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Abstract

Background: It is well known that the deterministic dynamics of biochemical reaction networks can be more easily

studied if timescale separation conditions are invoked (the quasi-steady-state assumption). In this case the

deterministic dynamics of a large network of elementary reactions are well described by the dynamics of a smaller

network of effective reactions. Each of the latter represents a group of elementary reactions in the large network and

has associated with it an effective macroscopic rate law. A popular method to achieve model reduction in the

presence of intrinsic noise consists of using the effective macroscopic rate laws to heuristically deduce effective

probabilities for the effective reactions which then enables simulation via the stochastic simulation algorithm (SSA).

The validity of this heuristic SSA method is a priori doubtful because the reaction probabilities for the SSA have only

been rigorously derived from microscopic physics arguments for elementary reactions.

Results: We here obtain, by rigorous means and in closed-form, a reduced linear Langevin equation description of

the stochastic dynamics of monostable biochemical networks in conditions characterized by small intrinsic noise and

timescale separation. The slow-scale linear noise approximation (ssLNA), as the new method is called, is used to

calculate the intrinsic noise statistics of enzyme and gene networks. The results agree very well with SSA simulations

of the non-reduced network of elementary reactions. In contrast the conventional heuristic SSA is shown to

overestimate the size of noise for Michaelis-Menten kinetics, considerably under-estimate the size of noise for Hill-type

kinetics and in some cases even miss the prediction of noise-induced oscillations.

Conclusions: A new general method, the ssLNA, is derived and shown to correctly describe the statistics of intrinsic

noise about the macroscopic concentrations under timescale separation conditions. The ssLNA provides a simple and

accurate means of performing stochastic model reduction and hence it is expected to be of widespread utility in

studying the dynamics of large noisy reaction networks, as is common in computational and systems biology.

Background

Biochemical pathways or networks are typically very large.

A well-characterized example is the protein-protein inter-

action network of the yeast Saccharomyces cerevisiae with

approximately a thousand putative interactions involving

an approximate equal number of proteins [1]. It is also a

fact that a significant number of species are found in low

*Correspondence: ramon.grima@ed.ac.uk
2School of Biological Sciences, University of Edinburgh, Edinburgh, UK
3SynthSys Edinburgh, University of Edinburgh, Edinburgh, UK

Full list of author information is available at the end of the article

copy numbers in both prokaryotic and eukaryotic cells

[2,3]. Recent mass spectrometry-based studies have, for

example, shown that 75% of the proteins in the cytosol

of the bacterium Escherichia coli appear in copy numbers

below 250 and the median copy number of all identified

proteins is approximately 500 [3]. This means that simu-

lation methods intended to realistically capture the inner

workings of a cell have to (i) be stochastic to take into

account the significant intrinsic noise associated with low

copy number conditions; (ii) be able to simulate fairly large

networks in a reasonable amount of time. The stochas-

tic simulation algorithm (SSA)[4] has been and still is the
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algorithm of choice for a large number of studies exploring

the role of noise in biology. The advantage of the algorithm

is that it is exact, i.e., it exactly samples the trajectories

of the stochastic process described by the chemical mas-

ter equation (CME), the accepted mesoscopic description

of chemical kinetics. Its disadvantage is that it simulates

every reaction event and hence is not particularly suited

for the study of large networks [5]. This problem is an

outstanding challenge in the fields of computational and

systems biology.

A common way of circumventing the problem is to sim-

ulate a network of species which is much smaller than the

size of the full network but which nevertheless captures

the essential dynamics. For example, the three elementary

(unimolecular or bimolecular) reactions which describe

the enzyme-assisted catalysis of substrate S into product

P via the Michaelis-Menten reaction, S+E
k0
⇋

k1
C

k2→E + P,

can be replaced by a single effective reaction S
k′
→P.

Note that here E and C denote the free enzyme species

and the enzyme-substrate complex species, respectively.

The latter first-order reaction is non-elementary, i.e., it

can be broken down into a set of fundamental elemen-

tary reactions. The implicit assumption in this lumping

or coarse-graining method is that the transients in the

average concentrations of some species decay over much

longer timescales than those of the rest of the species.

Hence, one can argue that the relevant network to be sim-

ulated is that involving the slowly varying species only.

In the Michaelis-Menten example, the fast species were

the enzyme and the complex and the slow species are the

substrate and product. The dynamics of this reduced net-

work are of course only a faithful approximation of those

of the full network, theMichaelis-Menten reaction, when-

ever the rate constants guarantee reasonable timescale

separation.

On the macroscopic level, where molecule numbers are

so large that intrinsic noise can be ignored, there is a

well-known practical recipe for obtaining this reduced

or coarse-grained network from the full network of ele-

mentary reactions. One writes down the rate equations

(REs) for each species, decides which species are fast and

slow, sets the time derivative of the concentration of the

fast species to zero, solves for the steady-state concen-

trations of the fast species and finally substitutes these

concentrations into the equations for the slow species.

This procedure is the deterministic quasi-steady-state

assumption (QSSA). The result is a set of new REs for

the slow species only; corresponding to these reduced

equations is the coarse-grained network, i.e., the net-

work of reactions between slow species whose macro-

scopic rate laws are dictated by the new REs. Generally,

all coarse-grained networks will have at least one

reaction which is non-elementary; however those reac-

tions involving the interaction of only slow species in

the full network will naturally also remain elementary

in the coarse-grained network. The deterministic QSSA

presents a rigorous method of achieving a coarse-grained

macroscopic description based on the deterministic REs

[6]. Its major shortcoming is that it ignores the inherent

stochasticity of the system.

On the mesoscopic level, or, in other words, when-

ever the size of intrinsic noise becomes comparable with

the average molecule numbers, the description of chem-

ical kinetics is given by the CME. One would hope

that under conditions of timescale separation, just as

one can write effective REs for a coarse-grained net-

work starting from the REs of the full network, in a

similar manner one can obtain an effective (or reduced)

CME for the coarse-grained network starting from the

CME of the full network. The effective REs have infor-

mation about the macroscopic concentrations of the slow

species only, while the effective CME has information

about the fluctuations of the slow species only. This

line of reasoning has led to a stochastic formulation of

the QSSA which is in widespread use. In what follows

we concisely review the CME formulation of stochas-

tic kinetics and point out compelling reasons which

cast doubt on the validity of the popular stochastic

QSSA.

Suppose the network (full or coarse-grained) under con-

sideration consists of a number N of distinct chemical

species interacting via R elementary or non-elementary

chemical reactions of the type

s1jX1 + . . . + sNjXN

kj→ r1jX1 + . . . + rNjXN . (1)

Here, j is an index running from 1 toR,Xi denotes chem-

ical species i, sij and rij are the stoichiometric coefficients

and kj is the macroscopic rate coefficient of the reaction.

If reaction scheme (1) describes the full network with Ns

number of slow species and Nf = N − Ns number of

fast species, then we adopt the convention that X1 to XNs

denote the slow species, while XNs+1 to XN label the fast

species. Let ni denote the absolute number of molecules

of the ith species; then, at any point in time, the system

is described by the state vector �n = (n1, . . . , nN )T . When

the jth reaction occurs, the system jumps from state �n to

a new state �n + �μj, where �μj =
(

r1j − s1j, ....., rNj − sNj
)

.

Furthermore, one defines a propensity function aj for the

jth reaction such that aj (�n) dt is the probability that the

jth reaction occurs in the next infinitesimal time interval

[t, t + dt). Using these definitions and the laws of proba-

bility, one can then deduce that the general form of the

CME is [5]
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∂P (�n, t)
∂t

=
R

∑

j=1

[

aj
(

�n − �μj

)

P
(

�n − �μj, t
)

− aj (�n)P (�n, t)
]

,

(2)

where P(�n, t) is the probability that the system is in a par-

ticular mesoscopic state �n. The recipe becomes complete

once we specify the form of the propensity functions for

each chemical reaction. Figure 1 lists the microscopic rate

function, f̂j = aj/�, i.e., the propensity functions divided

by the volume �, for 4 elementary reactions and 3 com-

mon non-elementary reactions. The macroscopic rate

function fj, i.e., the rate of reaction according to the deter-

ministic REs, is also shown alongside the microscopic rate

functions. Note that [Xi] in themacroscopic rate functions

denotes the macroscopic concentration of species i.

If we are modeling the full network, then the constituent

reactions have to be all elementary. For such reactions,

the propensity and microscopic rate functions have been

derived from molecular physics [7] and hence the CME

for the full network is fundamentally correct. Now say that

we are modeling a coarse-grained network in which case

some reactions are non-elementary. Microscopic con-

siderations do not tell us anything about the form of

the propensity functions for such reactions. Rather the

propensities and the microscopic rate functions are a

heuristic extrapolation of the macroscopic reaction rates

at the heart of the effective REs for the non-elementary

reactions: f̂ is obtained by performing the substitution

[Xi] → ni/� on f.

Hence it follows that the CME for the coarse-grained

network is not rigorously derived from that of the full net-

Figure 1Microscopic andmacroscopic rate functions. The

macroscopic rate function f and the microscopic rate function f̂ for

various common types of chemical reaction steps. The former define

the REs while the latter define the CME. The first four reactions are

elementary, i.e., they are unimolecular or bimolecular reactions. The

last three reactions are non-elementary, i.e., they can be decomposed

into a number of simpler elementary reactions. These reactions

represent (from top to bottom) the catalysis of a substrate by enzyme,

up-regulation of a gene (G) by an activator and down-regulation of a

gene by a repressor.

work under conditions of timescale separation but rather is

heuristic and hence its validity is a priori doubtful. Janssen

was the first to investigate this question by means of an

analytical approach applied to a simple chemical exam-

ple, the dissociation of N2O5; he showed that “the master

equation for a complex chemical reaction cannot always

be reduced to a simpler master equation, even if there are

fast and slow individual reaction steps” [8]. This suggests

that even if the molecules numbers are quite large, the

conditions for timescale separation required for the valid-

ity of the deterministic QSSA are not generally enough

to guarantee the validity of the heuristic CME, a hypoth-

esis which has been recently verified in the context of

the Michaelis-Menten reaction with substrate input [9].

In other words, the heuristic CME is not the legitimate

stochastic equivalent of the deterministic QSSA, in the

sense that it does not correctly describe the statistics of

the intrinsic noise about the macroscopic concentrations as

given by the reduced REs of the coarse-grained network.

Notwithstanding the fundamental objections of Janssen,

and frequently in the name of pragmatism, many stud-

ies [10-13] have employed the heuristic CME to obtain

a coarse-grained stochastic description of various com-

plex networks. A number of studies [14-17] have reported

good agreement between the results of stochastic simula-

tions of the full and coarse-grained networks for enzyme

reactions and circadian oscillators which has enhanced

faith in the heuristic approach of stochastic modeling of

networks with non-elementary reactions and given it the

status of a mainstream methodology.

In this article we seek to derive a rigorous alternative

to the heuristic approach. Given the CME of the full

network of elementary reactions, we derive a reduced

linear Fokker-Planck equation (FPE) which describes the

noise statistics of the same network when the molecule

numbers are not too small and under the same condi-

tions of timescale separation imposed by the determin-

istic QSSA. This new FPE is the legitimate mesoscopic

description of intrinsic noise about the macroscopic con-

centrations of the coarse-grained network as obtained by

the deterministic QSSA. The noise statistics from this

approach are compared with stochastic simulations of the

full network and with simulations of the coarse-grained

network using the conventional heuristic approach. In

all cases our approach agrees very well with the full

network results. In contrast, we show how the size of

intrinsic noise as predicted by the conventional approach

can be different by more than an order of magnitude

than the actual value and how in some instances this

approach even misses the existence of noise-induced

oscillations. We also show using our method how one

can obtain the regions of parameter space where the

conventional approach qualitatively fails and where it

fares well.
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The article is organized as follows. In the Results

section, we discuss in general terms the procedure of

obtaining a rigorous mesoscopic description under con-

ditions of timescale separation akin to those of the deter-

ministic QSSA. We then apply this novel method to two

different examples: an enzyme mechanism capable of dis-

playing bothMichaelis-Menten and Hill-type kinetics and

a gene network with a single negative feedback loop.

The results from our method are contrasted and com-

pared with stochastic simulations of the full network and

with those of the coarse-grained network using the con-

ventional heuristic method. We finish by a discussion.

Detailed derivations concerning results and applications

can be found in the Methods section.

Results

The optimal method to determine the validity of the

heuristic CME would be to obtain its analytical solution

and compare it with that of the CME for the full network

and for rate constants chosen such that the determinis-

tic QSSA is valid. Note that the latter constraint on rate

constants is necessary because the propensities of the

heuristic CME are based on the macroscopic rate laws as

given by the reduced REs and hence the heuristic CME

can only givemeaningful results if the deterministic QSSA

is valid. Unfortunately, CMEs are generally analytically

intractable, with exact solutions only known for a handful

of simple elementary reactions [18-20]. To circumvent this

problem we take recourse to a systematic approximation

method, the system-size expansion of van Kampen [21].

The starting point of this method is to write the absolute

number ofmolecules of species i in the CME, equation (2),

as

ni

�
= [Xi] + �−1/2ǫi, (3)

where [Xi] is the macroscopic concentration of species i

and ǫi is proportional to the noise about this concentra-

tion. This substitution leads to an infinite expansion of the

master equation. The first term, that proportional to�1/2,

leads to the deterministic equations for the mean concen-

trations as predicted by the CME in the macroscopic limit

of large volumes (or equivalently largemolecule numbers).

The rest of the terms give a time-evolution equation for

the probability density function of the fluctuations, π(�ǫ, t).
This partial differential equation is an infinite series in

powers of the inverse square root of the volume (see [22]

for the general form of this equation). Truncating this

series to include only the first term, i.e., that which is pro-

portional to�0, leads to a second-order partial differential

equation, also called the linear Fokker-Planck equation

or the linear noise approximation (LNA) [21,23,24]. The

solution of the latter equation is a multivariate Gaus-

sian probability distribution and hence expressions for

the statistics of intrinsic noise about the macroscopic

concentrations, e.g., the variance of fluctuations, can be

obtained straightforwardly from this formalism, a dis-

tinctive advantage over the CME. The restrictions which

must be kept in mind are that this method only pro-

vides a reliable approximation to the CME if the molecule

numbers are sufficiently large (small intrinsic noise)

and the chemical network is monostable (see also the

Discussion and conclusion section).

Hence we can now formulate two questions to precisely

determine the validity of the heuristic CME in timescale

separation conditions: (i) in the macroscopic limit, are

the mean concentrations of the heuristic CME exactly

given by the reduced REs obtained from the deterministic

QSSA? (ii) are the noise statistics about these mean con-

centrations, as given by the LNA applied on the heuristic

CME, equal to the noise statistics obtained from applying

the LNA on the CME of the full network? If the heuristic

CME is correct then the answer to both these questions

should be yes.

The first question can be answered straightforwardly.

The deterministic equations for the mean concentra-

tions of the heuristic CME, in the macroscopic limit of

infinite volumes, necessarily only depend on the macro-

scopic limit of the heuristic microscopic rate functions

in the heuristic CME. More specifically, consideration of

the first term of the system-size expansion leads to a

deterministic set of equations of the form d �[X]/dt =
S

�̂
f |�→∞, where S is the stoichiometric matrix with ele-

ments Sij = rij − sij [23]. As discussed in the Introduc-

tion, the vector of heuristic microscopic rate functions

for the heuristic CME,
�̂
f , is constructed from the macro-

scopic rate function vector, �f , of the reduced REs by

performing the substitution [Xi] → ni/� on �f . Given
the ansatz, equation (3), we can see that the heuristic

method guarantees, by construction, that
�̂
f |�→∞ = �f .

This implies that the first term of the system-size expan-

sion applied to the heuristic CME leads to a deterministic

set of equations of the form d �[X]/dt = S �f , which

indeed are the reduced REs obtained from the deter-

ministic QSSA. Hence, we can conclusively state that in

the macroscopic limit, the heuristic CME does reproduce

the correct mean concentrations for timescale separation

conditions.

The second question, regarding agreement in noise

statistics not simply in themeans, has not been considered

before and presents a considerably more difficult chal-

lenge. In what follows we briefly review the LNA applied

to the heuristic CME of the coarse-grained network which

we shall call the hLNA and we derive the LNA applied

to the full network under conditions of timescale separa-

tion, a novel method which we refer to as the slow-scale

LNA (ssLNA).
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The LNA applied to the heuristic CME

The application of the LNA to the heuristic CME has

been the subject of a number of studies [23,25-30]. For

a step-by-step guide to implementing the LNA we refer

the reader to the supplementary material of Ref. [9]. Here

we simply state the well known results. We shall use the

underline notation to denote a matrix throughout the rest

of the article.

Given the coarse-grained network, reaction scheme (1),

one can construct the stoichiometric matrix S with ele-

ments Sij = rij − sij and the macroscopic rate vector with

entries fj = kj
∏N

m=1 [Xm]
smj . Note that the latter, as dis-

cussed in the Introduction, encapsulates the macroscopic

rate law for each individual reaction composing the net-

work. Note also that the k′s for a coarse-grained network

are generally functions of the macroscopic concentrations

and not constants as for a full network (of elementary

reactions). The reduced REs are then given by d �[X]/dt =
S �f and consequently the Jacobian matrix J has elements

Jij = ∂j( S �f )i, where ∂j denotes the partial derivative with

respect to
[

Xj

]

, the concentration of species j.

It then follows by the LNA that the noise statistics given

by the heuristic CME, i.e., equation (2) with heuristic

propensities, in the limit of large molecule numbers, are

approximately described by the following linear FPE

∂P (�ηs, t)
∂t

=
(

−∇T
s J �ηs + 1

2
∇T
s D h∇s

)

P (�ηs, t) , (4)

where �ηs is the vector of concentration fluctuations about

the macroscopic concentrations of the slow species, i.e.,

ηs,i = (ni/�) − [Xi]. Note that in the traditional approach

due to van Kampen [21] one writes a linear FPE for the

noise vector �ǫs because of the form of the ansatz, equation

(3) (the subscript s denotes slow species). Here we have

instead chosen to write the FPE for �ηs = �−1/2�ǫs since �η is

the true measure of fluctuations about the mean concen-

trations. The operator ∇s denotes the vector of derivatives

with respect to components of the vector �ηs. The matrix

D h is the diffusion matrix which is given by the following

formula

D h = �−1S F ST , (5)

where F is a diagonal matrix whose non-zero diagonal

entries are the elements of the macroscopic rate function

vector �f , i.e., F = diag (�f ).
The solution of the linear FPE, equation (4), is a multi-

variate Gaussian and hence noise statistics can be straight-

forwardly computed. The covariance matrix H of the

concentration fluctuations about the steady-state concen-

trations, as described by the linear FPE, can be obtained

by solving the Lyapunov equation [24,31]

J H + H JT + D h = 0, (6)

where Hij = 〈ηs,iηs,j〉. The variance of the fluctuations of

species j is hence given by the jth diagonal element of H.

The power spectrum of the concentration fluctuations of

the jth species is given by

Pj(ω) =
[

(

i Iω + J
)−1

D h

(

−i Iω + JT
)−1

]

jj

, (7)

where I is the identity matrix, i is the imaginary unit

number and ω is the frequency.

Note that we have chosen to compute the variance and

power spectrum as our noise statistics for the follow-

ing reasons. The variance can be used to calculate the

Fano factor (variance of fluctuations divided by the mean

concentration) and the coefficient of variation (standard

deviation of fluctuations divided by the mean concentra-

tion) [32]. The coefficient of variation provides a non-

dimensional measure of the size of intrinsic noise, and

is a particularly natural measure when the probability

distribution solution of the CME is approximately Gaus-

sian. The Fano factor multiplied by the volume provides

another non-dimensional measure of the noise level: it

gives the size of the fluctuations in the molecule num-

bers relative to that of a Poissonian distribution with

the same mean number of molecules. Generally these

measures provide different but complementary informa-

tion and both have been reported in recent experiments

[33,34]. Hence in this article we calculate both measures.

We also calculate the power spectrum which gives the

intensity of fluctuations at a given frequency; a peak in

the spectrum indicates noise-induced oscillations [35], a

phenomenon which is of importance in biochemical net-

works responsible for biological rhythms such as circadian

clocks [36].

The LNA applied to the full network under conditions of

timescale separation

The LNA approach mentioned in the previous subsec-

tion works equally well if applied to the CME of the full

network. This leads to a linear FPE of the form

∂P (�η, t)
∂t

=
(

−∇T J F �η + 1

2
∇TD F∇

)

P (�η, t) , (8)

where �η =
(

�ηs, �ηf
)

and �ηs and �ηf are, respectively, the vec-
tors of concentration fluctuations about the macroscopic

concentrations of the slow and fast species. The operator

∇ denotes the vector of derivatives with respect to com-

ponents of �η. The matrix J F is the Jacobian of the REs of

the full network, while the diffusion matrix D F is given by

equation (5) with S and F now equal to the stoichiomet-

ric matrix and the diagonal matrix of the macroscopic rate

function vector for the full network, respectively.

Note that while equation (4) is based on the heuris-

tic CME and therefore inherits all its problems, equation

(8) has no such problems: it is derived from the CME of
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the full network of elementary reactions, which is fun-

damentally correct. Hence, ideally, we would obtain the

multivariate Gaussian solution of the two linear FPEs,

compare and then decide upon the validity of the heuristic

CME. Unfortunately, this direct comparison is impossible

because equation (4) gives a joint probability distribution

function for the slow species only, whereas equation (8)

leads to a joint probability density function for both slow

and fast species.

In the Methods section we devise an adiabatic elim-

ination method by which, starting from equation (8),

we obtain a closed-form solution for a linear FPE that

describes the time evolution of the joint probability den-

sity function of slow variables only. We call the reduced

linear FPE obtained from this method, the slow-scale

LNA. Our result can be stated as follows. Under condi-

tions of timescale separation consistent with the deter-

ministic QSSA, the noise statistics of the slow species

according to the CME of the full network can be approxi-

mately described by the following linear FPE

∂P (�ηs, t)
∂t

=
(

−∇T
s J �ηs + 1

2
∇T
s D ss∇s

)

P (�ηs, t) . (9)

Note that the matrix J is the Jacobian of the reduced

REs of the coarse-grained network, indeed the same as

in equation (4). However, the diffusion matrix D ss is

generally different than D h, which indeed proves the non-

validity of the heuristic CME as a stochastic description

of the coarse-grained network. We show that the new

diffusion matrix is given by

D ss = �−1
(

A − B
) (

A − B
)T

, (10)

where A = S s

√

F and B = J sf J
−1
f S f

√

F. We have also

used the following convenient definitions

(11)

where S and J F are the stoichiometric and Jacobianmatri-

ces of the full network and F is the diagonal matrix of

the macroscopic rate function vector of the full network

with the macroscopic concentrations of the fast species

expressed in terms of the macroscopic concentrations of

the slow ones. The matrices S and J F are partitioned into

sub-matrices of the following sizes: S s is anNs ×Rmatrix,

S f is an Nf × R matrix, J s is an Ns × Ns matrix, J sf is

an Ns × Nf matrix, J fs is an Nf × Ns matrix and J f is an

Nf × Nf matrix. Note that Ns and Nf are the number of

slow and fast species respectively. Note also that the fact

that the new diffusion matrix can be written in the form

of equation (10) immediately implies that it is symmetric

and positive semi-definite, two crucial properties of the

diffusion matrices for all FPEs [21]. It also follows that the

variance and power spectrum of the slow species accord-

ing to the ssLNA can be calculated from equations (6) and

(7) with D h replaced by D ss.

The derivation of the ssLNA leads us to a fundamen-

tal conclusion: although the existence of an effective CME

for a coarse-grained network under conditions of timescale

separation cannot be generally guaranteed (as proved by

Janssen), it is always possible to write down a effective lin-

ear FPE for the coarse-grained network.We now also have

a viable strategy to compare the heuristic and full CMEs

under conditions of timescale separation: one obtains

the noise statistics from the hLNA and the ssLNA and

compares them for rate constants such that the determin-

istic QSSA is a valid approximation (for an illustration of

the comparison method, see Figure 2). Furthermore, the

ssLNA provides us not only with a new method to ana-

lytically obtain the noise statistics of a coarse-grained net-

work but also with a new simulation tool which replaces

conventional SSA simulations with heuristic propensities.

The new simulation method consists in numerically solv-

ing the set of stochastic differential equations (Langevin

equations) which exactly correspond to equation (9) [37]

d

dt
�ηs(t) = J �ηs(t) + �−1/2

(

S s − J sf J
−1
f S f

)

√

F�Ŵ(t),

(12)

where the R dimensional vector �Ŵ(t) is white Gaussian

noise defined by 〈Ŵi(t)〉=0 and 〈Ŵi(t)Ŵj(t
′)〉=δi,jδ(t−t′).

One may ask whether there is an effective CME which

in the large volume limit can be approximated by the

ssLNA, Eq. (12). The form of the noise coefficient in Eq.

(12) implies that the ssLNA corresponds to the master

equation of an effective reaction scheme with a stoichio-

metric matrix

S′ = S s − J sf J
−1
f S f . (13)

Such a reaction scheme is compatible with the reduced

REs: defining [ �Xs] as the macroscopic concentration vec-

tor of the slow species, we have d[ �Xs] /dt = S′ �f ([ �Xs] ) =
S s

�f ([ �Xs] ) since S f
�f = 0 as required by the determinis-

tic QSSA. Note that while S′ is not the only stoichiometric

matrix which is compatible with the reduced REs (any

matrix of the form S s + A S f where A is some general

matrix will do), it is the matrix which is uniquely selected

by adiabatic elimination of the concentration fluctua-

tions of the fast species. Of course this reduced reaction

scheme characterized by S′ is only physically meaning-

ful if its entries are time-independent and integer-valued.

Under timescale separation, this condition is not gener-

ally fulfilled. Rather this constitutes an additional, stronger

condition. Hence it follows that generally a reduced CME
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noise statistics

slow-scale

Linear Noise Approximation

(ssLNA)
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Fokker-Planck Eq. 

adiabatic elimination

full CME
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Linear Noise Approximation

(hLNA)

heuristic CME

noise statistics

det.

QSSA 
coarse-grained

network

full 
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Figure 2 Determining the validity of the heuristic CME. Scheme illustrating the analytical approach to determine the validity of the heuristic

CME which is used in this article. Parameters are chosen such that the deterministic QSSA is valid and such that molecule numbers are not too small.

The LNA is applied to the heuristic CME leading to a linear FPE, describing the noise of the slow species. A different reduced linear FPE describing

the noise in the slow species is obtained by applying a rigorous adiabatic elimination method on the linear FPE which approximates the CME of the

full network. The noise statistics from the two linear FPEs are compared.

description does not exist under timescale separation con-

ditions, though a reduced Langevin equation description,

i.e., the ssLNA, always exists.

In the rest of this article, we apply the systematic com-

parison method developed in the Results section to two

examples of biological importance: enzyme-facilitated

catalysis of substrate into product by cooperative and non-

cooperative mechanisms and a genetic network with a

negative feedback loop. For each of these, we shall obtain

the noise properties of the coarse-grained versions of the

circuits in the limit of large molecule numbers using the

ssLNA and the hLNA. Because the expressions for the

noise statistics from these two are quite simple, we shall

be able to readily identify the regions of parameter space

where the hLNA, and hence the heuristic CME, is cor-

rect and where it gives misleading results. The theoretical

results are confirmed by stochastic simulations based on

the CME of the full network and on the heuristic CME of

the coarse-grained network.

Application I: Cooperative and non-cooperative catalytic

mechanisms

Many regulatory mechanisms in intracellular biochem-

istry involve multisubunit enzymes with multiple bind-

ing sites [38]. We consider a simple network involving

the catalysis of substrate into product by a two-

subunit enzyme

kin→ S,

S + EE
k1
⇋

k−1

EES
k3→EE + P,

S + EES
k2
⇋

k−2

SEES
k4→EES + P. (14)

Substrate S is input into the compartment where the

reaction is occurring, it reversibly binds with an enzyme

EE which has two free binding sites to form the first com-

plex EES with one binding site occupied by a substrate

molecule. This complex either decays into the original

enzyme EE and a productmolecule or else it can reversibly

bind to another substrate molecule leading to a second

complex SEES with both binding sites occupied by sub-

strate molecules. Finally, this last complex decays into the

first complex and product P. Note that reaction scheme

(14) is the considered full network, since only elementary

reactions are involved.

Deterministic analysis and network coarse-graining

The full network (14) (without the input reaction) has

been previously studied using REs by Tyson [39]. The

coarse-grained network is obtained by implementing the

deterministic QSSA: transients in the enzyme and com-

plex concentrations are assumed to decay much faster

than transients in the substrate concentrations. Hence, the

time derivatives of the REs for the concentrations of the
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two complexes are set to zero, the steady-state concen-

trations of the two complexes are found and substituted

in the RE for substrate concentration, leading to a single

effective rate equation [39] given by

d [ S]

dt
= kin − k′[ S] , (15)

k′ =
[EET ]
Km1

(

k3 + k4
[S]
Km2

)

1 + [S]
Km1

+ [S]2

Km1Km2

, (16)

where [S] is the instantaneous substrate concentration

and k′ is an effective first-order rate coefficient. The

Michaelis-Menten constants are Km1 = (k−1 + k3) /k1
and Km2 = (k−2 + k4) /k2 and the total enzyme concen-

tration is denoted as [EET ], which is a constant at all times

and equal to [EET ] =[EE]+[EES]+[ SEES], the sum of

the concentrations of free enzyme and of the two com-

plexed forms. Hence, the coarse-grained version of the full

network (14) is simply

kin→ S
k′
→P. (17)

Note that the deterministic QSSA has reduced our

network from one with 5 species interacting via 7 ele-

mentary reactions, reaction scheme (14), to one with 2

species interacting via 2 reactions, one elementary and

one non-elementary, reaction scheme (17). A cartoon rep-

resentation of the two networks can be found in Figure 3.

The dynamics of the coarse-grained network are a good

approximation of those of the full network provided the

timescales for the decay of the transients in the concentra-

tions of the two complexes are much shorter than those of

the substrate.

Note that throughout the rest of this article, the

notation [X] will generally denote the steady-state con-

centration of species X, unless it appears in the con-

text of a differential equation as in equation (15)

where then it necessarily refers to the instantaneous

concentration.

Stochastic analysis of the coarse-grained network: ssLNA and

hLNAmethods

We use the ssLNA (see the Results section) to obtain the

Langevin equation for the intrinsic noise ηs(t) about the

steady-state macroscopic substrate concentration of the

coarse-grained network, i.e., the steady-state solution [S]

of equation (15). The derivation leading to the Langevin

equation can be found in the Methods section. The

result is

EE

EES

S EESS P

P
EE

S

EES

S

S

full network

S P

coarse-grained network

Figure 3 Full and coarse-grainedmechanisms of a two-subunit

enzyme network. Cartoon illustrating the full and coarse-grained

networks for the two-subunit enzyme network. The reduced, coarse-

grained network is obtained from the full network under conditions

of timescale separation, i.e., transients in the concentrations of all

enzyme and complex species decay much faster than transients in

the concentrations of the substrate and product species.

d

dt
ηs(t) = Jηs(t)+�−1/2

(

√

kinŴ1(t)−
√

k1[EE] [ S]q1Ŵ2(t)

+
√

k−1[EES]q1Ŵ3(t)−
√

k3[EES] (1−q1)Ŵ4(t)

−
√

k2[EES] [ S]q2Ŵ5(t) +
√

k−2[ SEES]q2Ŵ6(t)

−
√

k4[ SEES] (1 − q2) Ŵ7(t)

)

, (18)

where J is the Jacobian of the reduced RE, equation (15),

and the functions q1 and q2 are defined as

q1 = k3Km2 + k4[ S]

k1
(

[ S]2 +[ S]Km2 + Km1Km2

) , (19)

q2 = k4Km1 + (k4 − k3) [ S]

k2
(

[ S]2 +[ S]Km2 + Km1Km2

) . (20)

Note that Ŵi(t) denotes the contribution to the intrin-

sic noise in the steady-state substrate concentration due

to the ith elementary reaction of the full network of which

there are 7 in total. It is clear that Ŵ1(t) is the noise

from the input reaction since it has a pre-factor of kin,

Ŵ2(t) is the noise from the binding of substrate and free

enzyme since it has a pre-factor of k1 and so on for the

rest of the noise terms. Hence, we see that according to

the ssLNA, under conditions of timescale separation, all

elementary reactions in the full network contribute to the

intrinsic noise in the substrate concentration. The variance

of the intrinsic noise described by the Langevin equation,

equation (18), can be calculated according to the recipe
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described in the Results section (see also the Methods

section) and is found to be given by

σ 2
ssLNA = − (2J�)−1

(

kin + (k1[EE] [ S]+k−1[EES] ) q
2
1

+ (k2[EES] [ S]+k−2[ SEES] ) q
2
2 + k3[EES]

× (1 − q1)
2 + k4[ SEES] (1 − q2)

2
)

. (21)

Next we obtain the variance of the substrate fluctuations

by applying the LNA to the heuristic CME of the coarse-

grained network (hLNA). The heuristic microscopic rate

functions, i.e., the propensities divided by the volume, are

in this case

f̂1 = kin, (22)

f̂2 = nS

�
k′|[S(t)]→ns/� . (23)

Using the prescription for the hLNA (see the Results

and Methods sections), one obtains the variance of the

fluctuations to be

σ 2
hLNA = −(2J�)−1(kin + k3[EES]+k4[ SEES] ). (24)

A comparison of equations (21) and (24) leads one to

the observation that the latter can be obtained from the

former by setting q1 = q2 = 0. Substituting these condi-

tions in the Langevin equation, equation (18), we obtain

physical insight into the shortcomings of the conventional

heuristic method. This method rests on the incorrect

implicit assumption that under conditions of timescale sep-

aration, the reversible elementary reactions involving the

fast species do not contribute to the intrinsic noise in the

substrate concentration.

Stochastic Michaelis-Menten and Hill-type kinetics

We now consider two subcases which are of special inter-

est in biochemical kinetics: (i) k2 → 0, Km2 → ∞; (ii)

k2 → ∞, Km2 → 0 at constant Km1Km2 = K2
m. These lim-

its applied to the reduced RE, equations (15), lead to the

two simplified REs, respectively,

Case (i)
d[ S]

dt
= kin − k3 [EET ] [ S]

Km1+[ S]
, (25)

Case (ii)
d[ S]

dt
= kin − k4 [EET ] [ S]

2

K2
m+[ S]2

. (26)

Hence, the first case leads to Michaelis-Menten (MM)

kinetics (non-cooperative kinetics) and the second to Hill-

type kinetics with a Hill coefficient of two (cooperative

kinetics).

Applying limit (i) to equations (21) and (24), we obtain

the variance of the fluctuations for Michaelis-Menten

kinetics as predicted by the ssLNA and the hLNA

MM-kinetics σ 2
ssLNA = [ S]

�

(

1 + k−1/k1+[ S]

Km1+[ S]

[ S]

Km1

)

,

(27)

σ 2
hLNA = [ S]

�

(

1 + [ S]

Km1

)

. (28)

Similarly applying limit (ii) to equations (21) and (24),

we obtain the variance of the fluctuations for Hill-type

kinetics as predicted by the ssLNA and the hLNA

Hill-kinetics σ 2
ssLNA = [ S]

2�

K2
m+[ S]2

K2
m

+ k4

2k1�

[ S]2

[ S]2 +K2
m

,

(29)

σ 2
hLNA = [ S]

2�

K2
m+[ S]2

K2
m

. (30)

Comparison of equations (27) and (28) shows that

the heuristic CME description of the coarse-grained net-

work overestimates the size of intrinsic noise whenever the

deterministic kinetics are Michaelis-Menten. Interestingly,

comparison of equations (29) and (30) shows the oppo-

site for Hill-type kinetics: the size of noise predicted by the

heuristic CME underestimates the true value. Note also

that for both types of kinetics, the heuristic CME predicts

the correct noise statistics in the limit of very small and

very large substrate concentrations (which correspond to

very large and very small free enzyme concentrations in

steady-state conditions, respectively). The predictions for

the Michaelis-Menten case agree with those reported by a

recent simulation-based study [17] and a study using the

LNA applied to the full network [9]. Indeed, this agree-

ment is an important benchmark for the ssLNA. To our

knowledge, the results for the Hill-type kinetics have not

been obtained before.

The results for Hill-type kinetics are shown in Figure 4.

In Figures 4a and 4b we plot the coefficient of varia-

tion CVS and the Fano factor FFS of the substrate con-

centration fluctuations (as predicted by equations (29)

and (30)) versus the non-dimensional fraction � =
kin/k4 [EET ]. From equation (26) it can be deduced that

[ S]2 = K2
m�/(1 − �); hence, the physical meaning of

� is that it is a measure of enzyme saturation since

as it increases, the substrate concentration increases as

well, and consequently the free enzyme concentration

decreases. The values of rate constants are chosen such

that timescale separation is guaranteed, i.e., there is very

good agreement between the concentration of the slow

species as predicted by the REs of the full network and the

reduced REs obtained using the deterministic QSSA (see

Figure 5).

The following observations can bemade from Figures 4a

and 4b. The ssLNA quantitatively agrees with the results

of stochastic simulations of the full network for a large

enough volume �. In contrast, the heuristic approach,
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Figure 4 Noise statistics for cooperative two-subunit enzyme

network. Plots showing the Fano factor multiplied by the volume,

�FFS , (a) and the coefficient of variation squared, CV2
S
, (b) for the

substrate fluctuations as a function of the non-dimensional fraction

�, in steady-state conditions. The latter is a measure of enzyme

saturation. The solid lines are the ssLNA predictions, the dashed lines

are the hLNA predictions, the solid circles are obtained from

stochastic simulations of the full network and the open circles are

obtained from stochastic simulations of the coarse-grained network

using the SSA with heuristic propensities. The color coding indicates

different values of the bimolecular rate constant k1 : 5× 10−3 (yellow),

5× 10−5 (purple), and 5× 10−7 (blue). The remaining parameters are

given by [EET ] = 1, k2 = 1000, k−1 = k−2 = 100, k3 = k4 = 1. Note

that in (a) the black dashed line indicates the hLNA prediction for all

three different values of k1 , which are indistinguishable in this figure.

The stochastic simulations were carried out for a volume � = 100. In

(c) sample paths of the SSA for the full network (gray), the slow scale

Langevin equation (red) as given by equation (18) and the SSA with

heuristic propensities (blue) are compared for � = 0.5. The slow scale

Langevin equation is numerically solved using the Euler-Maruyama

method with timestep δt = 0.1. Note that in all cases, the chosen

parameters guarantee timescale separation (validity of the

deterministic QSSA) (see Figure 5).

1 10 100 1000 104 10 5

1

10

100

1000

104

Figure 5 Validity of the deterministic QSSA for the cooperative

two-subunit enzyme network. Plot of the macroscopic substrate

concentration [S] versus time, as obtained by numerically solving the

deterministic REs of the full network (solid lines) and the reduced REs

obtained using the deterministic QSSA (open circles). The color

coding and rate constant values are as in Figure 4 (a) and (b); the

value of � is 0.5. The excellent agreement between the two RE

solutions, implies timescale separation conditions.

hLNA, and stochastic simulations based on the corre-

sponding heuristic CME, are generally in quantitative dis-

agreement with the results of the ssLNA and of stochastic

simulations of the full network, even if the volume is very

large. For example, for the case k1 = 5 × 10−7 and � =
1/2, the CVS and FFS from the hLNA are approximately

11 and 112 times smaller, respectively, than the predic-

tion of the ssLNA. In Figure 4c we also illustrate the large

differences which these statistics imply, by showing sam-

ple paths (trajectories) of the CME of the full network,

of the heuristic CME and of the Langevin equation given

by the ssLNA, equation (18). This confirms that: (i) the

hLNA and, hence, the heuristic CME on which it is based,

predicts the correct mean concentrations but incorrect

noise statistics even if the molecule numbers are consid-

erably large; (ii) the Langevin equation obtained from the

ssLNA is a viable accurate simulation alternative to SSA

simulations based on the heuristic CME.

Besides quantitative disagreement we also note that the

qualitative dependence of the FFS and the CVS with �

as predicted by the heuristic approach is also very dif-

ferent than the predictions of the ssLNA and stochastic

simulations with the full network. For example, for the

case k1 = 5 × 10−7, according to stochastic simulations

of the full network and the ssLNA, the FFS reaches a

maximum at � = 1/2, whereas the heuristic approach

predicts a monotonic increase of the FFS with �. The case

� < 0.5 is particularly interesting because the ssLNA

and stochastic simulations of the full network lead to

�FFS which is much greater than 1, whereas the heuris-

tic approach predicts �FFS which is below 1. Hence,
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for � < 0.5, the ssLNA correctly predicts the fluctua-

tions to be super-Poissonian, i.e., the size of the fluctua-

tions is larger than those of a Poissonian with the same

mean number of substrate molecules, whereas the hLNA

incorrectly predicts the opposite case of sub-Poissonian

fluctuations.

The power spectrum for the substrate fluctuations has

also been calculated (see the Methods section). Although

there is some quantitative disagreement between the

predictions of the ssLNA and hLNA both are in qual-

itative agreement: the spectrum is monotonic in the

frequency and hence no noise-induced oscillations are

possible by this mechanism. More generally, it can be

shown that the spectra of the hLNA and ssLNA are

in qualitative agreement for all full networks with at

most one slow species because as can be deduced from

equation (7), for such networks, the spectrum for a sin-

gle species chemical system is invariably monotonic in the

frequency.

Application II: A gene network with negative feedback

Finally, we study an example of a gene network with

autoregulatory negative feedback. Such a feedback mech-

anism is ubiquitous in biology appearing in such diverse

contexts as metabolism [40], signaling [41], somito-

genesis [42] and circadian clocks [43]. Two reasons

hypothesized for its widespread occurance are that (i)

it supresses the size of intrinsic noise [44,45] thereby

providing enhanced stability and (ii) it can lead to

concentration oscillations or rhythms which are cru-

cial to the control of several aspects of cell physiology

[36].

We consider the following prototypical gene network.

For convenience, we divide the network into two parts: (i)

the set of reactions which describe transcription, transla-

tion and degradation, and (ii) the set of reactions which

constitute the negative feedback loop. The first part is

described by the reactions

G
k0→G + M,

M
ks→P + M,

P + E
k3
⇋

k−3

EP
k4→E,

M
kdM→ ∅. (31)

The mRNA, M, is produced by transcription from a

single gene G, and it is translated into protein P which

subsequently is degraded via an enzymatic reaction cat-

alyzed by enzyme E. The mRNA can furthermore decay

into an inactive form spontaneously. In addition, we have

a negative feedback loop described by the reactions

P + G
k1
⇋

k−1

GP,

P + GP
k2
⇋

k−2

GP2,

GP
k0→GP + M. (32)

Note that the gene with two bound proteins is inactive,

in the sense that it does not lead to mRNA production.

This implies that sudden increases in protein concen-

tration lead to a decrease in mRNA transcription which

eventually results in a lowered protein concentration; this

is the negative feedback or auto-inhibitory mechanism.

The reaction network as given by reaction schemes (31)

and (32) is our full network for this example. Note that

the first two reactions in reaction scheme (31) are not

in reality elementary chemical reactions but they are the

simplest accepted forms of modeling the complex pro-

cesses of transcription and translation and hence it is

in this spirit that we include them in our full network

description.

Deterministic analysis and coarse-grained network

Model reduction on the macroscopic level proceeds by

applying the deterministic QSSA to the REs of the full

network (see the Methods section for details). The fast

species are the enzyme, E, the enzyme complex, EP, and

the gene species in its various non-complexed and com-

plexed forms G, GP and GP2. The slow species are the

mRNA, M, and the protein, P. Furthermore, we also

impose the limit k2 → ∞, k1 → 0 at constant k2k1; this

enforces cooperative behavior since the binding of P to G

is quite slow but once it occurs the next binding of P to the

complex GP is very quick. The resultant reduced REs are

given by

d [M]

dt
= k0 [GT ]K

2

K2+[P]2
− kdM[M] ,

d [P]

dt
= ks[M]−k4 [ET ] [P]

KM+[P]
, (33)

where K2 = k−1k−2/k1k2, KM = (k−3 + k4) /k3, [ET ]
is the total enzyme concentration and [GT ] is the total

gene concentration. The model reduction process just

described is illustrated in Figure 6.

Stochastic analysis of the coarse-grained network: ssLNA and

hLNAmethods

We denote ηs,1 and ηs,2 as the fluctuations about the con-

centrations of mRNA and of protein, respectively. The

ssLNA leads to reduced Langevin equations of the form
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Figure 6 Full and coarse-grainedmechanisms of a gene

network. Cartoon illustrating the full and coarse-grained networks

for the gene network with a single negative feedback loop. The

reduced, coarse-grained network is obtained from the full network

under conditions of timescale separation, i.e., transients in the

concentrations of all enzyme, enzyme complex, gene and gene

complex species decay much faster than transients in the

concentrations of mRNA and protein.

d

dt
ηs,1(t) = J11ηs,1(t) + J12ηs,2(t) + �−1/2

×
(

√

k0[G]Ŵ1(t) +
√

k0[GP]Ŵ2(t)

− p1
√

k1[G] [P]Ŵ3(t)+p1
√

k−1[GP]Ŵ4(t)

−
√

kdM[M]Ŵ7(t)

)

,

d

dt
ηs,2(t) = J21ηs,1(t) + J22ηs,2(t) + �−1/2

×
(

√

ks[M]Ŵ8(t)−(1−q)
√

k3[E] [P]Ŵ9(t)

+ (1 − q)
√

k−3[EP]Ŵ10(t)

− q
√

k4[EP]Ŵ11(t)

)

, (34)

where Ŵi(t) is the noise contributed by reaction number

i and the reactions are numbered according to the order:

G → G+M, GP → GP+M, P+G → GP, GP → P+G,

P + GP → GP2, GP2 → P + GP, M → ∅, M → M + P,

P + E → EP, EP → P + E, and EP → E. The element Jij
denotes the i-j entry of the Jacobian J of the reduced REs

(33). Furthermore, the parameters p1 and q are given by

p1 = k0

k1

[P]

K2+[P]2
, (35)

q = [P]+K3

[P]+KM
, (36)

where K3 = k−3/k3. Note that the coupled Langevin

equations (34) imply that the fluctuations in the mRNA

and protein concentrations are affected by noise from all

of the 11 constituent reactions of the full network (reac-

tion schemes (31) and (32)) except from those of the

reversible reaction P + GP ⇋ GP2. As shown in the

Methods section, the noise from this reaction becomes

zero due to the imposition of cooperative behavior in the

feedback loop.

The covariance matrix for the fluctuations of the

Langevin equations (34) is given by the Lyapunov

equation (6) with Jacobian being equal to that of the

reduced REs (33) and diffusion matrix Dh replaced by D ss,

which is given by

D ss = �−1diag (DM,DP) ,

DM = kdM[M]+k0 [GT ]K
2

K2+[P]2
+ p1

2k0 [GT ]K
2[P]2

(

K2+[P]2
)2

,

DP = ks[M]+k4 [ET ] [P]

KM+[P]
− (1 − q)

2k4 [ET ] [P]
2

(KM+[P] )2
.

(37)

It is also possible to calculate the covariance matrix

of the fluctuations of the slow variables using the hLNA

(see the Methods section). This is given by a Lyapunov

equation (6) with Jacobian being equal to that of the

reduced REs (33) and diffusion matrix D h given by

D h = �−1diag
(

Dh,M,Dh,P

)

,

Dh,M = kdM[M]+k0 [GT ]K
2

K2+[P]2
,

Dh,P = ks[M]+k4 [ET ] [P]

KM+[P]
. (38)

A comparison of equation (37) and equation (38) shows

that the ssLNA and hLNA are generally different except

in the limits of p1 → 0 and q → 1. From the Langevin

equations (34) we see that setting p1 = 0 implies ignoring

the noise due to the reversible reaction P+G ⇋ GP, while

setting q = 1 is equivalent to ignoring the noise from the

reversible reaction P+E ⇋ EP. Hence, as for the previous

example of enzyme kinetics, we can state that the hLNA

and the heuristic CME upon which it rests, implicitly (and
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incorrectly) assume that under conditions of timescale sep-

aration, the reversible reactions involving the fast species

do not contribute to the intrinsic noise in the slow species.

Furthermore, by the comparison of equations (37) and

(38), one can also deduce that the heuristic CME provides

a statistically correct description when the protein con-

centration [P] is either very small or very large, in other

words the case of very weak or very strong transcrip-

tional repression (and corresponding non-saturated and

saturated degrading enzyme conditions).

Detailed comparison of the noise statistics from the ssLNA

and hLNA

Figure 7 shows the ssLNA and hLNA predictions for the

coefficient of variation squared and the Fano factor of

the protein fluctuations as a function of the transcription

rate k0. These are obtained by solving the two Lyapunov

equations mentioned in the previous subsection for the

covariance matrix; the variances are then the diagonal ele-

ments of this matrix, from which one finally calculates the

Fano factors and the coefficients of variation. The values

of rate constants are chosen such that we have timescale

separation conditions (see Figure 8). From Figure 7 we

can see that under such conditions, the ssLNA predictions

agree very well with the stochastic simulations of the full

network but the hLNA exhibits considerable quantitative

and qualitative differences compared to the latter simula-

tions. In particular, note that for k3 = 1 and k0 > 50,

the predictions of the ssLNA are approximately 3 orders

of magnitude larger than those of the hLNA (and of

stochastic simulations using the heuristic CME).

Finally, we investigate the differences between the

predictions of the ssLNA and hLNA for noise-induced

oscillations in the mRNA concentrations. These are oscil-

lations which are predicted by CME based approaches

but not captured by RE approaches. In particular, these

noise-induced oscillations occur in regions of parameter

space where the REs predict a stable steady-state [46].

Calculation of the power spectra is key to the detection

of these noise-induced oscillations: a peak in the spec-

trum indicates a noise-induced oscillation. For the hLNA

this is given by equation (7) with Jacobian being equal

to that of the reduced REs, equation (33), and diffusion

matrix D h given by equation (38). For the ssLNA this is

given by equation (7) with Jacobian being equal to that of

the reduced REs, equation (33), and diffusion matrix D h

replaced by D ss, which is given by equation (37). Since the

two diffusion matrices D h and D ss are not generally equal

to each other we expect the spectra calculated accord-

ing to the ssLNA and hLNA to differ. Indeed we find 3

possible scenarios: both spectra do not have a peak in fre-

quency (no noise-induced oscillations), both spectra have

a peak in frequency (noise-induced oscillations) and the

Figure 7 Noise statistics of the gene network. Dependence of the

Fano factor (a) and of the coefficient of variation squared (b) of the

protein fluctuations on the rate of transcription k0 , according to the

ssLNA (solid lines) and the hLNA (dashed lines). The noise measures

are calculated for three values of the bimolecular constant k3 = 1

(yellow), k3 = 0.1 (purple), k3 = 0.01 (blue). All other parameters are

given by [GT ] = 0.01, [ET ] = 1, k1 = 10−5 , k2 = 100, k−1 = k−2 =
k−3 = 10, k4 = ks = kdM = 1. Stochastic simulations of the full

networks (solid circles) and of the coarse-grained network (open

circles) using the CME and the heuristic CME, respectively, were

performed for a volume of � = 100. Note that at this volume there is

one gene and 100 enzyme molecules. Note also that the chosen

parameters guarantee timescale separation (validity of the

deterministic QSSA) and cooperative behavior in the feedback loop

(see Figure 8).

most interesting case where the ssLNA spectrum exhibits

a peak but the hLNA does not predict one. The results

are summarized in Figure 9, where we show the regions

of parameter space in which each of these scenarios occur

and a comparison of the power spectra as predicted by

the hLNA and ssLNA in these regions. Note that in all

cases the hLNA (purple dashed lines) agrees with stochas-

tic simulations of the coarse-grained network using the

heuristic CME (purple open circles), while the ssLNA

(solid blue lines) agrees with stochastic simulations of

the full network (blue solid circles) under conditions of

timescale separation. The hLNA and ssLNA spectra are

only in good quantitative agreement in a very small region

of parameter space (shown in black in Figure 9a), where

both do predict noise-induced oscillations.
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Figure 8 Validity of the deterministic QSSA for the gene

network. Plot of the macroscopic substrate concentrations of mRNA,

[M], and protein, [P], versus time, as obtained by numerically solving

the deterministic REs of the full network (solid lines) and the reduced

REs obtained using the deterministic QSSA (open circles). The color

coding and rate constant values are as in Figure 7; the value of k0 is

50. The excellent agreement between the two RE solutions, implies

timescale separation conditions.

We emphasize that the main message brought by our

analysis is that there are significantly large regions of

parameter space (blue region in Figure 9a), where the

hLNA (and the heuristic CME) does not predict noise-

induced oscillations but such oscillations are obtained

from stochastic simulations of the full network as well as

being captured by the ssLNA.

Qualitative discrepancies in the prediction of noise-

induced oscillations arise because the hLNA does not

correctly take into account the fluctuations stemming

from the rate limiting step of the cooperative binding

mechanism. The latter involves the slow binding reaction

between a protein molecule P and a gene G leading to

a complex GP. The reason for this is the hLNA’s tacit

assumption that the fast species are not involved in slow

reactions. This rate limiting reaction is at the heart of

the negative feedback loop that is responsible for concen-

tration oscillations in many biological networks such as

circadian clocks [36] and hence why we speculate that the

hLNAmisses the occurrence of noise-induced oscillations

in certain regions of parameter space.

Discussion and conclusion

Concluding, in this article we have rigorously derived

in closed-form, linear Langevin equations which

describe the noise statistics of the fluctuations about the

deterministic concentrations as predicted by the reduced

REs obtained from the deterministic QSSA. Equivalently,

the ssLNA, as the method was called, is the statisti-

cally correct description of biochemical networks under

conditions of timescale separation and sufficiently large

molecule numbers. We note that our method provides

an accurate means of performing stochastic simulation

in such conditions. This is particularly relevant since

it has been proven that there is generally no reduced

CME description in such cases [8]. Another advantage of

the ssLNA is that it enables quick computation of noise

statistics through the solution of a set of simultaneous,

deterministic linear algebraic equations. By applying the

ssLNA to two biologically relevant networks, we showed

that this procedure can lead to particularly simple and

compact expressions for the noise statistics, which are

in very good numerical agreement with stochastic simu-

lations of the CME of the full network under the above

conditions. This is in contrast to the heuristic CME, which

generally performed with poor accuracy and in some

instances even missed the prediction of noise-induced

oscillations.

The limitations of the ssLNA are precisely those of the

conventional LNA on which it is based. Namely, if the

system is composed of at least one bimolecular reaction,

then it is valid for large enough molecule numbers (or,

equivalently, large volumes) and provided the biochemical

network is monostable. If the system is purely composed

of first-order reactions and if one is only interested in

variance and power spectra, then the only requirement

is that of monostability. This is since in such a case it is

well known that the first and second moments are exactly

given by the LNA. For monostable systems with bimolec-

ular reactions, the finite-volume corrections to the LNA

can be considerable when the network has implicit conser-

vation laws, when bursty phenomena are at play and when

steady-states are characterized by few tens or hundreds of

molecules [24,47-49]. These problems probably become

exacerbated when the network is bistable or possesses

absorbing states [50]. Hence, it is clear that although the

ssLNA presented in this article is valid for a consider-

able number of biologically interesting cases, it cannot

be homogeneously applied to all intracellular reaction

networks of interest. These require the development of

methods beyond those presented in this article and hence

present an interesting research challenge for the future.

A necessary and sufficient condition for timescale sep-

aration is that the timescales governing the decay of the

transients in the average concentrations are well sepa-

rated. Fast species are those whose transients decay on
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Figure 9 Noise-induced oscillations in the gene network. Comparison of the predictions of noise-induced oscillations in the mRNA

concentrations by ssLNA and hLNA methods. Panel (a) shows a stochastic bifurcation diagram depicting the regions in the translation rate (ks)

versus transcription rate (k0) parameter space where both methods predict no oscillations (black), both predict oscillations (red) and only the ssLNA

correctly predicts an oscillation (blue). There is no steady-state in the white region. Panels (b), (c) and (d) show spectra at 3 points in the blue, red

and black regions of the bifurcation plot in (a) (these points are marked by roman numbers). The solid and dashed lines show the predictions of the

ssLNA and the hLNA respectively, while the dots and circles show the results of stochastic simulations of the full and coarse-grained network using

the CME and the heuristic CME, respectively. The parameters are given by � = 1000, [ET ] = 0.01, [GT ] = 1/� and kdM = 0.01, k1 = 0.001,

k−1 = 100, k2 = 1000, k−2 = 1, k−3 = 10, k3 = 0.1, k4 = 10. These parameters guarantee timescale separation (validity of the deterministic QSSA)

and cooperative behavior in the feedback loop. Note that the hLNA spectrum in (b) and (c) is scaled up 5000 and 1000 times, respectively.

fast timescales while the slow species are those whose

transients decay on slow timescales. At the microscopic

level, there are several different scenarios which can lead

to timescale separation. Grouping chemical reactions as

fast or slow according to the relative size of their asso-

ciated timescales, Pahlajani et al. [51] obtain timescale

separation by defining fast species as those which are

involved in fast reactions only and slow species as those

involved in slow reactions only. Zeron and Santillan [52]

use a similar but less restrictive approach whereby the

fast species are involved in fast reactions only and the

slow species can participate in both fast and slow reac-

tions. Another method is that due to Cao et al. [53] who

define slow species as those involved in slow reactions

only and fast species as those participating in at least one

fast reaction and any number of slow reactions. While the

three aforementioned scenarios will lead to timescale sep-

aration, it must be emphasized that they only constitute

a subset of the possible scenarios leading to such con-

ditions. The derivation behind the ssLNA is not based

on any particular microscopic scenario, rather it simply

requires that the timescales of the transients in the aver-

age macroscopic concentrations are well separated. Hence

it follows that in the limit of large molecule numbers, the

methods developed in [51-53] cover only a sub-space of

the parameter space over which timescale separation is

valid. In the Methods section we indeed show that Pahla-

jani’s approach [51] leads to a reduced linear Langevin

equation which is a special case of the ssLNA, the case

where the matrix B in equation (10) can be neglected.

The approaches of Zeron and Santillan [52] and of Cao

et al. [53] lead to a reduced CME description. As we

have shown in the Results section, under conditions of

timescale separation and for small intrinsic noise, there

always exists a reduced linear Langevin description of

monostable stochastic reaction networks (the ssLNA) but

there is generally not a physically meaningful reduced

master equation description. The latter is only obtained if

one imposes stronger conditions.

These results are in line with those of Mastny et al.

[54] which show that for the Michaelis-Menten reaction

without substrate input, the sQSPA method, a rigorous

singular-perturbation approach, leads to a reducedmaster

equation whenever the free enzyme or complex concen-

trations are very small (see Table II of Ref. [54]). This

equation has the same form as the heuristic CME. This

implies that for such conditions the error in the pre-

dictions of the heuristic CME should be zero, a result

which is reproduced by the ssLNA (see Application I in

the Results section). However, note that though these

concentration conditions can be compatible with the

deterministic QSSA they are not synonymous with it.
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Generally, the sQSPA methods do not lead to a reduced

stochastic description consistent with the determinis-

tic QSSA over the whole parameter space, whereas the

ssLNA does, albeit within the constraints that molecule

numbers should not be too small and that the network is

monostable.
Finally we consider the approach of Shahrezaei and

Swain [55], who derived the probability distribution for a

linear two-stage model of gene expression under condi-

tions of timescale separation. Their method rests on an

exact solution of the generating function equation corre-

sponding to the CME in the limit that the protein lifetime

is much greater than that of the mRNA. In the Methods

section we show that the ssLNA applied to their example

leads to the same variance as obtained from their reduced

probability distribution. The upside of their method over

the ssLNA is that they obtain the full probability distribu-

tion valid for all molecule numbers. The downside of their

method is that the generating function equation can only

be solved exactly for networks composed of first-order

processes (as in the gene example presented by Shahrezaei

and Swain) or very simple bimolecular reactions [19] and

hence the method has a restricted range of applicability

compared to the ssLNA.
While the stochastic simulation algorithm explic-

itly simulates every individual reaction event, the

Langevin approach yields approximate stochastic dif-

ferential equations for the molecular populations. This

is computationally advantageous whenever the reactant

populations are quite large [5]. This reasoning can be

deduced from the relationship between the propensities

and the microscopic rate functions as given by aj =
�f̂j(�n/�). It is well known that in the large population

number limit, the vector �n/� is approximately equal to

the vector of macroscopic concentrations and hence the

magnitude of the propensities increases with the reaction

volume or equivalently with molecule numbers. In partic-

ular, this implies that the time between consecutive reac-

tion events, given by τ = −(
∑

j aj)
−1ln(r)where r ∈ (0, 1)

is a uniform random number, decreases with increasing

reaction volume. This means that the time spent by the

stochastic simulation algorithm increases with increasing

volume because more reaction events have to be resolved

within the same time window. Given this reasoning we

can compare the discussed methods in terms of speed and

accuracy. The computation time of the Langevin meth-

ods, hLNA and ssLNA, is independent of the volume and

hence if the molecule numbers are not too small, both

methods are much quicker than simulating any reduced

CME of the coarse-grained network or the CME of the

full network. However the ssLNA enjoys the additional

advantage that under conditions of timescale separation,

it is as accurate as the CME of the full network. The same

argument does not generally hold for the hLNA.

We emphasize that besides deriving the ssLNAmethod,

in this paper we have used it to determine the range of

validity of the conventional heuristic CME approach and

the size of errors in its predictions. To our knowledge, this

is the first study which attempts to answer these important

and timely questions via a rigorous, systematic theoretical

approach.

Our main message is that, the “conventional wisdom”

that the heuristic CME is generally a good approxima-

tion to the CME of the full network under conditions

of timescale separation is incorrect, if one is interested

in intrinsic noise statistics and the prediction of noise-

induced oscillations.

Methods

Derivation of the ssLNA

The linear FPE describing the full network is given by

equation (8). It is well known that with every FPE one

can associate a set of Langevin equations (stochastic dif-

ferential equations) [37]. Note that the Langevin and FPE

formalisms are exactly equivalent but as we show now,

the Langevin description is ideal for deriving a reduced

description in timescale separation conditions.

The set of coupled Langevin equations equivalent to

equation (8) are

d

dt
�ηf = J f (t)�ηf + J fs(t)�ηs + 1√

�
S f

√

F �Ŵ(t), (39)

d

dt
�ηs = J sf (t)�ηf + J s(t)�ηs + 1√

�
S s

√

F �Ŵ(t). (40)

Note that the time-dependence of the matrices in the

above equations comes from that of the macroscopic con-

centrations of fast and slow species. Now say that we

impose timescale separation conditions, i.e., the correla-

tion time of fast fluctuations, τf , is much smaller than

the correlation time of slow fluctuations, τs. We wish to

obtain a reduced description for the fast fluctuations, i.e.,

for equation (39), on timescales larger than τf but much

smaller than τs. On such timescales, transients in the

macroscopic concentrations of fast species have decayed,

a quasi-steady-state is achieved and by the deterministic

QSSA, we know that the fast-species concentrations can

be expressed in terms of those of the slow-species concen-

trations. Now the latter concentrations vary very slowly

over timescales much smaller than τs implying that for

all intents and purposes they can be considered constant.

Hence the matrices in equation (39) can be considered

time-independent. It then follows that the solution to the

latter equation is approximately given by
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�ηf (t) ≈ e(t−t0)J̃ f /τf �ηf (t0)

+
∫ t

t0

dt′e(t−t′)J̃ f /τf J fs�ηs(t′)

+
∫ t

t0

dt′e(t−t′)J̃ f /τf
1√
�

S f

√

F �Ŵ(t′), (41)

where we have put J̃ f = τf J f . In the case when the cor-

relation time is very short the first term can be neglected

and the lower limit of the integration in the other terms

can be extended to t0 → −∞. To make further analyti-

cal progress, we switch to Fourier space. First we derive

the following result which will prove very useful. Given a

vector �f (t), we have
∫ t

−∞
dt′e(t−t′) J f �f (t′) = −

∫ ∞

−∞
dt′

∫

dω

2π
eiω(t−t′) 1

J f − i Iω

∫

dω′

2π
eiω

′t′ �̂f (ω′) (42)

= −
∫

dω

2π
eiωt

∫

dω′δ(ω − ω′)
1

J f − i Iω
�̂f (ω′)

(43)

= −
∫

dω

2π
eiωt

1

J f − i Iω
�̂f (ω), (44)

where �̂f (ω) denotes the Fourier transform of �f (t) and I

is the identity matrix. It then follows that the Fourier

transform of equation (41) is given by

�̂ηf (ω) ≈ −τf

(

(

J̃ f − i Iωτf

)−1
J fs �̂ηs(ω)

+
(

J̃ f −i Iωτf

)−1 1√
�
S f

√

F �̂Ŵ(ω)

)

. (45)

Since we are interested in a description on timescales

larger than τf , i.e., for fluctuations of frequency ω ≪ τ−1
f ,

then the above equation further reduces to

�̂ηf (ω) ≈ −J −1
f J fs �̂ηs(ω) − 1√

�
J −1
f S f

√

F �̂Ŵ(ω). (46)

Taking the inverse Fourier transform of the above

equation and substituting in equation (40) we obtain

d

dt
�ηs =

(

J s − J sf J
−1
f J fs

)

�ηs

+ 1√
�

(

S s − J sf J
−1
f S f

)

√

F �Ŵ(t). (47)

This Langevin equation is the ssLNA: it is an effective

stochastic description of the intrinsic noise in the slow

variables in timescale separation conditions. Using stan-

dard methods [37] it can be shown that the FPE which is

equivalent to this effective Langevin equation is equation

(9). The ssLNA can also be derived more rigorously using

the projection operator formalism as shown in [57].

A note on the reduced Jacobian of the ssLNA

Here we show that the reduced Jacobian J = J s−J sf J
−1
f J fs

in the ssLNA equation (47) is exactly the Jacobian of the

reduced REs which arise from applying the deterministic

QSSA on the REs of the full network. One starts by con-

sidering a small deviation from the deterministic steady

state [ �X]→[ �X]+ � on the REs of the full network. Using

the partitioned Jacobian of the form as in equation (11),

we can then write

∂

∂t
�f = J f

�f + J fs
�s,

∂

∂t
�s = J sf �f + J s �s, (48)

with slow and fast perturbations �s and �f , respectively.

Applying the deterministic QSSA, i.e., setting the time

derivative of fast perturbations to zero, one finds

∂

∂t
�s =

(

J s − J sf J
−1
f J fs

)

�s = J �s. (49)

Hence the Jacobian in the ssLNA equations (9) and (12)

is the same as the Jacobian of the reduced REs.

Note that equations (48) are formally the same as

obtained by taking the average of the LNA equations (39)

and (40) (this general agreement between the LNA and

linear stability analysis is discussed in [21]). This implies

that the timescales of the fast and slow variables in the

ssLNA (and hence of the CME under timescale separation

conditions and in themacroscopic limit) is the same as the

timescales obtained from the REs.

Details of the derivations for the two-subunit enzyme

network

The ssLNA recipe: Langevin equation and noise statistics

We here show the details of the ssLNA method as applied

to the network discussed in Application I in the Results

section. The first step of the recipe is to cast the reaction

scheme of the full network (14) into the form of the gen-

eral reaction scheme (1). This is done by setting X1 = S,

X2 = EE, X3 = EES and X4 = SEES and by labeling

the input reaction as reaction 1, the binding of S to EE as

reaction 2, the decay of EES to S and EE as reaction 3, the

decay of EES to EE and P as reaction 4, the binding of S

to EES as reaction 5, the decay of SEES into EES and S

as reaction 6 and finally the decay of SEES into EES and

P as reaction 7. Note that the reaction number labeling is

arbitrary but the labeling of the species is not: according



Thomas et al. BMC Systems Biology 2012, 6:39 Page 18 of 23

http://www.biomedcentral.com/1752-0509/6/39

to the convention set out in the Introduction, we have to

choose the substrate as the first species because it is the

slow variable, while the rest of the species are the fast ones.

Given the chosen order of the species and the reactions,

the stoichiometric matrix and the macroscopic rate func-

tion vector (see definitions in the Background section and

the description of the ssLNA in the Results section) are

given by

(50)

�f = (kin, k1[ S] [EE] , k−1[EES] , k3[EES] ,

k2[ S] [EES] , k−2[ SEES] , k4[ SEES] ) . (51)

Note that the row number of the stoichiometric matrix

reflects the species number, while the column number

reflects the reaction number. The order of the entries in

the macroscopic rate function vector reflects the reaction

number.

The enzyme can only be in one of three forms, EE,

EES and SEES and hence we have the conservation law,

[EET ] =[EE]+[EES]+[ SEES], where [EET ] is the total

enzyme concentration, which is a time-independent con-

stant. Hence, we are free to remove information from the

stoichiometric matrix about one of the enzyme forms; we

choose to remove information about EE, and therefore, we

eliminate the second row from the stoichiometric matrix,

leading to

(52)

Note that we have also partitioned the stoichiometric

matrix into two sub-matrices as required by our method

(see prescription for ssLNA in the Results section). Now

we can use this matrix together with the macroscopic rate

function vector �f to obtain the elements of the Jacobian

matrix (J F)ij = ∂j(S �f )i of the REs of the full network

where we also partitioned the matrix into 4 sub-matrices

as required by our formulation of the ssLNA in the Results

section. Now we can use the two sub-matrices of the

stoichiometric matrix and the four sub-matrices of the

Jacobian to calculate the matrix A−B (as given by the two

equations for A and B after equation (10)), which yields

A − B =
(

√

kin,−q1
√

k1[ S] [EE], q1
√

k−1[EES],

− (1 − q1)
√

k3[EES],−q2
√

k2[ S] [EES],

q2
√

k−2[ SEES],− (1 − q2)
√

k4[ SEES]
)

, (54)

where q1 and q2 are as defined in the main text by

equations (19) and (20). Furthermore, the Jacobian of the

reduced RE, equation (15) in the main text, is given by

J = − d

d[ S]

[ S] [EET ]
Km1

(

k3 + k4
[S]
Km2

)

1 + [S]
Km1

+ [S]2

Km1Km2

. (55)

Finally, the Langevin equation, equation (18), is

obtained by substituting equations (55) and (54) in

equation (12). The equation for the variance of the sub-

strate fluctuations, equation (21), is obtained by substitut-

ing equation (54) in equation (10) to obtain the new dif-

fusion scalar Dss and then substituting the latter together

with the new Jacobian equation (55) in the Lyapunov

equation, equation (6), with Dh replaced by Dss. Note that

in this example because we have only one slow species,

the Lyapunov equation is not a matrix equation but sim-

ply a single linear algebraic equation for the variance. For

the same reason we have a diffusion scalar rather than

a diffusion matrix. The power spectrum can be obtained

by substituting the new Jacobian and diffusion scalar in

equation (7) (with Dh replaced by Dss), leading to

P(ω) = �−1
(

A − B
) (

A − B
)T

ω2 + J2
. (56)

The power decays monotonically with frequency, which

implies no noise-induced oscillation; this statement is

generally true for all networks (full or coarse-grained)

which have just one slow species.

The hLNA recipe: Langevin equation and noise statistics

Here we apply the LNA to the heuristic CME accord-

ing to the method described in the Results section. The

coarse-grained network is given by reaction scheme (17);

an elementary reaction for the substrate input process

and a non-elementary first-order reaction for substrate

(53)
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catalysis. The stoichiometric matrix and macroscopic rate

function vector are given by

S = (1,−1), (57)

�f =
(

kin, k
′[ S]

)

, (58)

where k′ is defined in the main text, equation (16). The

diffusion scalar Dh of the linear FPE approximating the

heuristic master equation for this process can be con-

structed from the stoichiometric and macroscopic rate

function matrices using equation (5), which leads to Dh =
�−1

(

kin + k′[ S]
)

= �−1 (kin + k3[EES]+k4[ SEES] ).

Note that here we have a diffusion scalar rather than a

matrix because we have only one slow variable. Finally,

from equations (6) and (7), the variance and the power

spectrum are obtained from the diffusion scalar and the

Jacobian, J, of the effective rate equation, equation (15),

leading to

σ 2
hLNA = H = −Dh

2J
, (59)

P(ω) = Dh

ω2 + J2
. (60)

In the Results section, it was shown that a reduced

CME description becomes possible whenever the effec-

tive stoichiometric matrix S′ as given by equation (13)

evaluates to integer values. For the reaction scheme

under consideration, it can be shown that S′ =
(1,−q1, q1,− (1 − q1) ,−q2, q2,− (1 − q2)), where q1 and

q2 are given by equations (19) and (20). The latter two

quantities are generally real values and time-dependent

and hence a reduced CME description is not generally

possible. A simple choice which makes S′ integer-valued
is the null choice, q1 = q2 = 0, and indeed it is for

these values that in the main text we show that the hLNA

(and hence the heuristic CME) is a valid description of

stochastic kinetics under timescale separation conditions.

Details of the derivations for the gene network example

Reduced rate equations

The fast species of the genetic network with negative feed-

back given in the main text are given by the gene species

G, GP, GP2 and the enzyme species E and EP. There

are two conservation laws, [GT ] =[G]+[GP]+[GP2] for

the gene species and [ET ] =[E]+[EP] for the enzyme

species and hence we need to apply the deterministic

QSSA only to two of the gene species and to one of

the enzyme species. The QSSA applied to the latter is

the standard Briggs-Haldane approximation, which is well

known [38], and hence here we restrict our presentation

to the QSSA on the negative feedback loop. The macro-

scopic rate equations for the gene species [GP] and [GP2]

read

d[GP]

dt
= k1[G][P]−k−1[GP]−k2[GP][P]+k−2[GP2],

d[GP2]

dt
= k2[GP] [P]−k−2[GP2] . (61)

Substituting the gene conservation law, setting the time

derivatives to zero and solving these two equations simul-

taneously, we obtain the quasi-steady-state concentra-

tions of the three gene species

[G]

[GT ]
= K2

K2 + K2[P]+[P]2
,

[GP]

[GT ]
= K2[P]

K2 + K2[P]+[P]2
,

[GP2]

[GT ]
= [P]2

K2 + K2[P]+[P]2
, (62)

where K1 = k−1/k1, K2 = k−2/k2 and K2 = K1K2.

Since only the ternary complex (one with 3 molecules, i.e.,

GP2) does not lead to mRNA production, the active gene

fraction is given by

[G]+[GP]

[GT ]
= K2 + K2[P]

K2 + K2[P]+[P]2
→ K2

K2+[P]2
, (63)

where in the last step we have drawn the limit of coopera-

tive binding K2 → 0 at constant K (or equivalently k2 →
∞, k1 → 0 at constant k1k2). It follows that the REs for

the slow variables of mRNA and protein concentrations

are then given by

d[M]

dt
= k0 [GT ]K

2

K2+[P]2
− kdM[M] ,

d[P]

dt
= ks[M]−k4 [ET ] [P]

KM+[P]
, (64)

where KM = (k−3 + k4) /k3 is the Michaelis-Menten con-

stant of the enzyme which degrades the protein species.

Derivation of the ssLNA results

We cast the species in the full network (as given by reac-

tion schemes (31) and (32)) into the form required by the

convention set in the Introduction. We denote the slow

species by X1 = M and X2 = P and the fast species by

X3 = GP, X4 = GP2 and X5 = EP. Note that the form

of the gene with no bound protein (G) as well as the free

enzyme species (E) do not appear explicitly in our descrip-

tion due to the two inherent conservation laws (same

as shown in the previous section for the enzyme exam-

ple except that here we immediately remove the extra

species). The eleven constituent reactions are numbered

in the following order: G → G + M, GP → GP + M,

P+G → GP,GP → P+G, P+GP → GP2,GP2 → P+GP,
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M → ∅, M → M + P, P + E → EP, EP → P + E, and

EP → E.

The stoichiometric matrix and the macroscopic rate

function vector are constructed as

(65)

�f = (k0[G] , k0[GP] , k1[P] [G] , k−1[GP] , k2[P] [GP] ,

k−2[GP2] , kdM[M] , ks[M] , k3[E] [P] , k−3[EP] ,

k4[EP] ) . (66)

Note that the columns of S reflect the reaction num-

ber, while the rows reflect the species number. Similarly,

the reaction number is reflected in the entries of the

macroscopic rate function vector �f .
From S and �f we can obtain the Jacobian matrix,

(J F)ij = ∂j(S �f )i, of the REs of the full network

(67)

where the individual submatrices read explicitly

J f =

⎡

⎣

−k−1−(k1+k2)[P] k−2− k1[P] 0

k2[P] − k−2 0

0 0 −k4−k−3−k3[P]

⎤

⎦,

(68)

J s =
[ −kdM 0

ks −[G] k1−[GP] k2−[E] k3

]

, (69)

J sf =
[

0 −k0 0

k−1 + k1[P]−k2[P] k−2 + k1[P] k−3 + k3[P]

]

,

(70)

J fs =

⎡

⎣

0 k1[G]−k2[GP]

0 k2[GP]

0 k3[E]

⎤

⎦ . (71)

Using these Jacobian submatrices, the stoichiometric

submatrices given in equation (65) and the diagonal

matrix F whose elements are those of the macroscopic

rate function vector �f , as given in equation (66), we obtain

(using the two equations for A and B after equation (10))

the matrix

(

A − B
)T =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√
k0[G] 0

√
k0[GP] 0

−p1
√
k1[G] [P] 0

p1
√

k−1[GP] 0

−p2
√
k2[GP] [P] 0

+p2
√

k−2[GP2] 0

−√
kdM[M] 0

0
√
ks[M]

0 −(1 − q)
√
k3[E] [P]

0 (1 − q)
√

k−3[EP]

0 −q
√
k4[EP]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(72)

where

p1 = k0

k1

[P]

K2 + K2[P]+[P]2
K2→0−→ k0

k1

[P]

K2+[P]2
, (73)

p2 = k0

k2

K1+[P]

K2 + K2[P]+[P]2
k2→∞−→ 0, (74)

q = [P]+K3

[P]+KM
. (75)

Note that K3 = k−3/k3. The Jacobian can be obtained

from the reduced REs, equation (64), and is given by

J =

⎡

⎣

−kdM − 2k0[GT ]K
2[P]

(K2+[P]2)
2

ks − [ET ]k4KM

(KM+[P])2

⎤

⎦ . (76)

Note that we have drawn the limit of cooperative bind-

ing on p1, p2, q and J.

Finally the Langevin equation is obtained by substitut-

ing equations (76) and (72) in equation (12). To obtain

the equation for the variance of the mRNA and protein

fluctuations, onemust first determine the diffusionmatrix

D ss. Using equation (72) and the definition (10), it can be

readily shown that the diffusion matrix takes the diagonal

form

D ss = �−1diag (DM,DP) ,

DM = kdM[M]+k0 [GT ]K
2

K2+[P]2
+ p1

2k0 [GT ]K
2[P]2

(

K2+[P]2
)2

,

DP = ks[M]+k4 [ET ] [P]

KM+[P]
− (1 − q)

2k4 [ET ] [P]
2

(KM+[P] )2
.

(77)

The covariance matrix equation can then be obtained

by substituting the new diffusion matrix, equation (77),
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together with the Jacobian matrix, equation (76), in the

Lyapunov equation (6) with D h replaced by D ss. Note

that unlike the enzyme kinetics example, in the gene

network example, we have two slow species, and hence

the Lyapunov equation is a matrix equation involving

the simultaneous solution of two linear equations. The

explicit equations for the variances of the mRNA and pro-

tein fluctuations about the macroscopic steady-state con-

centrations are the diagonal elements of the covariance

matrix H, which are found to be

σ 2
M = H11 =

−
(

Det J + J222
)

DM − J212DP

2 Tr JDet J�
,

σ 2
P = H22 =

J221DM −
(

Det J + J211
)

DP

2 Tr JDet J�
, (78)

where Det J and Tr J refer to the determinant and trace

of the Jacobian matrix J, respectively. Similarly, the power

spectra of the fluctuations are obtained by substituting

the new diffusion matrix, equation (77), together with the

Jacobian matrix, equation (76), in equation (7) (with D h

replaced by D ss), leading to

PM(ω) =
(

J222 + ω2
)

DM + J212DP

�

[

(

Det J
)2 +

(

(

Tr J
)2 − 2Det J

)

ω2 + ω4
] ,

PP(ω) = J221DM +
(

J211 + ω2
)

DP

�

[

(

Det J
)2 +

(

(

Tr J
)2 − 2Det J

)

ω2 + ω4
] .

(79)

It can be shown that the condition to observe a peak in the

mRNA power spectrum is given by [35]:

(

J222DM + J212DP

)

(

(

Tr J
)2 − 2Det J

)

− DM

(

Det J
)2

< 0.

(80)

Derivation of the hLNA results

An inspection of the reduced REs, equations (64), shows

that the coarse-grained network is composed of 4 reac-

tions, two elementary and two non-elementary with a

stoichiometry matrix and a macroscopic rate function

vector given by

S =
[ +1 −1 0 0

0 0 +1 −1

]

,

�f =
(

k0 [GT ]K
2

K2+[P]2
, kdM[M] , ks[M] ,

k4 [ET ] [P]

KM+[P]

)

,

(81)

where we denoted the mRNA as species 1 and the protein

as species 2. These can be used to calculate the diffusion

matrix of the hLNA using equation (5), which leads to

D h = �−1diag
(

Dh,M,Dh,P

)

,

Dh,M = kdM[M]+k0 [GT ]K
2

K2+[P]2
,

Dh,P = ks[M]+k4 [ET ] [P]

KM+[P]
. (82)

The covariance matrix and the spectra can be obtained

as for the ssLNA. The variances and spectra are given

by equation (78) and equation (79) with DM replaced by

Dh,M, and DP replaced by Dh,P.

In the main text, we show that the hLNA (and hence the

heuristic CME) is the correct stochastic description under

timescale separation when p1 = 0 and q = 1. Indeed

one finds that this choice satisfies the condition derived in

theMethods section, which is necessary to have a reduced

CME description under timescale separation conditions.

Namely the choice p1 = 0 and q = 1 forces the effective

stoichiometric matrix S′ given by equation (13) to assume

strictly integer values.

Comparison with other stochastic model reduction

methods

In this section, we compare the predictions of the ssLNA

with the predictions of other stochastic model reduc-

tion techniques in the literature. Specifically, we compare

with the recent methods of Pahlajani et al. [51] and of

Shahrezaei and Swain [55].

We consider a simple model of stochastic gene expres-

sion given by

G
k0→G + M, M

kdM→ ∅,

M
ks→M + P, P

kdP→∅, (83)

which describes transcription, translation and degrada-

tion of mRNA and protein. The deterministic REs for this

example read

d

dt
[M] = k0 [GT ] − kdM[M] , (84)

d

dt
[P] = ks[M]−kdP[P] . (85)

In the common case where the mRNA timescale is very

small compared to that of protein, i.e., γ = (kdM/kdP) ≫
1, the mRNA concentration will quickly relax to its steady

state value [M]= k0 [GT ] /kdM and hence the REs can be

reduced to

d

dt
[P]= k0 [GT ] b − kdP[P] , (86)

where the parameter b = ks/kdM has been interpreted

as the burst size (the average number of proteins

synthesized per mRNA transcript) [56]. This is the

deterministic QSSA.
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Shahrezaei and Swain [55] showed that in the same limit

of time scale separation, one can obtain the exact joint

probability distribution of mRNA and protein fluctuations

by solving the generating function equation associated

with the CME of the full network. The variance of pro-

tein concentration fluctuations in steady-state conditions

can be calculated from this distribution function and was

found to be given by

〈η2P〉 = 1

�
[P] (1 + b) . (87)

The ssLNA gives the following Langevin equation

description of the system

d

dt
ηP = − kdPηP + b

√

[GT ] k0

�
Ŵ1(t) − b

√

kdM[M]

�
Ŵ2(t)

+
√

ks[M]

�
Ŵ3(t) −

√

kdP[P]

�
Ŵ4(t). (88)

The steady state variance predicted by the above

Langevin equation is given by equation (87). The same

result has also been previously obtained by Paulsson [32]

by applying the LNA to the full network given by (83)

and subsequently taking the limit of timescale separation.

Hence, the result obtained from the ssLNA agrees with

the exact method of Shahrezaei and Swain. The advantage

of the ssLNA is that it is generally applicable to arbitrar-

ily complex biochemical networks, whereas the generating

function method of solving CMEs is typically restricted

to networks composed of at most first-order reactions or

very simple bimolecular reactions [18,19].

Recently, another approximate reduction technique

based on the LNA has been proposed by Pahlajani,

Atzberger and Khammash [51]. The authors utilize the

assumption that in the limit of timescale separation, the

diffusion matrix of the full network can be decomposed in

block diagonal form as

D =
[

D s 0

0 D f

]

, (89)

where D f is of order γ −1 and γ is a large parameter

under timescale separation conditions. This leads to a FPE

for the slow variables with reduced Jacobian and diffusion

matrices given by

J = J s − J sf J
−1
f J fs, (90)

D =D s = �−1 S s F S T
s . (91)

The authors showed that the application of this for-

malism to the gene example above, leads to a Langevin

equation of the form

d

dt
ηP = −kdPηP +

√

ks[M]

�
Ŵ3(t) −

√

kdP[P]

�
Ŵ4(t).

(92)

The variance of fluctuations predicted by the above

Langevin equation is given by equation (87) with b ≪ 1.

Hence, it is clear that the method of Pahlajani et al. cannot

capture the fluctuations about the steady-state concentra-

tions for all choices of rate constants which are compatible

with the deterministic QSSA. Rather their assumption

regarding the form of the diffusion matrix limits their

analysis to a subset of the parameter space over which

the deterministic QSSA and consequently the ssLNA are

valid. Indeed, the fact that the method by Pahlajani et al.

is generally a special case of the ssLNA can also be seen

by direct comparison of the diffusion matrices of the two

methods, namely, equations (91) and (10).

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

PT developed the mathematical formulation of the ssLNA and performed the

stochastic simulations to corroborate its predictions. AVS contributed to the

interpretation of the derivations, in particular to the clarification of issues

concerning timescale separation. RG supervised the research, contributed to

the derivation of the implicit assumptions of the hLNA and to derivations

concerned with the Langevin formulation of the ssLNA, and wrote the

manuscript. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by the German Research Foundation (DFG project

No. STR 1021/1-2) and by SULSA (Scottish Universities Life Science Alliance),

both of which are gratefully acknowledged.

Author details
1Department of Physics, Humboldt University of Berlin, Berlin, Germany.
2School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
3SynthSys Edinburgh, University of Edinburgh, Edinburgh, UK.

Received: 28 November 2011 Revised: 14 May 2012

Accepted: 13 March 2012

References

1. Schwikowski B, Uetz P, Fields S, et al.: A network of protein-protein

interactions in yeast. Nat Biotechnol 2000, 18(12):1257–1261.

2. Ghaemmaghami S, Huh W, Bower K, Howson R, Belle A, Dephoure N,

O’Shea E, Weissman J: Global analysis of protein expression in yeast.

Nature 2003, 425(6959):737–741.

3. Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl F, Kerner M, Frishman

D: Protein abundance profiling of the Escherichia coli cytosol. BMC

Genomics 2008, 9:102.

4. Gillespie D: Exact stochastic simulation of coupled chemical

reactions. J Phys Chem 1977, 81(25):2340–2361.

5. Gillespie D: Stochastic simulation of chemical kinetics. Annu Rev Phys

Chem 2007, 58:35–55.

6. Segel L, Slemrod M: The quasi-steady-state assumption: a case study

in perturbation. SIAM Rev 1989, 31(3):446–477.

7. Gillespie D: A rigorous derivation of the chemical master equation.

Physica A: Stat Mech Appl 1992, 188(1-3):404–425.

8. Janssen J: The elimination of fast variables in complex chemical

reactions. III. Mesoscopic level (irreducible case). J Stat Phys 1989,

57:187–198.

9. Thomas P, Straube A, Grima R: Limitations of the stochastic

quasi-steady-state approximation in open biochemical reaction

networks. J Chem Phys 2011, 135:181103.

10. Maienschein-Cline M, Warmflash A, Dinner A: Defining cooperativity in

gene regulation locally through intrinsic noise. Syst Biol, IET 2010,

4(6):379–392.



Thomas et al. BMC Systems Biology 2012, 6:39 Page 23 of 23

http://www.biomedcentral.com/1752-0509/6/39

11. Assaf M, Roberts E, Luthey-Schulten Z: Determining the stability of

genetic switches: explicitly accounting for mRNA noise. Phys Rev Lett

2011, 106(24):248102.

12. Gonze D, Hafner M: Positive feedbacks contribute to the robustness

of the cell cycle with respect to molecular noise. Lecture Notes Control

Inf Sci, 407:283–295 http://www.springerlink.com/content/

w46v57t746564270/.

13. Giampieri E, Remondini D, de Oliveira L, Castellani G, Lió P: Stochastic
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16. Gonze D, Abou-Jaoudé W, Ouattara D, Halloy J: Howmolecular should

your molecular model be? On the level of molecular detail required

to simulate biological networks in systems and synthetic biology.

Methods Enzymol 2011, 487:171–215.

17. Sanft K, Gillespie D, Petzold L: Legitimacy of the stochastic

Michaelis-Menten approximation. Syst Biol, IET 2011, 5:58–69.

18. McQuarrie D: Stochastic approach to chemical kinetics. J Appl

Probability 1967, 4(3):413–478.

19. Darvey IG, Ninham BW, Staff PJ: Stochastic models for second order

chemical reaction kinetics. The Equilibrium State J Chem Phys 1966,

45:2145.

20. Laurenzi I:An analytical solution of the stochasticmaster equation for

reversible bimolecular reaction kinetics. J Chem Phys 2000, 113:3315.

21. Van Kampen N: Stochastic Processes in Physics and Chemistry. 3rd edition.

Amsterdam: Elsevier Science & Technology; 2007.

22. Grima R: Construction and accuracy of partial differential equation

approximations to the chemical master equation. Phys Rev E 2011,

84:056109.

23. Elf J, Ehrenberg M: Fast evaluation of fluctuations in biochemical

networks with the linear noise approximation. Genome Res 2003,

13(11):2475–2484.

24. Grima R: An effective rate equation approach to reaction kinetics in

small volumes: Theory and application to biochemical reactions in

nonequilibrium steady-state conditions. J Chem Phys 2010,

133:035101.

25. Paulsson J: Summing up the noise in gene networks. Nature 2004,

427(6973):415–418.

26. Tao Y, Jia Y, Dewey T: Stochastic fluctuations in gene expression far

from equilibrium: � expansion and linear noise approximation. J

Chem Phys 2005, 122:124108.

27. Elf J, Ehrenberg M: Near-critical behavior of aminoacyl-tRNA pools in

E. coli at rate-limiting supply of amino acids. Biophys J 2005,

88:132–146.

28. Ziv E, Nemenman I, Wiggins C: Optimal signal processing in small

stochastic biochemical networks. PLoS One 2007, 2(10):e1077.
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