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Summary

The RNA binding protein AtGRP7 is part of a circadian slave oscillator in Arabidopsis thaliana that negatively

autoregulates its own mRNA, and affects the levels of other transcripts. Here, we identify a novel role for

AtGRP7 as a flowering-time gene. An atgrp7-1 T-DNA mutant flowers later than wild-type plants under both

long and short days, and independent RNA interference lines with reduced levels of AtGRP7, and the closely

related AtGRP8 protein, are also late flowering, particularly in short photoperiods. Consistent with the

retention of a photoperiodic response, the transcript encoding the key photoperiodic regulator CONSTANS

oscillates with a similar pattern in atgrp7-1 and wild-type plants. In both the RNAi lines and in the atgrp7-1

mutant transcript levels for the floral repressor FLC are elevated. Conversely, in transgenic plants ectopically

overexpressing AtGRP7, the transition to flowering is accelerated mainly in short days, with a concomitant

reduction in FLC abundance. The late-flowering phenotype of the RNAi lines is suppressed by introducing the

flc-3 loss-of-function mutation, suggesting that AtGRP7 promotes floral transition, at least partly by

downregulating FLC. Furthermore, vernalization overrides the late-flowering phenotype. Retention of both

the photoperiodic response and vernalization response are features of autonomous pathway mutants,

suggesting that AtGRP7 is a novel member of the autonomous pathway.

Keywords: Arabidopsis, flowering time, circadian clock, post-transcriptional regulation, autonomous path-

way, RNA binding protein.

Introduction

The appropriate timing of the transition from vegetative to

reproductive growth is controlled by a suite of signaling

pathways responding to endogenous cues and tracking

environmental signals, such as ambient temperature and

light quality (Corbesier and Coupland, 2006; Kobayashi and

Weigel, 2007; Putterill et al., 2004; Simpson and Dean, 2002).

Arabidopsis thaliana flowers earlier in long photoperiods

than in short photoperiods. This photoperiodic flower

induction is mediated by the endogenous circadian clock.

The zinc-finger protein CONSTANS (CO) plays a critical role

in interpreting day length to initiate floral transition. CO

mRNA oscillates with a circadian rhythm, and peaks at the

end of the daily light phase in long days (LD), but after the

light–dark transition in short days (SD) (Suarez-Lopez et al.,

2001). In light, the CO protein is stabilized, and thus accu-

mulates to a level sufficient to induce flowering (Valverde

et al., 2004). CO, in turn, directly activates FLOWERING

LOCUS T (FT) (Abe et al., 2005; An et al., 2004; Wigge et al.,

2005). Movement of FT protein from phloem cells in the

leaves to the apex induces flower formation (Corbesier et al.,

2007; Jaeger and Wigge, 2007; Mathieu et al., 2007).

FT and SUPPRESSOR OF CONSTANS (SOC1), encoding

two of the earliest targets of the photoperiodic pathway

(Borner et al., 2000; Samach et al., 2000), are also negatively

regulated by the MADS-box protein FLOWERING LOCUS C

(FLC), which is a key repressor of flowering (Lee et al., 2000;

Michaels and Amasino, 1999; Michaels et al., 2005; Sheldon

et al., 1999). The repressive effects of FLC can be overcome

by prolonged cold treatment (vernalization) to ensure that

flowering occurs when winter is over. During this process,
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FLC is silenced through chromatin modification (Bastow

et al., 2004; Sung and Amasino, 2004).

Genes of the autonomous pathway promote floral tran-

sition independently of temperature and daylength, also via

the suppression of FLC. For example, FVE is a component

of a histone deacetylase complex (He et al., 2003), and

inhibits FLC expression by promoting deacetylation of FLC

chromatin (Ausin et al., 2004). FLOWERING LOCUS D (FLD)

is a homolog of human lysine-specific demethylase 1

(LSD1), but has also been found to affect the histone

acetylation state at the FLC locus (He et al., 2003; Shi et al.,

2004). Additionally, RNA processing appears to play a

crucial role in the autonomous pathway. FCA and FPA

harbor multiple RNA recognition motifs (RRMs), and

FLOWERING LOCUS K (FLK) has three K homology do-

mains implicated in RNA binding (Lim et al., 2004; Mac-

knight et al., 1997; Schomburg et al., 2001). FY encodes a

protein with similarity to the yeast polyadenylation factor

Psf2p (Simpson et al., 2003). FCA negatively regulates its

own expression in concert with FY by promoting the

cleavage and polyadenylation at a poly(A) site within its

third intron (Quesada et al., 2003; Simpson et al., 2003).

This leads to the formation of a truncated transcript, FCA-b,

limiting the production of fully spliced transcript FCA-c,

which encodes the full-length functional protein (Macknight

et al., 2002). This auto regulation adjusts the level of active

FCA, and thus ultimately determines the FLC mRNA

accumulation.

Negative autoregulation at the post-transcriptional level is

also the hallmark of the AtGRP7 (Arabidopsis thaliana

glycine-rich RNA binding protein 7) protein that influences

the amplitude of its own circadian transcript oscillations

through alternative splicing (Schöning et al., 2007; Staiger

et al., 2003b). AtGRP7 has a single RRM and a glycine-rich

stretch. The transcript oscillates with a peak at the end of the

daily light phase. Constitutive over expression of AtGRP7

favors the use of a cryptic intronic 5¢ splice site, leading to a

short-lived splice form and damping of the AtGRP7 tran-

script oscillations. This feedback loop is under the control of

the Arabidopsis core clockwork, and in turn influences other

transcripts including AtGRP8 encoding a closely related

glycine-rich RRM protein (Schöning et al., 2007; Staiger

et al., 2003b).

Here, we identify a previously unrecognised task for

AtGRP7 in the network regulating floral transition. An atgrp7

T-DNA mutant, as well as transgenic plants with reduced

AtGRP7 expression, as a result of RNA interference, have a

late-flowering phenotype, whereas transgenic plants ectop-

ically overexpressing AtGRP7 flower early. Nevertheless,

these plants with altered AtGRP7 levels retain a photoperi-

odic response. The effect on flowering is in large parts

mediated by FLC, and the late-flowering phenotype can be

overcome by vernalization, implicating AtGRP7 in the

autonomous pathway.

Results

An atgrp7 T-DNA insertion mutant is late flowering

Because post-transcriptional control emerges as an impor-

tant mechanism in flowering time control, we asked whether

AtGRP7 plays a role in floral transition. First, we investigated

how the loss of AtGRP7 impacts on the flowering time in the

atgrp7-1 mutant from the SALK collection with a T-DNA

insertion in the 5¢ region (Fu et al., 2007). Under SDs, atgrp7-

1 plants formed about 61 leaves at the onset of bolting,

compared with 54 leaves in wild-type (WT) plants, and under

LDs, atgrp7-1 plants flowered with 15 leaves compared with

WT flowering (13 leaves) (Table 1). Student’s t-tests revealed

that this small increase in leaf number was significant. To

monitor the floral transition at the molecular level, we

investigated the floral meristem identity gene APETALA1

(AP1). Whereas in LD-grown WT plants AP1 transcript levels

were increased by about sixfold from day 10 to day 21, the

expression level rose more slowly in atgrp7-1 (Figure 1a).

Thus, in plants that lack AtGRP7, the transition to flowering

is weakly delayed with long photoperiods, and is more

strongly delayed with short photoperiods.

The response to inductive LDs is determined by the phase

of the key regulator CO (Suarez-Lopez et al., 2001). In atgrp7-

1 plants, diurnal oscillations of the CO transcript were very

similar to WT, with respect to phase and amplitude, both in

LDs and SDs (Figure 1b,c), which is consistent with their

retaining a photoperiodic response.

Because the lack of AtGRP7 in atgrp7-1 had a relatively

mild effect on flowering time, we examined in detail the

expression of AtGRP8, which shows 77% sequence identity

at the amino acid level and oscillates more or less in phase

with AtGRP7.

Notably, whereas the AtGRP7 transcript was undetectable,

as expected (Fu et al., 2007), the AtGRP8 transcript level was

elevated in atgrp7-1 plants compared with WT (Figure 1d).

To be able to distinguish between the highly similar AtGRP7

and AtGRP8 proteins, anti peptide antibodies specifically

Table 1 The atgrp7-1 mutant is late-flowering

leaf number n P

SD
Col 54.82 � 4.65 34 0.000012
grp7-1 61.57 � 5.92 30

LD
Col 12.91 � 1.54 34 0.000011
grp7-1 15.38 � 2.30 32

Leaf number of short-day (SD) and long-day (LD) grown atgrp7-1 and
wild-type (WT) plants � SD at an inflorescence height of 0.5 cm: the
total number of plants n and the P value determined by a Student’s
t-test are indicated. A representative experiment of five independent
replicates with n ‡ 30 each is shown.
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directed against AtGRP7 or AtGRP8 were generated (see

Experimental procedures). The specificity of the antibodies

was tested using recombinant AtGRP7 and AtGRP8, respec-

tively (Figure 1e). Weak cross-reactivity was only observed

for the AtGRP7 antibody when as much as 2 lg of pure

recombinant AtGRP8 protein was blotted. Whereas AtGRP7

protein was absent in atgrp7-1 plants, the AtGRP8 protein

level was elevated compared with WT (Figures 1e and S1).

This indicates that the release from negative regulation

in the absence of AtGRP7 leads to higher AtGRP8

accumulation.

Thus, it remains possible that the elevated AtGRP8 levels

may mask part of the effect of AtGRP7 on flowering time. To

substantiate the floral-promotive function of AtGRP7 we

decided to analyze flowering time in transgenic plants with

reduced levels of AtGRP7 and AtGRP8 on the one hand, and

with constitutively elevated AtGRP7 levels on the other hand.

Molecular analysis of AtGRP7 and AtGRP8 RNAi lines

To obtain transgenic Arabidopsis plants with reduced At-

GRP7 or AtGRP8 expression, we performed RNA interfer-

ence using the pKannibal system encoding a Cauliflower

moasic virus (CaMV) promoter-driven hairpin (hp) RNA,

consisting of an inverted repeat of the gene fragment sep-

arated by the PdK intron (Wesley et al., 2001). Two types of

constructs were designed: short (s) constructs comprising

only the part encoding the N-terminal RNA recognition motif

of AtGRP7 or AtGRP8, and long (l) constructs comprising

additionally the part encoding the glycine-rich C terminus

(Figure 2). The short construct directed against AtGRP7

could not be stably propagated in Agrobacterium tumefac-

iens, and thus was not used further (not shown).

Transformed plants were selected on phosphinotricin,

and were checked for the presence of the transgene.

Seedlings harboring the intact hp constructs were raised to

maturity, and were then surveyed for endogenous RNA and

protein levels in the next generation. To test whether the

simultaneous presence of AtGRP7i and AtGRP8i hp con-

structs would further reduce the protein levels, crosses were

performed between selected AtGRP7i and AtGRP8i lines

(Table S1).

AtGRP7 and AtGRP8 transcript levels were monitored in

LD-grown plants harvested at zt12 (zeitgeber time 12, 12 h

after lights on), with gene- and strand-specific probes

derived from their 5¢-untranslated regions (UTRs) that do

not cross-hybridize with the transgenic mRNA (Figures 3

(a)

(b)

(c)

(d)

(e)

Figure 1. Characterization of the atgrp7-1 T-DNA insertion line.

(a) Developmental changes in AP1 levels in long-day (LD) grown Col-0 and

atgrp7-1 plants.

Plants were harvested at days 10, 16, 19 and 21 after the release from

stratification. AP1 levels were assayed with real-time PCR with respect to the

PTB reference gene. The relative expression in wild-type (WT) plants at day 10

was set to 1.

(b, c) Diurnal CO transcript pattern in atgrp7-1.

Col-0 WT and atgrp7-1 mutants were harvested at 4-h intervals on day 12 (LD)

(b) and day 19 (short-day grown, SD) (c), respectively. CO levels were assayed

with real-time PCR with respect to the PTB reference gene. The relative

expression in WT at zeitgeber time 0 (zt0; lights on) was set to 1.

(d) The atgrp7-1 mutant and WT plants were harvested at zt12. The RNA gel

blot was hybridized with the gene-specific AtGRP7 probe (left), and with the

gene-specific AtGRP8 probe (right). The ethidium-bromide stained gel

confirms equal loading.

(e) The immunoblot with 40 lg of total protein was incubated with the

antibodies against AtGRP7 (left) and AtGRP8 (right). To demonstrate the

preference of the antibodies, recombinant AtGRP7 and AtGRP8 proteins were

loaded in the quantities indicated. Incubation with an LHCP antibody served

as a loading control.
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and S1). In AtGRP7i-l lines the endogenous AtGRP7 tran-

script was strongly reduced compared with WT plants and

Cambia (C) plants harboring the empty vector (Figure 3a).

The AtGRP8 transcript was also weakly affected (Figure 3c).

Similarly in AtGRP8i-l and AtGRP8i-s lines, the endogenous

AtGRP8 transcript was almost undetectable (Figure 3c), and

the AtGRP7 transcript was reduced (Figure 3a). In all

AtGRP7i-l lines, the AtGRP7 protein level was strongly

reduced or almost undetectable compared with WT and

Cambia lines (Figure 3e), and in the AtGRP8i lines, the

AtGRP8 protein was almost undetectable (Figures 3g and

S1). Again, in the AtGRP7i-l lines, the AtGRP8 protein was

only weakly affected, or remained at WT levels, whereas in

the AtGRP8i lines the AtGRP7 protein level was clearly lower

than in WT or Cambia lines (Figure 3g). Taken together,

these data suggest that the AtGRP7i or AtGRP8i constructs

are effective against endogenous AtGRP7 or AtGRP8,

respectively, but also show some cross-regulation. The fact

that in the AtGRP8i plants the AtGRP7 protein is also

strongly affected, whereas in the AtGRP7i plants the AtGRP8

protein remains more or less at WT levels may indicate that

the AtGRP8i constructs are more effective against AtGRP7

than vice versa. Alternatively, the effect of the AtGRP7i

construct on AtGRP8 may be partially masked by enhanced

AtGRP8 accumulation as a consequence of AtGRP7 down-

regulation. In the crosses containing both hp constructs

simultaneously, a further reduction of the AtGRP7 and

AtGRP8 levels was only observed in line AtGRP7i·8i-21,

compared with the parental lines (Figure 3e,g).

AtGRP7i and AtGRP8i plants are late flowering

Lines of all three genotypes AtGRP7i-l, AtGRP8i-l and At-

GRP8i-s, and of the respective crosses, developed more

leaves before flowering than WT or Cambia plants in SDs

(Figure 4a). Also, in LDs, the RNAi lines formed between one

and three leaves more than the control plants (Figure 4b).

One-way ANOVA followed by a post-hoc Dunnet test showed

that these differences are statistically significant (Table S2).

Taken together, in the RNAi lines the delay in the transition

to flowering is more pronounced than in the atgrp7-1

mutant. Again, the late-flowering phenotype is more

pronounced in LDs than in SDs.

Vernalization response of the RNAi and atgrp7-1 plants

The retention of a photoperiodic response is a feature of

mutants in the autonomous pathway that flower late in LDs,

like mutants in the photoperiodic pathway, but flower even

later in SDs, i.e. irrespective of the photoperiod. Addition-

ally, their late-flowering pheno-type can be corrected by

vernalization. To determine whether the RNAi lines and

atgrp7-1 also show this feature, their response to extended

periods of cold in the early seedling stage was assessed (see

Experimental procedures). Again, non-vernalized RNAi lines

and atgrp7-1 flowered with more leaves than WT or C plants

(Figure 5 and Table S3). After vernalization, RNAi lines

flowered with a similar leaf number as the WT plants.

atgrp7-1 mutants flowered even at a slightly reduced leaf

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3. Molecular characterization of the AtGRP7i and AtGRP8i lines.

Plants harbouring the Cambia (C) vector, the constructs AtGRP7i-l, AtGRP8i-l

or AtGRP8i-s, and the offspring of crosses of selected lines (AtGRP7i·8i ) were

grown on phosphinotricin-containing plates along with Col-0 wild-type (WT)

plants, and were harvested at zt12.

The RNA gel blot was hybridized with the gene-specific AtGRP7 probe (a),

gene-specific AtGRP8 probe (c) and ACTIN to confirm equal loading (b, d).

Immunoblots of the corresponding total protein extract were incubated with

antipeptide antibodies against AtGRP7 (e), AtGRP8 (g) and an antibody

directed against LHCP as the loading control (f, h).

(b)

(a)

(c)

Figure 2. Map of the AtGRP7 and AtGRP8 RNAi constructs. Numbers indicate

nucleotide positions relative to the ATG start codon.

(a) Construct AtGRP7i-l comprises 523 bps, including 22 nucleotides of the 5¢
untranslated region (UTR), the RRM and the glycine stretch.

(b) Construct AtGRP8i-s comprises 218 bps spanning the RNA recognition

motif (RRM).

(c) Construct AtGRP8i-l comprises 496 bps spanning the RRM and part of the

glycine stretch.
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number compared with WT. Thus, vernalization completely

overcomes the late-flowering phenotype of the RNAi lines

and atgrp7-1 mutant.

Influence of AtGRP7 on FLC

The autonomous pathway acts in parallel with vernalization

to constitutively repress FLC (Michaels and Amasino, 2001).

Because vernalization bypasses the requirement of AtGRP7

in the RNAi lines and the atgrp7-1 mutant, we investigated

whether the floral promotive effect of AtGRP7 was mediated

by FLC.

To this end, we first determined FLC levels by real-time

PCR (Figure 6a). In the RNAi lines and in atgrp7-1, FLC was

elevated by more than fivefold relative to WT or C plants.

Vernalization strongly reduced the FLC levels in WT. Also, in

the RNAi lines and atgrp7-1, FLC levels were reduced to a

basal level similar to WT and C plants (Figure S2). Concom-

itantly, the floral integrator SOC1, which is negatively

controlled by FLC, was upregulated upon vernalization both

in WT and the RNAi lines (not shown). Thus, plants with

reduced AtGRP7 levels or complete loss of AtGRP7 remain

fully responsive to vernalization, indicating that FLC down-

regulation in response to cold treatment does not require

AtGRP7.

If the late flowering effect seen in plants with reduced

AtGRP7 levels entirely resulted from a lack of FLC repres-

sion, it should be suppressed in a genetic background

lacking FLC. Therefore, we crossed the late-flowering RNAi

lines AtGRP7ix8i-21 and AtGRP7ix8i-50 with flc-3 mutants

lacking active FLC because of a 107-bp deletion around the

ATG (Michaels and Amasino, 1999). In the F2 generation we

identified lines homozygous for both the RNAi construct and

the flc-3 allele, by monitoring phosphinotricin resistance and

PCR genotyping. Flowering time was investigated in the F3

generation. Again, AtGRP7ix8i-21 and AtGRP7ix8i-50 flow-

ered later than WT and C plants both in SDs and LDs

(Figure 6b,c and Table S4). This late-flowering phenotype

was eliminated in AtGRP7ix8i flc-3 plants, which flowered

with a leaf number comparable with flc-3. As previously

noted, flc-3 flowered with fewer leaves than WT in SDs

(Michaels and Amasino, 2001). These data indicate that the

lack of AtGRP7 does not manifest itself in the absence of FLC.

Constitutive overexpression of AtGRP7 promotes flowering

Because of the partial off-target effect of the AtGRP7i and

AtGRP8i hp constructs on the AtGRP8 and AtGRP7 abun-

dance, respectively, and the relief of AtGRP8 repression in

the atgrp7-1 T-DNA line, the floral promotive effect could

only be assigned tentatively to AtGRP7. Therefore, an effect

of ectopic AtGRP7 overexpression on flowering time was

investigated in a complementary approach. The AtGRP7-ox

lines D and G express highly elevated levels of AtGRP7

protein, resulting in strongly reduced AtGRP8 protein levels

(Figure 7a). In SDs, these plants formed about 10 leaves less

than WT at bolting (Figure 7b). This clearly shows that

AtGRP7 by itself is able to promote flowering. In the At-

Figure 5. Effect of vernalization on flowering time of wild-type (WT), Cambia-

5 (C-5), AtGRP7i and AtGRP8i lines and atgrp7-1.

Flowering time was measured as the number of rosette leaves (LN) produced

at bolting in non-vernalized plants (white bar) and vernalized plants (black

bar). Values represent the means � SD (see Table S3).

(a)

(b)

Figure 4. Flowering time of AtGRP7i and AtGRP8i lines grown in short-day

(SD) and long-day (LD) conditions.

(a) Wild type (WT), Cambia-1 (C-1), AtGRP7i-l48 and AtGRP7i-l68, AtGRP8i-l71,

AtGRP7ix8i-21 and AtGRP7ix8i-50 (left), and WT, C-5, AtGRP7i-l1 and

AtGRP7i-l54, AtGRP8i-l14, AtGRP8i-s7, AtGRP7ix8i-58 and AtGRP7ix8i-109

(right), respectively, were grown in SDs.

(b) WT, C-5, AtGRP7i-l1, AtGRP7i-l54 and AtGRP7i-l68, AtGRP8i-l14 and

AtGRP8i-s7 (left) and WT, C-5, AtGRP7i·8i-21 and AtGRP7i·8i-50 (right),

respectively, were grown in LDs.

The number of rosette leaves (LN) produced at bolting is given as

means � SD.

An ANOVA followed by a Dunnet test was performed to show statistical

significance (see Table S2).
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GRP7-ox lines, FLC was downregulated to 10–20% of the

level in WT (Figure 7c). After vernalization, AtGRP7-ox and

WT plants formed about the same number of leaves at

bolting (Table S5). In LDs, the AtGRP7-ox lines flowered only

slightly earlier than WT plants (Table S5), indicating that the

promotive effect of AtGRP7 has a stronger impact under

non-inductive photoperiods.

To address the question of whether AtGRP7 may act via

other autonomous pathway components, we analyzed

selected transcripts encoding proteins associated with

RNA metabolism, and their respective alternative splice

(a)

(b)

(c)

Figure 6. The effect of AtGRP7 on flowering time is largely mediated by FLC.

(a) FLC expression in 6-week-old short-day (SD) grown Cambia-5 (C-5),

AtGRP8i-s7 and AtGRP7ix-109 lines (left), and wild type (WT) and atgrp7-1

(right).

Five plants were pooled for RNA isolation and FLC levels were determined by

real-time PCR in duplicates for two biological replicates. Expression levels

were normalized to PPR, and the relative FLC level in WT was set to 1.

(b, c) The flc-3 null allele eliminates the late-flowering phenotype of

AtGRP7i·8i.

WT, C-5 and the parental lines AtGRP7i·8i-21, AtGRP7i·8i-50 and flc-3 were

grown in parallel with AtGRP7i·AtGRP8i-21 flc-3 and AtGRP7i·8i-50 flc-3 in

SDs (b) or LDs (c). The numbers 1, 2 and 3 represent F3 plants of independent

crosses. The leaf number (LN) at bolting � SD is shown. This experiment was

performed twice with similar results.

(a)

(b)

(c)

Figure 7. Influence of AtGRP7 overexpression on flowering time.

(a) AtGRP7 and AtGRP8 protein levels were analyzed in short-day (SD) grown

AtGRP7-ox and wild-type (WT) plants using specific antibodies. The reaction

with an LHCP antibody or the unspecific reaction of the AtGRP8 antibody with

the small subunit of Rubisco served as the loading control.

(b) AtGRP7 overexpression causes early flowering in SDs. Independent

AtGRP7-ox lines were grown along with WT plants.

The leaf number (LN) at the onset of bolting is shown � SD.

(c) FLC levels are lower in AtGRP7-ox plants. FLC levels were determined by

real-time PCR, as described in the legend to Fig. 6a, and were normalized to

PTB. The level in WT was set to 1.
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forms (http://www.plantgdb.org/ASIP/) in the AtGRP7 gain-

of-function and loss-of-function plants. For FPA encoding a

protein with three RRMs (Schomburg et al., 2001), a tran-

script retaining the 129-nt (nucleotide) intron 4 was de-

tected, in addition to the spliced mRNA (Figure S3a). The

ratio between the longer and shorter variants, and their

levels, were not changed in the atgrp7-1 T-DNA line or

representative RNAi lines compared with WT or the C line.

Also, constitutive overexpression of AtGRP7 did not affect

intron 4 retention. Furthermore, retention of a 99-nt intron

located 40-nt downstream of the stop codon in the FPA 3¢-
UTR was found for all genotypes (Figure S3b).

For the 3¢ end processing factor, FY, the use of an

alternative acceptor site at intron 8 leads to the inclusion

of four additional nt in intron 8, causing a frameshift and

premature in-frame termination codon. Using flanking

primers, a fragment of the same size as in WT and C lines

was detected on a polyacrylamide gel for the RNAi lines,

the atgrp7-1 T-DNA line and the AtGRP7-ox line (Fig-

ure S3d). Also for FCA, no obvious variations were

detected for the FCA-c mRNA, encoding active FCA

protein, and the alternatively spliced, prematurely poly-

adenylated FCA-b form (not shown). The autonomous

pathway component LUMINIDEPENDENS (LD) is a home-

odomain protein that may interact with DNA or RNA

(Aukerman et al., 1999). The steady-state abundance of LD

is not significantly different from WT levels in the RNAi

lines, the atgrp7-1 mutant and the AtGRP7-ox lines

(Figure S3e).

Discussion

The RNA-binding protein AtGRP7 promotes flowering

Here, we demonstrate the participation of a small glycine-

rich RNA binding protein with a single RRM in the regula-

tion of flowering time in Arabidopsis. The loss of function

of AtGRP7 delays the transition to flowering, whereas the

gain of function through ectopic overexpression of AtGRP7

promotes flowering.

The atgrp7-1 T-DNA line flowers later than WT plants. In

LDs, the delay is small, yet statistically significant. These

data are supported by the observation that the rise in AP1,

indicative of floral induction, occurs later in development

than in the WT. The retardation becomes more pronounced

in SDs, with a reduced impact of the photoperiodic inductive

signal.

The well-described prominent regulation of AtGRP7 by

the circadian clock may have pointed to a role in the

photoperiodic pathway. Photoperiodic mutants like co or gi,

however, very strongly delay flowering in LDs, in contrast to

atgrp7-1 (Koornneef et al., 1991). Thus, AtGRP7 is dispens-

able for measuring day length. Accordingly, diurnal oscilla-

tions of the key photoperiodic regulator CO, the presence of

which during the light phase initiates floral transition, are

similar to WT.

The subtle effect that the loss of AtGRP7 has on the

transition to flowering presumably has precluded its iden-

tification as a floral promoter in conventional screens for

flowering time mutants. Alternatively, one may envisage

that AtGRP8, the closest homolog of AtGRP7 that shares

much of its regulatory properties, may act redundantly. In

fact, by taking advantage of specific antipeptide antibodies,

we uncovered an elevated AtGRP8 protein level in the

atgrp7-1 mutant compared with WT. Also, the AtGRP8

transcript level is elevated in the absence of AtGRP7 protein.

This is consistent with our previous observation that AtGRP7

negatively regulates AtGRP8 oscillations (Schöning et al.,

2007; Staiger et al., 2003b). Thus, it remains possible that the

elevated AtGRP8 level in atgrp7-1 may partly obscure the

loss of AtGRP7 as a result of overlapping functions. There-

fore, we aimed to generate plants with reduced AtGRP7 and

AtGRP8 levels through RNA interference, as well as plants

ectopically overexpressing AtGRP7.

Using hp constructs targeted against the respective

RRMs, or the entire coding region, we obtained a series of

transgenic plants in which AtGRP7 and AtGRP8 are down-

regulated to a varying degree. These RNAi lines showed a

more pronounced late-flowering phenotype in LDs, and

particularly in SDs, compared with atgrp7-1. On the other

hand, plants constitutively overexpressing AtGRP7 flower

with 10 leaves less than WT plants in SDs. In LDs, the

advance is only very small, but is nevertheless significant.

These data clearly indicate that AtGRP7 by itself promotes

flowering, as AtGRP8 is almost completely downregulated

in AtGRP7-ox plants as a result of the generation of an

unproductively spliced transcript with a premature termina-

tion codon, which rapidly decays via an UPF1- and UPF3-

dependent pathway (Schöning et al., 2007).

Nevertheless, it remains possible that AtGRP8 also pro-

motes floral transition to some degree. For example, the

flowering of AtGRP7i-l48, which displays WT levels of

AtGRP8 but almost no AtGRP7, is only weakly retarded,

and AtGRP7ix8i-50, with a weak reduction of AtGRP7, but

strong reduction of AtGRP8, flowers very late. So plants with

selective reduction of AtGRP8 or strong ectopic overexpres-

sion of AtGRP8 will be needed to unequivocally resolve this

issue.

AtGRP7 is a novel autonomous pathway component

Because the lack of AtGRP7 does not affect the photoperi-

odic response, we investigated whether AtGRP7 may share

other features with components of the autonomous path-

way. Three lines of evidence indeed place AtGRP7 in the

autonomous pathway.

(i) The late flowering of AtGRP7 loss-of-function plants in

SDs correlates with an elevated FLC level, whereas the early
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flowering of AtGRP7 gain-of-function plants correlates with

a reduction in FLC.

(ii) Whereas FLC is also a target of the vernalization

pathway, in AtGRP7 loss-of-function plants, prolonged cold

treatment in the young seedling stage leads to a reduction of

FLC, to a level similar to WT plants. Thus, vernalization

downregulates FLC in the absence of AtGRP7, and, in fact,

vernalization completely overrides the late-flowering phe-

notype of atgrp7-1 and the RNAi lines in SDs, as previously

observed for mutants in the autonomous pathway (Koorn-

neef et al., 1991; Michaels and Amasino, 2001; Sheldon

et al., 2000).

(iii) Moreover, crosses between RNAi lines and flc-3

mutants lacking active FLC provide genetic evidence that

AtGRP7 influences the floral transition through FLC, as the

plants flower with a similar number of leaves as flc-3

mutants. However, AtGRP7 may also have FLC-indepen-

dent effects, as observed for other flowering-time genes

(Doyle et al., 2005). So far we have not detected consistent

changes in the alternative splicing pattern and/or steady-

state abundance of transcripts encoding other autonomous

pathway proteins implicated in RNA processing. Consis-

tent with this, transcript profiling of LD-grown AtGRP7-ox

lines and WT plants using the ATH1 GeneChip did not

reveal significant changes in FCA, FY or LD steady-state

abundance, whereas the FLC levels were lowered in

AtGRP7-ox plants (C. Streitner, F. Rudolf and D. Staiger,

unpublished data). Thus, based on the present data,

impaired expression of FCA, FY, FPA or LD does not seem

to be the major cause for the influence of AtGRP7 on floral

transition. To further define the position of AtGRP7 within

the autonomous pathway, however, we must analyze

whether a lack of AtGRP7, and/or AtGRP8, impacts on

the late-flowering phenotype of the respective auto-

nomous pathway components in double mutant com-

binations. For the other RNA binding proteins of the

autonomous pathway, it had been suggested that they act

in parallel, and ultimately control FLC levels independently

(Quesada et al., 2005).

RNA binding proteins in the regulation of flowering time

Several autonomous pathway genes encode RNA binding

proteins or RNA processing factors, comprising different

types of RNA binding modules and associated domains

implicated in protein–protein interaction (Quesada et al.,

2005). Although these loci had been identified early on

because of their late-flowering phenotype when mutated

(Koornneef et al., 1991), it is now thought that they regulate

additional processes in the plant. In a microarray analysis,

several transcripts with abnormal expression pattern in fca

mutants were identified in which expression was also

changed in fy mutants (Marquardt et al., 2006). This points

to a more general function of FCA and FY.

Other proteins involved in various aspects of RNA

metabolism have also been associated recently with flow-

ering. The ABA HYPERSENSITIVE 1 (abh1) mutant defective

in the large subunit of the CAP-binding complex, CBP80,

flowers early in SDs and LDs (Bezerra et al., 2004;

Hugouvieux et al., 2001). The HUA2 protein involved in the

processing of AGAMOUS intron 2 is required for the correct

regulation of FLC and the related repressors FLM1/MAF1 or

MAF2 (Cheng et al., 2003; Doyle et al., 2005). Mutants

defective in the tetratricopeptide repeat protein AT PRP39-

1, with similarity to a yeast pre-mRNA processing protein,

are late flowering (Wang et al., 2007). Notably, all these RNA

binding proteins, like the well-known autonomous pathway

components and AtGRP7, affect flowering time in a large

part by influencing FLC levels. Based on the domain

structure of these proteins, it has been inferred that they

impact on FLC levels by a post-transcriptional mechanism

(Kuhn et al., 2007; Quesada et al., 2005). Recently, however,

the downregulation of FLC abundance by FCA has been

shown to be dependent on FLD (Liu et al., 2007). Nascent

FLC transcripts accumulate to higher levels in fca and fld

mutants, suggesting that FCA and FLD actually silence FLC

expression at the transcriptional level through H3K4 deme-

thylation.

AtGRP7 was originally identified on the basis of its clock

regulation and cold responsiveness (Carpenter et al., 1994;

Heintzen et al., 1994). The AtGRP7 feedback loop is a

molecular slave oscillator within the circadian system, reg-

ulating both rhythmic and non-rhythmic target transcripts

(Heintzen et al., 1997; Schöning et al., 2007). Furthermore,

AtGRP7 is involved in pathogen defense (Fu et al., 2007), and

has been implicated in ABA and stress signaling, as an atgrp7

mutant accumulated higher levels of the ABA- and

stress-inducible RD29A transcript (Cao et al., 2006).

Presumably AtGRP7 plays a more general role in pre-

mRNA processing, and the flowering phenotype we identify

here reflects the dependence of floral transition on fine-

tuned FLC levels. The relatively mild phenotype, particularly

in LDs, may have precluded the identification of AtGRP7 in

screens for flowering-time genes so far.

It has long been suggested that the circadian clock is an

integral part of the photoperiodic sensory device (Bünning,

1936). Experimental proof came from the identification of

mutants in Arabidopsis with disturbances in both circadian

and photoperiodic timekeeping (Fowler et al., 1999; Hicks

et al., 1996; Park et al., 1999; Schaffer et al., 1998; Somers

et al., 1998; Staiger et al., 2003a; Suarez-Lopez et al., 2001;

Wang and Tobin, 1998).

Following the observation that FLC lengthens the period

of the circadian clock at 27�C, the autonomous pathway

mutants fca, ld and fve have been investigated for clock

phenotypes, and have been found to moderately increase

the period of leaf movement rhythms (Edwards et al., 2006;

Salathia et al., 2006).
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Our results now establish a link between the slave

oscillator component AtGRP7 operating downstream of the

circadian clock and floral transition, through the autono-

mous pathway. This points to extensive crosstalk between

the circadian system and the floral-promoting network,

beyond photoperiodic timekeeping.

Experimental procedures

Plant materials

The flc-3 mutant was kindly provided by Dr Amasino (Michaels and
Amasino, 1999). The atgrp7-1 T-DNA mutant was kindly provided by
Drs Fu and Guo (Fu et al., 2007). Seeds were obtained from the
Nottingham Arabidopsis Stock Centre (http://arabidopsis.info).

Constructs for hairpin RNA-mediated silencing of AtGRP7

and AtGRP8

Fragments of AtGRP7 and AtGRP8 cDNAs were amplified using
forward primers, while simultaneously introducing XhoI and XbaI
sites, and reverse primers, introducing ClaI and EcoRI sites. The
amplification products were inserted into pTOPOII (Invitrogen,
http://www.invitrogen.com), verified by sequencing and moved to
pKannibal in the antisense orientation after XhoI-EcoRI restriction,
and in the sense orientation after ClaI-XbaI restriction (Wesley et al.,
2001). The entire casette was cut out using NotI, blunted by Klenow
fill-in and subcloned into SmaI-cut pCAMBIA3300.

The following primers were used: for construct AtGRP7i-l,
comprising part of the 5¢-UTR, the RRM and the glycine-rich part
(from position –22 to position –504, relative to the ATG start codon),
p7i-F (5¢-CTCGAGTCTAGATCTTCTTTT-3¢) and p7i-523R (5¢-ATC-
GATGAATTCCGTAACCTCC-3¢); for constructs AtGRP8i-s, compris-
ing the RRM (positions 13–231 relative to the ATG), p8i-F
(5¢-TTTCTAGACTCGAGTACCGG-3¢) and p8i-218R (5¢-TTGAATTCA-
TCGATGACACG-3¢); for constructs AtGRP8i-l, comprising the RRM
and the glycine-rich part (positions 13–507 relative to the ATG) p8i-F
and p8i-496R (5¢-TTATCGATGAATTCCAGCCGCC-3¢).

Transgenic plants

The RNAi constructs and the Cambia vector were introduced into
A. thaliana L. Columbia by Agrobacterium-mediated vacuum
infiltration (Bechthold et al., 1993). Primary transformants were
selected on plates with agar-solidified half-strength MS medium
(Duchefa, http://www.duchefa.com) with 0.5% sucrose, adjusted to
pH 5.7, and containing 25 mg l)1 phosphinotricin.

The genomic DNA of transformants was isolated according to the
protocol of the Wisconsin ko facility (Sussman et al., 2000). The
presence of the hp constructs was confirmed by PCR using primers
for the OCS terminator (Table S6).

Determination of flowering time

Plants were grown in a randomized fashion on soil in LDs (16-h
light) or SDs (8-h light) at 20�C in Percival AR66-L3 incubators (CLF
Laboratories, http://www.clf.de). The flowering time was determind
by counting the rosette leaves once the bolt was 0.5-cm tall. Mean
values � SD were calculated.

For vernalization treatments, seeds were stratified at 4�C for
3 days in the dark. Germinated seeds were transferred to SDs at

20�C for 7 days, returned to 4�C in SDs for 46 days, and were
subsequently transferred back to SDs at 20�C. Control plants were
germinated at 4�C for 3 days and were immediately transferred to
SDs at 20�C.

Statistical analysis of flowering time data

Statistical analysis was performed using STATISTICA 6.0 (http://
www.statsoft.com). Mean values and standard deviation were
calculated for each data set. P < 0.05 was considered significant.
In experiments analyzing differences between two lines, a Stu-
dent’s t-test was used when normal distribution and homogeneity
of variances were proven by the Kolmogorov–Smirnov and the
F-test, respectively. If normal distribution was not given, the
Mann–Whitney U-test was used to analyze the significance of
differences. If a normal distribution, but not the homogeneity of
variances, was given, Welch’s t-test was used for analysis. When
analysing means of more than two different samples, an ANOVA

was performed. If significant differences were shown, the Dunnet
test helped us to consider which samples were different from the
control lines.

RNA analysis

Total RNA was isolated using the Trizol reagent. Hybridizations of
RNA gel blots with 32P-labeled gene-specific antisense probes
covering the 5¢-UTR of AtGRP7 and AtGRP8, respectively, were
performed as described by Heintzen et al. (1997).

For real-time PCR, duplicate samples were analyzed in an MJ
research Opticon DNA Engine (http://www.bio-rad.com). Total RNA
was treated with DNAseI and reverse-transcribed using Super-
script II (Invitrogen). A 20-ng portion of retrotranscribed RNA was
amplified with the Eppendorf Real MasterMix kit (Eppendorf, http://
www.eppendorf.com) using an initial denaturation step of 2 min,
followed by 45 cycles of 20 sec at 94�C, 30 sec at 60�C and 40 sec at
68�C. Threshold cycle (CT) values were determined, and relative
expression levels for the analyzed transcripts were calculated based
on non-equal efficiencies for each primer pair (Czechowski et al.,
2004; Pfaffl, 2001). Data were normalized to a transcript encoding
the translation initiation factor eIF-4A-1 (At3g13920), PTB
(At3g01150) and PPR (At5g55840) (Czechowski et al., 2005). The
absence of amplification products from genomic DNA was
confirmed in a non-retrotranscribed control.

For semiquantitative RT-PCR, retrotranscribed RNA was ampli-
fied with Taq Polymerase. To determine the linear range of
amplification for each primer pair, samples were withdrawn after
24, 26, 28, 30, 32 and 34 cycles. PCR products were separated on
agarose gels, or polyacrylamide gel in the case of FY, and were
visualized by ethidium-bromide staining.

Generation of antibodies against AtGRP7 and AtGRP8, and

protein analysis

Antibodies were raised against synthetic polypeptides spanning
amino acids 22–31 of AtGRP7 and amino acids 20–29 of AtGRP8,
respectively, which are divergent between the two proteins (Pineda
Antikörper Service, http://pineda-abservice.com). The specificity of
the antibodies for AtGRP7 and AtGRP8 was monitored by immu-
noblots against recombinant glutathione-S-transferase fusion pro-
teins after the release of the AtGRP7 and AtGRP8 moiety by
PreScission protease (GE Healthcare, http://www.gehealthcare.
com) cleavage.
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Protein extraction and immunoblots with chemiluminescence
detection were performed as previously described (Heintzen et al.,
1997).
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