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THE SMALL BALL PROBLEM FOR THE BROWNIAN SHEET!

By MICHEL TALAGRAND

University of Paris VI and Ohio State University

We show that the logarithm of the probability that the Brownian sheet
has a supremum at most £ over [0, 1]2 is of order e~2(log(1/¢))3.

1. Introduction. The Brownian sheet is the centered Gaussian process
B; ; (s, € R*) such that

EB; ;B » = min(s,s’) min(z,¢).
Our main result is as follows.

THEOREM 1.1. For some universal constant C and all € < 1/2, we have

c 1\°
exp ——2<10g—> SP< sup |Bs,t'§5>
£ £ 0<s,t<1
1 1\°
< exp ~ = log

The lower bound in (1.1) was obtained by Bass [2] and was the starting point
of this work.

As the third power of the logarithmic term in (1.1) might indicate, there are
some unexpectedly subtle phenomena that occur in the present setting. Some
of these are reflected in the contrast between Theorem 1.1 and the next result.
There, we denote by A Lebesgue measure on [0, 11%; by || - ||z the norm in Ly());
and, for o > 2, by || - ||, the Orlicz norm

||f||¢u=inf{c>0; /exp('fI )d)\<2}

THEOREM 1.2. (a) For some universal constant K and all 0 < ¢ < 1/2, we
have

2
(1.2) P(||Bs,ell2 <€) < exp<—5<log 1) )
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1332 M. TALAGRAND

(b) Given 2 < a < oo, there exists a constant K(«) depending on o only such
that, for 0 < e < 1/2, we have

K 1 3-2/c
exp<_ é_(;l)(logg) > < P(|1Bs,tlly.. <¢)
(1‘3) 1 1 3-2/a .
< exp <_K(a)52 <10gg) )

The fact that the behavior of the probability of balls of small radius is dif-
ferent whether the ball is considered for the supremum norm or (say) for the
|l - lly,-norm can heuristically be interpreted by saying that the set of points
(s,t) for which |B; ;| is of order sup, ,|B; | is very small. (A consequence of
this is that it is apparently impossible to exhibit these points by a purely
probabilistic argument.)

A version of Chung’s law of the iterated logarithm follows easily from
Theorem 1.1.

THEOREM 1.3. Almost surely, we have

o (loglog u)1/2
0<l f B .
< imin u(logloglogu)3/? ogsst,ltpgu| el <00

We conclude this section with a few remarks. It is also of interest to prove
estimates of the type given by Theorem 1.1 when the Brownian sheet is replaced
by the “tied-down” Brownian sheet. It is, however, a matter of routine to deduce
these from Theorem 1.1. [Roughly speaking, the difference between two suitable
versions of these processes consists of a process that creates lower-order terms
in the bounds of (1.1).] Also of interest is the question of getting upper and
lower bounds for P(sup; ,|B;,: —f(s,?)| < ¢) for a function f on [0, 1)2. Bounds for
these quantities are deduced from (1.1) using the Cameron—Martin formula, in
a manner that is better described in the general setting of a centered Gaussian
measure ; on a separable Banach space X. If || - ||, denotes the natural norm on
the reproducing kernel H of u (which, in the case of the Brownian sheet, will
be described in Section 2), let us consider the quantity

I(f,e) =inf{ligll; If — gl <e}.

Then it is easy to prove the inequalities

@9 u({le—fl<e}) 2 u({nx” gg}>exp (_I(fT/z))

@8 ufle-fl <e}) < p({Jl < 26}) exp (_I__<f;>2) |
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Also, we should mention that we do not know how to generalize the upper
bound of (1.1) to the case of the Brownian sheet on [0, 114, d > 3. This appears
to be considerably more difficult.

The paper is organized as follows. In Section 2 we give the probabilistic
arguments of the proofs of Theorems 1.1 and 1.2. In Section 3 we prove the
combinatorial statement on which these proofs rely. In Section 4 we discuss the
situation of the Brownian sheet constructed on more general measures and the
problem of the measure of the small balls of the Brownian motion built on a
general Gaussian measure.

2. Probability. Probably the easiest way to understand the Brownian
sheet (or, more accurately, its restriction to [0, 1]2) is as follows. Recalling that
X denotes Lebesgue measure on [0, 1], consider the operator T from L2()) to
C([0, 11?) given by

T(f)s,£) = / / £do.
[0, 5] x 10,4

Then the law of the Brownian sheet is the Gaussian measure p on C([0, 1]2)
which is the image by 7 of the canonical cylindrical Gaussian measure on
L2%()). Consequently, well-understood general principles show that, given any
complete orthonormal system (C.0.S) (f3),>1 of L2()), then, if (g3 ) >1 denotes
an independent sequence of standard Gaussian random variables (r.v.s), the
series %y > 18:T(f) converges a.s. in C([0, 11?) and has law . Proper choice of
the C.O.S. (f;) will be essential. Let us mention that the space H,, (the repro-
ducing kernel of 1) is the image of L2(\) by 7', and that its unit ball K [for the
norm || - ||, transported from L?())] is (of course) the image under T of the unit
ball of L2()\). Before we start any computation, we must mention that Kuelbs
and Li [3] have recently discovered the striking fact that (in the general setting
of a Gaussian measure p on a Banach space X) there is a tight relationship
between the measure of the small balls and the covering numbers N(K, ¢) (i.e.,
the smallest number of balls of X of radius ¢ centered on K needed to cover
K). It certainly would be immoral to deprive the reader of a discussion of this
beautifully simple fact (that once again demonstrates the power of abstract
methods). Let us set

o(e) = ~log u( {1 < })

and let us denote by B the unit ball of X. Consider first a number a > 0 and
points (¢;); < y ofaK such that the balls ¢; + ¢ B are disjoint. The Cameron—Martin
formula and Jensen’s inequality easily imply that

: 52 a?
(2.1) ult; + eB) > exp <—E>M(6B) = exp (—(p(e) - E)

Thus, since x has mass 1, we have N < exp(p(e) + a?/2).
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If we take N maximal, we then get

2
(2.2) N(K, %) = N(aK,2¢) < exp <<p(€) + %),
so that
V2e
2.3 N{K —— | < 2 .
(2.3) ( ,\/(;(.5> < exp(2¢(c))

Conversely, we recall that, by a result of Anderson [1] for any centrally sym-
metric convex body D, we have

(2.4) wx +D) < (D).

Consider again a > 0 and, for N = N(aK,¢), consider points (¢;); < y such that
aK C UiSN(ti +eB). Then
aK +eB C | (¢ +2¢B)
i<N
and using (2.4) for D = 2¢B yield

13
aK +eB) < N(K, ;> ((2eB),
so that
N(K, 2) > 1u(aK +eB) exp(p(2¢)).

By the Gaussian isoperimetric inequality, for a = \/()/2, we have u(aK +
eB) > 1/2, so that

V2 1
2.5 N K, ——— — 2¢)).
(2.5) ( ’\/s7(6-)> > 2exp(sa( £))

In the usual cases, for ¢ small, we have ¢(e) < Cyp(2¢) for a constant C indepen-
dent of ¢, and thus (2.3) and (2.5) show that the order of ¢ is determined by the
function N(X, -). (See [3] for the details.)

The drawback of the result of Kuelbs and Li [3] is that the numbers N(X, n)
are very hard to estimate. In the case of the Brownian sheet, to obtain the correct
lower bound for ¢(e) (which is the hard part), it would suffice to obtain the
correct lower bound for log N(K, 7). This, in principle, can be done by exhibiting
a large 2n-separated subset of K. While this can be done using Theorem 3.1, it
is apparently, at least in the case of the Brownian sheet, of equivalent difficulty
to proceed directly (which is what we will do).

We now go back to the discussion of the Brownian sheet. An important obser-
vation is that if (f3); > o denotes a C.0.S. of L%([0, 11), then the family (f; )i, ;>0
is a C.0.8. of Ly()\), where f; ; = f ® f; is given by

fr,1(s, £) = fr(s)fi(2).
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Such C.0.S. systems of Ly(\) demonstrate explicitly the structure of T'. Indeed,
if U is the operator from L%([0, 1]) to C([0, 1]) given by
¢
vpO= [ feds
0

then
T(fi ®f) = Ulfi) @ U(f)).

We now start the proof of (1.2) (let us mention that this inequality was ob-
tained independently by Kuelbs and Li). For this we use the trigonometric
system as a basis for L2([0, 1]); that is, fo(x) = 1 and, for £ > 1,

for(x) = cos 2kmx; for+1(x) = sin 2kmx.

Thus, by the previous considerations, if (g, 1), ;> 1 denotes an independent fam-
ily of standard normal r.v’s, the sum of the series ¥ ;> 0gz,/U(f) ® U(f)) has
the same distribution as B, ; in C([0,1]?). The following simple observation
comes in handy in the proof of upper bounds.

LEmMA 2.1. If Z,,Z, are two independent Gaussian random vectors valued
tn a Banach space X, then for a centrally symmetric convex body D, we have

P(Z1+Zy € D) < P(Z, € D).

Proor. Use (2.4) conditionally on Z,. O

Consider an integer n and set
Ap = {2k, 2D); 2" <kl < 2’”1}
Thus, it follows from Lemma 2.1 that
P(|Bs,¢ll2 <€) < P(|IZ]2 <),

where
Z= Y &,UfHeU/.

G NeEA,

Now, since
U(fo)) = = sin(2kmx)
2k xX)= zkﬂ' 7rx7

the functions (U(f) ® U(f)), j ea, are orthogonal in L2()\). Moreover, their
Lz—norm is greater than or equal.to 27" /C, where C is universal. Thus

2—2n
12|13 > <z Z giz,j
@i, )€ A,
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and hence
P(|IBs,ellz <€) < P<2‘2n Z gﬁj < 02€2>_
i, NeEA,

Now, it is well known and elementary (see, e.g., [4], proof of (15.1), page 428)
that if m, = card A,,, then '

2 Mn —mn/2
P( > gi,j_e—2>£e 2.

G NE An
Thus, if
(2.6) m, > C?2%e2c?,
we have

P(||Bs,t]|2 <€) <emal?,

We take for n the largest for which (2.6) holds. Since m,, is of order n2*, n2="
is of order €2, so that m, is of order n2" = n?/(n27"), that is of order n?/¢?, that
is of order (log(1/¢))?/£2. This completes the proof of (1.2).

We now turn to the lower bounds in (1.1) and (1.3). In Section 4 we will
prove a statement that considerably generalizes the lower bound of (1.1). The
following more special argument, however, pinpoints exactly where the basic
difficulty lies. It is more convenient now (following [2]) to use the Haar basis of
L2([0, 1]). Let us recall that this basis (h,, ;) consists of the function A_; o = 1,
and, for m > 0, of the functions

b (%) = 272R (27 (x — 127™))
for 0 <1 < 2™, where
0, ifx<Oorx>1,
h(x) = 1, if0<x<1/2,
-1, if1/2<x<1.
For simplicity, let us denote by H the set of indexes {(—1,0)} U {(m,]); m > 0,

0<l<2m},
Thus, by previous considerations, with obvious notation, the series

S = Z Em,l,m' U U(hm,l) ® U(hm,l’)
HxH

has the same law in C([0, 11?) as B; ;.
Consider the function u,, ; = U(h,, ;). Let us note the following elementary
facts:
The support of u,; is contained in the interval I; ,, =
[12—™,( + 1)27™] (with the convention that I, _; = [0, 1]).

(2.8) sup|up,, | < 27™/2.

27
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Let us fix an integer n and set @, = 2% ~"/% fork > nanda; = 2-®-® for
k < n. Consider the event

(2.9 Q={Vm,DeH VYm' U)eH, |gnimuv|< A s }-
Thus, if g is a standard normal r.v. and if, for £ > —2, we set

n(k) = card{(m,) € H; (m',l') e H, m+m' =k},
we have

P(Q,) = H P(lgl < ak)n(k)‘

B> -2

We use standard estimates

u<1=P(gl<u)> 2u

NZT

u>1=P(lg|<u)>1- e u/2 > exp(—2e"‘2/2).

Since n(k) < (£ + 3)2%*1, we get

P(ﬂn)ZGXP<— 3 (k+3)24*log <2<k__\/f‘f+l)

-2<k<n

_ Z 2(k + 3)2k+1e_2(k—")/2_ 1) .

k>n
Elementary estimates then show that
(2.10) P(Q,) > exp(—Cn2"),

where C is universal.
To obtain the lower bound in (1.1), we bound S on Q,,. We write S = ¥, > _5 Sy,
where S, = L 4 mr =k Sm,m and

(2.11) Sm,m’ =ng,l,m’,l’um,l®um’,l’-
Ll

We observe that, by (2.7), the functions u,, ; ® u,,/,; involved in the summa-
tion of (2.11) have supports with disjoint interiors. Thus (denoting by || - || the
supremum norm) we get on 2, that, by (2.8),

(2.12) 1S, m || < 27 *m0 20, .

To bound S, we use the triangle inequality

(2.13) ISell < D 11Sm,mell-

m+m’'=k
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Certainly, this is brutal, and, to prove that the left-hand-side inequality in
(1.1) can be reversed, we will have at some point to prove a statement to the
effect that (2.13) is more or less the best that can be done. (Such is the role of
Theorem 3.1.) Thus, combining (2.12) and (2.13), we get, on ,,,

(2.14) Skl < (& +3)27%/2q,,

Thus, on £,

(2.15) ISI< 3" ISl < ) (®k+3)274a.
E>—2 k> —2

[Tt should be noted that in (2.15) use of the triangle inequality is rather sharp,
since the term for k = n dominates.] Elementary computations from (2.15) show
that, on Q,,

(2.16) IS|| < Cn2="/2,

There, as in the sequel, C denotes a universal constant, not necessarily the
same at each occurrence. Now, given ¢, if one takes the smallest n such that
Cn2 /2 < ¢, since n2" = n®/(n?27") and since n is of order log(1/¢), the left-
hand inequality of (1.1) follows from (2.10) and (2.16).

We now start the proof of the left-hand side of (1.3). The important case is the
case a = 2, since the general case will follow by interpolation with the left-hand

side of (1.1).

LEMMA 2.2. On Q,, we have

2.17)  Vs,telo,1], 3 (.1, 1, 1St @) < Cn277
m,DeH,m',I"YeEH

PROOF. Arguing as in the proof of (2.12), we see first that, given m,m’,
(2.18) > (@mt, e 1t 1S Ntty 1 () < a2y 270,
Ly
Summation over m,m’ yields that the left-hand side of (2.17) is bounded by
> ke +2)aj27F,
E>-2

from which the result follows by straightforward estimates. O
The second ingredient is the following well-known (and elementary) fact.

LEMMA 2.3. Consider an independent Bernoulli sequence (&;);>¢ [that is,
Ple;=1)= P(e; = —1) = 1/2]. Then, for numbers (b;);>0 and A > 0, we have

)\2
(2.19) EeprZsibi < exp 5 be

i>0 : i>0
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Consider an independent Bernoulli sequence (¢, ; »,;/) that is independent
of the sequence g,, ; »/,i». For clarity, we will assume that these sequences are
constructed on a product space (2 x ', P ® P’) and that, for (w,w’) € Q x &/,
&m,1,m,1"(w,w’) depends only on w and ¢, 1, (w,w’) depends only on w’. Thus
the set Q, of (2.9) depends only on w.

If we combine (2.17) and (2.19) and integrate over s, ¢, we have that, for any
w € Qy,

(2.20) // exp(AS(w,w’,s,t)) dP'(w')dsdt < exp C)\?n27",
[0, 1)2
where

Sw,w',8,8= > em im0 @B, 1,me, 1Vt (S Vthy 1 (2).

m,l,m’
Use of Chebyshev’s exponential inequality
P(Z > t) <(exp—-Mt)Eexp)Z

in the space [0,1]2 x Q' and a straightforward computation using (2.20) show

that
// 5 (“’ S0 s9,8) 1piyds e <

so that, by the Fubini theorem for w € Q,,, we have

P/ ({118, o', -, llyy < CVA2™%}) 2 4.

NICJO

In summary, if
Q;L - {(w’w/); we Q”” ||S((U,w/, ] )||1/12 S C\/ﬁz—n/z},

we have shown that P ® P'(2},) > % exp(—Cn2").
We now observe that (since ¢|g| is distributed like g) S(w, ', s, £) is distributed
like B; ;. Thus we have shown [using (2.16)] that

(2.21) P<{||Bs,t||oo < Cn2~"'%; ||B, 4|y, < cﬁz-"/2}) > Lexp(—Cn2n).

We now observe the elementary interpolation formula, for o > 2,

2 _
1l < IFIZLNFIIES 2.

Combining this with (2.21) shows that

P({|IBy, lly. < Cn* =427/} ) > Lexp(~Cn2").

Now; if n is the smallest such that Cnl~1/22-"/2 < ¢ since

nol = pd-2/a (nl - l/az—n/Z) -2
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and since n is of order log(1/¢), the right-hand-side inequality of (1.3) follows.

We now turn to the meat of this paper, that is, the upper bounds in (1.1) and
(1.3). It will be convenient to use a special system of functions. Central to this
system is the function £ on [0, 1] given by

1, ifo<s<
5(8)={

o B
’ o
a1
L]+
A
»
INA
‘.i—‘

-1, if;<s<
The idea is that, while £ somewhat resembles a Haar function, the function
n(s) = f; £@t)dt also resembles a Haar function. We consider a parameter g > 1
to be fixed later on (actually ¢ = 9 works, but using that specific value now
might be distracting), and, for m > 1, 0 <[ < 29", consider the function
Em,1(8) = 20m/2¢(20™(s — [279™)).

It is routine to check that the functions (¢, ;) form an orthogonal system in
L?([0,1]). Thus, given n, the functions &, ; ® &, _ - for

m, L) eT,={m, LI 0<m<n-10<1<2/ 0< <20n-m}

form an orthogonal system in L2()\).
Thus, setting 7,,,; = U(&,, 1), it follows from our discussion and Lemma 2.1

that
< s) )

where, of course, the r.v’s g, ; ; are independent standard normal. The main
property of the functions 7, ; ® 1, _ v is as follows.

Z 8m, 1,0 Mm, 1 & T —m, 1’
(m,1,l)ET,

(2.22)  P(||Be.|| <€) < P(

PROPOSITION 2.4. One can choose q such that for all n > 1 and all families
of numbers (1.1 )om, 1,11 e T, One has

sup > 1,0, (W — 1 ()
0sstslim 1, ier,

> 2—3qn/2—7 Z |am,l,l’|-
m,,I)eT,

(2.23)

This will be proved in Section 3. We now prove the right-hand side of (1.1).
If we combine (2.22) and (2.23), we get

P(||Bs,¢|| < ¢) gP( Z 9-307/2 g, 1 | < 275>.
(m,LINET,
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We observe that cardT, = n2%. Given independent standard normal r.v’s
(g:)i< N, We observe that for a universal constant Cy, we have

N N
(2.24) P | < — ] <ex (——)
( i;\/ |gl | CO ) p CO
Indeed, by Chebyshev’s exponential inequality, we have
P( > lail < u) < expuEexp (— > Igi|>,
i<N i<N

s0 (2.24) follows, for example, by taking

N
u=-= logEexp (—|gl).

Using (2.24) with N = card T,, = n29", we see that if 23¢%/2 - "¢ < n29"/C,, that
is, if

—qn/2
7, < n2-9
(2.275) 2'e < Co
then 91
n n
< < — .
P(IBul <) < exp(-"5- )
Now

n2a nd

Co ~ C3(n2-1/2/Cy)"

Thus, if one takes for n the largest possible value in (2.25), n29" is indeed of
order e ~2(log(1/¢)). This completes the proof of (1.1).

We now turn to the proof of the right-hand side of (1.3). Consider a sequence
T = (Ozm, LU )(m, LINET, > and the function

Pr(s,)= D U 1,17, 1SV, 1 (@),
(m,LINET,

Set |7| = Sm. 1,17 e T, |Om,1,17|- We observe that since |&, ;| < 297/2, form < n, we
have

[, 18) — 1, 1(87)] < 29™/2|s — &)
It follows easily that
lor(s,8) — @7 (s, )] < |7[29/2(|s — §'[ + |t — ¢']).
Combining with (2.23), we see that

(2.26) /\({(s,t): pr(s,8) > 1—162—3‘?"/2|T|}) > g—4n—10,
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For a function ¢ and a > 0, we have

[ e(2)"dr= exn(2) Ao 2 o)

Thus

9 -1/
ool 2 Y
Il 7= a)

so that, by (2.26), we have

(2.27) lrllpn = Cnl/a2—3qn/2|7'|
for some C universal. We now replace oy, ;1 by gm, 1. Then, as already ob-
served,
n27% n24
P < < —

(n=er) = (-6)

so that 1 ona
P . < 1-1/ag—qn/2 | « _ n
(el < gt~z ) < exp (-5 ).

and the conclusion follows from the fact that, if ¢ = n! ~1/*2-9%/2 then

n3—2/a

n2™ =
(n1- 1/a2—qn/2)2

is of order e 2(log(1/¢))® ~2/%. O

3. Combinatorics. Givenp > 1,0 <i < 2°, we denote by J, ; the dyadic
interval

Jp i = i27P, G+ 1277,

and we denote by D, the collection of the intervals J,, ;, for 0 < i < 2. Consider
the function z on R given by

0, if x ¢10, 11,

u(x) = .
$<x<3,

1

4
x—-1, if %ngl.
For m >1,0<I< 2™ weset

U, i(s) = u(2™(s = 127™9)).
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Thus u,,,; is supported by <, ;. To prove Proposition 2.4, it certainly suffices
(since up,, ; = 292y, ;) to prove the following.

THEOREM 3.1. If q = 9, then, for each n > 1 and each family of numbers
(o, 1,1 )m, 1,1y e T, , Where

31 To={m LI%0<m<n-10<l<2m 0<l <2er=m}

we have
(3.2) sup Z O, 1,1 Um, s, _ m, p@&)>27"" 7 Z |am, Ll
0sst<lpm 1 1yer, (m,1,INET,

The main idea of the proof of Theorem 3.1 is rather simple. Unfortunately,
it is obscured by a number of technical problems. So, in order to make the
idea transparent, we will first prove a theorem of the same nature (whose only
purpose is to help the reader to penetrate Theorem 3.1) where the technical
problems do not exist. Consider the function A on R given by

0, if x¢ [0,1],
hix) = 1, if xe[0,3],
-1, ifx¢ [%,1[

and define h,, ; = h(27"(s — [27™)).

PropoOSITION 3.2. Ifq =1, then, for each n > 1 and each (apm,1 1/ m,1,1)€ T, »
we have

3.3) sup D U rhm Oy ® =277 Y oy |

0<s,t<1, /e, (m,L,I1NeT,

Proor. We denote by S the left-hand side of (3.3). For simplicity, we set,
form <n,

Wm = Z C'4m,l,l’hm,l ®hn——m,l"
0<l<am; 0<l <on—m

For a function w on [0, 112, an interval I of [0, 1] and ¢ € [0, 1], we set
M, t)w) = i /w(s,t)ds,
Il Jr

where || is the length of I.

Consider m such that 0 < m < n. Consider an interval I € D,, and, for
0 <j < 20~m*1 consider a number ti € Jy_ma+1,j. Consider the following
statement: )
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(Hp,): For all possible choices of I in D,, and of points tj, we have
(3.4) Z M(I,tj)< Z w, + Z |wr|) < gn—m+lg
0< jg2n—m+1 0<r<m m<r<n

We note that, for m = n, this is an immediate consequence of the definition
of S, by integration. We also note that, for m = 0, (H,,) reduces to

(35) Z M([O, 1],tj) ( Z Iwr|> S 271'+IS’
j<on+1 r>0

from which (3.3) follows by integration over all possible choices of t.

Thus our task reduces to proving (H,,) by decreasing induction over m. As-
suming (H,, . 1), we prove (H,,). Consider I € D,, and, for j < 2"~ ™*1 consider
ti € Ju_m+1,j. WesetI =IyUl, where Iy € D,,,1, I € D, , 1, in such a way
that, if I = [27"7,27™(1 + 1)[, we have

L=[2""r2"(r+d)[, h=[2(r+}),2 "0+ 1
Fori < 2"—™ we set
X = b, X =941
ifa,m T, j > 0, and
) =19:41, X} =ty
if ap, -, ; < 0. The point of this choice is that w,, > 0 on I, x {xf}, so that
(3.6) M(Ia,xf)(wm)=M(Ie,xf)(|wm|).
By the induction hypothesis, (H,,. 1) holds, so we have, for ¢ € {0,1},

> M(Ia,xf)< d>owe+ Yy Iw,|>§2”_mS.

0<i<on—m 0<r<m r>m+l
Thus, by (3.6),
(3.7 > M(L,x5) < doowe+ > Jw,]) <gn-mg,
0<ic2r—m 0<r<m r>m
We now observe the following. First, for all ¢ € [0, 1], r < m, we have
(3.8) Mo, )w,) = My, t)w,).

(A statement of the same nature will be detailed in Lemma 3.3.) Thus

3.9) M(I,x5)w,) = M (I, x)w,) (:% (M (Lo, x5) wp) + M(Il,xf)(w,))) .
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Next, we note that, if » > m, we have, for £ € {0, 1},

(8.10) M(IL,x)) (Jw.|) = M(I.,x}) (jw,|),
so that [since 2M(I, x) = M(Iy,x) + M(I1,x)], for £ € {0,1},
(3.11) M(I,x5) (jw,|) = M(I.,xf) (lw:|).

Thus, if we sum (3.7) for ¢ = 0,¢ = 1 and use (3.9) and (3.11), we have
completed the induction. O

Proor oF THEOREM 3.1. We now set, for m < n,
(3.12) Wy = Z Ol 1,V Um, 1 @ Up —m, I’
0<li<2m, 0<l<on—m

The main obstacle in carrying out the method of Proposition 3.2 is that (3.9)
and (3.11) are now only approximately true (the error being a decreasing func-
tion of |r — m|). Thus we will have to modify (H,,) in order to introduce error
terms. The role of the parameter g is to ensure that the contribution of these

error terms is sufficiently small.
We denote by vy, 5,1 the indicator of the set g, ; X Ji, — myg, v, and we set

Om = E |Ctm, 2,1 |Vm, 1,00+
0<l<2m; 0< ]/ <20 —my

We set

brm= Y, 279

L#Fri>m
We consider, for 0 < m < n, the following statement, where

S= sup Z O, 1,1 Um, 18y, — m, (2.
0<s,t< l(m,l,l’)ETn

. (Hp) GivenlI € Dy, and, for 0 <j < 2 =m™4+1 numbers ¢; € Ji, _ myg+1, j» We
ave

3 M(I,tj)< dwe+ Y lwrl)

0< j< 2 —mig+l r<m r>m

SZ(n_M)q+IS+ Z br,m Z M(I,tj)(ﬂr).

]_S,-Sn 0Sj<2(n-—m)q+l'

For m =0, since b, ¢ < 279+1/(1 — 279) < 279*2  this implies

3 M(l0,11,¢)) <Z |w,|> < 2M+18 427942 3" 3" ([0, 11,2;) (6.
J

r>o r>0 j
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We now average this inequality over all possible values of ¢;. We observe that
the average value of 33 ; M([0, 1]¢;)(f) is 2”‘1+1ff[07 12 f dA. We also observe that

Jilu(@®)|dt = 273, so that

// lum,l®un—m,l"d’\= 2—nq—6,
[0, 112

and also [fig 112 Um, 1, dA = 277, s0 that we get

9t Z Iar,l,l’l qun+IS+2—q+3 Z lar,l,l’|-
o LUYET, r1,1)eT,

Thus, taking g = 9, so that 279*3 = 278 we indeed get (3.2).

For m = n (since there is no term |w,| for r > n), it is obvious that (H4,) holds.
Thus our task is again to prove (H,,) by decreasing induction over m.

Assuming that (H,, . 1) holds, we prove (H,,). Consider I € D, and, for 0 <
J < 20-ma+l consider t; € Jy _my+1,,- Consider 7 such that J = J,, , and
write Iy = qu+172.,-, I = qu+1,27+1, sothatI =IyUI;.

For i < 2" ~™4 e define

x) = ty, x} =tgis1 fam ;i >0,
x) =tye1, x}=ty  ifam ;<O
We note that
(3.13) M(IL, %) W) = M (L, x5) (lwml),

since wy, > 0 on I. x {x{}.

LeMMA 3.3. Fore € {0,1}, we have

> M(L,x5) ( Swe+ Y lwrl)

(3.14) i< 2n—mg+l r<m r>m
S 2(n —m)‘IS + Z br,m+1 Z M(Ig,xf)(er)
1<r<n i< o —myg+1

Proor. Observe first that, in view of (3.13), it suffices to prove this when
Y <mWr+Xr>m|w,| is replaced by 3, <+ 1 Wr + 37 > m + 1|wr|. Also, it suffices to
prove (3.14) when I, is replaced by an interval I' C I, I’ € Dy, +1). [(Inequality
(3.14) then follows by averaging over all possible choices of I'.]

Given 0 < i <20 —m-Da+l gnd 0 < k < 27~ 1 we define

i .
Yi =x§q_1i+k eJq(n—m),2<1—1i+k c Jq(n—m—l)+1,i-

Foreachk,wethen apply (H,, + 1)totheinterval I’ and the points ( YO < ogn—m—ve1.
Summation over k concludes the proof. O
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We now sum the relations (3.14) for ¢ = 0 and ¢ = 1, to get

> (M) + M(T,] )(Zw,+ 3 |w,|>

Jj < om—mag+1 r<m r>m

(3.15) A D D

1<r<n

xS (M(To)6)+ M1, ) 6)).

J< 2 —mg+1

The rest of the proof consists of deducing (H,,) from (3.15).

LEMMA 3.4. Forall j < 29" ~™+1 ye have
M (1o,20)(6,) + M (I, x7)(6,) = M(I,x0)(6,) + M (I, x})(6,)

(3.16)
= M(Iy tZJ) (9,.) + M(Iy t2]+ 1)(9r)

Proor. We give separate arguments for r < m and r > m (both arguments
work for r = m).

Case 1. r < m. For each ¢, the function s — 6,(s, ¢) is Dg,-measurable, so it
is Dyp,-measurable. Thus

MI.,)0,) = MU, t)6,)
for each ¢ € {0,1}.

Case 2. r > m. For each s, the function ¢ — 6,(s,t) is D, _);-measurable,
80 it is D¢, _ m),-measurable. Thus is still true of the function ¢ — Mo, £)(6,).
Since both xj‘? and le belong to J, _ m),, ;> we have

M (Io,x0)(8,) = M (Io, %) (6,).
In a similar way, we have
M(I1,x)(6,) = M(I,x)(6,),
from which the result follows since
MU, t) = }(MUo,8)+ M1,1)). 0
LEMMA 3.5. Fore € {0,1},
M(Le, %) (|lwml) = M(1,%5) (jwm])-

&‘7]

ProoF. This is a simple consequence of the fact that |u(x + 1/2)| = |u(x)|. O
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LeMMA 3.6. Ifr < m, we have

M(I.,x5) (wy) > M(I,x5) (w,) — 279 =7 = 2M (1, %5)(6,).

E7J

PROOF. Since M(I,t) = %(M(IO, t) + M(I,t)) for all £, we have

M (L, %5) @) — M(I,x5)(w,)|
< LMo, - M (13,55 )
3.17 11 : BT
@10 = 57| ] (wrleg) — w271 x0)) s
< 5 sup fwr(5,5) — w5 + 27~ 429)|.
2s€IO

Consider [ such that I C o/, ;. For s € I, we have wr(s,x;) =y g, jUr, 1((S)Uy, j(xf).
Since |u| < 1, |u(s) — u(?)| < |s — t|, we see that

M (Le,%7) @or) — ML) awp)| < 3277~ ™o,
and the conclusion follows from the fact that [« ;, ;| = MT,x5)(6,). O

LEMMA 3.7. Ifr > m, we have

M(L,x0) (Jw,]) + M(L,x}) (Jwr]) < M (Lo, %)) (Jw]) + M (L1, %] ) (|wr|)
+2700=m (M(1,59)(0,) + M (I, })(6,))..

Proor. We note that
|M (lwrl) +M( )(|wr|) _M(IO’ J)(|w7'|) M(Il’ 1)(|wr|)|

< IM(Ih J)('er M(Il’ j)(|w"|)|

[T

* —IM(Io’x?)(lwrl) = M (Lo, ;) (Jwr )]

2|11|/ |lwr (s, w,(sx |ds+ = llol/ ]w,sx — wy(s ,x})‘ds.

Now, if s € J,. y(5), we have

|w,(s,20) —wr(s,7)| < loy, pisy, j127 7 | — 7|
< o, ps), j|2% P~ —m

< |ar‘,p(s), j|2_(r - m)q_
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Since

|t 0, | = O (5,27 = 0 (s, %5),
the conclusion follows easily. O

We now prove (H,,) and conclude the proof. Combining (3.15) and Lemmas
3.4 to 3.7 and setting

Aj = M(I,xj(-’)(er) + M(I,x})(ar),
we see the left-hand side of (3.15) is at most

2hmIS L N brmer ), Ay

1<r<n j<on—mg+l
—gir—m
+ E 2 ql ! E Aj,r-
1<r<n,r£m j< 2 —mg+t

But this is exactly the right-hand side of (3.14). O

4. Further results. Consider a positive measure 1 on [0, 1]2. We can con-
sider the Gaussian process B, ; = BY , on [0, 1]2 such that

E(B;,¢By,¢) = M([O,min(s,s')] x [0, min(z, t’)]).

Equivalently, the law of B; ; in C([0, 1]2) is the image of the canonical cylindrical
Gaussian measure on L2(u) under 7.

ProrosITION 4.1. For some universal constant C, have, for all e < 1/2,

3
(4.1) P< sup |BY,| < 6||/,L||1/2) > exp —92—<logl) :
s5,t<1 ’ € 2

PrOOF.

Step 1. 'To prove (4.1), it suffices to prove it when the supremum overs,¢ < 1
is replaced by the supremum for (s, ¢) € F, where F is an arbitrary finite subset
of [0,1]1%. The law of (B; ;) 1 cr depends only on the numbers ([0, s] x [0,¢])
for s, € G, where G is a certain finite set. It is then simple to see that there
is no loss of generality to assume that both marginals of ;1 are atomless. This
assumption will simplify the notation.

Step2. Fork>1,0<1< 2k "we consider the point a(k,[) such that

u([0,atk, ] x [0,11) =127l



1350 M. TALAGRAND

Fork > 1,0 <r < 2%~ 1 we consider the r.v.

(4.2) Zp,»@®) = Baar+1,8),¢ — Bator, 1y, -
We claim that
4.3) sup|B, (| <>  sup  sup |Z, ().
s, t r O0<r<2:-10<:<1

This is a consequence of the fact that

lBs,t| < Z ‘Zk,rk(t)L

kels)

where, setting a = u([0, s] x [0, 1]), we have
I6) = {k; 27*(2%a] > 27#+1 (2 1a] }

and ry, = 27%*1[28~1g] for k € I(s).
Step3. Wefixn > 1,andwesete, = 277 ||u|V2 fork < 2n, e, = 2~k —2m/4¢,
fork >2n.For0<r< 2k —1 consider the events

O por = {sup 1Z4,)| < ek},
£<1

Qn,k = m Qn,lz,r: Qn = m Qn,k'

0<r<2k—1 E>1

Using (4.3), we see that on Q, we have sup, ;. |Bs,:| < Cn27"|u||*/2. Since
n2% = n3(n2-")~2, it suffices to show that

(4.4) PQ,) > exp(—CnZz").
Let us fix &, r and set
o) = ,u([a(Zr,k),a(Zr +1,k)] x [0, t]).
We note that Z , is a Gaussian process that satisfies
E(Zp, ()Z1, ) = ¢(min(z, ).

Thus if B; denotes standard Brownian motion, the process (Zy, /() <1 is dis-
tributed like (B,¢)): < 1.

Thus we can use the well-known estimates on P(sup, ., |B:| < ¢) to esti-
mate P(Q, ). The events (Q, 5 ), . 2:-1 are independent; but unfortunately
the events (Qn »)p are not 1ndependent Thus a little detour is necessary. The
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idea is to construct Gaussian variables (X,  , ;) >1 and numbers S, ; ; with
the following properties:

(4.5) ﬂ {1 X0, 2, r,1] < Bryk1} C Qi
I>1
(4.6) II  P(Xukril < Bari) > exp(—Cn2?).

Bi>1, r<2k—1
It then follows from (4.5) that
(4.7 (N {1 Xkril <Buki} C O

kI>1,r<2t-1

A theorem of Sidak [5] implies that the probability of the left-hand side of (4.7)
is larger than the left-hand side of (4.6). Thus (4.4) follows from (4.6).

Step 4. For clarity, given € > 0, b > 0, we show the existence of Gaussian
random variables (X}); > ; and numbers §; such that

VI>1, |X)| < & = sup|B:| <evb,
t<b

4.
48 [IP(x < &)= A,

1>1

where h(e) = exp(—C/e?) if € < 1, h(e) = 1 — exp(—€2/C) if ¢ > 1. The variables
X, k,r,1 are then obtained by applying the same procedure to the process Z, .,
for b = ||u||27%, eVb = g3, and we take Br,r,1 = 6p. To prove (4.6), we observe that
by (4.8) the left-hand side of (4.6) is bounded below by

I (oo(-2)) 1 (-om(-2522)) "

k<2n k>2n

from which (4.6) follows by a simple computation.

Step 5. The procedure to construct the variables (X)) uses the same idea
as step 2. The variables (X)) are an enumeration of the variables W, , =
By-rig+1/2% — Ba-rgp- When X; = W, 4, then § is given as follows. If ¢ < 1,
consider po with 2770/2 ~ ¢ and set § = 27Po/2— 1P —Pol/4p1/2 /C (C universal
large enough). If € > 1, set §; = €27//4/C. The details of the computations are
left to the reader. O

We now extend the upper bound of Theorem 1.1.

THEOREM 4.2. Assume that i Is not singular. Then, for all ¢ < 1, we have

1 1\?
1 <
P( su<p1 'Bs‘t] <eC(u)) exp[—\ —-——C( 72 (log—g) },

s, t<
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where C(u) depends only on p.
PROOF.

Step 1. Consider a parameter 0 < a < 1 to be determined later. Since we
assume that u is not singular, we can find 8 > 0, a square C = [ag, bo] x la1, b4]
in [0,1]2 and a subset A of C such that y = u1 + yg, where o is positive and p;
has a density 314 with respect to A and where

(4.9) A(C\A) < aX(©).

Step 2. We let the reader show that if u1, ue are two positive measures on
[0,1]2, we have

(4.10) 0 T (B} +B%), 4

s,t
where the two processes on the right are independent. Thus we can assume by
Lemma 2.1 that y = p;, where u; was described in step 1.

Step 3. It will simplify the notation and not reduce the generality to assume
that 8 =1, C = [0, 1]2. Consider the measure y3 of density 1, 17214 With respect
to A. Thus X = pq + p3. Using (4.10) for py, pus, A = py + ps, we see that

P( sup |B¥y| < &‘)P( sup |BY3] < a) SP( sup |Bs,| < 25).
<1 <1

5,t< st < 5,t<1

Thus, using (1.1) and Proposition 4.1, we have

(4.11) P sup |B¥| <e) < 1 lo 1 i ex G lo 1 i
. s,tspl s,t S¢e) s exp 082 gg P nz gn ’

where 1 = ea~ /2. Thus we see that if we have chosen a such that « = (2CC;)~1,
the right-hand side of (4.11) is bounded by

1 1\°
eXp| ~ G log;

Consider a centered Gaussian measure i on a Banach space X. This measure
can be used to define a “Brownian motion” B,, ; on C({0, 1], X). For our purposes,
‘the best way to do this is by the series representation

for £ small enough. O

B,:= Zz_k/ka,l(t)Yk,l'
k1
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There, £ > 0,0 <1< 2¢-1 therv’s Y} ; are valued in X, independent, of law
ps wo ot) = ¢,

wy, () = w (24 — 1275))

and
0, if ¢ ¢ [0,1],
wit) =< t, if 0<t<i,
1-¢ if 2<e<l.

When 4 is the canonical Gaussian measure on R, B, is the usual Brownian
motion. When (. is the usual Brownian motion, B, identifies the Brownian-sheet.
A natural question is to ask about the behavior of P(sup,||B, || < €). Certainly
this behavior is related to the behavior of u({x; |x|| < £}); but, unfortunately,
it is not determined by it. An instructive example is when X = ¢4 and where u
is the law of ¥, > 1 n~/2g,e,,, where e, denotes the canonical basis and where
the sequence g, is independent standard normal. Straightforward estimates
(in the spirit of those presented before) show that, for £ < %,

1 C
(4.12) 5 < —logn({lixl < ¢}) < 5.

Thus, with respect to the measure of the small balls, this is the same behavior
as Brownian motion. However, in that case it is simple to show that

1

1 c. 1
< <e) < Zloo =
o log - < —logP (Sgp [Bu,ell < 6) < glog-,

a result to be contrasted with (1.3). A natural question is then to ask about the
possible behaviors of P(sup,||B,, || < ¢€), given the behavior of u({x; ||x|| < e}). It
turns out that the most interesting case is where (4.12) holds. In that case, it
can be shown that, for a constant C’ depending on C only, we have

1 1 C/ 13
g log— < — <el <= =
g loe s < ~logP((suplB.dl <) < 5 (log )

a result that extends the estimates of Bass [2] to a considerably more
general setting.
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