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THE SLOW PASSAGE THROUGH A HOPF BIFURCATION: DELAY, 
MEMORY EFFECTS, AND RESONANCE* 

S. M. BAERt, T. ERNEUXt, AND J. RINZELt 

Abstract. This paper explores analytically and numerically, in the context of the FitzHugh-Nagumo 
model of nerve membrane excitability, an interesting phenomenon that has been described as a delay or 
memory effect. It can occur when a parameter passes slowly through a Hopf bifurcation point and the 
system's response changes from a slowly varying steady state to slowly varying oscillations. On quantitative 
observation it is found that the transition is realized when the parameter is considerably beyond the value 
predicted from a straightforward bifurcation analysis which neglects the dynamic aspect of the parameter 
variation. This delay and its dependence on the speed of the parameter variation are described. 

The model involves several parameters and particular singular limits are investigated. One in particular 
is the slow passage through a low frequency Hopf bifurcation where the system's response changes from a 
slowly varying steady state to slowly varying relaxation oscillations. We find in this case the onset of 
oscillations exhibits an advance rather than a delay. 

This paper shows that in general delays in the onset of oscillations may be expected but that small 
amplitude noise and periodic environmental perturbations of near resonant frequency may decrease the 
delay and destroy the memory effect. This paper suggests that both deterministic and stochastic approaches 
will be important for comparing theoretical and experimental results in systems where slow passage through 
a Hopf bifurcation is the underlying mechanism for the onset of oscillations. 

Key words. delayed Hopf bifurcation transition, memory effect, resonance, FitzHugh-Nagumo 
equations, nerve accommodation 
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1. Introduction. In mathematical studies of bifurcation, it is customary to assume 
that the bifurcation or control parameter is independent of time. However, in many 
experiments that are modeled mathematically as bifurcation problems, the bifurcation 
parameter varies naturally with time, or it is deliberately varied by the experimenter. 
Typically, this variation is slow or is forced to be slow. 

The recent interest in the effects of slowly varying control parameters arises in 
physical, engineering, biological, and mathematical contexts. The physical interest 
arises from the fact that the results of long-time experiments may depend on parameters 
that are slowly varying. For example, catalytic activities in chemical reactors are slowly 
declining due to chemical erosion and are decreasing the reactor performance [1], [2]. 
The effects of slowly varying parameters are not always undesirable. They may also 
lead to smooth transitions at bifurcation points and mediate a gradual change in the 
system to a new mode of behavior beyond the bifurcation point. This idea has been 
studied for quite different problems such as thermal -convection [3], [4], laser 
instabilities [5], [6], and developmental transitions in biology [7]. 

From a modeling point of view, we expect that a slow variation of the control 
parameter can be useful for the experimental or numerical determination of the 
bifurcation diagram of the stable solutions. Also, to understand certain complicated 
multi-scale dynamic phenomena [8], it is useful to study the bifurcation structure of 
the fast processes with the slow variables treated as slowly varying control parameters. 
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In such cases, it is important that we have detailed knowledge of the transition near 
the bifurcation point where transients are very slow. 

From a mathematical point of view, these problems are formulated by non- 
autonomous differential equations that are difficult to solve. The study of these problems 
has led to new and interesting mathematical issues [9]-[11]. References [9]-[11] 
investigate the slow passage through a steady bifurcation or a steady limit point. An 
interesting study of the effects of a slowly varying parameter on a Hopf bifurcation is 
given for the slow passage through resonance [26] [27]. 

In this paper, we concentrate on the slow passage through a Hopf bifurcation. 
As we shall demonstrate, this case is quite different from a steady bifurcation or limit 
point. Our results for the Hopf bifurcation raise a series of new questions on the 
control of bifurcation instabilities. We shall consider a specific model problem for the 
Hopf bifurcation because our goal is to explore the effects of a slowly varying parameter 
both analytically and numerically. For example, one interesting phenomenon has been 
described as a delay or memory effect. It can occur when a parameter passes slowly 
through a Hopf bifurcation point and the system's response changes from a slowly 
varying steady state to slowly varying oscillations. On quantitative observations (see 
Fig. 1(a), (b)) we find that the transition is realized when the parameter is considerably 
beyond the value predicted from a straightforward bifurcation analysis which neglects 
the dynamic aspect of the parameter variation. We describe this delay and its depen- 
dence on the speed of the parameter variation. Also, we show that the delay is sensitive 
to small amplitude noise and to periodic environmental perturbations of near resonant 
frequency. This sensitivity may be helpful in the accurate determination of bifurcation 
points. The model involves several parameters and particular (singular) limits are 
investigated. These limits reveal other interesting features on the slow passage through 
the bifurcation point. 

We employ the specific problem of the FitzHugh-Nagumo equations as a model 
to describe the mathematical and qualitative features of the slow passage through a 
Hopf bifurcation. Many of these features occur for other models [25]. 

2. Formulation. 
2.1. The FitzHugh-Nagumo equations. In the early 1950s, Hodgkin and Huxley 

[12] proposed a model that describes the generation and propagation of the nerve 
impulse along the giant axon of the squid. The model consists of a four-variable system 
of nonlinear partial differential equations. Subsequently, Nagumo et al. [13] and 
FitzHugh [14] developed a simpler two-variable system, which describes the main 
qualitative features of the original Hodgkin-Huxley equations and which is analytically 
more tractable. The so-called FitzHugh-Nagumo (FHN) equations for the space 
clamped (i.e., spatially uniform) segment of axon have the form 

(2.1a) dv = -f(v) - w + I(t), 
dt 

(2.1b) dw = b(v - yw), 
dt 

where b and y are positive constants and f(v) is a cubic-shaped function given by 

(2.1c) f(v) = i,(v - a)(v - 1), 0 < a <2. 

Here v(t) denotes the potential difference at time t across the membrane of the axon 
and w represents a recovery current which, according to the second equation (2.1b), 
responds slowly, when b is small, to changes in v. The first equation (2.1a) expresses 
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Kirchhoff's current law as applied to the membrane; the capacitive, recovery, and 
instantaneous nonlinear currents sum to equal the applied current, I(t). The applied 
current is our control or bifurcation parameter. In this section, we consider either 
constant intensities or slowly varying intensities of the form 

(2. 1d) I(Et) = Ii + et, O0< E << 1. 

From biophysical considerations, it is reasonable to restrict y so that 

(2.2) y<3(1-a+a2)-1. 

This insures that (2.1) with ? = 0 have a unique steady state. The steady state (v, w) = 
(vs(I), w(I)) satisfies the conditions 

(2.3) WS = v,/Y, I =f(v,) + vdY. 

To analyze its stability, we consider small perturbations of the form v = v, +p eAt and 
w = w, + q eA where IpI <<1 and I q(<<1. This leads to the following characteristic 
equation for A 

(2.4a) A2+AA+B=0 

where 

(2.4b) A =f'(vs(I)) + by, 

(2.4c) B = b [1 + yf'(vs(I))I 

The steady state is stable (unstable) if A> 0, B> 0 (A <0 and/or B <0). From the 
conditions A = O, B > 0 we find two Hopf bifurcation points I - I. They satisfy the 
conditions 

(2.5) V(I) = vi= [a + 1 i (a2+1 - a -3by)12 

(2.6) 2=_ b(l - by 2) > O. 

When I < IL or I> I (I_ < I < I+), the steady state is stable (unstable). To analyze 
the response of the system near IL or I+, the approach of bifurcation theory is 
particularly useful. When I> IL or I < I+, the transition to the oscillations can be 
smooth (supercritical bifurcation) or hard (subcritical bifurcation). Details of the 
bifurcation analysis are given in [15]-[17]. 

2.2. Response to the slowly varying parameter. We now consider the effect of a 
slowly varying parameter. We assume that the system is initially at a stable steady state 
i.e., Ii < I- Figure 1 illustrates the response to the slow, linearly rising current (2.1d); 
in Fig. 1(a), v is plotted versus t and in Fig. 1(b), v is plotted versus I. For these 
parameter values, the Hopf bifurcation at I_ is supercritical. From the bifurcation 
structure (Fig. 1(b)), one might expect that the response would approximately track 
the slowly varying steady state (v, w) = (v,(I), w,(I)), and then, as I increases through 
IL, the response would switch to the large amplitude oscillations. Such a switch is 
seen, but the value I = Ij at which it occurs is considerably delayed beyond I. 
Moreover, the amount of delay increases with distance that Ii is from IL (Fig. 1(c)). 
To understand this delay, we execute the following strategy: first, we determine a new 
(slowly varying) basic reference solution as a perturbation of the steady state (v, w) 
(vs(I), ws(I)). Then, we analyze its stability with respect to the fast time of the 
oscillations. We show that loss in stability occurs well beyond I. 
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FIG. 1. Delay or memory effect. (a) The transition to slowly varying oscillations is computed from the 
numerical integration of (2.1) for current I(Et)=Ii+Et, where I =0.05. Trajectory (SV) shows that the 
membrane potential varies slowly in response to a slowly rising current. The onset of oscillations is indicated 
when the trajectory first crosses the horizontal dashed line v = 0.4, at t = 880. Curve (S) is the steady state 
solution to (2.1) for increasing (time-independent) values of I. Solid denotes stable and dashed denotes unstable 
steady state solutions. A stability change occurs at the Hopf bifurcation point I_ = 0.273, which corresponds to 
time t_ = (I_ - I)/ E = 446. Compared to the time of stability loss estimated from the Hopf bifurcation analysis, 
the onset of oscillations is considerably delayed. (b) The slowly varying response (SV) for slowly increasing I; 
and the steady state solution (S) and bifurcating branch of periodic solutions (P) for the parametric dependence 
on I. The onset of oscillations occurs at Ij = 0.490, wellpast the value I_ = 0.273 predictedfrom a Hopf bifurcation 
analysis, however, the amplitude of oscillations continue to track the bifurcation envelope computed using AUTO 
[19]. (c) Numerical determination of Ij for many values of Ii. Label b refers to cases (a) and (b) above. The 
delay increases as (L - Ii) increases. Superimposed (dashed) are the predicted values of Ij, from the numerical 
integration of (3.5), at which the slowly varying solution loses stability with respect to thefast time. This illustrates 
the memory effect. Parameter values are a = 0.2, b = 0.05, y = 0.4, and E = 5 x 10-4. 

The "slowly varying steady state" is found by determining a solution of (2.1) of 
the form 

00P 00 

(2.7) v(, ?) = Z E Vj(T), (T, ?) Z E?y Q(T) 
j=O j=O 

where T is a slow time variable defined by 

(2.8) T = Et. 

The coefficients vj(r) and Wj(T) are obtained by inserting (2.7) and (2.8) into (2.1) and 
equating to zero the coefficients of each power of E. The analysis of the first two 
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problems leads to the following results: 
2 

(2.9) v5(T, E) V= V(I(T)) + ?6 bB Vs(T)+ () 
byB 

and 

(2.10) w(T, E) = - v(I(T))- EB VS(T)+ O(E2) 
Bys 

where v' = -dvs/dT and A, B and W0 are defined by (2.4b), (2.4c), and (2.6), respectively. 
From (2.9) and (2.10), we note that the expansion of the slowly varying solution does 
not become singular at the Hopf bifurcation point I = I_. Indeed at I = I_, B = #0? 
and the functions in (2.9) and (2.10) remain 0(1) quantities. This contrasts with the 
case of a steady bifurcation or limit point where the expansion of the slowly varying 
solution becomes singular at and near the bifurcation or limit point [1], [10]. Note 
however from (2.9) and using the definitions (2.4) and (2.6) that the expansion is 
nonuniform if b = O(8) or y = 0(e). Both cases are of practical interest and we consider 
them in ?? 4 and 5, respectively. 

Numerical computations were performed on a Vax 8600 using a classical fourth- 
order Runge-Kutta method with fixed step size (DT = 0.1). Results were also computed 
using a Gear method [18] for stiff differential equations. The two methods showed 
excellent agreement. To retain accuracy using Gear's method in problems with slow 
passage through bifurcation points, a tight control of relative error is imperative (we 
used TOL = 10-12). Hence we found the RK4 method to be more efficient for these 
calculations. In addition, the simplicity of the method makes our results easily reproduc- 
ible. When a control parameter varies slowly and/or when I_ - Ii is large, numerical 
solutions to (2.1) are particularly sensitive to roundoff error. Thus we were careful to 
compare computations in single, double, and quadruple precision. The results for all 
figures (except as noted in Figs. 1(c) and 4) were computed in double precision. In 
numerical calculations the onset of oscillations was defined as the time tj when the v 
versus t trajectory first crossed the value v = 0.4. The bifurcation diagram in Fig. l(b) 
was computed using AUTO [19]. 

3. Stability of the slowly varying solution. In this section, we analyze the stability 
of the slowly varying solution (v, w) = (v5, wv). After introducing the deviations 

V(t, ?) = v(t, ?) - i(T, ?), 

W(tg ?) =W(t, ?-) - (TF ) 

into (2.1), we obtain the following linearized equations for V and W: 

dV -f'(D(, e))V- W dt 
(3.2) 

dW= b(V- yW). dt 

Assuming now zero initial conditions for V and W, we solve (3.2) by a WKB method 
[24]. Specifically, we seek a solution of (3.2) of the form 

V(t, ?) = V(T, ?) = exp [o0(T)/e] E ?3Vj (T), 

(3.3) j=O 
00 

i=O 
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Introducing (3.3) into (3.2) and equating to zero the coefficients of each power of s, 
we obtain the following problem for VO and WO: 

(3.4) cr'(T) 
Vo = 

-f(V(T))VVo0-WWo) 
C '(T) WO = b(V V- yWO). 

A nontrivial solution is possible only if A = 0''(T) satisfies the characteristic equation 
(2.4a) where the coefficients A and B are now functions of I(T). From (3.3) we conclude 
that at the time , the slowly varying solution is stable with respect to the fast time t if 

(3.5) Re (C) = Re [A (s)] ds < 0. 
0 

When the quantity Re (cr) becomes positive then the solution (3.3) exhibits rapid 
exponential growth and the slowly varying solution is therefore unstable on the fast 
time scale. From (3.5) we conclude that there is a memory effect. Destabilization of 
the slowly varying solution does not occur immediately when Re [A(s)] changes sign 
(i.e., when I increases through I1), but only after the integrated effect of Re (A) > 0 
overcomes the accumulated influence of Re (A) < 0. Moreover, (3.5) is independent of 
? so that the delay persists even if the control parameter is tuned infinitesimally slowly. 
The importance of this integral condition for predicting the delay was seen previously 
for steady bifurcation problems [5], [10] and for bursting oscillations [8]. 

We remark that the series (3.3) represents a valid approximation on the time 
interval r if the discriminant of (2.4a) given by 

(3.6) D(T)=A2(I(T)) -4B(I(T)) 

does not vanish. Points where D(T) vanishes are where (vs, w,) changes from a node 
to a focus. These points are called turning points (not to be confused with limit points). 
If IL - Ii is not sufficiently small, D(r) may change sign on the interval of interest and 
the WKB solution (3.3) becomes invalid in the neighborhood of the turning points. 
Nevertheless, a global approximation to the solution of (3.2) can be obtained by the 
method of matched asymptotic expansions. In this study, we consider only the simplest 
case where there are no turning points, i.e., D(T) < 0 during the time interval of interest. 
The case with turning points will be presented elsewhere. Its analysis leads to a stability 
condition similar to (3.5). 

We have obtained explicit expressions for the delay and for conditions which 
guarantee that D(T) remains negative by exploiting algebraic simplifications which 
arise in the parameter range 0 < a << 1. In the limit a -> 0, we assume I(T) = 0(a), and 
find from (2.3) and then from (2.4(b), (c)) the following expressions for vS, A, and B: 

(3.7) v,(I) = yI + 0(a2), 

(3.8) A = -2y(I - IO-) + 0(a2), 

(3.9) B = b + 0(a2b) 

where I?. = a/2y corresponds to the leading approximation of the first Hopf bifurcation 
point I = IL (from (2.5), v_ = a/2+ 0(a2) and then using (2.3), IL = I? + 0(a2)). Using 
the definition (3.6), we obtain an approximate expression for D(Tr) 

(3.10) D(T) 4y2(I() - 4b 

or, equivalently, 

(3.11) D(T) 4y2(I -1- b'12/ )(I - i+ I'2/y). 
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At I= I0 D() < 0 and remains negative provided that 

(3.12) I? - b1/2/y <I(T) < I? + b1/2/ y. 

Thus, if Ii> I? - b1/2/y, then D(r) is negative until I = Io + b1/2Y is reached. Because 
we assume that D(T) <O during the time interval of interest, the stability change of 
the slowly varying solution appears at T = Tj, which is defined by the condition 

(3.13a) JRe[A(s)] ds-=O 
0 

or, equivalently, 

(1.13b)| A(s) ds--2^y (I(s)- IO-)ds=-YTi (I(Ti) -IO) -(Io - I) 0. 
0 o 

Thus, since, I-= Io + 0(a2), we conclude from (3.13b) that 

(3.14) I(j)-I- = I -Ii 

to lowest order. Using (3.14) we easily verify that D(T) <0 for 0 T Tj. We call 
I(Tj) - I_ the delay of the bifurcation transition. The expression (3.14) emphasizes two 
important features of the slow passage through the Hopf bifurcation: first, it is 
independent of E, the rate of change of the control parameter I; second, the stability 
change of the slowly varying reference solution appears at a distance that is 0(1), 
with respect to E, from the static bifurcation point I__ as seen in Fig. 1. This distance 
can be controlled by changing Ii, the initial value of I. We thus observe a memory effect. 

In Fig. 1(c), we illustrate the memory effect by integrating (2.1) numerically. Our 
calculations confirm that increasing I_ -Ii increases the delay of the bifurcation 
transition. Moreover, (3.14) is in excellent agreement with the numerical results when 
I_ -Ii > 0.2. For I_ - Ii < 0.2 the numerics apparently deviate from our analytic predic- 
tion. This is due to the bifurcation being supercritical. The bifurcating branch of 
periodic solutions is locally stable, so when Ii is near the static Hopf point there are 
several small oscillations whose amplitude remain below the prescribed "threshold." 
For larger delays there is usually only one or two such oscillations. Another feature 
observed in Fig. 1 (c) is a sawtooth jump pattern that occurs because the final subthresh- 
old oscillation before onset shifts in phase as I_ - Ii increases. Eventually a value is 
reached that delays the onset for one more subthreshold oscillation. The size of the 
jump Alj is estimated by multiplying the ramp speed ? by the period of the oscillation 
21r/Wo, that is AIj = E(21T/to). When I_ - Ii = O, six subthreshold oscillations occur 
before onset. Thus the jump magnitude in this case is about 6E(2v1/wo). 

4. Slow passage through a low frequency Hopf bifurcation. We now investigate the 
dynamics of the case b small, which appeared as a singularity of the slowly varying 
reference solution (2.9) and (2.10). A detailed study of this singularity (E = 0(b)) leads 
to a rich discussion and will be presented elsewhere. In this section, we consider a 
particular relation between E, Ii - I_, and b that is motivated by the parameter values 
used in our numerical study of the FHN equations (E = 0(b3/2) and Ii - I_= 0(b"/2)). 
This special relation between the parameters does not correspond to the singularity of 
the slowly varying solution. However, it can be shown that the Hopf bifurcation is 
singular in this critical regime [20]. This motivates a careful analysis of this case. To 
lowest order, we find that the dynamical description is given by a nonlinear problem. 
Although we do not solve it analytically, we obtain useful insight showing that in this 
case the onset of oscillations exhibits an advance rather than a delay. 
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In order to analyze the slow passage through this low frequency Hopf bifurcation, 
we first introduce a new fast time and a slow time defined by 

(4.1) T= b1/2t 

(4.2) S= bt. 

T and S correspond to the time scales of the oscillations and the control parameter, 
respectively. For mathematical simplicity, we shall restrict our analysis to the vicinity 
of the Hopf bifurcation point (v, w, I) = (v_, w_, I) defined by (2.3) and (2.5), and 
assume that the deviation IL - Ii is small. Specifically, we seek a solution of the FHN 
equations (2.1) of the form 

(4.3) v(T, S, b"2)- v++b"2 V , S)+bV2(T, S)+.* , 

(4.4) w(T S, b"/2)- w_+ b"/2 W,(1T S)+ bW2(7T S)+.**, 

(4.5) I(?t) = I(S) = I + b1/21 ,(S) + bI2(S) + * - . 

The expansion (4.5) for the slowly varying control parameter I(S) and the requirement 
that I is a function of the slow time S imply 

(4.6) Ii-L- = b1/2P + bP2+** 

and 

(4.7) = b312Q + b2Q2+... 

where P and Q are prescribed 0(1) quantities. Consequently, we may write that 

(4.8) I,(S) = P+ QS. 

Introducing (4.3)-(4.7) into (2.1) and equating to zero the coefficients of each power 
of b1/2 leads to a sequence of problems for the coefficients VI, V2, - . - and W,, W2,* - 
Applying the standard techniques of multi-scate analysis, we obtain that 

(4.9) W,=P+QS 

and 

(4.10) a V _ w2-f"a(v )-+P2 + Q2S aT 2 

(4.11) aW2= V= -Y(P+ QS)-Q a9T 
or, equivalently, if we eliminate W2, 

a2v a 
(4.12) - =-V -f"(V ) VV, a+(P +PQS)+Q. 

d9T2 dT 
Defining U(T, S) =f'(v) V,(T, S) and using (4.8), (4.12) can be rewritten in a simpler 
form as 

(4.13) U+ U+ U d U= R (S) =f'(v(YII, (S) + Q). aT 2 aT 
Equation (4.13) admits a slowly varying solution given by 

(4.14) U(S) = f"(V4 (yI, (S) + Q) 
Using the expansions (4.3)-(4.7) it can be shown that 

(4.15) v = iv(S, b"/2) = v + b/2 U(S)/f"(v-) + O(b) 
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matches, as b - 0, the outer expansion of the slowly varying reference solution, given 
by (2.9). To analyze the linear stability of (4.14) with respect to the fast time T, we 
must consider the following linearized problem 

(4.16) a__au_ 3U = 
aT2 +f(V)(YI1(S) +Q) a T UO. 

The stability problem is similar to the problem studied in ?3. If I1(S) is considered as 
a constant parameter, the critical point defined by 

(4.17) I(SC) =-Qy 

represents a Hopf bifurcation point of (4.16). However, since I1(S) is slowly varying, 
the change of stability of (4.14) will occur later. We analyze (4.16) by using the WKB 
method. If the discriminant D(S) = [f"'(v_)4(yl(S) + Q)]2 -4<0 during the interval of 
interest, we find that 

(4.18) I,(S) - I,(SC) = I(SC) - P 

where I,(Sj) corresponds to the onset of the rapid oscillations. If -2Q/ y - P < 0, (i.e., 

(a) (b) 

R ? UT R s ? UT 

~~~~~~~~u , 

(C) R <0 UT1 

<H W ~~~~~~~u 

FIG. 2. Approximation for slowly varying solution in the case of Hopf bifurcation with low frequency. 
Sequence of phase plane portraits of (4.13) for R > 0, R = 0, and R < 0. (a) R > 0: all initial points close to 
the singular point are attracted toward the singular point; this corresponds to a solution which tracks the slowly 
varying steady state. (b) R = 0 corresponds to the time at which I reaches a critical value, I (Sc). The separatrix 
UT = -1 divides a one-parameter family of periodic orbits from unbounded trajectories. (c) R < 0 corresponds 
to when the oscillations near the slowly varying steady state grow in amplitude. All initial points lead to unbounded 
trajectories. 
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if I_ - Ii <2b112Q/ y) then I,(Sj) is negative. Consequently, the large amplitude oscilla- 
tions that appear at 

(4.19) Ij = I+ b2(S) + O(b) 

occur before I reaches the Hopf bifurcation point I_. Then there is no delay, but 
rather an advance. 

The preceding conclusion is based on the linearized equation (4.16). To analyze 
the full nonlinear problem (4.13) in which R is a slowly varying function of S, we 
consider a slowly varying phase plane technique. Thus, in Fig. 2 we examine a sequence 
of phase planes for R > 0, R = 0, R < 0. In Fig. 2(a), all initial points sufficiently close 
to the singular point lead to trajectories spiraling toward the singular point. This 
corresponds to the initiation of the slowly varying solution when the response tracks 
the slowly changing steady state. In Fig. 2(a) note that points located below a critical 
separatrix lead to unbounded trajectories. They correspond to the earlier stage of an 
excitable trajectory [20]. As R(S) becomes zero, or, equivalently, I1(S) = I1(SC) (Fig. 
2(b)), the separatrix is a straight line given by UT= -1 and it separates the one- 
parameter family of periodic orbits surrounding the center U = UT=0 and the 
unbounded trajectories. Finally, Fig. 2(c) shows the phase plane portrait for R < 0 that 
describes the slow growth of subthreshold oscillations just prior to the onset. The 
numerical results of Fig. 3 illustrate the phenomenon of an advance and confirm the 
above asymptotic treatment. For these parameter values (see figure legend), we have 
I_ = 0.251, Q = 0.5, and P = -2.01, which yield I1(S,) = -1.25 from (4.17) and Ij 0.202, 
from (4.18), (4.19). 

0.3 

0.0 I(sc) Ij I- 0.3 

I 
FIG. 3. Advance rather than delay for low frequency oscillations (small b); comparison of numerical 

solutions to full problem (2.1) (dashed) and to the lowest order nonlinear approximation (4.13) (solid) for 
parameter values a = 0.2, y = 0.4, b = 0.01, and ? = 5 x 10-4. The solution plotted versus I shows that the onset 
is advanced rather than delayed relative to the Hopf bifurcation point I- = 0.25. For Ii = 0.05, I(Sc) = I_ -0.125 = 
0.125 and oscillations commence near I) = 0.225 < I-, thus indicating an advance. The numerical identification 
of Ij differs from the prediction of (4.19) by approximately one subthreshold oscillation. 

5. Effect of the rate of change of the control parameter. In the previous sections, 
we have considered E, the rate of change of the applied current, as a small parameter. 
Except when b is small (low frequency Hopf bifurcation), the delayed bifurcation 
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transition does not depend on s in first approximation. However, in a real experiment, 
we might study the dependence as ? progressively increases from small to moderate 
values and determine if its increase has a stabilizing or destabilizing effect. In other 
words, we want to know if the onset of the large amplitude and rapid 6scillations can 
be considerably delayed or, on the contrary, facilitated as a result of changing E. Figure 
4(a) shows numerical evidence of the delayed bifurcation transition Ij - I_ as a function 
of 1/8. For now, we disregard the points labeled SP; these data will be discussed in 

(a) 0.3' 

3 - ~ ~ - - -- - -- - - 

012 

0.0 

t 

-0.1 -1 

-0.2 5 
0 1000 2000 3000 4000 5000 

l/e 

(b) 10 

5- 

I-I 

j-5 

-10* 
0 50 100 150 200 

1/1 
FIG. 4. Increasing the ramp speed decreases the magnitude of the delay. Numerical solutions to (2. 1) show 

the delayed bifurcation transition Ij - I_ as a function of I/ E. (a) The parameter values as in Fig. 1, but with 
Ii=0. Computed results asymptote to Ij - IL = 0.29 as E -> 0. The dashed curve represents the asymptotic 

approximation, as se -* 0, determined from the direct integration of (3.5). Points labeled (SP) are discussed in 
? 6. (b) Delayed transition for low y case (note difference in scale in Figs. 4(a) and 4(b)). Parameter values 
are a = 0.2, b = 0.4, y = 0.01, and I, = 0. The dashed curve is a WKB approximation of the delayed transition, 
computed from (5.7) and (5.8). 
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? 6. Note that as E -*0 (or 1/e - oox) the curve asymptotes to a value consistent with 
the memory effect predicted by (3.5). Also, note that the magnitude of the jumps due 
to skipped oscillations decreases as e -> 0, since AIj- = (217-Ito) -0 in this limit. Curves 
such as this one are useful in experimental and theoretical studies of nerve accomoda- 
tion [21]. 

To better understand the effect of ? we analyze the limit y -e 0, with E, a, and b 
fixed in the FHN equations (2. 1). At y = 0, these equations admit an exact time 
dependent solution given by 

(5.1) v (t) = E/ b, w (t) = I(?t) -f(?/b) 
where I is given by (2.1d). We consider (5.1) as our new basic reference solution. 
Because v is constant, it is possible to study the linear stability of (5.1) by first 
reformulating the evolution equations (2.1) as a second-order equation for v only and 
then by linearizing this equation about v = E/b. We find that the small deviation 
V(t) = v(t) - iv satisfies the following equation: 

(5.2) d2+f'(/b) dV+bV=O. 
dt2- f( dt 

From (5.2) we easily obtain the characteristic equation, which is exactly (2.4) with 
y = 0 and v.(I) replaced by v- = e/b. Conisequently, the reference solution (5.1) is stable 
(unstable) if v = e/b < v_ or v = E/b > v+ (if v_ < v = E/b < v,) where v?(a) is defined 
by (2.5) with y = 0. Thus for small or large values of E, the reference solution is always 
stable. On the other hand for moderate values of E, this solution is unstable and rapid 
oscillations will develop as soon as time increases. 

We now consider the case of a reference solution, which is stable when y =0 
(v < v_ or v > v+), and examine the limit y - 0. We first seek a slowly varying solution 
of (2.1) of the form 

(5.3) 
i(0, y) v0(0)+yv1(0) 

ii(0, y) = 1 wo(O) + W (0) + 

where 0 is a new slow time defined by 

(5.4) 0= yt. 

We obtain the coefficients v0, v,, wo, w, - , by inserting (5.3) into the FHN equations 
(2.1) and by equating to zero the coefficients of each power of y. We then obtain that 
v3 and w are given by 

(5.5) 3(e, 'y) = E/b+ EO+ 0(y), w(0, y) = Y'Es0 + 0(1). 

We now consider the linearized evolution equations and analyze the stability of (5.5). 
As y - 0, we obtain the following equation for the small deviation V(t) = v(t) - i(0, y) 

(5.6) d2 f'(e/b + e@) d + bV = 0. 
dt2 'f ~dt 

Note that this equation is similar to (5.2) except that the coefficient of dV/dt is now 
a function 0. Since Ii does not appear in (5.6), we do not expect, for fixed e and as 
y - 0, that the stability of the slowly varying reference solution depends on the initial 
position of I (recall that the memory effect has been found for fixed y and as e -> 0). 
However, we still have a delayed bifurcation transition. This delay can be found by a 
WKB analysis of (5.6) similar to the treatment in ? 3. The analysis is tedious and we 
summarize the results. 
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The Hopf bifurcation point I_ and the point Ij where the jump transition occurs 
are given by (assuming f'(i)2 - 4b <0): 

(5.7) L_ y 1(Sc -)/b + 0(1), 

(5.8) I= 2 l{a + 1 -3s/b -[(a+ 1 -3e/b)2 -4f(sl/b)]1/1}+ 0(1) 

where ec is defined by the conditionf'(e,/b) = 0, i.e., s?, = bv_ and v_ is defined by (2.5). 
In conclusion, if e < ?,c the system approaches a slowly varying solution which 

remains stable until I = Ij is reached (IJ > I), but if e > sc, then the onset of oscillations 
occurs before I = I_. We have analyzed these predictions numerically by considering 
the following values of the parameters y = 10-2, a = 0.2, and b = 0.4. We determine 
SC= 0.038. In Fig. 4(b) we compare the numerical results for (2.1) with the analytic 
approximation (dashed curve) given by (5.7) and (5.8) for different values of s. For 
small values of E, the instability of the slowly varying solution is considerably delayed; 
however, for larger values of S(S > ?c) oscillations quickly appear. 

6. Discussion. In this paper we have considered the effect of a slow monotonic 
variation in a control parameter on the response of a system as it passes through a 
Hopf bifurcation. We have found that the onset of oscillations can be considerably 
delayed if the initial point is near the steady state in its stable regime (Fig. 1). That 
is, the system continues to track, for some measurable time, a "slowly varying steady 
state" even after it has lost stability (determined when the control variable is treated 
as a static parameter). Eventually the destabilizing influences accumulate and the 
response becomes oscillatory. The delay is greater if the initial point is further from 
the static bifurcation point (Fig. 1(c)). The integral condition (3.5), which expresses 
the new stability condition was derived analytically by perturbation methods for small 
E, where E is the rate of the slow parameter variation. The condition applies over a 
robust parameter range in which the time scale of the characteristic frequency (associ- 
ated with the Hopf bifurcation) is 0(1). The result does not depend on whether the 
bifurcation is sub- or supercritical. Although we applied our strategy to a particular 
model problem, the FitzHugh-Nagumo equation, our general result is applicable to a 
wide class of problems. For this, A in (3.5) is identified with the eigenvalue of largest 
real part. 

In certain parameter ranges, we have gained additional insight to the model 
problem by considering limiting parameter values and using asymptotic methods. For 
example, if the Hopf bifurcation leads to a slow oscillation, e.g., as in the case of a 
relaxation oscillation [20], we find that the onset of oscillation may exhibit an advance 
instead of a delay. 

We have also considered the dependence of the onset on the rate of variation of 
the control parameter. We have seen numerically (cf. Fig. 4) that the delayed instability 
point increases with 1/ s. For fast ramps, the instability occurs earlier. We are uncertain 
as to how large a class of problems exhibit this behavior. However, numerical simula- 
tions of the Hodgkin-Huxley model (for which the FitzHugh-Nagumo equation is 
considered a simplification) reveal behavior similar to the curves in Fig. 4(a) [21], 
[23]. For the FitzHugh-Nagumo equation we have obtained an analytic description 
for the rate dependence in a special case, y<< 1, and we find using a WKB analysis 
that the onset point increases monotonically with 1/s. 

We re-emphasize that numerical support for some of our analytic results requires 
careful error control. For example, when S is very small, we employ high precision 
numerics to reveal the predicted asymptotic value of the delayed Ij (Fig. 4(a)). In this 
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range, the numerical model is subject to sustained perturbing influences (i.e., roundoff 
errors) for a considerable duration as I passes into the unstable regime beyond I_ but 
before Ij is reached; quadruple precision reduces the effect of roundoff. By analogy, 
we would anticipate similar sensitivities of delays and advances for an experimental 
system that is exposed to environmental or imposed fluctuations. These observations 
led us to explore specifically the effects of sustained perturbations (sinusoidal, as well 
as stochastic) on the delay phenomena. For this, we again considered a model problem 
of the FHN-type: 

(6.1) d = -f(v) - w + I(et) +3 sin (ct) 

dw 

(62) d- = b(v- yw) 
dt 

in which both 3 and ? are small parameters. Note that the problem also depends on 
co, the frequency of the time periodic perturbation. As co -- 0, sin (cot) - 0 if t<< 1/co 
and there is no effect of the perturbation (if 3 cos (cot) was considered instead of 
3 sin (cot), then 3 cos (art) 3S if t << 1/co; by redefining the initial value of I as I = Ii + 3, 
we again find no effect of the time-dependent perturbations). On the other hand, as 
Co - 00, the periodic forcing represents rapid oscillations and only its average value 
will contribute to the long time behavior of the solution. This can be shown by a 
multi-time analysis where T- cot is now considered as the basic fast time. The average 
value of the periodic oscillation is zero and consequently, we do not expect an effect 
of the perturbation. We conclude that the delay and memory effects studied previously 
remain unchanged in the presence of small amplitude periodic forcing if the forcing 
frequency is either sufficiently small or sufficiently high. 

As we expect, the delay is most sensitive to frequencies near co0. Figure 5(a) 
illustrates that the delay is reduced considerably. The reduction is more dramatic for 
larger 3, and we also see subharmonic and superharmonic resonance effects with delay 
reductions for co near coo/3, coo/2, and 2co. 

If we now consider the perturbation amplitude 3 as an adjustable parameter, then 
the sensitivity exhibits three regimes of behavior (solid curves of Fig. 5(b)). For 3 
sufficiently small, 3< <S, the delay is maximal and independent of 3. If 3 is sufficiently 
large, there is an advance with Ij - Ii. For intermediate 3, Ij - I_ decreases as 3 increases 
with a sizable range of approximately linear dependence on (-ln 3)1/2 for 3 just 
below SC. 

Some features of the above numerical study of sensitivity are supported by 
preliminary analytic results from considering the linear stability of the slowly varying 
solution (V(Et, e), W(?t, ?)) as 3 -> 0 when e is small but fixed. In particular, we find 
that Sc = O(e-l/6), and that Ij - I- depends linearly on (-ln 3)1/2 for 3 just below SC. 
A similar behavior has been found by an asymptotic analysis of a problem which 
exhibits a static bifurcation [22]. Our analysis also indicates the possibility of subhar- 
monic resonance as seen in Fig. 5(b). 

For our model problem we conclude that accurate identification of the small 3 
asymptote, in the presence of sustained perturbations, requires that perturbations with 
frequency components near co be restricted to very small amplitudes, say less than 
about 10-7 10-8 relative to I(st). Generally, a system is subject to fluctuations with 
many different frequency components and we should not assume that selected frequency 
ranges would be absent. To emphasize this we have simulated the effect of white noise 
superimposed upon the control parameter, i.e., we have replaced, in (6.1), (6.2), the 
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FIG. 5. Delay is sensitive to small amplitude periodic and stochastic fluctuations (values of a, b, y as in 
Fig. 1, but with ? = 10-'). (a) Numerical solutions to (6.1) and (6.2) show that the delay is most sensitive to 
small periodic fluctuations at frequencies near w0 = 0.223, given by (2.6). Dashed lines indicate subharmonic 
and superharmonic resonance effects with delay reductionsfor w near wo/3, O0/2, (oO and 2wo. The two curves 
(lowerforS = 2 x 10-3 and upperfor 8 = 5 x 10-6) show that the delays are sensitive to the perturbation amplitude 
3. (b) Perturbation amplitude 3 is treated as an adjustable parameter, and numerical solutions to (6.1) and 
(6.2) (solid curves) for near resonantfrequencies o1/2, wo, and 2wo are superimposed with numerical solutions 
to (2.1) for simulated white noise. The value of Ij for each of 100 diferent values of 3 is plotted as a discrete 
data point to represent the noise data. The delayed bifurcation transition Ij- I, for all cases, has an approximate 
linear dependence on (-In 8)1/2. 

sinusoidal forcing by the stochastic forcing term 8o(t), where cr(t) is a random number 
uniformly distributed in [-0.5,0.5]. The value of Ij for each of 100 different values of 
8 is plotted in Fig. 5(b) as a discrete data point. The trend is again that, even for small 
8, there is a deviation from the predicted delay for 8 = 0. We should also notice the 
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sudden dropoff at a critical 8 when the observed Ij approximately equals I_. If this 
feature is robust, then it could be used to estimate I_. 

The above calculations for the effects of periodic perturbations and small amplitude 
white noise help us to understand why numerical calculations involving slow passage 
through a Hopf bifurcation can be particularly sensitive to roundoff error. Random 
fluctuations, even as small as 10-8, can reduce the delay when E is small. This amplitude 
is approximately equal to that of single precision "machine noise" due to roundoff. 
To emphasize this point we compare, in Fig. 4(a), the dependence of Ij on 1/ ? computed 
with both quadruple and single precision; the latter results are distinguished by the 
label SP. Note how roundoff error seriously affects the single precision result as - 
decreases. The value of - below which the roundoff error first appears is dependent 
on the specific numerical algorithm. However, deviation from the deterministic predic- 
tion due to roundoff error is unavoidable if s is small. 

Every biological or physical experiment is subject to noise. Noise can influence 
the outcome of an experiment if the system is particularly sensitive. In this paper, the 
parameter range for which most of our analytic results are applicable, - << 1, is also 
the parameter range for which the FHN system seems to be quite sensitive to noise. 
We have shown that in general we may expect delays in the onset of oscillations but 
that small amplitude fluctuation may decrease the delay and diminish the memory 
effect. We suggest that both deterministic and stochastic approaches will be important 
for comparing theoretical and experimental results in systems where slow passage 
through a Hopf bifurcation is the underlying mechanism for the onset of oscillations. 

Acknowledgment. We thank Shihab Shamma for helpful discussions and sugges- 
tions. 

Note added in proof. It has recently come to our attention that a different approach 
can be used to analyze the delay due to the slow passage through the Hopf bifurcation 
point [A. I. Neishtadt, Persistence of stability lossfor dynamical bifurcations I, Differen- 
tial Equations, 23 (1987), pp. 1385-1391]. 
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