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We consider a multiserver queueing model with the semi-Markovian arrival process and

exponential service time distribution. Novel customers admission discipline is under

study. The customer, which sees several free servers upon arrival, is served simultane-

ously by all these servers. Such situation occurs, for example, in modeling wireless com-

munication network with broadcasting. Systems with infinite buffer and with losses are

investigated. Stationary distributions of a queue, waiting and sojourn times, and the main

performance measures are calculated.
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1. Introduction

Multiserver queueing systems model many real-life objects and processes and have got a

lot of attention in the literature since the pioneering works by the Danish mathematician

and engineer A.K. Erlang in the early 19th. In this paper we consider the model that differs

from all previous works by the customer admission discipline. The standard assumption

is that the customer is served by one server. In our paper, we investigate the case when

the customer gets a service from all servers that were idle at the customer arrival epoch.

Such a discipline is realistic in modeling, for example, the wireless communication net-

work with broadcasting. If the system has many antennas, it makes sense to employ all

of the free antennas to transmit the arriving information unit. It creates some redun-

dancy, but it can help to decrease the average information delivering time if the system is

not overloaded while the transmission time has high variation. The diversification of the

ways of transmission helps to decrease the average time of delivering of a first copy of the

broadcasted information.

We assume here that the input flow is described in terms of the SM (semi-Markovian)

arrival process. It means that the successive interarrival times are defined by the sojourn

times of some semi-Markovian stochastic process in its states. The SM arrival process is
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maximally general among known-in-literature descriptors of the arrival process which

still allows to get analytically tractable results for characteristics of the queueing model.

The SM arrival process is, generally speaking, the correlated process and so it well suits for

modeling the real-life flows in modern telecommunication networks. As a particular case,

the SM arrival process includes the set of all GI (general independent) recurrent service

processes in which the interarrival times are independent identically arbitrary distributed

random variables. Service time distribution in this model is assumed to be exponential.

Multiserver models with the SM arrival process and standard service discipline were

recently considered in [1–4]. In [3, 4], batch arrivals are allowed. Analysis is based on

the theory of piecewise Markov process and transform approach. Applications to investi-

gation of the transmission of MPEG (motion picture experts group) frame sequence on

ATM network are presented. In [1, 2], the models are analyzed where the buffer capacity

is finite and the service process is of MSP (Markovian service process) type. MSP is a

direct analogue of the well-known MAP (Markovian arrival processes).

The main distinction of the model considered in the present paper from the mod-

els analyzed in the mentioned above papers consists of another service discipline which

we call the broadcasting service discipline. Such a discipline suggests that if the arriv-

ing into the system customer meets several free servers upon arrival, all these servers

start, independently of others, the service of this customer. Such a discipline is realistic,

for example, in multiantenna communication networks The multiserver model of the

MAP/PH/N type with the broadcasting service discipline was recently considered in [5].

In our present paper, we impose more strong assumptions about the service process (the

class of PH phase-type distributions is much more rich than the set of exponential distri-

butions considered in the present paper), but the arrival process of SM type, considered

in this paper, is an essentially more wide class than the set of the Markovian arrival pro-

cesses. So, the model considered in [5] could be exploited for performance evaluation

and capacity planning in real-life systems in situations when the service time distribution

cannot be well approximated by the exponential distribution. While the present model

allows to consider more complicated arrival processes, it is worth to mention that, ex-

cept our paper [5], the model studied in this paper was not previously investigated in

the literature even in the much simpler case of the stationary Poisson arrival process and

exponential service time distribution.

Due to the different assumptions about the input flow and service process, analysis of

the stochastic processes in the model in this paper and the model in [5] is quite differ-

ent. In [5], the multidimensional continuous time Markov chain is under study. Here we

have to analyze first the two-dimensional discrete time Markov chain embedded at the

epochs of the customers arrival into the system. In both cases, the investigated stochastic

process is not directly immersed into some well-known class of random processes and its

investigation is not quite straightforward.

The rest of the paper is organized as follows. In Section 2, the model is described. In

Section 3, it is analyzed for the case of an infinite buffer. Numerical procedures for calcu-

lating the stationary-state distributions of the number of customers in the system at the

customer arrival and arbitrary epochs are described. Distribution functions of the wait-

ing and sojourn time are derived. The case of unreliable customers service is touched.
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The system with losses is investigated in brief in Section 4. Section 5 contains some con-

cluding remarks.

2. Mathematical model

We consider an N-server queueing system. The flow of customers arriving into the system

is of SM type. It means that the arrivals are directed by some semi-Markovian process. Let

us denote this process by νt, t ≥ 0. The process νt, t ≥ 0, has a finite-state space {1, . . . ,K}.
Behavior of the process is described by the semi-Markovian kernel A(t). This kernel is

the square matrix of size K with entries (A(t))k,k′ , k, k′ = 1,K . Function (A(t))k,k′ has

the meaning of the probability that sojourn time of the process in the state k will be no

longer than t and after that the process jumps into the state k′, not necessary different

from the state k, k, k′ = 1,K . The matrix A(∞) has a meaning of the one-step probability

matrix of the Markov chain embedded at epochs of all jumps of the process νt, t ≥ 0.

It is assumed that the embedded Markov chain is irreducible, and sojourn times of the

process νt, t ≥ 0, in its states are positive and finite. Then the stationary distribution of the

embedded Markov chain exists. Denote by θ the row vector of the stationary distribution

of the embedded Markov chain. It is well known that this vector is the unique solution to

the following system of equations:

θ = θA(∞), θe= 1. (2.1)

Here and in the sequel e is the column vector consisting of 1’s.

The customers in the SM arrival process arrive at the epochs of jumps of the semi-

Markovian process νt, t ≥ 0. The value λ defined by formula

λ−1 = θ

∫∞
0
tdA(t)e (2.2)

is called the average intensity or fundamental rate of the SM arrival process.

The servers of the system are assumed to be independent of each other and identical.

Service time distribution is assumed to be exponential with the positive finite parameter

µ.

If the arriving into the system customer meets several free servers upon arrival, all these

servers start, independently of others, the service of this customer. Since this epoch, all

multiple copies of this customer are considered as the different customers serving in the

system. Further, the system does not distinguish the customers having unique or multiple

copies in the system. So, multiple copies cannot be deleted from the system before they get

a service even if new customers requiring a service arrive or if some copies of an original

customer already finish the service in the system.

If all the servers are busy upon arrival, we will distinguish the following two variants

of the system behavior: (i) the customer is placed into the buffer of an infinite capacity

and then it will be picked up from the queue according to the FIFO (first in, first out)

discipline; (ii) the customer leaves the system forever, that is, it is lost by a system.

These two variants are coded in the literature in Kendall’s denotations as the SM/M/N
and SM/M/N/N systems, respectively. We consider these variants in this paper sequen-

tially.
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3. The SM/M/N system

3.1. Distribution of the number of customers in the system at arrival epochs. Let it,
it ≥ 0, be the number of customers in the system at epoch t, t ≥ 0. Our aim is to study

the stationary behavior of the process it, it ≥ 0. However, this process is a non-Markovian

one and its direct investigation is not possible. So, we apply the method of embedded

Markov chains for its investigation. To this end, we first consider the states of the process

it, it ≥ 0, only at the epochs tn − 0 immediately before the nth customer arrival into the

system, n≥ 1. Let us denote in = itn−0, n≥ 1, and νn = νtn−0, n≥ 1.

It is easy to see that the two-dimensional process

ζn =
(
in,νn

)
, n≥ 1, in ≥ 0, νn = 1,K , (3.1)

is an irreducible discrete time Markov chain.

Denote the stationary probabilities of this process as

π(i,k)= lim
n→∞

P
{
in = i, νn = k

}
, i≥ 0, k = 1,K. (3.2)

The problem of the establishing conditions for existence of the limits (3.2) will be

discussed a bit later.

Let us enumerate the states of the Markov chain ζn, n≥ 1, in the lexicographic order

and form the row-vectors π i of the stationary-state probabilities π(i,k), corresponding to

the state i of the first component of the chain:

π i =
(
π(i,1),π(i,2), . . . ,π(i,K)

)
, i≥ 0. (3.3)

Analogously, we form the matrices Pi,l of one-step transition probabilities of the Markov

chain ζn, n≥ 1, as

Pi,l =
(
P
{
in+1 = l, νn+1 = k′ | in = i, νn = k

})
k,k′=1,K , i, l ≥ 0. (3.4)

Lemma 3.1. The nonzero matrices Pi,l, i, l ≥ 0, of one-step transition probabilities are calcu-

lated by

Pi,l =Ωi+1−l, N ≤ l ≤ i+ 1, i≥N − 1, (3.5)

Pi,l =

∫∞
0
Cl
Ne

−lµt

∫ t

0
Nµ

(Nµt)i−N

(i−N)!

(
e−µy − e−µt

)N−l
dydA(t), 0 < l < N , i≥N , (3.6)

Pi,l = PN−1,l =�l, i= 0,N − 1, l = 1,N , (3.7)

Pi,0 =�0, i= 0,N − 1, (3.8)

Pi,0 =A(∞)−
N−1∑

l=1

Pi,l −
i−N+1∑

l=0

Ωl, i≥N , (3.9)
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where

Ωl =

∫∞
0

(Nµt)l

l!
e−NµtdA(t), l ≥ 0, (3.10)

�l =

∫∞
0
Cl
Ne

−lµt
(
1− e−µt

)N−l
dA(t), l = 0,N. (3.11)

The proof of the lemma consists of analysis of one-step transitions. It is straightfor-

ward and so it is omitted.

Lemma 3.2. The matrix �= (Pi,l)i≥0, l≥0 of one-step transition probabilities of the Markov

chain ζn, n≥ 1, has the following structure:

�=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�0 �1 �2 . . . �N−1 �N O O O .. .
�0 �1 �2 . . . �N−1 �N O O O .. .

...
...

...
. . .

...
...

...
...

...
...

�0 �1 �2 . . . �N−1 �N O O O .. .
PN ,0 PN ,1 PN ,2 . . . PN ,N−1 Ω1 Ω0 O O .. .
PN+1,0 PN+1,1 PN+1,2 . . . PN+1,N−1 Ω2 Ω1 Ω0 O .. .
PN+2,0 PN+2,1 PN+2,2 . . . PN+2,N−1 Ω3 Ω2 Ω1 Ω0 . . .

...
...

...
. . .

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.12)

The statement of the lemma directly stems from Lemma 3.1.

Two essential distinctions of the matrix �= (Pi,l)i≥0, l≥0 of one-step transition proba-

bilities of its prototype in the case of the classical service discipline have to be mentioned.

The first one is that the matrix � in the form (3.12) is not completely low Hessenber-

gian as its prototype. This distinction makes the investigation of the Markov chain more

complicated. The second distinction consists of the fact that the first N block rows of the

matrix � coincide. It appears that this distinction simplifies investigation and, eventually,

results, which will be derived below, have more nice analytic form comparing the system

with the classical service discipline.

Theorem 3.3. Stationary distribution π i, i≥ 0, of the Markov chain ζn, n≥ 1, exists if and

only if the inequality

ρ=
λ

Nµ
< 1 (3.13)

is fulfilled, where λ is the fundamental rate of the arrival process defined by formula (2.2).

Vectors π i, i≥ 0, are computed as follows:

π0 = θ(I −�)

(
I + �−

N∑

k=1

�k −

N∑

k=1

�k

)
, (3.14)

πk = θ(I −�)
(
�k + �k

)
, k = 1,N − 1, (3.15)

π i = θ(I −�)�
i−N+1, i≥N , (3.16)
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where the matrices �k, k = 0,N , are defined by formula (3.11), the matrices �k, k = 1,N ,

are computed by

�k =N�Ck
N

N−k∑
m=0

Cm
N−k(−1)N−k−m(mI −N�)−1

(
α
(
µ(N −m)

)
−�

)
, (3.17)

the matrix � is the minimal nonnegative solution to the equation

�= α
(
Nµ(I −�)

)
, (3.18)

I is identity matrix, θ is the vector defined as solution to the system (2.1), and α(s) is the

matrix Laplace-Stieltjes transform of the semi-Markovian kernel:

α(s)=

∫∞
0
e−stdA(t), Re s > 0. (3.19)

Proof. It is well known that the vectors π i, i ≥ 0, defining the stationary distribution of

the Markov chain ζn, n ≥ 1, satisfy Chapman-Kolmogorov’s equations (or equilibrium

equations),

(
π0,π1,π2, . . .

)
�=

(
π0,π1,π2, . . .

)
. (3.20)

It can be seen from the structure (3.12) of the transition probability matrix � that, start-

ing from the (N + 1)th block row, the matrix becomes below Heisenbergian. So, results

by Neuts [6] concerning the so called GI/M/1 type Markov chains (or Markov chains

possessing skip-free to the right property) can be applied in some extent. In particular,

because the limiting behavior of the Markov chain (and stability condition) does not de-

pend on the transitions of the Markov chain in the boundary states, stability condition of

form (3.13) directly follows from [6].

To prove relations (3.14)–(3.16) we will solve, step by step, equilibrium equations

(3.20) with the transition probability matrix � of form (3.12).

The kth, k ≥N + 2, equation of the system (3.20) can be rewritten as

πk =

∞∑

l=k−1

π lΩl+1−k, k ≥N + 1. (3.21)

By the direct substitution, we can make sure that the probability vectors πk, which satisfy

system (3.21), have the following form:

πk = c�
k−N+1, k ≥N , (3.22)

where c is some constant vector and the matrix � is solution to (3.18). See Neuts’ book

[6] for more reasonings and explanations.

The kth, k = 2,N , equation of the system (3.20) can be rewritten as

πk =

N−1∑

l=0

π l�k +
∞∑

m=N

πmPm,k, k = 1,N − 1, (3.23)
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where the matrices �k, k = 1,N − 1, are defined by formula (3.11) and the matrices Pm,k

are defined by formula (3.6).

By substituting expressions (3.6) and (3.22) into the infinite sum in (3.23) and calcu-

lating this sum, we get the relation

πk =

N−1∑

l=0

π l�k + c�k, k = 1,N − 1, (3.24)

where the matrices �k are given by formula (3.17).

The (N + 1)th equation of the system (3.20) can be rewritten as

πN =

N−1∑

l=0

π lΩ0 +
∞∑

m=N

πmΩk+1−N . (3.25)

By substituting expressions (3.10) and (3.22) into the infinite sum in (3.25), calculating

this sum, and taking into account that Ω0 =�N , we conclude that relation (3.24) holds

good for k =N as well.

The first equation of the system (3.20) can be written as

π0 =

N−1∑

l=0

π lPN−1,0 +
∞∑

m=N

πmPm,0. (3.26)

Taking into account (3.8) and (3.9), we rewrite this equation as

π0 =

∞∑

l=0

π lA(∞)−
N−1∑

l=0

π l

N∑

i=1

�i−

∞∑

l=N

π l

N−1∑
m=1

Pl,m−
∞∑

l=N

π l

L−N+1∑

i=0

Ωi. (3.27)

It is evident that
∑∞

l=0π l = θ. Taking into account formula (2.1), we conclude that the

first term in the right-hand side of (3.27) is equal to θ. After the routine calculation of the

infinite sums in the right-hand side of (3.27) including the change of order of summation

and the use of formulae (3.6), (3.10), and (3.22), we yield expression

π0 = θ−

N−1∑

l=0

π l

N∑

i=1

�i− c
N−1∑

k=1

�k − c�(I −�)−1 + cΩ0. (3.28)

Mention that the inverse matrix in (3.28) exists due to Hadamard’s theorem because it is

known (see [6]) that the minimal nonnegative solution to (3.18) is sub stochastic. Taking

into account the explicit form of the matrix �N , we modify the expression (3.28) as

π0 = θ−

N−1∑

l=0

π l

N∑

i=1

�i− c
N∑

k=1

�k − c�
2(I −�)−1. (3.29)
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By summing (3.29) and (3.24) for k = 1,N , we get the following expression for still an

unknown vector:

δ =

N−1∑

l=0

π l : δ =
[
θ− c

(
�N + �

2(I −�)−1
)]

(I + �N )−1. (3.30)

Mention that the inverse matrix in (3.30) exists due to Hadamard’s theorem because the

matrix �N is substochastic.

Recall that we have derived two different expressions, (3.22) and (3.24), for the vector

πN . By equating them, we get

πN = c�= δ�N + c�N . (3.31)

Taking into account formulae (3.30) and (3.31), we get the explicit expressions for un-

known up to this moment vectors δ and c:

c= δ = θ(I −�). (3.32)

By substituting the obtained expressions for vectors δ and c into the formulae (3.22),

(3.24), and (3.29), we prove formulae (3.16), (3.15), and (3.14) correspondingly. This

completes the proof of the theorem. �

Corollary 3.4. Average number L of customers in the system at the customers arrival

epochs is computed by

L=
∞∑

k=1

kπke= θ(I −�)

[ N∑

k=1

k
(
�k + �k

)
+ �

2
(
N(I −�) + I

)
(I −�)−2

]
e. (3.33)

Average number Ns of servers, which process an arbitrary customer in the system, is computed

by

Ns =

[N−1∑

k=0

(N − k)πk +
∞∑

k=N

πk

]
e= θ(I −�)

[
N(I + �)−

N∑

k=1

k
(
�k + �k

)]
e + θ�e.

(3.34)

3.2. Distribution of the number of customers in the system at arbitrary epochs. Hav-

ing the stationary distribution of the embedded Markov chain ζn, n≥ 1, been computed,

now we can calculate the stationary distribution of the non-Markovian process it, it ≥ 0,

of the number of customers in the system at epoch t, t ≥ 0.

Let us denote the stationary probabilities of the two-dimensional process (it,νt), t ≥ 0,

by

p(i,k)= lim
t→∞

P
{
it = i, νt = k

}
, i≥ 0, k = 1,K , (3.35)

and form the row-vectors pi of the stationary-state probabilities p(i,k), corresponding to

the state i of the first component of the chain:

pi =
(
p(i,1), p(i,2), . . . , p(i,K)

)
, i≥ 0. (3.36)
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Theorem 3.5. The stationary-state probability vectors pi, i≥ 0, are computed by

pi = ρθ�
i−N

(
A(∞)−�

)
, i≥N ,

pl = λ
N−1∑

m=l−1

πmC
l
m+1

m+1−l∑

k=0

Ck
m+1−l

1

µ(l+ k)

(
A(∞)−α(µ(l+ k)

))

+ λθ(I −�)�NCl
N

N−l∑
m=0

Cm
N−l(−1)N−l−m(mI −N�)−1

×

[
A(∞)−α

(
µ(N −m)

)

µ(N −m)
−
(
Nµ(I −�)

)−1(
A(∞)−�

)]
, l = 1,N − 1,

p0 = θ−

N−1∑

l=1

pl − ρθ(I −�)
(
A(∞)−�

)
.

(3.37)

Proof exploits in [7, Theorem 6.12] and is straightforward. So, it is omitted.

3.3. Distribution of the waiting and sojourn times. Let V(x) and W(x) be distribution

functions of sojourn time and waiting time of an arbitrary customer in the system under

study.

Theorem 3.6. Distribution function W(x) of the waiting time is calculated by

W(x)= 1− θ�e−Nµ(I−�)xe. (3.38)

Proof. It is clear that waiting time of the arbitrary (tagged) customer is equal zero if the

customer meets free servers in the system. Probability of this event is equal to
∑N−1

k=0 πke=

δe= θ(I −�)e. When the tagged customer meets all servers busy and i, i≥ 0, customers

waiting in a queue (probability of this event is equal to πN+ie), its conditional waiting

time distribution is Erlangian of order i+ 1 with intensity of the phase equal to Nµ.

By the direct applying the formula of total probability and using Theorem 3.3, we get

formula

W(x)=
N−1∑

k=0

πke +
∞∑

i=N

π i

∫ x

0
Nµ

(Nµu)i−N

(i−N)!
e−Nµudue

= θ(I −�)

[
I +Nµ�

∫ x

0
e−Nµ(I−�)udu

]
e

= θ(I −�)e + θ�
(
I − e−Nµ(I−�)x

)
e= 1− θ�e−Nµ(I−�)xe.

(3.39)

The theorem is proved. �

Corollary 3.7. Average waiting time W1 of customers in the system is computed by

W1 =
θ�(I −�)−1e

Nµ
. (3.40)
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Variance DW of the waiting time of customers in the system is computed by

DW =
2θ�(I −�)−2e

(Nµ)2
−L2. (3.41)

Because the considered service discipline supposes that the customer, which sees i free

servers upon arrival, is served by all these servers, independently of each other, we have to

clarify what you mean when speaking about the sojourn time of a customer in the system.

Here we mean that the sojourn time of a customer in the system is the time since the

customer arrival to the system till the earliest epoch of this customer service completion

(epoch of the delivering of the first copy of a customer).

It is easy to calculate that the time since the service beginning of this customer till the

finish of the service of the first among i copies of this customer has exponential distribu-

tion with the parameter iµ, i= 1,N .

Theorem 3.8. Distribution function V(x) of the sojourn time is calculated by

V(x)= θ(I −�)

{(
I + �−

N∑

k=1

(
�k + �k

))(
1− e−Nµx

)
+

N−1∑

k=1

(
�k + �k

)(
1− e−(N−k)µx

)

+N�

[(
N(I −�)

)−1(
I − e−Nµ(I−�)x

)

− e−µx
(
N(I −�)− I

)−1(
I − e−(Nµ(I−�)−Iµ)x

)]}
e.

(3.42)

The proof is straightforward. It is based on the formula of total probability. Reason-

ings, which are presented before the theorem formulation, about the sojourn time in the

case of a customer arrival when not all servers are busy are taken into account. Also, we

took into account that, for a customer who sees all servers busy upon arrival and i, i≥ 0,

customers in a queue, conditional distribution of the sojourn time is convolution of the

Erlangian distribution of order i+ 1 with intensity of the phase equal to Nµ (conditional

waiting time distribution) and the exponential distribution with intensity µ (conditional

service time distribution).

Corollary 3.9. The mean sojourn time V1 in the system is computed by

V1 =

N−1∑

i=0

π ie

µ(N − i)
+W1 +

1

µ
, (3.43)

where the mean waiting time W1 is defined in Corollary 3.7.

The second-order initial moment V2 of the sojourn time distribution is computed by

V2 = 2

{N−1∑

i=0

π ie(
µ(N − i)

)2 + θ�
(
Nµ(I −�)

)−2
e +

θ�
(
Nµ(I −�)

)−1
e

µ
+

1

µ2

}
. (3.44)
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Jitter J (variance of the sojourn time) is calculated by

J =V2−V 2
1 . (3.45)

3.4. The case of unreliable servers. It is intuitively clear that the broadcasting service

discipline has the following advantage. Because the customer can get the service simul-

taneously and independently in several servers, and the failure in one or even several

servers, does not mandatorily cause failure of the customer service in the system, this dis-

cipline can improve, comparing to the classical discipline, the quality of the customers

service in the cases when the servers are not absolutely reliable. The service of a customer

is not absolutely reliable, for example, in a channel of a telecommunication network due

to the possibility of the errors’ occurrence on physical layer of information transmission.

So, these cases should be analyzed aiming to model the real-life systems.

Thus, let us consider in brief the system with nonreliable servers. We assume here that

the service of a customer is not interrupted when the error occurs, but just this customer

will be considered as not served properly. In terms of telecommunications it means that

the information unit, for example, message, will not be delivered in a good shape. So, we

suppose that the errors process does not impact the process of service, but it impacts the

result of the service. Situation when the error’s occurrence impacts the service process in

general, for example, it causes the break of the service, deserves a separate treatment, and

is not considered in this paper.

We consider here two types of the error mechanisms. The first type assumes the in-

dependent errors’ occurrence in the servers. The service of an arbitrary customer in an

arbitrary server can fail with some known probability q, 0 ≤ q < 1. The second type as-

sumes that there exists a stationary Poisson arrival process of errors which has a known

intensity ϕ. Arrival of such an error causes the failure of the service in all servers currently

providing a service to customers.

Let us denote P
(k)
+ probability that an arbitrary customer will be delivered successfully

through the considered queueing system under the kth type of the error mechanism,

k = 1,2, and P̃
(k)
+ is the value of the corresponding probability in the system with the

classical service discipline.

Theorem 3.10. Probabilities P
(k)
+ , k = 1,2, that an arbitrary customer will be successfully

delivered through the queueing system, are computed by

P
(k)
+ = 1−ψ

(k)
1 θ�e− θ(I −�)

[(
I + �−

N∑

l=1

(
�l + �l

))
ψ

(k)
N +

N−1∑

l=1

(
�l + �l

)
ψ

(k)
N−l

]
e,

(3.46)

where

ψ
(1)
i = qi, ψ

(2)
i =

ϕ

ϕ+ iµ
, i= 1,N. (3.47)
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The proof directly follows from the evident formula

P
(k)
+ =

[N−1∑

l=0

π l

(
1−ψ

(k)
N−l

)
+
(
1−ψ

(k)
1

) ∞∑

l=N

π l

]
e (3.48)

and Theorem 3.3.

Note that it is easy to show that probabilities P
(k)
+ of successful delivering are greater

than the corresponding probabilities P̃
(1)
+ = 1− q and P̃

(2)
+ = µ/(µ+ϕ) in the system with

the classical service discipline.

3.5. The GI/M/N , D/M/N , and M/M/N systems. In the case of the GI/M/N system, the

results are a bit simplified. In this case the semi-Markovian kernel A(t) is a scalar inter-

arrival distribution function. Correspondingly, all vectors and matrices, which present in

the results of the previous subsections, are scalars. Scalar equation (3.18) has a unique

solution in the interval (0,1) if stability condition (3.13) is fulfilled.

In the special case of the D/M/N system where the arrival flow is deterministic:

A(t)=

⎧⎨
⎩

0, t ≤ T ,

1, t > T ,
(3.49)

the values �k,�k, k = 0,N , in Theorem 3.3, are calculated by

�k = Ck
Ne

−kµT
(
1− e−µT

)N−k
,

�k =N�Ck
N

N−k∑
m=0

Cm
N−k(−1)N−k−m

�− e−µ(N−m)T

N�−m
, k = 0,N ,

(3.50)

the number � is the single root of equation �= e−µN(1−�)T in the interval (0,1).

In the case of the M/M/N system, the root � of (3.18) is calculated in explicit form

and is equal to the traffic intensity (load) ρ. So, the results are essentially simplified.

Corollary 3.11. In the case of the M/M/N system with broadcasting, the stationary distri-

bution pi, i≥ 0, is computed by

pi = p0σi, i= 0,N ,

pi = p0σNρ
i−N , i > N ,

p0 = ρ(1− ρ)σ−1
N ,

(3.51)

where

σi =
i∏

k=1

λ+ (k− 1)µ

kµ
, i= 0,N. (3.52)

Average number of customers L in the system is calculated by

L=Nρ+
ρ2

1− ρ
+ ρ(1− ρ)σ−1

N

N−1∑

i=0

iσi. (3.53)
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Average sojourn time V1 of a customer in the system is calculated by

V1 =
ρ

Nµ

(
N +

1

1− ρ

)
+ ρ(1− ρ)σ−1

N

N−1∑

i=0

σi
(N − i)µ

. (3.54)

Probability P
(k)
+ that an arbitrary customer will be successfully delivered through the queue-

ing system (if the service is not reliable) is computed by

P
(k)
+ = 1−ψ

(k)
1 ρ− ρ(1− ρ)σ−1

N

N−1∑

i=0

σiψ
(k)
N−i, (3.55)

where the values ψ
(k)
i , i= 1,N , k = 1,2, are given by formula (3.47).

Detailed numerical comparison of the main performance characteristics of the sys-

tem with broadcasting service with the corresponding measures of the classical M/M/N
system, N > 1, is not intended to be presented in this paper. We mention only several

observations based on such a comparison.

(i) Little’s formula L = λV1 is valid for the classical M/M/N system and it does not

hold good for the M/M/N broadcasting system.

(ii) The broadcasting system has smaller value of the probability to have an empty

system.

(iii) Average number L of customers in the system is always larger for the broadcasting

system.

(iv) Relation of the average sojourn time V1 of a customer in the systems depends on

the system parameters. For example, if we fix λ= 1 (it can be always done without

the loss of generality) and fix the traffic intensity ρ = 0.5 and then increase the

number of servers N with the corresponding fitting service intensity µ, we get the

following result. For 1 < N ≤ 3, the classical service discipline gives smaller value

of the average sojourn time V1. For N > 3, the broadcasting service discipline

is better. For example, for N = 50 we have V1 = 25.00 for the classical service

discipline and V1 = 19.95 for the broadcasting service discipline.

So, the broadcasting discipline provides 20 percent lesser average sojourn

time. When the number of servers grows, the advantage of this discipline contin-

ues to increase.

If we assume now that the traffic intensity ρ is equal to 0.1, then for N = 50

we have V1 = 5.00 for the classical service discipline and V1 = 1.6326 for the

broadcasting service discipline. This means that the delivering time of a customer

is three times less in the case of the broadcasting service discipline. If we further

decrease the traffic intensity ρ, the benefit of broadcasting service discipline can

become very big.

The positive effect of the broadcasting in situations when errors in a transmission

can occur is confirmed by the numerical experiment. In Table 3.1, we present the value

κ of the relative improvement (in percent) of the probability of a successful customer

delivering by means of broadcasting discipline compared to the classical discipline for

three different values of the system load ρ and four values of the probability q̄ = 1− q of
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Table 3.1. Improvement κ of the probability of a successful customer delivering.

ρ q̄ = 0.9 q̄ = 0.8 q̄ = 0.7 q̄ = 0.5 q̄ = 0.4

0.5 3.5% 7.3% 12.0% 23.0% 57.0%

0.25 6.4% 15.0% 23.0% 48.0% 65.0%

0.1 8.9% 19.0% 33.3% 73.0% 104.0%

a customer service without an error. The value κ is computed by

κ=
P

(1)
+ − P̃

(1)
+

P̃
(1)
+

× 100%, (3.56)

where P
(1)
+ is the value of the probability of a successful customer delivering by means of

broadcasting discipline and P̃
(1)
+ is the value of this probability under the classical disci-

pline.

One can see that in case when the load of the system is small and so the sending of a

customer to several parallel servers is not rare, the profit from broadcasting in respect of

more reliable customers delivering can be essential. This profit increases if the quality of

the service in a server becomes worse. The number of the servers in this experiment was

assumed to be N = 15. The profit increases also with the grow of the number of servers

in a system.

In the case of the second mechanism of error’s occurrence, the profit from using the

broadcasting discipline behaves analogously.

These observations as well as the possible reduction of the delivering time, what was

mentioned above, motivate importance of investigation of the broadcasting service disci-

pline.

4. The SM/M/N/N system

Assume now that the system has no buffer, and the arriving customer that meets all

servers busy is lost.

The behavior of the system here is described by the two-dimensional irreducible dis-

crete time Markov chain

ζn =
(
in,νn

)
, n≥ 1, in = 0,N , νn = 1,K , (4.1)

where components (in,νn) have the same meaning as in the previous section.

Denote the stationary probabilities of this Markov chain as

π(i,k)= lim
n→∞

P
{
in = i,νn = k

}
, i= 0,N , k = 1,K , (4.2)

and the row-vectors

π i =
(
π(i,1),π(i,2), . . . ,π(i,K)

)
, i= 0,N. (4.3)

Stationary distribution (4.2) of the finite-state irreducible Markov chain under study ex-

ists for all values of the system parameters.
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As in the previous section, we form the matrices Pi,l of one-step transition probabilities

of the Markov chain ζn, n≥ 1, by

Pi,l =
(
P
{
in+1 = l,νn+1 = k′ | in = i,νn = k

})
k,k′=1,K , i, l = 0,N. (4.4)

Lemma 4.1. The matrix � = (Pi,l)i=0,N , l=0,N of one-step transition probabilities of the

Markov chain ζn, n≥ 1, has the following structure:

�=

⎛
⎜⎜⎜⎜⎝

�0 �1 �2 . . . �N−1 �N

�0 �1 �2 . . . �N−1 �N

...
...

...
. . .

...
...

�0 �1 �2 . . . �N−1 �N

⎞
⎟⎟⎟⎟⎠
. (4.5)

Theorem 4.2. Stationary distribution π i, i≥ 0, of the Markov chain ζn, n≥ 1, is computed

as follows:

π i = θ�i, i= 0,N , (4.6)

where the matrices �i, i= 0,N , are defined by formula (3.11).

Proof of this theorem is straightforward and is omitted.

Theorem 4.3. Probability Ploss of a loss of an arbitrary customer is computed by

Ploss = θα(Nµ)e. (4.7)

Theorem 4.4. Distribution function V(x) of the sojourn time is calculated by

V(x)= 1− θ

N−1∑

k=0

�ke
−µ(N−k)xe. (4.8)

The proof easy follows from the formula of total probability:

V(x)= Ploss + θ

N−1∑

k=0

�k

(
1− e−µ(N−k)x

)
e. (4.9)

Theorem 4.5. Distribution function V(x) of the sojourn time for customers, which are not

lost, is calculated by

V(x)=
θ

1−Ploss

N−1∑

k=0

�k

(
1− e−µ(N−k)x

)
e. (4.10)

Corollary 4.6. The mean sojourn time V1 in the system for customers, which are not lost,

is computed by

V1 =
θ

1−Ploss

N−1∑

k=0

�k

µ(N − k)
e. (4.11)
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The second initial moment V2 of the sojourn time in the system for customers, which are not

lost, is computed by

V2 =
θ

1−Ploss

N−1∑

k=0

2�k(
µ(N − k)

)2 e. (4.12)

Jitter J of delivering time is computed by J =V2−V 2
1 .

Corollary 4.7. In the case of the M/M/N/N system with broadcasting, the stationary dis-

tribution πi, i≥ 0, is computed by

πi = σi

( N∑

k=0

σk

)−1

=
σiρ

σN (1 + ρ)
, i= 0,N , (4.13)

where the values σi, i= 0,N , are defined by formula (3.52).

Probability Ploss of a loss of an arbitrary customer is computed by

Ploss =
ρ

1 + ρ
. (4.14)

The mean sojourn time V1 in the system for customers, which are not lost, is computed by

V1 =
ρ

µσN

N−1∑

i=0

σi
N − i

. (4.15)

Comparing the value of the loss probability Ploss for the broadcasting discipline with

the corresponding probability P̃loss for the classical discipline, which is given by the fa-

mous B-formula by A. K. Erlang:

P̃loss =
(Nρ)N /N !∑N
l=0((Nρ)l/l!)

, (4.16)

we can see that, for N > 1, loss probability in the the case of the broadcasting discipline is

higher.

However, comparing the value of the mean sojourn time V1 for customers, which are

not lost, for the broadcasting discipline with the corresponding mean sojourn time Ṽ1

for the classical discipline, which is given by Ṽ1 = µ−1, we can see that, even for N = 2,

the mean sojourn time V1 in the the case of the broadcasting discipline can be smaller.

For example, if the intensity λ of the arrival process satisfies inequality λ < 3µ, where µ is

the service intensity, then the mean sojourn time V1 is less than 75 percent of the mean

sojourn time Ṽ1. With the decrease of the traffic intensity ρ = λ/Nµ and the increase of

the number of the servers N , advantage of the broadcasting discipline with respect to the

mean sojourn time can become huge.

So, conclusion about the preference of the classical or broadcasting disciplines in any

concrete system modeled by the multiserver queueing model without a buffer should be

made in each concrete situation depending on the relation of the system requirements to
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Table 4.1. Probabilities of a successful customer delivering by means of the broadcasting and classical

disciplines.

ρ q̄ = 0.9 q̄ = 0.8 q̄ = 0.7 q̄ = 0.5

0.5 0.8949; 0.6417 0.7955; 0.6128 0.6060; 0.5791 0.4972; 0.4912

0.25 0.9; 0.7816 0.8; 0.7594 0.7; 0.7324 0.5; 0.6558

0.1 0.9; 0.8994 0.8; 0.8873 0.7; 0.8720 0.5; 0.8243

0.05 0.9; 0.9470 0.8; 0.9402 0.7; 0.9315 0.5; 0.9030

the loss probability and response time. If the loss probability is more important, the clas-

sical discipline is better. However, if the response time is more essential, the broadcasting

discipline can be more preferable.

If the service in a server can be implemented with error, as it was described in Section

3.4, the following statement holds good.

Corollary 4.8. Probability P
(k)
+ of successful delivering of a customer in the case of kth type

of the error occurrence mechanism is computed by

P
(k)
+ =

N−1∑

i=0

σiρ

σN (1 + ρ)

(
1−ψ

(k)
N−i

)
, k = 1,2, (4.17)

where the values ψ
(k)
i , i= 1,N , k = 1,2, are given by formula (3.47).

Numerical experiments show that if the error in servers can occur, then the broadcast-

ing discipline can be more preferable even with respect to loss probability if the service of

a customer with error is considered to be equivalent to the customer loss. Table 4.1 shows

the value of the probabilities P
(1)
+ and P̃

(1)
+ of successful customer delivering by means of

the broadcasting and classical disciplines correspondingly for several values of a proba-

bility q̄ = 1− q of the service in a server without an error and several values of the traffic

intensity ρ. The first number among two numbers for each system corresponds to P̃
(1)
+ .

The second one, separated by the character “;”, corresponds to P
(1)
+ .

The number of servers in this experiment is N = 15. Because the traffic intensity ρ is

chosen here to be small, there is practically no losses of customer in the case of the classical

discipline. So, probability of successful delivering is completely defined by a probability

q̄ for ρ ≥ 0.25. It is evidently seen that with the increase of the error probability and the

decrease of the traffic intensity the broadcasting discipline becomes more preferable.

5. Conclusion

We have analyzed the stationary distribution of the queue and waiting and sojourn times

in the SM/M/N type queueing systems with infinite buffer or losses when the customer

arriving into the system is served simultaneously by all free servers. The diversity of ser-

vices increases the load of the servers. But, as follows from numerical results, it helps to

get more quick delivering of the customers. Also, if the service in the channel can be pro-

vided with an error, the considered discipline allows to increase, sometimes essentially,

the probability of successful service in the system.
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