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§ 1.— Historical Iutroduction.

I proposE, in the first place, to give a brief account of the principal theories of the

vibrations and flexure of a thin elastic plate hitherto put forward, and afterwards to

apply the method of one of them to the case when the plate in its natural state has
finite curvature.

Passing over the early attempts of Mdlle. Sorure GErMAIN, the first mathematician
£ who succeeded in obtaining a theory of the flexure of a thin plane plate was Porssox.
8 In his memoir* he obtains the differential equation for the deflection of the plate,

which is generally admitted, and certain boundary-conditions, which have met with
less general acceptance. The idea of PoissoN’s method may be simply stated. The
plate being very thin, we may expand all the functions which occur in the equations
of equilibrium and boundary-conditions in powers of the variable expressing the
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distance of a particle from the middle-surface in the natural state, then, taking only
the terms up to the third order, we obtain the differential equations for the determi-
nation of the displacements which are generally admitted. The meaning of PoissoN’s
boundary-conditions is as followst:—Suppose the plate to form part of an infinite

* « Mémoire sur 1'Equilibre et le Mouvement des Corps élastiques,” * Paris Acad. Mém.," 1529,
t Cf. Tuonsoxs and Tary, * Natural Philosophy,” part 2, pp. 188-0.
3R 2 26.11.858
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plate, and to be held in its actual position, partly by the forces directly applied to its
mass, and partly by the action of the remainder of the plate exerted across the
boundary ; if the plate be now cut out, it will be necessary, in order to hold it in the
same configuration, to apply at every point of its edge a distribution of force and
couple identical with that exerted by the remainder before the plate was cut out.
Now, it has been shown by Kircarorr* that these equations express too much, and
that it is not generally possible to satisfy them ; but the method proposed by
Tiomson and Tarrt gives a rational explanation of KircHHOFF'S union of two of
Porssox’s boundary-conditions in one, and renders his theory complete. However,
the objection raised by pe St. VENANT| to the fundamental assumption that the
stresses and strains in an element can be expanded in integral powers of the distance
from the middle-surface, seems to require a different theory.

The next epoch in the theory of plates is marked by KircHHOFFS memoir just
referred to. The method rests on two assumptions, viz. : (1) Every straight line of
the plate which was originally perpendicular to the plane bounding surfaces remains
straight after the deformation, and perpendicular to the surfaces which were originally
parallel to the plane bounding surfaces; (2) all the elements of the middle-surface
(i.e., the surface which in the natural state was midway between the plane parallel
bounding surfaces) remain unstretched. Both these assumptions may be shown to be
approximately true in the cases of flexure and transverse vibration, but, as assump-
tions, they appear unwarrantable. In this memoir of KircHHOFF'S the union of two
of PorssoN’s boundary-conditions in one was first effected, the method employed to
obtain the equations being that of virtual work. The theory of this memoir will be
referred to as Kircanorr’s “ first theory.”

Kircano¥r § has given a general method for the treatment of elastic bodies, some
of whose dimensions are indefinitely small in comparison with others. In this method
we consider, in the first place, the equilibrium of an element of the body all whose
dimensions are of the same order as the indefinitely small dimensions. When we
know the potential caergy due to the internal strain of such an element, we obtain
by integration over the remaining dimensions the whole potential energy due to the
elastic strain of the body. Then, taking into account all the forces which act on the
body, we can form the equation of virtual work, which will lead directly to the
differential equations and boundary-conditions of our problem.

In KircaHOFF'S method it appears that, to a first approximation, the bodily forces
produce displacements which are negligible compared with those produced by the
surface-tractions exerted upon the element by contiguous elements, and that, to the

* “Ueber das Gleichgewicht und die Bewegung einer elastischen Scheibe,” ¢ CrenLe, Journ. Math.,'
vol. 40.

t Loc. cit., pp. 190-1,

{ Translation of Crenscn's ‘ Elasticitit,” Note on § 73, p. 725.

§ * Vorlesungen iiber Mathematische Physik," pp. 406 ef seq.
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same order of approximation, the aisplacements, when divided by finite quantities of

one dimension in length, are negligible compared with the strains.

The application of this method to the theory of plates appears to have been first
made by GEHRING, a pupil of Kircanorr’s, at the latter’s request ; and the vesults
will be found in Kircauorr’s thirtieth lecture, and in Cresscm’s ¢ Theorie der
Elasticitiit fester Korper,” §§ 64 ef seq.  We shall call the theory thus deduced Kircu-
HOFF'S “second theory.” PorssoN and Kircarorr had both arrived at the equations
S, T, R = 0,* which express that the traction exerted on an element of a surface
normal to the middle-surface of the plate is everywhere tangential to the middle-

o surface. These equations are fundamental in Krrcunorr's second theory. This
& appears to lie at the root of the objection raised by pE Sr. VENANTT to this theory, as
e 1t is stated by him that S and T, if they exist, may produce important effects,
espeuu]ly when the material of the plate is not isotropic.

It seems unnecessary to explain in detail TroMsoN and Tarr’s treatment of the
problem. We need only note here that the equations S, T, R = 0 are a basis for this
theory also.

[Added July, 1888.—An important inference from the method is that a line of
particles initially normal to the middle-surface is approximately normal to this surface
after strain. This is expressed by the vanishing of the shears @ and b, as given by
equations (11) nfrra. This conclusion is intimately bound up with the conclusion that
S and T vanish. At the edge of the plate S and T may have given values which do
not vanish, and the approximate perpendicularity of line-elements originally perpen-
dicular to the middle-surface will here break down. The transition from a state of
S things in which S and T exist at the edge to one in which they vanish, on a surface
parallel to the edge and very near to it, is illustrated by the discussion in Tnomson
and Tarr’s ‘Natural Philosophy,” §§721-729. The conclusion seems to be that
KircaHOFF'S general method for the treatment of elastic bodies, some of whose
dimensions are indefinitely small in comparison with others, cannot be applied to the
elements situated very near to the edge of a plate, as the strain is not produced in
these by the action of contiguous elements. We may, nevertheless, regard it as
giving correctly, not only the potential energy due to the strain of an element at a
distance from the edge, but also the whole potential energy arising from the strain in
all the elements. It will thus lead us to the right differential equations of motion or
equilibrium and boundary-conditions, |

The theory of the flexure of an elastic plate has been placed in a much clearer light
by the researches of BoussiNgsq, who has treated the subject in a masterly manner
in two memoirs. In the first of thesef he has certainly proved that S =0, T = 0,
R =0 is an approximation to the actual state of stress within an element of the

Downloaded from https://royalsocietypublishing.org/ on 09 Aug

# T use Troysox and Tarr’s notation for the stresses, strains, and elastic constants.
+ Translation of Crepsca’s ‘ Elasticitiit,” p. 691.
1 ¢ Liovvitue, Jonrmal de Math..” 1871.
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plate; and he says that R=0 to a higher degree of approximation than S.and T.
Taking 2k for the thickness of the plate, and the plane of xy for the middle-surface
in the natural state, we have, on integration, with reference to z,

R —.(” ( oz +ﬂ'+w> 5

Assuming that the bodily forces are not such that if applied to a body of finite
size they would produce deformations indefinitely great compared with those produced
in the plate, and that P, Q, U do not vary rapidly from one element to another, we
see that S, T, R are small compared with P, Q, U. BoussiNesQ proceeds to express
three of the strains in terms of the rest by means of the relations S, T, R = 0, as
was done in KircHHOFF'S second theory ; then, by means of these approximate values,
he finds S, T to a higher order, and on substituting in the general equations of equili-
brium obtains the well-known equation for the deflection of the plate. The method
of securing the union of two of Porsson’s boundary-conditions in one is the same as
that previously given by Tromson and Tarr.

BoussiNgsQ returned to the subject in 1879, in a second memoir published in
‘LrovviLLe’s Journal”  Apparently dissatisfied with the assumptions S, T =0, he
proposed to consider the subject in the following manner. Let the plate be divided
into similar elementary rectangular prisms, whereof the linear dimensions are all
comparable, and suppose these prisms bounded by the plane surfaces of the plate, and
by pairs of parallel planes at right angles to these surfaces. Two neighbouring
prisms must always be in nearly the same condition as regards strain, except in the
case of prisms situated near the edge. Hence, generally, the component stresses will
be approximately the same at all points on the same surface parallel to the middle-
surface, and not infinitely near the edge of the plate. Hence, in this kind of
equilibrium, the stresses will be approximately independent of the position on the
middle-surface of the centre of the element. This is precisely KircHHOFF'S result®
deduced from the kinematics of the system, and it appears certainly true when the
plate is very thin. BoussiNesQ wishes his theory to apply to plates of small finite
thickness, and he proposes to replace the equations just found by the following

=~ oT L oT 4 a§ = oS i f)g ¥ b
5, ox 0, oy 0, or 0, oy 0 0, 0y, O Oy (P, Q. U)=0;

* *Vorlesungen,” p. 453, remark on equations (8).
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these suppositions are more general than those of the former paper, and enable the
author to take account better of the effects of wolotropy of the material of the plate.

De Sr. VeENANT® obtains the equations for flexure on the assumptions (1) that
R =0, (2) that the middle-surface of the plate is bent without stretching, so that
the extension of any line-element through a point distant z from the middle surface
and parallel thereto is z/p, where p is the radius of curvature of the normal section of
the middle-surface through a line parallel to the element. From these suppositions,
of which the first is justified in the manner of BoussiNesQ's memoirs, the ordinary
equations are deduced and extended to the case of wolotropic plates. From the
inapplicability of the second of these suppogitions to the case when the plate is
initially curvedt we may be justified in denying it the right to be a foundation for
the theory.

The question between the methods of Kircunorr’s second theory and BoussiNesqQ's
memoirs may be taken to be that of the degree of approximation obtainable by the
former. It seems to be established that the terms which occur in Crersca’s equations}
are correct to the order of approximation adopted ; but the question arises whether, if
pit were desirable to obtain u higher degree of approximation in the equations, this
could be effected by means of Kircunorr’s second theory; and it appears that, so
long as the equations S, T = 0 are retained with R = 0 for the purpose of giving
three of the strains in terms of the rest, this question must be answered in the
negative. It must be observed that Kircuuorr only uses these equations for this
purpose, just as BoussiNEsqQ does in his first memoir, while the equations and con-
ditions are found by applying the principle ot virtual work.

In a recent paper§ I have proposed a modification of Kircunorr's second theory,
with the view of showing how his kinematical equations, whose accuracy has been
disputed by BoussiNesq, ean be made exact. The equations referred to are those
unnumbered on page 452 of the ¢ Vorlesungen.” In these certain differential
coefficients are introduced, and afterwards neglected as small; and BoussiNesQ has
contended that they should be retained. 1In the paper referred to I have endeavoured
to show that these differential coeflicients have no meaning so long as we are treating
the equilibrium of an elementary portion of the plate, all whose dimensions are of
the same order as the thickness, so that the equations can be made exact by simply
omitting these differential coeflicients. As will hereafter appear, KIRCHHOFE'S process
applies directly to the theory of a thin elastic shell, and the moditication proposed in
the theory of plates has place equally in that of shells. This will be fully explained
in the sequel (Art. 2).

org/ on 09 August 2022
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* Translation of Crunpscn. Note to § 75.

+ This will be proved in the sequel.

1 ¢ Elasticitiit,” pp. 306, 307, equations (105) and (106).

§ “ Note on Kircunore's Theory of the Deformation of Elastie Plates,” ¢ Cambridge Phil. Soc. Proc.,’
vol. 6, 1887,
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§ 2. Theory of Shells.

In this paper the potential energy of deformation of an isotropic elastic shell is
investigated by the same method as that employed by Kircauorr in his discussion of
the vibrations of a plane plate.® The shell is supposed to be bounded by two surfaces
parallel to its middle-surface, and is deformed in any arbitrary manner. The expres-
sion given by Kircaaorr for the energy of the plate per uunit area of its middle-

]

+ 2K [0t 4o + 4+ (ot o

surface is

0w
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where 2/ is the thickness of the plate, K the rigidity, and 6/(1 + 0) = ¢/(1 — @), &
being the ratio of linear lateral contraction to linear longitudinal extension of the
material ; o), o, are the extensions of two line-elements of the middle-surface initially
at right angles, and = the complement of the angle between them after strain ;
41, Pas P, are quantities defining the curvature of the middle-surface after strain, viz. :—

P — q, = sum of principal curvatures,
— (pa ¢1 + p;°) = measure of curvature ;

so that, if p;, p, be the principal radii of curvature after strain, the first term of the

above reduces to
1+20[/1 1\2 1+60 1
2 KA8 ( —)—— —ﬁ.
> '1+0[P1+Pa 1+ 28 pyp,

A similar expression to that given by Kircauorr is obtained below in the case of the
shell initially curved ; but here the quantities q,, ps, p, are replaced by the difference of
their values in the strained and unstrained states, a result which might have been
anticipated from the remarks made by Kircanory (* Vorlesungen,’ p. 413) on the strain
of a rod initially curved, since the strain of an element is a linear function of these
quantities, *

We wish to obtain equations of motion and boundary-conditions in terms of the
displacements of a point on the middle-surface of the shell, these being reckoned
parallel to the lines of curvature and perpendicular to the tangent plane at the point.
For this purpose it is necessary to express all the quantities which oceur in the
potential-energy-function in terms of these displacements. As the geometrical theory
of the deformation of extensible surfaces appears not to have been hitherto made out,

* (alled above “ Kircunorr's second theory.”
T * Vorlesungen,” p. 454.
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it was necessary to give the elements of such a theory for small deformations, The
expressions obtained for the principal radii of curvature show that the potential energy
due to bending is never the same quadratic function of the changes of principal
curvature as for a plane plate, except in the single case where the middle-surface is a
sphere and unstretched.

The general variational equation of motion is developed in the fom of surface and
line integrals, and the equations reduce to those of CLEBscH * in the case of a plane
plate. The terms herein which depend on externally applied forces are obtained
directly, without the use of the arbitrary multipliers which render the calculations of

gCLEBSCH so tedious, and without the necessity which he finds for correcting an
S“error”t as regards the distribution of force at the edge, thus avoiding some of the
gcliticisms of DE St. VENANT.}
We know that when a plane plate vibrates the transverse displacement is indepen-
ondent of the displacements parallel to the plane of the plate; and when the transverse
gvibrations alone are taking place no line on the middle-surface is altered in length.
E[)I discuss the question whether vibrations of the shell are possible in which this last
wcondition holds good, and show that it leads to three partial differential equations
_ggnmg the displacements as functions of the position of a point on the middle-surface,
Band that these equations are not in general of a sufficiently high order to admit of
cusolutlons which shall also satisfy the conditions which hold at a free edge. This
‘Dresult is quite independent of the theory adopted, as the equations of inextensibility
Zare in the most general case a system of the third order, while the boundary-conditions
g»are four in number. It would, of course, be possible to find a system of forces applied
S to the boundary which could artificially maintain this kind of vibration. It appears,
éthen, that the term of the potential energy which depends on the bending, which is
"= multiplied by %3, is small compared with the term depending on the stretching, which
£ is multiplied by % ; and, in order to obtain the limiting form of the theory when 2 =0,
'cwe may form approximate equations of equilibrium and motion and boundary-con-
c“djtloms; by omitting the term in 4°. Having formed these equations, I proceed to
E £ discuss the question whether the shell can execute vibrations in which there shall be
8 no tangential displacement, and it is shown that this requires both the principal
radii of curvature of the middle-surface to be comstant at every point. The
frequencies of the purely radial vibrations of a sphere and an infinitely long circular
cylinder are given ; the displacement is a simple harmonic function of the time, and
is the same at all points of the sphere or cylinder. The formula for the frequency
admits of independent verification. Another general result deduced from the
approximate equations is that any shell whose middle-surface is a surface of revolution

09 Aug

¢ Elasticitit,” pp. 306, 307; Equations (105), (106).
t Ibid., p. 284.
{ Translation of Cresscm, p. 691. The method of Crenscr is styled “ohscure, indirecte, fort
cnmphquée

MDCCOLXXXVIIT.—A., S8
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can execute purely tangential vibrations such that every poiut moves perpendicularly
to the meridian through it, and the displacement is symmetrical about the axis of
revolution.

The special problem of the vibrations of a spherical shell has been discussed by
Lord Rayreica.® In his paper it is assumed that no line on the middle-surface is
altered in length; the boundary-conditions are not considered. The form of the
potential energy taken is a quadratic function of the changes of principal curvature or
the middle-surface, and this T have proved to be in this case the true form in Art. 7.
The assumption of inextensibility does in this case lead to expressions for the dis-

‘placements which cannot satisfy the boundary-conditions which hold at a free edge.

The method developed in this paper is applied to the problem, and the approximate
equations integrated. The solution comes out in tesseral harmonics with fractional
or imaginary indices, and the frequency is given by a transcendental equation; in
case the shell be hemispherical this equation is simplified, and to express the sym-
metrical vibrations only the ordinary zonal harmonics with real integral indices are
1equired, and the frequency equation can be solved.

As a further example of the application of the method to small vibrations I have
discussed the vibrations of a eylindrical shell. The displacement of a point on the
middle-surface is expressed by simple harmonie functions of the cylindrical coordinates
of the point. In the case of the symmetrical vibrations the frequency equation is
easily solved.

AwroN has applied the method of CLEBScH to the problem of shells. In his memoirt
a point on the middle-surface of the shell is considered as defined by two parameters,
as in Gauss’s theory of the curvature of surfaces ; the displacements are referred to an
arbitrary system of fixed axes; and the expressions found for them are the same as
those in Art. 4 of this paper, but the work contains a small error (see note to
Art. 4). Free use is made of arbitrary multipliers in order to obtain the equations
of equilibrium referred to the fixed axes. As these are in a very unmanageable shape,
a method of forming equations referred to moving axes is indicated ; the equations are
first obtained with reference to fixed axes, and it is proposed to transform these. The
transformation is not effected, but some reductions are made with a view to it
(pp. 169 et seq.). In these reductions all effects due to the change of direction of the
axes as we go from point to point on the middle-surface are neglected, so that the
results are erroneous (see note to Art. 6).

A theory of the vibrations of a shell whose middle-surface is a surface of revolution
has been given by Marnieu.} The method is similar to that employed by Poisson
for the plate, viz., taking y = 0 for the middle-surface, all the quantities which occur

#* “On the Infinitesimal Bending of Surfaces of Revolution,” ‘ London Math. Soe. Proe.,’ vol. 17, 1882.

t “Das Gleichgewicht und die Bewegung einer unendlich diinnen beliebig gekriimmten elastischen
Schale.” ‘Crrrig, Journ. Math.,” vol. 78, 1874, p. 138.

$ “Mémoire sur le Monvement vibratoire des Cloches,” ¢ Journ. de 1'Ecole Polytechn.,’ cahier 51 (1883).
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are expanded in powers of vy, and approximate equations taken. These equations are
included in those given in the present paper for shells whose middle-surface is any
whatever. MarHIEU gives for the special case some of the theorems on purely
normal and purely tangential vibrations here proved (see notes to Art. 13). The
solution for spherical shells is given in his paper. The introduction of the generalised
tesseral harmonic into this solution enables us to recognise that a certain type ot
vibration given by MATHIEU cannot exist (see note to Art. 18). The objections raised
by pe St. VENANT to PoissonN’s method for plates seem to lie equally against its
extension to shells.

§ 3. Iuternal Strain in an Element of the Shell.

ugust 2022

L. Suppose the lines of curvature on the middle-surface of the shell to be drawn ;
<‘:1et these be the curves @ = const., 8 = const. ; then any point on the middle-surface

1s given by its @, B. At each intersection of a curve « with a curve 8 suppose the
\normal to the middle-surface drawn and lengths 2 marked off upon it inwards and
t:oboutwaxds from the surface, the loci of the extremities of these lines are two surfaces
Eparallel to the middle-surface. If we suppose the space between these surfaces filled

%’wmh 1sotropic elastic material we obtain the elastic solid shell which we wish to treat.
a Let the middle-surface be covered with a network of the lines @ = const., 8 = const.

Zat distances from each other comparable with the thickness of the shell, and suppose
Bthe normals drawn as above described at all the points of these curves. The shell
Swill thus be divided into a great number of elementary prisms ; and, according to
EKIRCHHOFFS general method, we must first discuss the equilibrium of one of these
Zelementary prisms.
Let a, B be the parameters of the centre P of one of these elementary prisms before
ostrain. Imagine three line-elements of the shell (1, 2, 3) to proceed from P, the
-c,elements (1) and (2) being along the lines B, a through P, and (3) along the normal
'Uat P to the middle-surface. Then after strain these lines are not in general co-
qorthogonal but by means of them we can construct a qybtem of rectangular axes to
gwhlch we can refer points in the prism whose centre is P. Thus, P is to be the
origin, the axis of z is to lie along the line-element (1), and the plane of , ¥ is to contain
the line-elements (1) and (2); then the line-element (2) will make an indefinitely
small angle with the axis 7, and the line-element (3) will make an indefinitely small
angle with the axis z.

By means of the lines of curvature and the middle-surface we can construct a
system of orthogonal surfaces («, B, ), so that we may use the formule of orthogonal
coordinates with reference to a, B, ¥

We write for the distance between two near points—

LG+ G2+ G )

38 2

ylsc

s://t

m htt;
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2. The point P is defined before the strain by its «, B, and lies on a certain
surface y = 0 (the middle-surface). The prism whose centre is P is held in equi-
librium by the action of adjacent prisms, and its parts are not in the same configura-
tion as that in which they would be found if this prism were separated from the rest
of the shell and left to itself.* Now, if this portion were isolated from the action of
neighbouring portions, any point of it (Q) would take a certain position defined by
the intersection of three surfaces of the fumily («, B, y), which we may take to be
a+p, B+ q, . Hence, when this prism is subject to the action of neighbouring
prisms the position of Q will be given with reference to the (», y, z) axes at
P by p/hy 4+ uy q/hy + vy, v/hy + w,, and after the strain is effected it will be given
by p/hy + W, q/hy + v, v/hy + W' referred to the axes of (z, y, z) defined in Art, 1.
The component displacements (u,, v,, w,) of Q are v’ — w,, v — v, W' — w,.

Consider a system of rectangular axes fixed in space, and after strain let & » { be
the coordinates of P referred to this system, and let the directions of the (z, y, z) axes
he connected with those of the fixed (&, 5, {) axes by the scheme —

tla |t

-J.L—— [, ; m, ‘ ny
y | &g | my | ng
z | & ""'31] ng

Then, after strain the coordinates of () are

E+1 <,Tp1-+u'> %+ lsa(h%'i"v') + U (i+w’>, )

r

1;-|-ml<£+u’)+m2<h%+v'>+ms<hs+w'>, 3wl Jepesati

§+nl<£—’+u’>+n2<i+v’>+w$ (}Trs+w'>. J

£ -

These expressions are functions of & 4 p, B + ¢, 7; and, hence, for each of them we
have 6/0a = 0/0p and ©0/0B = 9/0q. In forming these differential coefficients it is
important to observe that «’, v’, w’ have no differential coefficients with respect to «, B.
Throughout the space within which «/, ¢/, v’ exist, viz., the range of values of p, g, »,
which correspond to points within the elementary prism treated, &, 8 do not vary.
In his theory Kircunorr first introduces the differential coefficients analogous to

* This remark was made by Aroy, in his memoir in BorcEARDT'S (CrELLE’S) ¢ Journal,’ vol. 78, p. 138.
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ou/0e . . ., and afterwards neglects them as small. So that the equations (6) and (7)
to be obtained below are unaffected by the modification of the theory here proposed.
Equating the differential coefficients of (1) with respect to « and p, we get

ot (it o) Ha (L) + B+ ) +hes ) +ae ()

; 8_ 1 e 1 o’ o’ '’
+arg )=t +a) +hg +5%

on , Omy [p , omyfq . Omy [ 7 K 0 /1 d /1
o+ 5 (b + )+ S (L o)+ (o) g, (1) + me (&)
Q
= g VNS 1 o ov’ ow'’
§o + mg 1 Ew <h3> = my (kl + E}p_> + m, 5 + ma o
<
0L, Om(p Ay Osle Ny Om(ir LA W
St albt )+ EmE+o)+ R G+ ) ues () +mes ()
e o 1, o ov’ ow'’
Z
=and, similarly, by differentiating with respect to 8 and ¢.
é 3. Now, taking the set of three equations above written, multiply them by 7,, m,, n,

_gand add, then by [, m,, n, and add, then by [, mg, ng and add, and repeat the process
Gon the second set ; the six resulting equations may be written
3
5 B e i e b [0 ) g 2 (1Y)
& e +h1)\]<hs+w>—llqu</1.9+’L>+p8a<hl>
=
o' | e : ! il 0 /1
g o~ pEre) - re)tan() e - @
E o _ a2 ()
E op /"1K1<"2+ v)—’%hl(’l +u) ’ (l"s J
Sand
o
A s e Bl 'llzf.il)“
0y hy +hs)\2 hs+w>—}“srz(k2+v>+paﬁ(.h1
1L % _l4e, 1, (B, N 1 (r 2 (1)
’-l;+aq_ E hy +"'272 I;-i‘-u)_hsKQ'("’:;-’-w)—l-q B("'s/ T
aw’__ 1 ’ 1 ’ 1 ’ P / ._a__ 1
o= s o) =ma (4 ) + @)

In these o}, o, are the extensions of the line-elements (1), (2), and = is the sine of
the angle the axis ¥ makes with the line-element (2) after strain, so that, if' (L, My, Ny)
be the direction cosines of the line-element (2) after strain referred to the fixed axes

of (&7, {),
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0 o 0
Lito)=hE, m+o)=hy, ml+e)=hy
0 o o +.
%u+m=@£,1ma+@=@£,1%u+@=m£f (4)
Ly=04+ |, M, = my + myw, Ny=n+nm )
Also
; ol o Ong ; Oy 0
"1=h1(l38 +m 3ama+ 3an> K =h(laaﬂ+'aé";+ 3 nﬂ)w
. ol o 0 ; o :
)\1_—'}’1(11(—3_:"' m3+71 n.,)’ Ny=h (13,3+ 16'3"1""'1 n5> P (5)
=Ry <lz S[ +n Bml A1 28n1> Ty =hy (lz BBI + m 28ml 2 ™3 )

According to the general principles of Kircuuorr's method, we may for a first
approximation omit the %', ¢/, w’ which occur in equations (2) and (3), thus

re-writing :—
o’ o a 1 oy Ao
ap Iy +P 0z <”’1> i Ty & h_lb._3 :
o O RN ety
op qa?(z@) _71,1h3’ o hl‘-’p % AR 0
ow’ 0 ]_ Ay £
87 ?a—a<lz.3>—7;§1+lthJ
W L L0 EN M )
a‘] = hy b B <h'x> i hg? 1 * hoh i
@_J' ay 0 (1 ¥y y
09 h—+qaﬂ<’5;>—hsks L 7 T AW RS, YR T (7)
o' _ O (1) _ N, #s
o "8 izg)—hgklp_i-hsqj
Since we must have
3 - » o
T v,
pOg 4y 04O 4y
we find
0 /1 b 0 (Y P 5
o hl]’/g a_B (E) k) Ts —_— hlhﬁ a_a <hg) ) )\ g = s Kl‘ . . . (8)

Let Kl’ Al’ Ti, Kg, 'As, T2 be tbe Va.lues Of K'l’ )lll, T,l, Klg, kls, 7’2 befOl'e Stl‘ain, and
let €'} — K} = &y, Ny — A, = A\, 7, — T, = 7, and similarly for the others, then
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In (6) and (7) suppose " = u,, v' = v, w’ = w,; then

o, 0 /1 d (1 A . i
5;’;_ =px (’;) +q 38 <k-> + ﬁ r, with five other equations ;
1 18

=

subtracting these from (6) and (7), we find

om _ o | M - om _w _ K ; 3
' op hy " lhg o7 By, . Beks ™’ l
S 0 ov
S 4 ot e i S s [
2 » Tk o gy hghy r (9)
g ow K dw K K l
= s 1 ekt ) sihoidh | it S 3
;‘i op hyhy h2 P dy hoeg P * ng )
S
=
S
%" 4. These are simply the conditions of continuity of the mass of the shell when
eileformed. To obtain the forms of u, v, w, from them we shall have to introduce
@stress -conditions. As the quantities in (9) are small, it will be sufficient to omit
Sproducts, and so form equations of equilibrium of the element referred to the

rthogonal coordinates ( p, ¢, 7) as if we were referring to fixed axes at P.
If A, B, C be three functions of » to be determined, we have

i i TS . 8 Gaigm .
di=lAch CR e g e F S P O |
31 23 1 l

i B e e =3 gt T L
BEB= e We S h O ”
I

w, = —é“g +3 q+,,,Lm J

Downloaded from https://royalsocietzp

Hence, for the six components of strain, and for the cubical dilatation 8,

oC =
e=)‘lr+o’h ./‘=_"2’,+a_2’ (/—hg(’\ ’
Ty Iy
oB oA
“—hsas b=h3»ar, c=—22~r+w,f . < (16)
oC Ky — N
s= et Sty =hl + ot a0 J

To determine A, B, C, we have the stress-equaticns
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0y 0 0
hla—p (m — n & + 2ne) + hga—q (ne) + h3a—': (nb) = 0, A

hy aa[; (ne) + hg(% (m — nd 4 2uf) + hy a%_ (na) =0, ¢

0 oK e
Iy 8(1) (nb) 41, (% (na) + hy F()—/ (m — n 8+ 2ng) =0, |

where m = k + ¥ n, k being the modulus of compression, and n that of rigidity.

Hence,
c*A 2B

o 0, = %
and
(m—u)(hsg(:-{-h' >+2h31a—0
Thus,
noKky — N 12

1"-'_m+71 A

If there be no surface-tractions on the surfaces initially parallel to the middle-
surface, viz., 7 = = hgh, then A = 0, and B = 0, and also at the surfaces

(m —n) 84 2ng =0,
so that

hy m+n’

C= -
Thus,

uy = N, pr/hhg — k, qr/hshg + oy plhy + = q/hs,
v, = — Ky pr/hhg — &y qr/hohs + oy q/hy,
wy = =4 N PYh? + 3 @/ + PQ/WL; C e

+ o g — X 13k — o oy /hy).

(1)*

m 4+ n

J

Hence,

* * Expressions equivalent to these have been given by Arox, but his work contains an error. His
equations (7, «), (7, b), p. 145, ave strietly smalogous to equations (6) and (7) above, but the terms in
d /1 & o ¢
A (h ) . are all omitted, The test ap B o = aq aj’ , is not applled ; if it had been, there wonld
have resulted equations which in my notation are 7, ==0, ', = 0, but the values of '}, 7y are calculated
subsequently by the method of Art. 7, and are the same as those given in equnations (8).



AND DEFORMATION OF A THIN ELASTIC SHELL. 505

hy m+ n

m—n[——0r ST
e=—+a-1, f——h‘i'o'm g=_—["2—)\1/%"—°'1+%],
3
a=0, b="0, c::za-—?_,xl?"
k:i

9 S NI
- (0'1+°'2 >‘1;r>

m -+ n

o=

and the potential energy per unit volume is
H(m—=n)& 4 2n(+ >+ ¢°) + n(a® + ¥+ )]
= ’”22[:"22'{‘)\124' 2k, )‘1)2] +n [(0’12"‘ ol +ia)+ " (o 1+°")J

m + n
+ a term in z,

where 2z is written for »/hs.
Multiplying this expression by dz, and integrating from % to — A, the term in z
disappears, and we find for the potential energy per unit area

T k= Ny
+ 20k [0‘1 +ol+iat 4=

W = § al® l:K2 + A2+ 202+

m + n

" o1+ o2,

m + n

or

N

W= dnhd—2 [(K2 ) i bl S )}
12
m n ( )

+2hhl:0'12+0'22+§ 2-}-~-~~-( 1+0'3)2j]

m + n

The term containing %* is the term depending on the bending, and the term con-
tairing % is the term depending on the stretching of the middle-surface. We shall
hereafter denote by W,, W, the expressions

Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

m + n

(ks = M)+ " ey o+ ),

2 2 1 ol E
0'1+0'2+ +m+/l( +0‘1).

§ 4. Geometrical Theory of Small Deformation of Extensible Surfuces.

5. We have now, by means of equations (4) and (5), to express the potential energy
in terms of the displacement of a point on the middle-surfuce.

Let u, v, w denote the displacements of the point P on the middle-surface, » being

MDCCCLXXXVIIL— A. 3 m
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parallel to B = const., v to @ = const., and w along the normal outwards, and let /dn,

denote differentiation along the normal.
The square of the length of a line joining two near points of the surface before

da\? dp\?
<1‘1> 2 <h_3> ¥

and the square of the length of the line joining the same two points after strain is

strain is

[([a(l‘l‘o'l):l I:([B(l+°'))]2+2md’i‘b%3’

neglecting small quantities of a higher order. But this same square of the new length
of the line is

(e +d (b +8(; )| + (48 + & o) - +8(3 )| + (dwy,

where & (1/h,), 8 (1/hy) are the increments of 1/A,, 1/h, produced by strain, so that

() =iz (5)+ 4 5 5)+ w3 )

and similarly for A,, also
d (i) =da 2 (hyu) + dB 3% (hy),
and so for d (hyv).
In the two expressions for the square of the new length of the line we may equate
coefficients of (da)?, (dB)%, and (da dB), and omit powers of u, v, w, or their
differential coefficients above the first ; thus '

3 1 2
ol_l&lalb+hh’vaB<hl>+7P_‘j.’
1
~=h232+h1h.2uaj<h-a)+£,». T=mra vl 700 e
kB !
g ] aﬁ(h )+] '\ (h.’fu) %

where we have written
Ly L (el il
P - tl Ong \ly)’ ps~ * Ong ha)’

in accordance with LAaME's result (‘ Legons sur les Coordonnées Curvilignes,’ p. 51),
Viz, py. py are the principal radii of curvature of the middle-surface before strain,
reckoned inwards,
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6. To express ky, A, k) in the same way, we suppose a system of fixed axes at P,
whose directions coincide with those of the (z, y, z) axes at P before strain. The
coordinates referred to P of a point near P on the deformed surface are

5¢ = ’j‘f‘— + du — v 86, + w86,
sy = " do — w030, + u 80,
oL &= dw — u 80, + v 80,,

gwhere 80,, 86,, 80,, are the elementary rotations of the axes (z, y, z) about themselves,
Twhen the origin is changed from e, B to « + 8«, B+ 8B, viz. :—

80, = o i) =g 08
36, = (%(k—)cza: ,le—lda, LI . L (i
Hence, by equations (4),
%= S0 P1 ity gy hzva% <,711) 3 E]

0 (1
m; = (1 — o) hliv hoy hy "a,e(n)]

. dw  w
= e blaa m]’
au 8 il

1 L
M, = (1 —0-2)\:1 e hzg;;-l- hy g % (7%) 4 :x],

v
N, =(1—o0y) \:h’aﬁ ;J ;

substituting for o, oy, and neglecting small quantities of the second order, we find

Downloaded from https://royalsocietypublishing.org/ on 09 August

a a 1 7 y 9
=1, rml_hlav hhuB< >, 711—k15u :;’
o | 3 /1 = il ow v
L=hgg=hhvg (), M=t BTl 1)
whence,
ow ow v e
==l + 2, my=—hagg+ Ll J

3T2
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These are the ;, m,, n; . . . , referred to axes at each point determined by three
certain line-elements at the point, if 8 denote the change in the value of these as we
go from any point P to a near point on the middle-surface, then referred to the fixed
axes at P, we have

&l = g—l;da A %gd,B — m, 80y + n, 862, and so on ;

d (1 oo 0 1 ow u
st = [ () sy = i (3)} + g (52 = )]
_clﬁ[hl aa <1>{hl 2" h b,u < >}]
0 ov 1 0
B, = da [a_ {in g2 = s ( )} 5 (,ﬁ)}

0 v 1 1 ow 0 /1

+ 485 {32 = b g (L)} + s (32 = ) + 2 ()]

ow  u 1
8n1—dal: {hx e l}—}rpl]

0 ow w 1 ov 0 /1 ;
+ 855 {5 = o} = {52 = e (3)

in the same way

so that

0 . Ou /1
M, = o ols [h 8,8( >{h283—h1h2vax(h—g>}]

+dB[bePs< 92; Ps)+hla%<is> {hzaﬁ = Mg 3851(1»]’

-~ aw v alb a 1
ON; = da [: {hg B ;;,} lypy {h’ a8 kb Oa <E>}]
ow v 1
+ d'B[Z)B {hzaﬁ e E} - = ;t;@:' f

We may form the «'y, X'}, «; from these, for m =, n,= are small quantities of the
d(hm), a(llm)
Oz s o8
order, using equations (5) we obtain

second order, and I, are also of the second order; hence, to the first
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a a 8117 '
o=n[- (205 |

-~

il ow v 1 (16)
<L"‘aﬂ p)_":b;‘”

1 ov o [1\]
= ’{I 15, —h b’“&ﬂ(ll,)}J J
The relation N’y = — «’; reduces to

L T L 1 0/1
1‘[8/8<th1> P2 83(’%)]_?)[3;(/&2;)0)_E$<E>]’ R

nand each of these expressions vanishes (Lams, p. 80); thus, this condition is fulfilled
£ identically.* Using these relations, we find

o*w ohy Ow oh, Ow _ My O Ry Ou ]
Oa 8,3+}1 Oz a,3+]28,3 0z pzaz P 8,3

% 0 /1 v 0 /1
$ hlhz{f,—l 28 (;71) i a_1<52>}’

X alz,] aw g7 OWw O hy Ou
U an+h T ik i,qﬁaﬁw  Ou

K, = hih,

o o

- (18)

i I
S e )
w oh, ow ow 0o hy Ov
Kg—hz 8,8‘-‘+’28/8 8;9+] ,281 az(/lg) Pa 813
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1 1 0
hzvaﬁ< > hlh,upl 8B(h,> )

7. The quantities defined by equations (5) have been caleulated directly ; we wish
to obtain an interpretation in terms of quantities defining the curvature of the
middle-surface after strain.

* This may be taken as a verification in some degree of the preceding work. In endeavouring to
form equations referred to the above set of moving axes, AroN neglects the 80,, 0, é0; and deduces
values of \y, «'; (my notation), which do not satisfy the relation Ny + &', = 0 (see the memoir above
quoted, pp. 169 et seq.). In consequence, he is obliged to make an assumption that & (vhy!) / Oz is a small
quantity of the second order.

If the relations (17) had not been known, the theory of deformation wounld prove them.
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First, suppose we are dealing with an inextensible surface, then

1—/"1(8 m,—h,g nl-—h {
0 150 0
2=h,;§ mzzhea—zj, 912:/'23—5.

By equations (5), since /,ly + mymg + nyng =0, and ll; + mgmg + ngng = 0,

Tl 0 (nt) *€ | O(LE) o*n , O (&n) ¢
=Ny =k [a( 8) 92 T 3(ap) 02 T 3(aB) 0 ]

il Ny 0(nf) ¢ , 0(Lk) o™ o(&y) ¢
Ky = lyf [a( 8) 2208 T 9(ap) aaaﬁ—'—a(aﬁ)aaaﬁ]’

o _,,,,,[a(m Pe 3D P, A(En) a":]

3(«B) 3208 T 3(ap) 3208 T 3(uB) 3208

, d(nd) PE , A(LE) ¥ , O(En) a":]
— 3 /
g B iy [a< 8 og T aep) et 0w #

Hence, taking the notation of SALMON'S ¢ Geometry of Three Dimensions,’ chapter 12,

section 4, we have
1
E=—, Fe=9, G =

Q
Iy

hehdF =o'y,  hPG =Ky  hShE = —N,;

T

9 3 Pl |
9 hyhg

P

and the equation for the principal radii of curvature is*

p o 1 « 1 2
<],ls P _9,> <_ ;75 Py s) 3 9;1,,’ P 0,

so that, if p’}, p'y be the roots of this equation,
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1 1
K P— x’ T em— e —
2 1 Pll P’!
K )\I + K, 2 — 1
Al | 1 P'l P’ﬂ

Also
ko Ay 4 ky® = Ko Ny + K0+ KAy — A Ky — Ko
P T W,

P1Ps PPy P Ps

* SALMON, p. 346. T have changed the sign of p so that the roots shall be the p, and p, of Art. 5,
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In the case of the sphere, this is

1 1 1.7 1 - .
—_—— - = <—, - -,—> » where @ is the radius,
2T a\ph T Pl

1 1
et
Py Pa
for any other inextensible surface this will not be the case.
Now, suppose the surface extensible, and consider («, 8) as two parameters defining

or

op point on the deformed surface ; in this view they will not be orthogonal parameters,
Sand we find

z A 0F O  dndn , B3 _
& lhgw(l-l-(rl)(l—l-ao)-—a E)B+aa -{-a F,
gor .
g B ;——— to the first order ;
Bo
%D E=1_20’ Gr::l»——-zi‘f
= R hy?
T;Again,
2 d
g l Iy 0E
.g 140 Oz
T%wit,h similar expressions for m, n,.
2 To find &5, X'y, «’; from the definitions in equations (3), we notice that the terms in
X
£ P A
é oz \l + a,/’ B\l + oy
o
ﬁwill always be multiplied by terms of the form
F;% 0 “C
C
é lsa + g 8” -+ " 5
S
A

Z
S
&

iy /142“ d(nt)
1+0'11+0’3 0(«B)’

ly = (myny — myny) = m, Ny — My =

and similarly for mg, ny; thus, the differential coeflicients of /(14 o)), hy/(1 + o)
will be multiplied by factors which vanish identically, viz., they are of the form

OF 0 (ng) , On 0 (k) X 0 0 (£n)

32 3By T 8 9(aB) T % ()’
Hence,
presd (1+0')7\-1 by, Mo -«:_(1+°'9)",-:
== I ll‘, 3 =<3 % i Iyt ;
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The equation for the radii of curvature being

(Ep+ EV) (Gp + GV) — (Fp + FV) =

where
=09 ==y
V=(EG-F)=— nearly,
l D
we find that to the first order
1 s + 4
== A (1+<r2+4al)=—+ At
1_ ay + 4o, 40's

=—K0(1+0’1+40'2)—_+ 2 — Ky .

©

2

We have already found expressions for y, Aj, #, in terms of the displacements;
hence, we have found expressions for the new principal curvatures and the position of
the new principal planes, in terms of the displacements, for the position of these
planes depends only on F' or on «,; we have also found the interpretation of the
K3, Ay, K in terms of the quantities defining the curvature and the extension.

In the case of an inextensible sphere, the potential energy due to bending is

gk 11,[{ <p1> ik <m>}~ 2 7: - (51) g (i)]

For any other surface, whether extensible or not, this will not be the case. If the
middle-surface were unextended, the above would be right to small quantities of the
first order, but we always require the potential energy correct to small quantities of

the second order.

5. Bquations of Motion and Boundary-Conditions.

8. Following Kircunorr's method, we are going to apply the principle of virtual
work to obtain the differential equations of motion and equilibrium, and the boundary-
conditions.

Let X,, Y,, Z, be the components of the bodily force per unit mass parallel to the
lines of curvature B = const., @ = const., and perpendicular to the tangent plane to
the middle-surface, acting at any point Q of the shell. Let QP be perpendicular to
the middle-surface before strain, and let l5, mq, ny be the direction cosines of QP after
strain referred to axes at P, as in Artt. 1, 6; if u, v, w be the displacements of P,
and z the distance PQ, then, when a small variation in the configuration is made, the
displacements of Q will be found from equations (1), dropping the p, ¢, to be
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du + 2 8l,
v + z dmy
dw + z dn,.

Let A,, B,, C, be the components of the system of forces per unit area applied to
the edge of the shell, and holding it in its actual configuration. The systems of
forces X, Y,, Z, acting at all points of a line through P perpendicular to the middle-
surface, and the similar (A, B, C,) system, will each reduce to a resultant force and

couple.
The resultant of the X,, Y,, Z, system is a force at P whose components are

i h i
A= I_k Ry, Y = _"_hYl de, b= I } Z,dz per unit area,

and a couple whose components are

L=-— r : Y,2dz, M=+ I X,zdz, 0 per unit area.

h
—h

The resultant of the A,, B,, C, system is a force at the point P in which the
middle-surface cuts the edge, whose components are

A = r_‘ A de, B= r_ Bd, €C= r_/, C,dz per unit length of the curve in

which the middle-surface cuts the edge, and a couple whose components are

i A
U= — I . B,zdz, V=+4 I 2 A,zdz, 0 perunit length of the same curye.

The general variational equation of motion is

Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

0= — j [ [ [X, (8u + 2 81) + Y, (Sv + 2 8my) + Z, (Sw + 2 8ny) ] dS dz
— ([ LAy (8t + 281) + B, (80 + 2 815) + C, (S + 2.8,)] ds
+ " ([ W, 88 + 200 [[ 5W, a8

m + n
e ”j‘ [(g;g g z%i—{_f) (8u + z 8ly) + (g% + 2%’%’) (8v + z dmy)

ag 0%
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where dS is an element of area of the middle-surface and ds an element of are of the

edge.
Observing that by equations (15) 8ny = 0, and integrating with respect to z from A
to — A, we get the equation

—”(XSu+Y80+Z8w)dS-—”(M813—L8m3)dS

— [(A8u+ B8v + C8w)ds — [(V 8l — U dmy)ds

" ([ 8W, S + 2na [[ 5W,ds 1

+zp1,.”<3,st+;j’s v 22 8u>dS+ pk“”(\%i—i"&3+a;?‘8 )as =0, (19)

m
+ 3 nh3 e

which contains in itself all the equations and conditions of the problem.

All the double integrals which occur in this equation can be expressed, partly as
surface-integrals over the middle-surfuce, and partly as line-integrals round the edge,
by means of the theorem, '

It ( Bt d;)da dB= (X0 + Yph)ds, . . . . . (20)
where the first integration extends to all values of (a, B) which correspond to points
cn a surface having s for an edge, and \, p are the cosines of the angles which the
normal to the edge drawn on the surface and produced outwards makes with the
directions of the lines B = const., @ = const. at the edge.

To prove this theorem,* let a line of curvature & = const. meet the edge in an even’
number of points, and let X, X,, . . . be the values of X at these points, then

[ XN ds = [[(% = X)+ . 1050 = (X=X ]+ .. 3= [[ 5 dudB;

IY[.JLI ds = ” % da df.

The partial integrations will be effected by means of the relations

56 (3% _ox 5
e aes¢+aa< S aza‘ﬁ)
&5 a8 _oOX d [« 986 ~ 0K
OXa_‘aB’_' “ o 8,884""8 < ,3 8,8 8¢)+a_pf( —a—a_—_a:&ﬁ): - (21)
98
X = — 5 8 + 5, (X54). v

* (Of. MaxweL, ‘Electricity and Magnetism,” Art. 21. This theorem is otherwise proved by Arox.
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In evaluating the line-integrals we shall use the formule—
0 0
il

d 0 0
hzé’“g-—— P*a‘y+)\3;,

0
h = =y F hﬂ)‘aﬁ’ [

lo Plo

1)&~+/1~,u.aﬁ |

in which dy is the element of the normal to the edge drawn as above stated.

9. From equations (15) we have—

Again,

Y U 0 dw o dw 0 dw o dw
='{;)—181L—P8?)—V<K~a——pT>+U< a + A )}ds

LA S d&w , du )
§ 8l3_-—h1-7u+ :;
Z 0 dw .
= Sy = — hy a;; + -4
;E so that '
C .
\g [ 0 '81/y du I, ] 0 dw
> “(MSZS—LSmS)dS_ [[ (—hl i Pl) ( 5 8/3+
B i d
@ = l:klksPl R T ’;2 e {a_ <”2> < >} Sw] a0
= ([ /Mg \ .
[ ( ki i
g ([ M d
%» - {hlhsPl Ll /‘1 2P3 s {a— < > ( >} Sw} it
£ 4 [(mp—mN)dwds.
é L
b=
£
=
i
S
k=
a
2
o
A

& L 8= L 8v — 2 (O\U 4 V) 80 — (\V — ) 8 a] ds,

by integration by parts.
Again,

“ SW, dS

m — o dB m = n dz dB
— II (2'(2 i, Pt ) 8K2 II (2)\1 ol _W' Kg) le ’kl’hz‘

m 4+ n dz dB
+ 2 jlj’ Kl SKl ll»lhg .

31U 2

[(var,—vsmyas=[[v(=m% + ) =U(=1 200 4 2)] as

515

(Iat ap

(24)

(25)
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Thus,
j [8w, as

= [[ ooz i on - ”—;—”w}—?{i‘;\ =0
“anlns (=" {;21':@ =)}
AR S22
+or ot sl - aka)]

= [[aedennl, ) (2= "2+ f i (0 = 520w
-2 (la) + 2as &)1

+ [Jaedstn 30 (=5 w) 4ol (= "55 )]
o G+ ha )]

hq m—n, \0dw 0 [h/, m—n
+ Ip.hl ds []7 (21(2 === )\) 8 0B {} <2K2 % )\1>} dw

10k m—n
+ a§<2K2—T)\> aaﬁ< )(le .) 8w
+ m;— n {Kl_a%) axls + 2 Ohy Klsw}]

hl _m—n \ddw 0 [I m—n
+ Iy <1> <2K2 ——m; z )\) (2)\1 Ko) dw

m+n 0dw Ok 2 oh.
+ 2 (g — g +hqa/§ w}

>+m S (

~ )]

[lz’ff—”[,da +>\h28vgpg] Lo tHER NS ¥ A R

i
4 j. dsl:—- phy Sv i (2:(2
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Using (22), we find for the line-integral part,

0 dw 3 m—n : m
f ds ‘a‘[" (2:«2— )‘*2@1— =

+[dsaﬂ[”’+”{m<xz+x + 00— )} |

- IdsSwy.hll: 3% {"3 <z K.,,—’l‘T—L”x)} -|-]1 %’;

a 7] +
e aB< ><2)\ nm n K2> % m 4+ n

m

0
+ [ dsswi, [a“a{ <2x
+ hla < (2'(7 —
-+ IdsSupll[)\ (2)\1 - ’n?,—nki)') - 27’?':; ny.xl:|

m

m m

where, by integration by parts, the second term becomes

0
—[dssw™ 2 S D+ M)+ 0 = ) i
Again,
I 2m nm — n da dp3
” i e J’f 0 (7;r,-+ n 71 i m + n 02)8 71 hy by

m -+ n m 4+ n

” dadBSu[ 8a {(;) <m2:bn :: :Z )}
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- ” do df3 dv [:— 2 ;% {(i) (m?fn oy + Zi :‘*_;: 0,)}
%% <h1> <m2:': n
+.Idad33w[< 1-*_m-i-n >h1h2p1 <m2-7:‘n
2
h

[ 2/ 2 - 2
+.ds)\h38u};2<—m—<rl+m 2>+p.h18v ( Z_bn

+ n m+ n %

+_ds(xhsv 4 phy Su >

+”’2< 2m o_s_l_:;L—_na_l

>+2>\#

o+ IdsSv%gli—p.(&cz— ?7"_'”)\1) Qg h )\Kl] ;

+‘)8a<lc,> m +n 72

)80""

m

< i .

—n 1 oh,
>} e

)+ i

m

g
3a

m —n

m
ok,
08

m —n
m + n

m - n

e

da 08
* Ky by

+ n
K

m

2 Ohy

= hy aa

G

2 oh,

—I--”araw de dfB
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H

}]

(27)

Ty Ty

) = ga 75|
o) = b ()

l—}-m+n
m—n 2
o
m+n 1)y hypy
m —n
o
o+ o)

(28)
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where the line-integral part is

2m m—n

IdsliZ (7 +n 1+7n+n0°>+#m]8u+Ids[2#<ﬁ+nag+m+nal)+'-)\w]8v'

Again,

ol o o
H <Bt§ ol + qlt);s Omg +‘ é’: 8n3> dS

[ 1 JFw 1 1 ow 1 o%
=.j’<—mm‘+lﬁﬂgpgatz>8udadﬁ+”'<—hlp aﬁaté"‘hlh,pﬂaaﬂ)s e
(o h, Ow 1 Pw 1 o
* .f[7<_7:;aaazs+ by p, OF ) " a,s< h,8,8613+ aﬁ)]s"”d“dﬁ
[ o*w 1 u 1 0%
—_[x( hgst o at>+p< koaﬁaﬁ+ at)]s .y o (29)

10. Collecting the terms, we have the differential equations of motion

I
— anh? 9;7”-:_75 [i D%( ><.?.K,2 - -”—L'—n_l-ﬁ )\1>
+andn(n ="l -7 () + )M
o] =2 (1) (o + R Th )]

T e YL By

[-nﬁt+;:£a+z”-3—]+%h"<z.j,pe3%-%@%"5;2) x
Sl a0 |

Tt SR bt FARE- L BRI
+w»[ a%{;:<—m ) NS sl 4

_2m m —n 8 Ve ' By ',
m+n 7n+n >_h25&;<h_gg>:|=o’ Pt i ey G (31)

i
[S4]
Q)‘

P

% s Lon

Ss~——

/-\
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] 0 /M 0. /L 2ph 0w
[" hohy ~ 02 <:I> + B <nl> 45 Dy aJ
1 S n Jw o0 /1 o hy Ow
3 i ST gl e e gt I il
+ $:ph {a <h 2O | T B aﬁ> Ry (nlpg e b, E)B&F)}
438 imuFod (A m—n _ 2 [k _m=—n
+ $ah m + n[a/:? { <2K2 m M)} 0 { (27\ m 2 }
0 . 1 oh, m—n, 1 0k /. m—n
83 {Iol o8 <2 ot~ >}+ O {/m 0z <7>\ A Kﬂ)}
~an () ee = =a )b g () (205 )}
m~+n [ Ok, 0 [x, Ohy 0 (K ohl
e n {Oa 0B . oB </L.,_ aa> Oz <h a,8> ]

; 2 f1q 2 = 1/ 2m =
b ) (Ban 2Tt 4L (et S =0 o

pL\m + n m 4+ n ps \m + n m + n

- The first terms in these equations reduce to those in CLEBsCH'S equations
(‘ Elasticitiit, pp. 306-307) in case the shell becomes a plane plate.

The second terms (in ph*) arise from the “rotatory inertia.”

The third terms (in 2°z) arise from the term W, in the potential energy, and depend
on the bending ; the fourth terms (in 21k) arise from the term W,, and depend on the
stretching. :

11. The boundary-conditions are
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Vv m 1 m=—n m + n )
o A A 5 b oo 591> (ARSI IEE
¢ <A+p)+ hm+/¢pl[)\<“)\l m K2> T "I-J
2m m
+2ﬂ,h[2>\ <m+;0'1+m+n >+,u.m'] 0 : :
Fo(33)
1 m = n m + n
-B+ +% m,+n;[ F'<2K2—- n A>—-2—m ’\Kl}

+ 2::1{2,;(—‘:7‘ 2+m+ - )—l—)\wl— 0.

=
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0 0% w 1 Pu o*w 1 0%
mL—xM>—c+5—S(xU+FV)+%pm[ (mawas = - 5) + (B33 = o 50

m [ : 0 [hy m — 1 0h, _m—n
MR L""'[_éﬁ{lll<2”i_ m >}+h3/3( m "‘)

—-n

— sy (5 )(ml m=t)]
o [k m—n 1 0k,

a5 (=" )} =, aa( )

PO
m+na

—D‘P‘("z+ A) 4+ (A — 1) K]

N ,,[h ( Oy +/iab K1> TN ( oKy +Zgl’; >D =0, (34)

m

—pU 4 $ak 1 [#9<2K2_2n—l‘j)\>_)\‘2<2)\1_ K2)+2)\p.m+n :l=0. (33)

m + n

The first terms in each of these equations are the same as those in CLEBscH’S
equations, pp. 306, 307.

The couple — [AU + pV]is that called by pe St. VENANT the moment of torsion ;
the couple A\V — uU is that called by him the moment of flexure, and their axes are
the normal and tangent to the edge respectively. The former of these may be con-
sidered as arising from a distribution of force in lines normal to the middle-surface
and in the edge; the difference of the forces in consecutive elements gives rise to a
resultant force normal to the middle-surface which coalesces with C. This is the
explanation of the union of two of the boundary-conditions given by Poissox in one.

We are going to apply the equations just developed to determine the small free
vibrations of the shell. The terms depending on the rotatory inertia will be
neglected.

§ 6. Possibility of Certain Modes of Vibration.

12. Now let us suppose, if possible, that the shell vibrates in such a manner that
no line on the middle-surface is altered in length. 'This requires that o, oy, = be all
zero. Thus, from equations (13) we derive

+hhgzaﬁ(1>+ L =0,
w

5 /1
,aﬁ-}-hhgua <h;>+;,=°’

s 0
’ 6 3 (foy21) + A 5 (hg'v) =10
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* These are three partial differential equations to determine the forms of u, v, w; and,
if either » and w or » and w be eliminated, they will in general lead to an equation

of the third order to determine v or u.
are known.

When one of these is determined, the rest
But at the edge we have to satisfy four boundary-conditions, and this

will not be generally possible with solutions of a system of equations such as the

above,

13. Since oy, 0y, @ may not in general be regarded as of a higher order of small
quantities than «,, A, k), it follows that the term in W, in the potential energy
which contains % as a factor is very great compared with the term in W, which

S contains %%, and we may form approximate equations of vibration and boundary-

2 conditions by omitting the latter term.

5 The equations of motion thus formed are—-

5

<

3 o[l/ 2m —-n - R
=)

8 Bt’+hh [ Ba{ <m+n 1+m+n 3>}

El 2m m —n 0 /w

éb ¥ = “ O <k,> (m e m m + n 1) =& oB ("'12)] i :
:'5 8 m—mn |
é b= at’ + hy h I: a8 { <m g m +n Ul)} ¢ -(26)
=9

= s 1 2m m—n Q @ \

-§ gt ( )(m +27 m + n 02> C Oa <IL.,"):| .

4 2m 1/ 2m m—n \l

% 0= tn+ [ (m+n 1+m+n >+;;;<m+n 2+m+n >_J J
g And the boundary-conditions are—

5

E 2m m —n - 1

B 2)\<m+n 1+m+n 2) 2 el

g j (37)
2 2m m—n L

§ 2F'<m,+n 2-*-m—i—n 1>+)\m'—0.

o

A

(1.) Let us examine the possibility* of purely normal vibrations.
~ Since u = 0, v = 0, the equations of motion become snnply

n 2m
pm+n

Pw
o 3 e

( ’+ +mps>w—o

(38)

where o = (m — n) /2m is the ratio of linear lateral contraction to linear longitudinal

extension of the material of the shell.

* Marmigu convinces himself of the impossibility by general reasoning.

MDCCCLXXXVIIL—A,

3 X
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In order that all parts of the system may be in the same phase, it is necessary that
1/p> + 1/ps* + 20/p,ps = const. all over the surface.

Again, in the u, v equations we must pick out the terms containing w, and, observing
that w is independent of @, 8, we may write them—

—ibﬂi+9}+£ﬁﬂi+ﬁ=m'}
~a6 (it 2+ aal) Gt 2=
@~ o)z = o) (i) s e

0-0(, = L)) =50+ )

But, by equations (17),

Thus,

and,

Substituting, we get

100k g Dol

hyOa \p; ' pg | (39)
T £+l)_ r SR U L i AT N s
MOoB\py * pa) J

So that 1/p, + 1/p, = const. all over the surface.

The two conditions of possibility of normal vibrations show that the middle-surface
must have both its principal radii of céurvature constant at every point. These
conditions are satisfied hy the sphere, the circular cylinder, and the plane.

Again, if the surface be bounded by an edge, we have, since w =0, A(1/p, + o/p;)=0,
k(1/py+ a/p) = 0; these can coexist for all values of A, p if ¢®—1=0, and

1/py= = 1/py. :
To make 7 positive, or the material resist distortion, we must have 4 — o positive,
8o that o cannot be = 1; the equation o = — 1 makes n = 3m = 3k + n, so that

k=0 or the material of the shell would offer no resistance to compression ; thus, the
equations above written cannot coexist for all values of A, p, and hence one of the two
A, p must be zero, and one of the two equations 1/p, 4+ o/p, = 0 and 1/p; + o/p, = 0,
must hold at the edge. These eonditions cannot be satisfied on a sphere or eylinder.
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The complete spherical shell may execute purely radial vibrations, and the frequency

is
& /\/ L+a)n
(L—=0)ap’
where a is the radius.*

The indefinitely long circular cylinder may also execute purely radial vibrations

with a frequency

1 2n

2’V (L=o)ap’
3' being the radius.
& Y Observing that the more accurate equations of motion and boundary-conditions,
&hlch contain the terms in /% will in all such terms have only differential coefficients
ﬁtf w with respect to @ or B, the above theory is seen to hold also if these more
@ccurate equations be considered.
0 (2.) Again, consider the possibility f of purely tangential vibrations, the edge being
g & line of curvature.
2 Since w = 0, the third of equations (36) gives

(01 + 00y)/py + (03 + 001)/p = 0

-8t all points of the surface.
Now, the boundary-conditions at @ = const. are

o, + ooy =0,
w =0,

nd with two functions u, v it will not generally be possible to satisfy these con-

itions.
% If, however, the surface be of revolution, and B be the longitude, then

h,~1/0B = 0, and all the conditions can be satisfied by taking

aﬂ,ed,from https://royalsocactypublishi

(1) »=0,
i f the surface,
) gv_ e j at all points of the surface
B

(3) a%(kg’v) = 0 at the edge;

* [In the paper as read, this result was verified by reference to a question set in the Mathematical
Tripos, part II1., 1885, It has since been pointed out to me that it coincides with the formula given by

Laums in ¢ London Math. Soe. Proe.,’ vol. 14, p. 50.—July, 1888.]
+ Marmieu deduced the possibility of some purely tangential vibrations from his differential equations.

S X 2
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and the equation of motion is

& 208 |
o2+ byl {h;a(h )}_o A s i

Hence a general theorem :—For any surface of revolution there exists a system'of"
symmetrical vibrations, in which every element moves perpendicular to the meridian
plane through a distance which is the same for all points on a parallel of latitude, and
the frequency of such vibrations depends only on the rigidity of the material, while
the ratios of the intervals are independent of the material. These are the only
purely tangential vibrations of which the shell is capable. 1

14. Let us examine more minutely the question whether a spherical shell can
vibrate in such a manner that no line on the middle-surface is altered in length. |

Taking e = 6, B = ¢, the colatitude and longitude of a point on the middle- surfa.ce
and « the radius, b, = 1/a, hy = 1/(a sin 6), thus

.

ao, = (1;+¢c b
aoy = w + ucot O + 111(92; r (41)
aw_a¢< >+smt9880< >J
g, _— 1 w1 o ]
Ky = n094’3--}— tﬂae sm08¢_uc°t0’
k aw o
- (l')\l e o8 - ae’ } s R (42)

o _ 1 Ow cosfow O 1 o
@KU =Gin0 0004  sin®@ 0p 00  sin 6 0

|
+ vcot 0. JI

Suppose o, 05, = all zero, then

and
: g_a_ ¢\ o/
R Qm) =3 <sin o)’
; o/ v o/ u
i ”5e<sm) = —a—¢,<m>'

These are the conditions given by Lord RavrEeiGH, and they show that u cosec § and
v cosec 0 are conjugate solutions of the equation
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ox 2
o¢?
and w is given by the equation

+<sm080>X—_—0;
_ _ 0w
=0

Substituting from o}, oy, = = 0, we find

ow

1 w ;
+ cot 0 5% + w,

sin® @ o¢*
P . Ou
o0 T aoa’
L4 0 ki u
06 \sin 6 06 o¢
— sin 0 (sin 7 _6_
od

9
kg =

)
a\ =

ale — > '
2/
sin @
0 u

[sm 0 <s1n 7] §9> (S-].n 2
o

——g—sinBcosﬁgg+ u}

Now,
o*u e
op*
Thus,
1 0w 1 o 1 @
sin?@ 0¢* sin®d 000¢*  sin® 6 o0
R (RS
=mw%%wew
o*u

*u o
_803+00t6@+ 280'

)]

Hence, k, = A.*
The boundary-conditions arising from the terms in 8u, dv in Art. 11 are now
2N(1 — o)k, —2u (1 — o)k, = 0,
—2p(l—0a)ky—2\ (1 — o)k, =03

since A? 4+ p* =1, and 4 — o is positive, the only way of satisfying these equations
is to take k; = 0, k, = 0 at the edge.

Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

Her Fu | 3/ 1
e RS Lo T2 g 2 0 (1. du
TN =070 = 55 T 5 Gy ao<smoaoa¢>
And, as shown by Lord RAYLEIGH,
F=a d —gin ap 5
u= 3 sinf I:A, tan’ ;]
8=2 2 008 &
g=%w 08 &b
v= X sin 0[A,tan'g] . (44)
8=2 sin ap
= 4= 0 A = @7)Ein sb
W= .=22 (s + cos )[ o tan é:]—coe»J

* This might have been written down at once by the aid of Gavss's deformation theorem.
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From (43)
. o1 - 0/ u i, R
sin 0 a-o[sm 080<sin 6):] * = 3B 0;
put '
! n
sin 0 tan 5 = %o
then
(FM“ g T o= cot 0 + u, (s cosec® @ — cot® @),
o= 0
and
sec® 5 .
Wy ootbu it el
ap = Y %Tr gl e e sin 0
tan 5
so that
d*u, o § + cos 0
ae T h =%
1{‘u,, du, 2s cos @ 1  2cos’8 s* + scos 0
T ap = [_ s’ @ sind  sin®d i, 0, o0y
s —1
= U8 SiT-e- y
hence,
5 =% 0 i —sin sp
kg = 3 [(33 — s) A, tan’  cosec? 0] !
1=2 2 3 o8 5b
Again,
d/ 1 du)\ _ d[cosf+s
a0\sin0 @8 ) = d6| sin*g
__ (cos @ + s)° 2scos 0 2 cos? 6 £—-1
T sin®@ + i g ) o= Yiginip
hence,
5= e o8 ap
o= 3 |‘(s3 — §) A, tan’ ; cosec? 0] ;
=2 L 2 sin s

so that k, and &, cannot both vanish all along any curve drawn on the middle-surface,
unless the A vanish, which gives no displacement.

We have shown explicitly in this particular case that the assumption that no line
on the middle-surface is altered in length does lead to expressions for the displace-
ments which cannot satisfy the boundary-conditions which hold at a free edge.
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§7. Vibrations of Spherical Shell.

15. Let.us now apply the equations of Art. (13) to the discussion of the vibrations of
a spherical shell ; we have

’p 03“_14 22(2771, a ﬁz—ng-g )
or? 00\m +nhy ' m+n /¢2>
0 /1 2m m
—2@<7;,>(nb+n02+nz+)L )+h18¢>< >
a’p v _ g g
sm 0 E)L’ W agb <m + nhy + m+ n hl> .. (45)
0 /1 2m m — )
i a¢ <7Iq> <m-r7i t i > + g9 <77)
n® . 0*u :

In these we are to substitute for %, A, their values
hy=1/a, hy=1/(a sin 6)

and for o}, oy, = their values from

ao, = 80 + w

o

aoy = w + u cot 0 + == ea¢,

0
84: <sux 0) A sinf 5 00 (sm 9) -

Let us take u, v, w as functions of ¢ to be proportional to e7, then the period is
2w/p ; also take p*a®p = nk®, where k is a number, then we have the three equations—

; 2m O [ . ou n 0
k9usm0+2m+m.§b|:sm0<% +~w>]+2m+nae<wsm0+ucosﬂ+ ¢>
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' i e v cosﬁ<w+ucot0+ 110;);) 2::—}:—:cosﬂ<gg+w>

+Bn§ 62:24_63895 cot0 =0 e (46)
k’vsm0+2m2+,w¢(w+“°°to+ 11192;;>+2m+na¢< +§Z>

+ag”a"¢+ t0¢ sin 0% + cos 000 — - (cos® 0 — sin®6) = 0, {47)
e m+:<a_z+. ol 1111a§;+2 > i | T BEPIAEPR
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The first two of these are—

ow 3m —n.

: . 3m — n)\ [Pu 811 dm.-— n
2 258 LA =3 2
Ku+<1 ™ m+n><86” Hohe at9>+ 30 m + n (1 + m+n).u00t 4

_dm—mn\ [ 3m—n\cos@d  Im—mn 1 o 1 Fu__
+ <1 m + n>u <“+ m + n>sin2€8¢+ m + n sin 6 00 a¢+sin’98¢’—o’— (49)
" 0% 2 3m—nodw ., cosfou 3m —n
~0 1D 2 rsdus exdb Sy
KL+<80’+ %l )+Q( SeeRE 0)+sm0 m+n 8¢+sin508¢(2+m+n>
(" 1 3m—na\* . 3m—n 1 Ros”

+sin”€<1 i m + -n>8¢2 £z m+n sin@ 00 op — b e howr gl p S s SO

Substituting from (48), these are—

Pu ou g . 1 ™ 2cosfov | 20w
3 T co t0— (2 + «* — cosec 0)u+s1‘n-08$ siui()gp-l-:‘%-a?:o’ . (51)

0% P 1 & , 2cosf0ou P Bw_
805+00t088+(2+x — cosec® 0) v + m308¢9+ sin® @ a¢+2sm08¢ 9 (52)

and, writing

Rl

m—+ n m -+ n

3m — 3m —
PR TURC e
(48) becomes

1 Bv> (59)

2
w_b<80 +uwt0+smeo¢

* Substicucing for w, we find

Bw 1 JPu

+ [+ 2 — (1 4 ¢)cosec* @]u — (2 4 ¢ ):$9%g;+31;06085¢ 0, (55)

0% 1+cuu
ae°+ t030+ sin® 0 Ogp*

[+ 2 — cosect )0+ (2 + ) S o0 + g s =0 (56)

(7% . v ;
' Sineé u, v, w must be the same for ¢ + 27 as for ¢, we may put

A U o o8 s, % o sin 8¢, w & cos §¢b,
where s is an integer. '
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Then, for u, v, w as functions of @ it is convenient to take equatmns (51), (54), and
(56), which become

25 cos 0 2 dw
+ cot § 2 7 24— (1 + 5*) cosec® 6] u — e o '3:]—10 =05, (57)

§ 55

d? dv
o €0t 8% 4 [2 i — {1+ (1 + ¢) ] cosec? 0] v

S oS 0 se du

—(2+¢) — R TR

sin*d  sin@dl
x_9 __[du t 0
g W=c{ p+ ucot+ — 9> R L sy L BS)

Differentiating (59) with respect to 6, dividing by ¢ and subtracting from (57),

sveos @

Wi g 2 s (71;_,5 1 ([_m
(2 + «* — s®cosec® O) u = sin*d T enode — 3 <1+c>(]0

Write u sin § = U, vsin § = V, thus,

U AY . 1\ dw .
[(2 + «°) sin®* 6 — smo—s:z_o_ §-<] + )75 sin® @ ; e o (60)
g and (59) becomes
du . sV «* .
70 T sna = 5 Wsin B adi Libe Boss ad atds o 68

We are goiﬁg to substitute from (60) in (58) and (61); the result will enable us to
eliminate V, and obtain an equation for 1.

We have

2 r

- <1 + l)sm“ﬁ—— + qnﬁ(ﬁ'

U= i el R dé

= (2 + £*)sin?f — s
therefore

dU sin®0 » d*w dw  2(2 + «°) sin® G cos 8 db
a0 = <1 + )(2 + #%) sin 6 — 89[8"‘ Vi T 3% 5 — a3 Maind = o, dw

s.sin 6 ﬂ_'_ ¢ ﬂ__2(°+x-)smﬁcosellV
o (2 + «%) sin® 0 — §* | d6? e (2 + %) sin® @ — 5* db

Substituting in (61), we have, on multiplying by cosec [ (2 + &%) sin®  — s*F,
MDCCCLXXXVIIL—A. 3 Y
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© I\ o N2 g _ o
2<1+ c)sm 0[(2 + «*)sin® 0 s]d()’
+ cot O[(2 + ) sin 0 — 8] 70 4 £ w[(2 + ) sin® f — 7P

— s[(2 + <) sin® @ —39]%g+ s[(2 + «°) sin? 0 + s*] cot 0%

[+ Menfd—aPV=0."". . ... Lt

sin® @

Now, substituting for dU/d# from (61) and for U from (60), (58) becomes

siio((fl-;-r cot0~+Vcosech9>+[z+K2—{1+32(1+c)}cosec’0]—

» B

se [&* 9 ' v 232)_§g_2—<1+ ) 0 +sd0
sm’0<2¢:wmn " sind >— sin® 8 (24 <) sm"ﬁ—s2 =

or, multiplying by sin #[(2 + «*) sin® § — 57,

[(2 + «*) sin® 6 — -S‘“] wg —[(2 + %) sin® 0 + s*] cot 0 5 T [@+ ) sin? 6 — 8P sm* 3

— a2+ w)sint 0 — ]+ s (1 + z)sinﬂcosﬂ(—zg’z .

Multiply this by s and add it to (62), thus,
2 ; 3
%(1 +%>l:sm2 0;52 -+ sin Bcosﬂdu:l + {[(2 + «*) sin® § — §7] g —gsg} w=0,

or

7 "’).—_—o......(es)

d*w dw
d73+00t0¢T0+<1+c T sin® @ 4

Also, between (60) and (61), eliminate V, then

sinf oo . (64)

d (. ,dU »* dw
d—0<sm0d0> sme[(z+x9)sm~ —-s*]:—smﬂcosﬂw 2

The equations we have to satisfy are (61), (63), and (64). Writing p instead of cos 6,
these become
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d‘i[(l—ys) ] (flif—lfp,>w=o, i R T
[(1—;»‘*’)“"]] ( Sa)u=e[futia-mi], o)
sV=(1—;L2)<;—Zw+(§:>. T T

b Of these (67) gives V when U and w are known. The solution of (66) consists of
A two parts—one, the complementary function which satisfies (66) when w=0; the
ﬁ other, the particular integral which satisfies (66) when w is a solution of (65). We
oomay show first that this particular integral is proportional to (1 — p?) (dw/dp);
< take'it tobe & (1 — p®) (dw/dp).
For, writing (65) in the form

d*w 2+«
Q=pw)P s — 2#(1—#),——9210— i3, 1 —#)w,

and differentiating, we have

alo-wpio-mP-Za{a-mg)

- 2+ Edﬂ_q ,,]
= 1+¢|:(1 /A.)d# Zpaw |,

and the left-hand side is found by using (66) to be
dw

2 ’f‘ 1 2——,‘2 w
<+K~—7\.>( —#)d/z. P Lt

so that A\ (1 — p*) (dw/dp) is a particular integral of (66), if

Downloaded from https://royalsocietypublishing.org/ on 09

K/2eh = (24 )/(1 4 ¢) =2 + & — /2],

which are both satisfied by

£14+e
e L U RO | .-
A 2 2 + &* ( )
Thus,
K 1+e oy 40
tr—2+x2_2¢: (1—P’)d/.l,

is a particular integral of (66).
-3 ¥ 2
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16. We have now to consider the complementary functions.
In equations (65), (66), write

(2+K9)/(1+c)=a(u+l), 2+K3=,3(/3+1),

then these will be the equations of tesseral harmonics of orders a, B8 respectively.
Calling T% (r) the solution which does not become infinite for p = 1, we have

w = AT® (),

a 1
U =BT} () + M (1 = ) . 7-{TO ()3 .
To find V we have

S i T duo . & WY
o = Ba e+ L = =B Ol e e i
so that
B
Ve ;(l—#)d {15 (1)} + SAATY ().
Hence,

w= M=) 0 W+ g T W) |cossper, ]

[\/(f£A “’(#)+ /(=) % {T“’(p)}]sins¢e‘1”,( - (69)

w = [ATY (n)] cos s e . J

17. Properties of T2 ().
The differential equation is

d*T
du?

N " 82 .
(l—p) —Zp,;l;+a(a+1)’l—l:;§'l=0, v LA A (70)

and for any value of &, real or imaginary, this is satisfied by the integral

r fp —cos ¢ /(p? — 1)}* cos s dep. ™
0 <
 Also, if we put

TO () = (1 — u2)* == {P. (1)},

dp.

* Hring, ‘ Handbuch der Kugelfunctionen,” pp. 225 et seq.
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P, (p) is a solution of the differential equation of zonal harmonics

d

d_ﬂ{(l_#‘l)[(l—l—i}_l_a(a-l—l)l):(), o oy Baxd Oy (71)

and this is satisfied by the integral

[t = cos v/t = 1) .

This form would not be adapted for arithmetical work if & were imaginary.

If « be imaginary, then will a (a4 1) = — (4 + ¢*), where ¢ is real. If ¢ be
integral, (71) is the equation of MEeHLER's ‘Kegelfunctionen’; and it is shown by
NEuMANN* that this equation is satisfied by the integral

]'m_ ~cos g dp
V(p + cosh ¢)’

and this is finite when p = 1, but infinite when p = — 1 ; the form of demonstration
© adopted holds equally when ¢ is not integral.

In general, writing — w = @ (« + 1), and changing the independent variable to
z= (1 — p)/2, the equation for P becomes

P 1«2 dP 2}
2 P=
d2® +~(1—~/) dz .:(l—z)P ),

so that one solution for P is the hypergeometric series ' («/, 8, y/, 2) where &'+ 8'=1,
£aB =0,y =1; and this is finite for 2 = 0 or p = 1, so that

Fis ow(w+2) [1—p\? wo+1.2)(w+2.3).. A(w+r—17) L—p\r
Pp)=14 00—t + == <~2—)+.. - (2 S+

Downloaded from https://royalsocietypubhshlng.org/ on 09 August 2022

which converges for all real values of p between 4 1 and — 1, but diverges for
p=—1

In our equations the quantity B is always real ; the quantity « may be complex of
the form — 4 + «g; in any case we have always a solution of our equations in series or

definite integrals.
18. Supposing T® (), T¢ (1) known, we shall be able to write down the values of

oy, 03 w; and then, supposing the surface bounded by a small circle p = const., we
have for the boundary-conditions

* “Ueber die Mehler'schen Kegelfunctionen,” ¢ Mathemat. Annalen,’ vol. 18, 1881.
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o+ oco,=0
- 2’}..........(72)
= =)

for some fixed value of pu.
Returning to our equations (69), we have, omitting the ¢ factors,

o s\
o, = W —=w—\/(1—p‘)(i:
sV U + v
uo-2='w+ucot0+m=w+ﬁ5:

su - o/ » S d v 4
ol s ”a‘e<si—né> st g Sl gactof

hence,

aay = {AT() = /(1= ) 1o [ M (1 =) T5 ) 42 10() |feos e

agy = {AT(')(F) Rk \/(1 5 [)\A\/(l )dT< )(F-) \/(IB— 5 Tﬁ-"(#)]

AA AT®
i J( s_ ) |:\/(i Bap T () + i \/(1 —©) %@]}cos spe,
aT f." (w) B

— aw = {\Ts—p’) |:)\A V(11— pd) e Ja— m(l")]
= 2)d [‘/(31 T“’( ) + ;(P):l}sin spe? ;

> A T dT
as, = A[(1+ 2—6—“’?”>T,—x,&‘d_ﬂ—3[%'r,,+ e
aa,,:Al:( ]

) Tk | B 25Tt J

aw=—2s)tA[——T+ } ;[3(54-1)'1?,,-2,‘#], J

or

v

(73)

omitting ¢ and ¢ factors, and writing T, and T, for T (i), T (u).
Substituting in the boundary-equations (72), we have, on elimination of the ratio
A : B, the frequency-equation

{[4+eti-1Zp0-aln—2a-anZ: }{W“’T‘z"?}
><1_ ks ) .. (74)

- 2s2)\(1—a')(
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and, if p = 0 at the edge, or the shell be hemispherical, this is

2
L1@+a+§—§uuﬂﬂ (B+1) = 25 a—@f}%a.(M)
In the case of the symmetrical vibrations s = 0 and the expressions found involve
indeterminates. In any other case the above expressions show that it will not be
possible for the motion to be purely tangential, since, for this, A = 0, and we should
have to make dT;/du = 0, T, = 0 for some value of p.*
19. In the case of the symmetrical vibrations we have to put u, », w independent

of ¢ in (54), (55), (56) ; this gives

d*u du 2+ & "L TR T e
g€2+ COtadH x <1 + sin® 0>u_ 0,

- -
7 A T S X SR 76
zw+ 0+<.+K_ﬁﬁ0v_,> ) Tovgen et idre)
K> du
27w=d~.{5+“00t0' b
Flomwhlch
4
i A ey a2,
L A
v=B (1 —p? ‘gﬂ B e o % w oww A2T)

w=%a@+UARWLJ

where B, « have the same meaning as before.
Hence,

ao-l=A—<1+2> a(x+1)P, -'#i;l::l 1

:% (78)
J

dpP
acy, = A —a(a+l)P + p p :l

aw=BBw+UP-4Mw]

du

The boundary-equations (72) become
¢ . )
Alfie0+0 %)@t nr—(-anf:]=0 4
ek e ke
B[B(8+1) P -2 2| = 0,

* Using only the differential equations, Marmiev supposed that there could be unsymmetrieal
tangential vibrations.
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which can be satisfied either by

B=0, and {1+i—g(l4-c)}a(a+l)P,—(l—a')p%:O, (80)

or by

A= 0, 1 sand 3(3+1)P,—2,L'%=o R v P

This gives two types of motion.

In the first the motion is partly tangential and partly radial. Since P, (1) cannot
have equal roots, » and w cannot vanish together, or there are no lines of no displace-
ment. The displacement is purely radial along the lines dP,(p)/dp = 0, and
purely tangential along the lines P,(u) = 0. The ratios of the frequencies of the
component vibrations of this type depend on o, i.c., on the material of the shell.

In the second type the motion is purely tangential, every point moving through a
distance along the parallel to the edge through it, which is the same at all points of
the parallel. The lines dPgy(u)/dp = 0 are nodal. The ratios of the frequencies of
the component vibrations are independent of the material of the shell.

20. For a hemispherical bowl p = 0 at the edge.

(1.) In the motions of the first type P,(n) is to vanish with p; hence, « is an odd
integer, or, 7 being any integer, we have 2

24+ &)/(1+c)= (204 1)(2¢ 4+ 2) = o say,
where
e[ =4(14+0) (1l —o)]=«(14 0)/(1 — o).
This gives
K(l—0o)—2(14+30c4+w)+4(0—2)(14+0)=0; . . . (82

this equation has always real roots.
- If x& ' be the roots, and p;, p’; the corresponding values of p, according to the

formula p*a®p = nk®, then

i=®

d .
u=3x : [\/(1 — 1) du {Poisq (u)} {As e + A'ie"'"}],
D=0, (83)

w = 2'=: [4\/(1 — ) (e 4 1) (20 4 1) Py sy (1) {:—; A; e 4 ,:—:-:,A',-clp’“}]_J

To get arithmetical results, let us choose o = §; the equation for «* becomes
k=614 (4 1)(204+1)} 2 +8{(2041)(20 +2)— 2} =0,

and k;, k’; are given by the table :—
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i 0 1 2 3 4
8{(1 + (i + 1)(2i + 1)} 12 42 96 174 7 276
8{(2i + 1)(2 + 2)— 2} 0 sg‘ 224 ;2 704
S 12 43 48+ /(2080) | 87 + /(7137) | 138 4 +/(18340)
~ 3464...|6324...| 9676... 13ﬂ95..j “ 16ﬁ05...—_—
i 0 1414 . 1585 . .. 1587 . .. 1604 . . .

The tones of the second series are all near together ; those of the first are separated

by intervals rather less than for a harmonic scale.

(2.) In the motions of the second type A = 0, and P, () vanishes with u; hence

is an odd number, and

24 K= (2041)(2t4 2) = w.

If p”; be the value of p corresponding to «”;, we have

=0, w=

and
i=m 4 d pers
v [\/(1_P’)(T{Pwﬂ(#)}B&c"'];
t=1 g

and «”; is given by the table :—

0,

(84)

(85)

i 1 J 2 ‘! 3 A 5
wi — 2 10 28 54 o 88 130

K 3158 5291 7347 9-380 . 11'4-01_
&z '’y (L 1:673 2323 2966 3605 . ..

These intervals are nearly fifths.

MDCCCLXXXVILL—A.
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§ 8. Vibrations of Cylindrical Shell.

21. As a further example, suppose the middle-surface of the shell eylindrical ; and,
to fix ideas, suppose there is a rigid disc at one end, and at a distance ¢ from it a free
edge bounded by a circle.

Let @ be the radius of the circular section of the cylinder, and @, z, ¢ cylindrical
coordinates of a point on the middle-surface, the origin being at the centre of the
rigid disc.

In the equations of motion of Art. 13, we have to put

h=1, h=1la 1/p=0, 1/p,=1/a.

Taking u, », w proportional to e?, and «*n = p*a?p, these equations become

m 4+ n

o? w , & 1  3m—n/u 1 o m—mn 1 ow
0:* + +a~8¢9+___“<:1+d—8;5§>)+ m+naod: e R

v, o 1% 3m—a/1odw 1 u om__ 1 dw
0:* + @ s a0 T m+n <ZL§ op® + a Bza:ﬁ> * m+n a,fl op =0, . « (87

K* 4m 1 ov n 1 ou
W= m+n;a-<v+57p>+ 7IL+7I:(:8—. e g g 4w

Put 4mpB/(m + n) = * — 4m/(m + n), then (88) is

ou
Bw = ¢+o~aa, S Sl R
and (86), (87) give
dm  Pu | K 1 0 , 3m—n 1l o 2 m—n a’u
m+ n a~3+ +&é 8¢§+'m+n a.aza,b a8 m+n< ’3¢ A>_O’
% 4m 1 ™ ., 3m—n 1 8‘3u 8’0 =3
0:* a2 v + m+n a* O + m+n a 0:0p aTB m + < aza¢ 84;5’) =%
or
u [ 4m 20 m—n 1 P 1\] o
Eg(?_l:-fn §m+n>+&354_>§+ I: +9m+n<1+;§>]8za¢=o’ (90)

m 4+ n m —+ n

5‘v+4b <1+é>fg§:i+:§v+ [l+ —-—( B):l L =0 . (91
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Let u o< cos 8¢, v o sin s¢ ; then for  and » as functions of z we have the equations

du+B +C’Lﬂ j
$ (92)
+D1’—C—"—_—O’
where
9 =y
A_l—cr<1+6>
B= o — s
- b = e e (98)

To satisfy these, take

u = P cos p.z} % = — P’sin “z} (04)
\d 01‘ . . - . . .

v = Q sin pz v= Q cospz
Then
P(B—Ap®)+ QCr=0,
PO + Q(D — ) = o,}
P'(B—Ap’)+QCp= 0:}
PCp+Q (D —p)=0,
whence

(B — Apd) (D — ) — O = 0.
This is a quadratic in p?, viz.:

Apt—(B+AD 4 C)u2+BD=0; . . . . . (95)

Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

and we have

l-"__ l= |Pl ll'ﬁ_
)__D) Q C' 'F‘Z_

Let p% o be the roots of the quadratic (95), then

u = cos s ¢ [P cos pyz + Py cos pyz — P sin pz — P’ sin pgz],} . (@)
v = sin s¢p e 7 [Q, sin pyz + Qy sin pz + Q' cos pyz + Q5 cos pgz ],
so that
Bw = cos s¢p ¢ [(sQ, — gap,Py)sin pyz + (sQy — aap,Py) sin pyz] .1 . (98)
+ cos s¢p 7 [(sQ) — oap, Py) cos piz + (sQ/y — oap,P’ycos) ,J,zz]-j
3z2
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(Caleulating from these, we find, dropping the time-factor,

o, = — cos s¢ [, Py sin pz 4 p, Py sin poz 4+ p P’y cos pz 4+ p, P, cos pyz], b
1 1 .
o, = COS S <SB+ Q, —U’L‘P )3111;L1z+<8/9; 3 —%5P2>81n;:.2z}

y _B+1 T sB+1 T, .
+coss¢L< Q,— P>c03plz+< Q' — 9P>cos,:.22:|, L (99)

== sin s} <I-‘1Q1 — i P, > cos iz + <p. Q. — Z ) cos /.Lzz:I

2

— sin s¢ <[L1 A1 — fP'l> sin p,z + (y. Q' — EP'2> sin M{I -
L w o a _J
If there is a rigid disc at z = 0, then » and w vanish with z, so that

Qi+ Q= 0’1
Py 4+ Py = O-I
The first of these is, by (96),

(100)

L2 ’_"_D 0,

so that (100) can only be satisfied by P’,, Py, both zero, and consequently Q';, Qs
both zero, unless we take p* = p,* and Q;, + Q, = 0.

If u®=p*, we have P, = F Py and Q' = — Q,, so that the terms in u, v, w,
oy, oy, w which contain P'}, Py, Q'}, Q, all vanish identically.

It follows that to satisfy the conditions at z = 0 we must drop out the P’, Q" terms.

The boundary-conditions at z = ¢ are—

°1+“2=°’} ol i

w=0,

where we have to take only the part in P, P,, Q,, Q, and to write

—— (:”'z
Ql—,qu_DPI’ Q2 DP2'

Hence, we have

. 1510 .
Py sin gy e [1 + S ‘EB—E—M = UJ+F2P" sin ,u.gc|:1 +

a

(9,
|
(9

W™
+
—
Q
=
I
=

and
WL Y.
Py cospl(,((6 ,4,5—1)>+P2008"20<a —D) 0.
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Eliminating P, P,, we get

g . b ,u,,z(' a* osB+1 C
1 sin ,Ll C COSs P‘;‘: C <a i — 1)) < + B - T B P‘l — >
- 8 *C a* s C
=p.zsmp.gccos;;.,c(;—JL'_D>< +E ‘(TLSB"' D)’
b pa? /
or
: g My —p) osB+1 o B+ 1 w P
sin el G —= . i Sl W L b by 20
(‘ul s IL-) [ (> =D)(p?—D)a B a B w:—=D ot — D)

a® i I 8 a*
+ O (14 ) (25— 155) + 5 (1 4 5) =)

g ey s Mpa(p +py) osB+1 a8’ B + 1 H By
+sin (g, PQ)C[C w*—D)(pt—D)a B = a B < P g e — D)

~ Cps(14+5) (i p + 1p) + 2 (1 +5) ta+ )] =0

From (95), A (s* — D) (! — D) = AD* — D (B + AD + (%) + BD = — DC?;

substituting and re-arranging, we find

s £ Gy B L 0D EPEE 4 Gy D) (2 — s 2]

it B a P B B
__sin(u —py)e q‘sl9+1 8§ B+s* <"3_2'_9_+1 - B\, 10:
o — fha [AC +CD B A(/“’IF'~ ) a B Hafre B )_J, (10‘2)

this equation gives the frequency.
22. In the case of the symmetrical vibrations, s = 0, and we have

w =/ B/A, = /D,

and Py = 0, Q, = 0, but Q, is finite. Thus, the equation just written involves some

indeterminates.
We take the solutions

Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

u = P, cos p,2,
v = Q, sin po2.

The conditions = = 0, o, + oo, = 0 reduce to

(1 -+ %) Py osin pye =0, Qupg €OS pgc =0
hence, either
Q,=0, and sinp,c=0,

or
P,=0, and cospuyc=0.



Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

542 MR. A, E. H. LOVE ON THE SMALL FREE VIBRATIONS

This gives two types of motion.
In the first, the motion is partly tangential and partly radial ; the expressions for the

displacements are

U = ‘;.P cos = ¢, 1
i=1 ¢ I
v=0, L POy
o am .tz [
—_— L R p— s —_— ‘pt’
w = SKZ'-:'—I = P; sin n el
. 2L
where the equation for « is A& =7vm, or
2 2 - -
Bl —a)a i ol =T

P+

and p*a’p = nk®, ¢ being any integer.

The displacement is, for each normal type of vibration, wholly tangential along
the circles sin imz/c = 0, and wholly radial along the circles cos inz/c = 0 ; there are
no points or lines of no displacement. The frequency depends on the length and
radius of the shell, and the ratios of the intervals for consecutive tones depends on o,
i.e., on the material of the shell.

In the motions of the second type the displacement is pure]y tangential, and is
expressed by

% =0, 3
i=w z I
v=3 Qisin " i '{: e, & (105)
i=0 =2 I
w=0, uf
where the equation for the frequency is
4l = (24 1) 7,
or
4p2 = (20 4 1) 7* n/c%p. R

In this case the circles sin (2¢ 4 1) #2/2¢ = 0, are nodal lines. The frequency
varies inversely as the length of the cylinder, and the intervals between consecutive
tones are independent of the material of the shell.

Note.—July, 1888.—In the paper as read some examples were next given of the
application of the method to problems of equilibrium. These are now withdrawn, as
of little physical interest, and not directly relevant to the subject of the paper (see
Summary).
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§9. Summary.*

This paper is really an attempt to construct a theory of the vibrations of bells. In
any actual bell complications will arise, which have been omitted in this discussion,
partly from variations of the thickness in different parts, and partly from the
want of isotropy in the material. We can hardly expect a metal which has been
subjected to the process of bell-manufacture to be other than very solotropic, while it
is notorious that bells are usually thickest at the rim. The difficulty of the problem
in its general form seems to make it advisable to begin with the limiting case of an

indefinitely thin perfectly isotropic shell, whose thickness is everywhere constant, and
&so small compared with its linear dimensions, that powers of it above the first may be
Zneglected in mathematical expressions, which contain the first and higher powers
Smultiplied by quantities of the same order of magnitude.

e Of previous theoretical work we have examples in Lord Ravreiea’s ¢ Theory of
£8ound,” and in his paper on the “ Bending of Surfaces of Revolution,” in AroN’s and
TMATHIEU'S memoirs, and in IBBETSON's treatise on the Mathematical Theory of
t,,)Elaxsxtlclty In the ‘Theory of Sound’ Lord RAYLEIGH treats the vibrations of a
_:thm ring or infinite cylinder of matter, supposed to be deformed in such a way that
che motion is in one plane and the elements remain unextended, and remarks that at
&the time of publication this was the nearest approximation to a theoretical treatment
.g of bells. He afterwards applies his theory of the bending of surfaces to obtain a more
&exact analytical method of treating the problem, but his disregard of the boundary-
gconditions which hold at a free edge appears to vitiate this theory. Arox can hardly
\be said to have attained a theory of bells, and the interest of his memoir is mainly
Q*ma,thematncm.l his inaccuracies have been already referred to. 1 have also previously

"Z referred to the objection which lies against MaTHIEU'S method of treatment ; this and
£ the complexity and difficulty of some of his analysis seem to render a new method
g desirable. I shall have to refer to IBsETsON later.

The theory here put forward rests on the form of the function expressing the
potential-energy of deformation per unit area of the middle-surfuce of the shell.
R Supposing that the surface is stretched and has its curvature changed, we find that

the energy consists of two terms. One of these contains only the functions defining

the stretching, while the other contains also those defining the bending of the middle-
surface. The modulus of stretching is proportional to the thickness, while the
modulus of bending is proportional to its cube. Unless, therefore, the functions
expressing the stretching, viz., the extensions and shear of rectangular line-elements
of the middle-surface, are of a higher order of small quantities than those defining
the bending, viz., the changes of the principal curvatures and of the directions of the
principal planes, the vibrations depend on the term which involves the stretching, and
not on that which involves the bending. Now, it seems to have been universally
* Partly rewritten, July, 1888.
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assumed by English writers that the reverse of this is the case, viz., that the vibrations
take place in such a way that no line on the middle-surface is altered in length. This
will be borne out by a reference to Lord Ravieica and IBeersoN. The theory of
the present paper rests on the fact that the functions expressing the stretching and
those expressing the changes in magnitude and direction of curvature are of the
same order of small quantities. This is proved in the following way :—The potential
energy consists of two parts; one, Q,, proportional to the thickness 4 ; and the other,
Q,, proportional to A®. The first is expressed in terms of the stretching, and the
second in terms of the bending of the middle-surface. Some previous theories have
proceeded as if Q, only occurred. If this were the case, we ought to get an approxi-
mation by supposing that Q,/2 = 0. This is equivalent to assuming that there is no
stretching of the middle-surface. 'We should therefore get an approximation by
supposing the surface inextensible to the first order. The stretching and the bending
are expressed, to the first order, by linear functions of certain differential coefficients
of the displacements. Our supposed method of getting an approximation is then to
make the functions expressing the stretching vanish. Now, I have shown that the
functions expressing the displacement are thus, to a certain extent, determined, and
that in such a way that the boundary-conditions cannot be satisfied. The boundary-
conditions referred to are the exact conditions found by retaining the complete
expression for the potential energy. It is inferred that the functions expressing the
stretching cannot be taken equal to zero for an approximation; or, in other words,
small compared with those expressing the bending ; and, thus, Q,/Z* and Q,/h, are of
the same order of magnitude. The conclusion that Q, is small compared with Q,
seems inevitable.

The argument breaks down for a plane plate through the vanishing of the curvatures ;
Q, is then alone of importance. In the case of an open shell or bowl whose linear
dimension is small compared with its radius of curvature, and large compared with its
thickness, both terms are important. When this is so, we get a class of cases for
which the linear dimensions concerned are of three different orders of magnitude, and
this case will not come under the method of the present paper. It may be compared
with the problem of the watch-spring mentioned in TaoMsoN and Tarr’s ¢ Natural
Philosophy,” Part 2, p. 264, which stands between a bar and a plate. The very open
shell or bowl stands in the same way between a plate and what I have called a shell.

The theory of this paper proceeds as if Q, alone occmred. It is to be regarded as
the limiting form for indefinitely thin shells. A complete theory of bells, even when
regarded as uniformly thick and isotropic, could only be obtained by using the exact
equations formed by retaining both terms of the potential energy.

Again, English writers have assumed that the potential energy, which they suppose
to depend only on the bending, will be the same quadratic function of the changes of
principal curvature as it is for a plane plate. The same authorities as before may
be quoted, and we may also refer to a question set in the Mathematical Tripos,
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January 18th, morn., 1878, question n. To test this assumption involved the investi-

gation of Artt. 7, 8, and the result is that it is only in the case of a sphere supposed

unstretched that the potential energy has this form. This is the case treated by

Lord RavreicH, but his method still fails, for a complete sphere cannot be bent

without stretching, while, if the sphere be incomplete, the conditions which hold at a

free edge cannot be satisfied ; this is explicitly proved in Art. 14.

A general result is derived from the consideration of the functions expressing the
kinetic and potential energies, Q, only being retained. Both these functions are
proportional to the thickness of the shell, and thus the periods of vibration are inde-

Q pendent of the thickness. That this result holds for a complete thin spherical shell
S vibrating in any manner has been demonstrated by Lams (‘ London Math. Soc. Proc.,’
§ vol. 14, 1882, p. 52). His equations (7) and (9) when reduced are independent of the
2’ thickness.

Two general results are obtained without solution from the equations of motion.
g The first is, that vibrations involving displacement along the normal only are impos-
ensible except in the cases of the plane, complete sphere, and infinitely long circular
cylmdel IBBETSON’S treatment of the problem appears to assume (1) inextensibility,
(2) the incorrect formula for the energy, (3) normal displacements. The other result
@ is that any surface of revolution can execute purely tangential vibrations which are
Q*symmetucal with respect to the axis of revolution, and in which the motion is purely
8 torsional, or perpendicular to the planes through the axis. These must uot be
8 confounded with the familiar vibrations of finger-bowls, which are most probably a
2 type with two nodal meridians.®

The theory of the vibrations of a thin spherical shell bounded by a small circle is
an interesting example of the general theory of vibrations of an elastic solid. In an
infinite solid there are two types of vibratory motion, the longitudinal and the
distortional, both of which are propagated as waves. In a bounded solid this state of
B things is modified by reflexions at the bounding-surfaces, so that the purely longitu-
dinal and purely tangential waves do not in general exist separately. Again, in all
cases of displacement in one direction only, as in the vibrations of strings, bars, and
plates, there may be displacements in different directions which are independent of
each other, with their corresponding nodal lines or points. 'This also is modified in
the general solid. The types of vibration, for example, of a portion of a spherical
shell bounded by a small circle are partially made out in this essay. One immediate
result is that there are in general no nodal lines, properly so called. In any type the
displacement along the parallels vanishes at one set of meridians ; the other displace-
ments vanish together at another set of meridians. These sets are ranged at equal
intervals round the sphere. There appears to be good reason to suppose generally
that the corresponding proposition will not obtain with reference to nodal parallels,
The establishment of the fact would require a solution of the general frequency equa-

# RayLeicH, ¢ Sound,’ vol. 1, Art. 234.
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tion, and this I have not been able to effect. One case, however, is readily solved,
and that is where the displacement is symmetrical with respect to the pole of the
sphere. It appears here that the vibrations divide themselves into two types, one
purely tangential with displacement along the parallels, the other partly radial and
partly consisting of displacements along the meridians. There are no nodal meridians,
In the purely tangential vibrations there exists a series of nodal parallels, whose
number corresponds to the type of vibration. The intervals for the various tones are
each of them nearly a fifth. In the partly radial vibrations the radial displacement
vanishes at one set of small circles, and the tangential displacement at another set.
The number and position of the nodal circles for the purely tangential vibration
coincide exactly with the number and position of the circles along which the
tangential displacement vanishes in the corresponding partly radial mode. The
vibrations of the two types belong to different normal modes of vibration, and have
different frequencies. If we like to extend the meaning of “mnodal lines,” so as to
include the small circles just referred to, then we may state another result in the
form that for partly radial vibrations there are two periods and modes of vibration
which have the same set of “mnodal lines.” The tones of one of these sets are all
very near together ; those of the other set are separated by intervals nearly the same
as for a harmonic scale.

A discussion of the vibrations of an elastic shell in the form of a circular cylinder
closed at one end by a rigid disc perpendicular to its axis leads to similar conclusions
as to types of vibration and their definition by nodal lines.

It is unfortunate that solutions of the frequency equation for the case of two
““nodal ” meridians dividing the shell into four equal portions could not be obtained,
as these probably include the gravest mode of vibration of which the shell is capable.
The tones of the symmetrical vibrations discussed are very high, and the theory in its
present state cannot easily be tested by experiment. There is, however, one result
which would seem to admit of practical verification, viz., it is found that, for similar
thin shells, the frequency is independent of the thickness, and varies inversely as the
linear dimension.



