on the slack of the faulty or of the fault�free channel are to be made� It is assumed
that a faulty channel operates as follows�

� messages arrive in the order in which they are sent�

� any message sent along the channel can be lost�

� any message sent along the channel can be duplicated�

� any message sent along the channel can be garbled� however	 if a message is garbled this can be
detected	 i�e� the error detection mechanism is assumed to be perfect�

� the channel is not in
nitely faulty	 in the sense that only a
nite number of messages can be
lost or duplicated consecutively	 and of the messages delivered only a
nite number are garbled
consecutively�

First	 we give a program that implements a faulty channel� The program has input channel c and
output channel d � The output on d is a faulty copy of the input on c� i�e� every message in d is
accompanied by a boolean which indicates whether the message is garbled� One would use some form of
coding and decoding to implement this boolean� We use functions �ip and �ip� which return a boolean
value� They make a fair �but not necessarily random� choice between true and false� Channels c and
d are fault free�

�c�x � � �ip � d ��x ��ip ����

If the inner loop is iterated zero times then a message is lost� if it is iterated more than once then a message
is duplicated� The �ip � that occurs as an argument with x in the output command corresponds to the
possibility of garbling the message� The choices made by �ip and �ip� are independent	 both of them
are fair�

Second	 we show that we can restrict ourselves to loss and duplication of messages	 i�e� we may
assume that no messages are garbled� The reception of a garbled message does not give any information
at the receiving side� it cannot even be concluded that a new message was sent� Hence	 the only sensible
thing that can be done with a garbled message is to ignore it� Therefore	 we propose to use the faulty
channel only in conjunction with a program that
lters out all garbled messages�

�c�x � � �ip � d ��x ��ip ����

k �d��y � b�� b � skip��b � e�y ��

The latter combination is equivalent to

�c�x � � �ip � e�x ��

except for the slack in the communication	 which is something that we want to ignore anyway� This
program can also be written as

JAN ��� ��

c�x �

�	true � c�x 	
true � e�x

where the choice between the two alternatives is assumed to be fair� This is the version of the faulty
channel that we work with� It has the advantage that garbling of messages plays no role� The symmetry
in input and output apart from initialization is also pleasing� The program for the faulty channel is
similar but not identical to the faulty channel discussed in 	�
�

� The sliding window protocol

In this section we consider the sliding window protocol� We have a network as indicated in the �gure
below� Channels K and I are faulty channels and the task is to construct programs S and R that
together implement a fault�free communication line from in to out � Both in and out are fault�free
channels� We �rst consider a solution in which messages are numbered from � on and subsequently re�ne
the program to bounded sequence numbers� It is easier to do it this way rather than starting with the
latter program because we would then have to introduce the unbounded integers anyway for proving the
program�s correctness�

S R

K

I

in out

The problem we try to solve is to come up with a program that guarantees that the sequence of
values transmitted via out is a pre�x of the sequence of values transmitted via in� The di�erence in
length is at most N � where N is a given positive constant called the window size� The program is
embedded in a context in which input and output operations are always performed eventually�

We start with a sequential program that implements the speci�cation and re�ne it later to a dis�
tributed program� The re�nement is done in such a way that the distributed program consists of four
processes two of which are the faulty channels K and I � The sequential program uses variables n and
j whose values equal the number of completed input and output operations� The essential invariant is

n � �in � j � �out � j � n � j � N �

h�h � � � h � n � a�h� � inhi � h�h � � � h � j � a�h� � outhi

in which ch is the h th value communicated via channel c� The program performs two actions

in�a�n�� n �� n � �

out �a�j �� j �� j � �

JAN ��� ��

while maintaining the above invariant� A program that does just this is

n� j �� 	� 	

�� n �� j � N � in � ina�n�
 n �� n � �

�� j �� n � out � out �a�j �
 j �� j � �

� �

We are going to re�ne this program until we have a distributed version in which we can identify four
processes� connected as shown in the picture� To that end� we partition the variables and assign each
of them to a process� A requirement is that each action operate on the local variables of one process
only� For example� variable n� which stores the number of in operations� will be assigned to process S

because channel in is connected to S � Similarly� j is assigned to R� As a result� no process stores both
n and j � and the therefore guards n �� j �N and j �� n have to be changed� Both the commands and
the guards are going to change� but we deal with them one after the other� Whenever we introduce new
variables� we capture their �intended meaning� in an invariant� and we propose a command that updates
the new variable� From the invariant we then calculate the guard�

We focus on the sequence numbers �rst� and therefore ignore the ina�n� and out �a�j � operations
for a while� We are going to introduce some fresh variables� The choice of variables is partly based on the
requirement that the variables can be partitioned� and partly on the fact that faulty channels have to be
used� The latter forces weaker invariants than would have been the case with perfectly reliable channels�

One piece of notation� We use fi � ��jg to denote a set of integers with the property

x � fi � ��jg � i � x � j �

It should come as no surprise that the asymmetry between i and j turns out to be helpful�

The �rst variable that we introduce is r � It is going to be a local variable of R and serves to
eliminate variable n from the guard of action j �� j � �� The interpretation is

r is the set of sequence numbers received by R �

We choose a set of sequence numbers instead of just the number of messages because we anticipate that
messages may be lost in the communication from S to R and therefore the sequence numbers received
need not be consecutive anymore� Since j is the number of messages transmitted by R via out � and
since those messages were �rst received via in and are numbered from 	 up to and excluding n� we have
invariant

f	� ��jg � r � f	� ��ng �

We need to add a guarded command to update r � Letting k be

k is the number of the last message sent by S

JAN ��� ��

we �nd that we need to add

r �	 r � fkg �

to express receipt of a message from S by R� The invariant for k is

 � k � n �

We need to add a command that assigns a new value to k � It is tempting to assign to k a value from
the set f
� ��ng n r since that is the set of numbers input by S and not yet received by R� However�
this expression involves variables from both S �namely n and R �namely r and can therefore not
be partitioned� We introduce variable s� which is meant to be be a copy of r but it might not be up to
date� The latter is expressed by

s � r

but we will have to strengthen this a bit later� The command that we add to our program is

k �	 anyf
� ��ng n s

which assigns to k an arbitrary element of f
� ��ng n s� It is well�de�ned only if such an element exists�
Notice that no fair choice is speci�ed here� The next command that we need to introduce is to update
our newly introduced variable s� It would be nice to write s �	 r but this is not feasible because
the communication between S and R is limited to communication via faulty channels� Therefore� we
introduce intermediate variable i whose value is a copy of r � but it might not be up to date� We say
�intermediate� because its value will be somewhere in between s and r � � s is a possibly�out�of�date
copy of i � and i is a possibly�out�of�date copy of r �

s � i � r

This is the slightly stronger invariant referred to above� The commands for updating s and i are
immediate�

s �	 i

i �	 r

It remains to introduce a local variable of S that tracks j � We may introduce a variable that is a copy
of j � but not necessarily up to date� However� we already have such an approximation of j in the form
of the smallest number missing from set s� We introduce s as an abbreviation for f
� ���g n s and
introduce variable l �

l 	 min�s

Collecting all the terms of the invariant� we have

P � l 	 min�s � min�i � j � n � l �N �
 � k � n � s � i � r � f
� ��ng � f
� ��jg � r

in which the term min�s � min�i is redundant because it follows from s � i � We now calculate the
guards of the six commands� The �rst command is n �	 n � �� and

JAN ��� ��

Pn
n��

�

l � min�s	 � min�i	 � j � n
 � � l
N � � � k � n
 � �

s � i � r � f�� ��n
 �g � f�� ��jg � r

�

P � n �� l
N

suggests guard n �� l
 N � The second command is j �� j
 �� and

P
j
j��

�

l � min�s	 � min�i	 � j
 � � n � l
N � � � k � n �

s � i � r � f�� ��ng � f�� ��j
 �g � r

�

P � j � n � j � r

� f P � r � f�� ��ng g

P � j � r

suggests guard j � r � The third command is r �� r � fkg� and

Pr
r�fkg

�

l � min�s	 � min�i	 � j � n � l
 N � � � k � n �

s � i � r � fkg � f�� ��ng � f�� ��jg � r � fkg

�

P

suggests guard true� The fourth command is k �� anyf�� ��ng n s� and

Pk
anyf����ngns

�

l � min�s	 � min�i	 � j � n � l
 N � � � anyf�� ��ng n s � n �

s � i � r � f�� ��ng � f�� ��jg � r � f�� ��ng n s �� 	

�

P � f�� ��ng n s �� 	

JAN ��� ��

suggests guard f�� ��ng n s �� �� The 	fth command is s
� i � l
� min�s� and

�P l

min�s�
s

i

�

min�i � min�i � min�i � j � n � min�i � N � � � k � n �

i � i � r � f�� ��ng � f�� ��jg � r

�

P

suggests guard true� The sixth command is i
� r � and

P i

r

�

l � min�s � min�r � j � n � l � N � � � k � n �

s � r � r � f�� ��ng � f�� ��jg � r

�

P � min�r � j

�

P � j �� r

suggests guard j �� r � Thus� we obtain the complete program� In order to enable initialization� the
program starts o� with n � �� which corresponds to performing an initial input action prior to executing
the loop�

j � k � l � n� s� i � r
� �� �� �� �� �� �� ��

	 � n �� l �N
 n
� n � �

�� j � r
 j
� j � �

�� true
 r
� r � fkg

�� f�� ��ng n s �� �
 k
� anyf�� ��ng n s

�� true
 s
� i � l
� min�s

�� j �� r
 i
� r

�

Next� we prove progress� We claim the following variant function�

�j ��s ��i ��r � n� s �� r � k �� r

JAN ��� ��

The �rst component of the pair is an integer� the second component is a boolean� The ordering of the pair
is lexicographic ordering� where true � false� We claim that no statement decreases the variant function�
The veri�cation is straightforward and is omitted� The more interesting part is to show that the variant
function strictly increases from time to time� We show that� in every state� a guarded command exists
whose guard is true and whose command strictly increases the variant function� Furthermore� we show
that if another guarded command falsi�es the guard� it does so while increasing the variant function� If
we postulate a weak� fair choice between the guarded commands of the loop� progress follows�

� In state s �	 i � guarded command true � s
	 i increases the variant function� its guard is not
falsi�ed by any command�

� In state j � r � guarded command j � r � j
	 j � � increases the variant function� its guard is
not falsi�ed by any other command�

� In state i �	 r � j �� r � guarded command j �� r � i
	 r increases the variant function� its guard
can be falsi�ed by only one other command� viz� r
	 r �fkg if j 	 k �k �� r � which also increases
the variant function�

� In state s 	 i 	 r �	 f� ��ng � k � r � guarded command f� ��ng n s �	 � � k
	 anyf� ��ng n s

increases the variant function� its guard is not falsi�ed by any other command�

� In state s 	 i 	 r �	 f� ��ng� k �� r � guarded command true � r
	 r �fkg increases the variant
function� its guard is not falsi�ed by any other command�

� In state s 	 i 	 r 	 f� ��ng� guarded command n �	 l � N � n
	 n � � increases the variant
function� its guard is true �since N � � and is not falsi�ed by any other command�

The disjunction of the six conditions is true� implying that all cases have been covered�

� The range of k and j

Next� we turn to the reduction of sequence numbers� We introduce a variable that plays a role in the
proof only
 set K that allows us to record the set of all possible values that might have been chosen for
k � The program is extended with this variable as follows�

j � k � l � n� s� i � r �K
	 � � � �� ������ ��

� � n �	 l �N � n
	 n � �

�� j � r � j
	 j � �

�� true � r
	 r � fkg

�� f� ��ng n s �	 � � k
	 anyf� ��ng n s� K
	 s

�� true � s
	 i � l
	 min�s�

�� j �� r � i
	 r

�

JAN ��� ��

We postulate the following invariant in addition to the one we already have�

k � f�� ��ng nK � k � min	K
 �N � j � min	K
 �N �

K � s � r � f�� ��min	K
 �N g

The invariant is established through execution of the �rst statement 	since N � �
� We omit the check
that every assignment to one of the variables maintains the invariant� It should be noted that assignment
K � s does not decrease min	K
 since we have K � s� From the new and the old invariant� we have

min	K
 � j � min	K
 � N � min	K
 � k � min	K
 � N

from which we conclude

�N � j � k � �N �

which allows sequence numbers to be reduced modulo �N at the receiving side� Because of

l � n � l � N �

reduction modulo �N presents no problems at the sending side either�

We may also reduce the size of the various sets involved� Instead of the unbounded set r � we may
introduce r � such that

r � � r n f�� ��jg

	because the invariant implies f�� ��jg � r
� Also� because the invariant implies min	s
 � n � min	s
 �
N � we may introduce

s� � s � fmin	s
� ��min	s
 � N g

and similarly

i � � i � fmin	i
� ��min	i
 �N g

and work with sets that have at most N elements each�

If we add the original messages back into the system� we need to add variables to store some messages�
The variables are a� b� and v and their use is governed by invariant

h�h � � h � n a	h
 � inhi � h�h � � h � j outh � inh i �

h�h h � r b	h
 � inhi � v � ink �

Because of the various bounds that we have established� all of those variables store at most �N messages�
The program 	in which we haven�t done the reduction modulo �N
 looks like this�

JAN ��� ��

j � l � n� s�
� r � �� 	� 	� �� f	� ��N g��
 in�a�	
 k � v �� 	� a�	
 i � �� s�

� � n �� l �N � in�a�n
 n �� n � �

�� j � r � � out �b�j
 r � �� r � n fjg
 j �� j � �

�� true � �k � j � r � �� r � � fkg
 b�k �� v ��k � j � skip�

�� f	� ��ng 	 s� �� � � k �� anyf	� ��ng 	 s�
 v �� a�k

�� true � s� �� i �
 l �� min�s�

�� j �� r � � i � �� fj � ��j �N g n r �

�

We may add probes on channels in and out to the guards of the �rst and second commands without
a�ecting the program�s correctness� since it was postulated that in and out communications succeed
eventually� It might make the program more e�cient� though�

in
 n �� l � N � in�a�n
 n �� n � �

out
 j � r � � out �b�j
 r � �� r � n fjg
 j �� j � �

� Partition the program into processes

Next� we partition the variables and the actions into processes� The transformation that is used to go
from the above sequential program to a distributed program is� transform every guarded command

ga
 gb � x �� e

into two guarded commands� Introduce a channel� c say� and choose either the pair

ga � c�e

gb
 c � c�x

or the pair

ga
 c � c�e

gb � c�x

The two guarded commands of a pair thus chosen are mapped to di�erent processes� If the disjunction
of the guards in a process is true� then the set GC of guarded commands is enclosed as �� GC �� and
otherwise as ��true � � GC ��� The latter variety corresponds to a nonterminating loop� the body of
which is an if�statement that waits until at least one guard is true� �Of course� the �rst version can
also be written in the second form without any change in e�ect� If the interleaving of the processes is

JAN ��� ���

fair� if the selection between guarded commands in each process is fair� and if each process has either
probes in all its guards or in none of its guards� then the processes implement the original program�
	By
implement� we mean that it meets the safety and progress requirements of the original program��
In making the choices between the pairs� we make the choices such that we end up with the guarded
commands that occur in the program text of the faulty channel� Here is the result� The channel from S

to K is identied as channel sk � and similar for the other three channels� Channels ri and is transmit
a set of integers per communication� Channels sk and kr transmit a pair� a message plus an integer
	the sequence number of the message��

K � sk�	k � v��

�� true � sk�	k � v� �� true � kr �	k � v� �

I � ri�i ��

�� true � ri�i � �� true � is�i � �

S � l � n� s� �� �� �� f�� ��N g� in�a	���

��true � � in � n �� l �N � in�a	n�� n �� n � �

�� sk � f�� ��ng� s � �� � � m � f�� ��ng� s�� sk �	m� a	m��

�� is � is�s�� l �� min	s��

� �

R � j � r � �� �� ��

��true � � out � j � r � � out �b	j �� r � � r � n fjg� j �� j � �

�� kr � kr�	h� u��

�h � j � r � �� r � 	 fhg� b	h� �� u��h � j � skip�

�� ri � j �� r � � ri �fj � ��j � N g n r �

� �

� The alternating bit protocol

We conclude with a short section on the alternating bit protocol� This protocol has been studied and
veried extensively in the literature� It is often pointed out that the sliding window protocol is a gener�
alization and we support this claim by specializing our program to the case where N � � and obtain the
alternating bit protocol� We can slightly change the control structure of the program to take advantage
of the fact N � �� For example� we now have that n �� l � N is false after an increase of n� We may
therefore reduce the number of times that the test is performed by evaluating it after the update of l

only� Doing the same thing at the receiver� we obtain the following program text for the alternating bit
protocol� It uses the fact that sets i � and s� are singleton sets only� All sequence numbers are reduced
modulo �� The two channel processes do not change�

JAN ��� ���

S � n �� �� in	x �

�
true �
 sk � sk ���n � � mod �� x

� is � is	l �

 n � l � in	x � n �� �n � � mod �
� n �� l � skip �

� �

R � j �� ��

�
true �
 ri � ri �j

� kr� kr	�h� u�

 h � j � out �u� j �� �j � � mod �
� h �� j � skip �

� �

� Concluding remarks

We have used channels that hold at most one message at a time� It is surprisingly easy to change the
argument to the case where a channel may hold any number of messages� provided that the order of the
messages is maintained� For example� if the return channel holds a sequence of messages this corresponds
to a sequence of sets i � The essential property is that each one is a subset of the next element in the
sequence� If the order is not maintained� this monotonicity property is lost� The program in which
sequence numbers are not reduced modulo �N can still be adapted to that situation �by replacing s �� i

with s �� s � i but the version in which sequence numbers are reduced is beyond salvation�

In the alternating bit protocol� we simpli�ed the sets of sequence numbers because it is was known
that each sets contained at most one element� In the standard version of the sliding window protocol
a similar simpli�cation is made� For example� instead of set i � the number min�i is transmitted �the
�lowest missing number�� This change makes the program incorrect� however� because progress is no
longer guaranteed� Here is a scenario that illustrates the problem� Assume N � �� Suppose messages
with sequence numbers l and l�� have not yet been received by receiver R but they have been received
by sender S � n � l �� � Instead of set fl � l��g� integer l is sent from R via I to S � S sends both
message l and message l � �� The faulty channel K looses the �rst message and delivers the second�
As a result� the receiver misses only message l � and sends integer l via I to S � Again� S sends l

and l � �� and the channel looses the �rst and delivers the second� The system has now reached the
same state as before� the channels are fair �K looses every other message� I looses no messages and
the system is in a cycle without making progress� In our solution� which is known as the sliding window
protocol with selective retry� set fl � l � �g is sent from receiver R to sender S � but after message l � �
has successfully been received by r � set flg is transmitted� This causes sender S to send message l

only instead of both l and l � �� which eventually causes l to be received by R�

A substantial number of papers report on safety properties of the sliding window protocols� Few
papers address liveness issues� One of the problems with liveness properties is that they are not as readily
formalized as safety properties are� Many speci�cation languages do not include any form of temporal
logic necessary for expressing them�

JAN ��� ���

In ��	 we
nd hardly any correctness considerations� only the issue of using cyclic numbers is addressed
�and only by example� Of the references� however� it is the only one that mentions the selective retry
that turned out to be essential for progress�

In ��	 some safety properties are established �in an elegant way� We quote �however it is not shown
that the protocol will progress�� In ��	� the situation is similar� It establishes safety properties and also
that �if the media are live then so too are the protocols�� However� this does not exclude livelock�

In ��	 it is shown that the alternating bit protocol satis
es both safety and progress requirements�
It is shown that the sliding window protocol �without selective retry satis
es safety requirements and
makes progress� The proofs are given for a stronger channel� however� viz� �if the same message is sent
over and over again� it will eventually be delivered �provided that the receiving process repeatedly accepts
messages�� The di�erence with our weaker channels is that if repeatedly message A followed by message
B is sent� then in our case it can only be guaranteed that every now and then a message arrives� possible
only A�s and never a B� Hailpern�s stronger channels guarantee that both A and B arrive eventually�
Although our scenario is unlikely if faulty behavior is random� it is not at all hard to construct a channel
that looses every other message� Such a channel meets our requirements� but fails to satisfy Hailpern�s
stronger requirements�

In ��	 a formal veri
cation of the sliding window protocol is presented� However� what is claimed to
be a liveness property is actually a safety property� The protocol that is veri
ed su�ers from the lack of
progress demonstrated by the above�mentioned scenario�

In ��	 an interesting problem is discussed� Although some protocols are life they have the property
that the number of steps it takes to deliver a message grows with the total number of communication
faults that have occurred in the past� This is an undesirable property� It is the consequence of too strong
a coupling between sender and receiver� �Namely� a receiver responds with a message to each message
that is lost or received on the incoming channel� In our case� the coupling is weak and the undesirable
phenomenon does not occur�

The sequential programs that we used as intermediate steps in our transformation process are similar
to Unity programs ��	 and to Action systems ��	� The latter reference also discusses how these programs
can be transformed into communicating sequential processes� similar to what we have done here�

Acknowledgement

I am very grateful to Peter Hofstee and Johan Lukkien for refusing to be satis
ed with my earlier
arguments and forcing me to do better� and to Ralph Back� Rustan Leino� and the members of IFIP WG
��� present at the Pouilly en Auxois meeting for discussions�

References

��	 R��J�R� Back and R� Kurki�Suonio� Decentralization of process nets with centralized control� Dis�

tributed Computing� ��������� �����

��	 K�A� Bartlett� R�A� Scantlebury� and P�T� Wilkinson� A note on reliable full�duplex transmission over
half�duplex links� Communications of the ACM� ������������� �����

JAN ��� ���

��� R� Cardell�Oliver� Using higher order logic for modelling real�time protocols� In TAPSOFT ���	
volume
�
 of Lecture Notes in Computer Science	 pages ������� Springer�Verlag	 �����

�
� K�M� Chandy and J� Misra� Parallel Program Design� a foundation� Addison�Wesley	 �����

�� B�T� Hailpern� Verifying Concurrent Processes Using Temporal Logic	 volume ��� of Lecture Notes

in Computer Science� Springer�Verlag	 �����

��� K� Paliwoda and J�W� Sanders� An incremental speci�cation of the sliding�window protocol� Dis�

tributed Computing	 �����
	 �����

��� N� V� Stenning� A data transfer protocol� Computer Networks	 �����������	 �����

��� A�S� Tanenbaum� Computer Networks� second edition� Prentice Hall	 �����

��� Y� Yemini and J�F� Kurose� Can current protocol veri�cation techniques guarantee correctness�
Computer Networks	 ���������	 �����

