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Abstract Amyotrophic lateral sclerosis (ALS) and

frontotemporal dementia (FTD) are two neurodegenerative

diseases in which similar pathogenic mechanisms are in-

volved. Both diseases associate to the high propensity of spe-

cific misfolded proteins, like TDP-43 or FUS, to mislocalize

and aggregate. This is partly due to their intrinsic biophysical

properties and partly as a consequence of failure of the neuro-

nal protein quality control (PQC) system. Several familial

ALS/FTD cases are linked to an expansion of a repeated

G4C2 hexanucleotide sequence present in theC9ORF72 gene.

The G4C2, which localizes in an untranslated region of the

C9ORF72 transcript, drives an unconventional repeat-

associated ATG-independent translation. This leads to the syn-

thesis of five different dipeptide repeat proteins (DPRs), which

are not Bclassical^ misfolded proteins, but generate aberrant

aggregation-prone unfolded conformations poorly removed

by the PQC system. The DPRs accumulate into p62/

SQSTM1 and ubiquitin positive inclusions. Here, we analyzed

the biochemical behavior of the five DPRs in immortalized

motoneurons. Our data suggest that while the DPRs are main-

ly processed via autophagy, this system is unable to fully clear

their aggregated forms, and thus they tend to accumulate in

basal conditions. Overexpression of the small heat shock pro-

tein B8 (HSPB8), which facilitates the autophagy-mediated

disposal of a large variety of classical misfolded aggregation-

prone proteins, significantly decreased the accumulation of

most DPR insoluble species. Thus, the induction of HSPB8

might represent a valid approach to decrease DPR-mediated

toxicity and maintain motoneuron viability.

Keywords RAN translation . Protein aggregation . Protein

clearance . HSPB8 .Motor neuron diseases

Introduction

Amyotrophic lateral sclerosis (ALS) is a motoneuron disease

(MND) in which upper motoneurons of the brain motor cortex

and lower motoneurons of the bulbar region and of the ante-

rior horn of the spinal cord are primarily, but not exclusively,

affected. ALS may associate to other clinical conditions that

diverge from pure MNDs and are typical features of other

neurodegenerative diseases (NDs), like frontotemporal de-

mentia (FTD). The presence of different mixed phenotypes

(e.g., primarily MNDs with some FTD or vice versa) in

ALS and FTD suggests similar pathogenic mechanisms

(Ash et al. 2013; DeJesus-Hernandez et al. 2011; Ferrari

et al. 2011; Renton et al. 2011). In fact, sporadic (sALS) or

familial (fALS) forms of ALS exist, and some proteins mutat-

ed in fALS (like TAR DNA-binding protein 43 (TDP-43) and

FUS RNA binding protein (FUS)) also have aberrant bio-

chemical behaviors in sALS, even in their wild type (wt)
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forms. Some of these proteins are involved into pure familial

(fFTD) or sporadic (sFTD) FTD or to mixed ALS/FTD forms

(Robberecht and Philips 2013). Examples are mutant or wt

TDP-43 or FUS, which tend to mislocalize from the nucleus

to the cytoplasm, where they aggregate (Aulas and Vande

Velde 2015; Mackenzie et al. 2010) and are hallmarks of

ALS and FTD (Taylor et al. 2016). TDP-43 and FUS aggre-

gations are due to their high propensity to misfold and to their

poor removal via the neuronal protein quality control (PQC)

system (Carra et al. 2012; Crippa et al. 2013a; Crippa et al.

2016b; Crippa et al. 2013b; Galbiati et al. 2014). Improved

PQC system activity counteracts their aggregation in neuronal

cells, thereby reducing toxic effect (Williams et al. 2006).

Recently, several fALS and fFTD forms have been linked to

an abnormal expansion of a hexanucleotide repeat of

GGGGCC (G4C2) of the C9ORF72 gene (DeJesus-

Hernandez et al. 2011; Renton et al. 2011). The G4C2 tran-

script accumulates in nuclear RNA foci sequestering RNA-

binding proteins (RBPs), thereby reducing their function

(Peters et al. 2015; Rossi et al. 2015). At the same time, the

expandedG4C2, which is located in the 5′-untranslated region

of the C9ORF72 transcript, serves as template for an uncon-

ventional Brepeat-associated ATG-independent^ translation

(RAN translation) (Ash et al. 2013; Cleary and Ranum

2013; Lashley et al. 2013; Mann et al. 2013; Mori et al.

2013a; Mori et al. 2013b). RAN translation of the expanded

G4C2 (and its antisense C4G2) produces five different dipep-

tide repeat proteins (DPRs): poly Gly-Ala (polyGA), poly

Gly-Pro (polyGP), poly Gly-Arg (polyGR), poly Pro-Arg

(polyPR), and poly Pro-Ala (polyPA) (Mann et al. 2013;

Mori et al. 2013a; Mori et al. 2013b). None of these dipeptides

exist in normal individuals, and it is likely that DPRs exist in

partially structured or metastable conformations. Indeed, they

accumulate in inclusions in neurons and glia of ALS and/or

FTD patients (Ash et al. 2013; Mann et al. 2013; Mori et al.

2013b). Interestingly, these DPR inclusions localize in the

cytoplasm or in the nucleus of affected neurons (Freibaum

and Taylor 2017), and sequester the SQSTM1/p62 autophagy

receptor (Al-Sarraj et al. 2011), but are negative for TDP-43

even if the patients display a typical TDP-43 pathology

(Freibaum and Taylor 2017). This suggests that they are iden-

tified by the PQC system for clearance, but the process may

have failed. It is still highly debated which DPR is more toxic,

and whether particular species may be responsible for neuro-

nal alteration in ALS/FTD. A detailed analysis of the bio-

chemical properties and the potential adverse effects of the

single DPRs has been recently published by Freibaum and

Taylor (2017). However, how these DPRs are recognized by

and/or escape from the PQC system to aggregate is still un-

known, and possibly, boosting the PQC might facilitate their

removal, thereby reducing their toxicity.

Heat shock protein B8 (HSPB8) is a small heat shock

protein (sHSP), which has been found mutated in specific

forms of motor neurophaty (Ghaoui et al. 2016; Irobi

et al. 2004; Tang et al. 2005), and it is highly expressed

in anterior horn spinal cord motoneurons that survive in

ALS mice at end stage of disease (Crippa et al. 2010a;

Crippa et al. 2010b). HSPB8 has been shown to be par-

ticularly active in the removal of aggregating misfolded

TDP-43 (Crippa et al. 2016a; Crippa et al. 2016b).

HSPB8 acts as a chaperone and, in complex with Bcl-2

associated athanogene 3 (BAG3), HSP70 (and CHIP) rec-

ognizes misfolded TDP-43 species (Carra 2009; Carra

et al. 2008b). Once bound to the HSPB8–BAG3–HSP70

complex, misfolded and aggregate-prone TDP-43 species

are targeted to autophagic degradation (Crippa et al.

2010a; Crippa et al. 2010b). This process also requires

an active dynein-mediated retrograde transport, which me-

dia tes the targe t ing of the bound cargo to the

autophagosomes for clearance (Cristofani et al. 2017).

The pro-degradative activity of HSPB8 is not limited to

TDP-43, but it is exerted also on a number of other mu-

tated proteins linked to neurodegenerative diseases.

Examples include mutant SOD1 linked to some fALS

(Crippa et al. 2010b); polyglutamine (polyQ) containing

proteins like androgen receptor (ARpolyQ) and huntingtin

(HTT) (Carra et al. 2008a; Giorgetti et al. 2015; Rusmini

et al. 2013), causing spinal and bulbar muscular atrophy

(SBMA) and Huntington’s disease (HD), respectively;

beta-amyloid (A-beta) linked to Alzheimer disease (AD)

(Wilhelmus et al. 2006); alpha-synuclein (alpha-syn)

causing Parkinson’s disease (PD) (Bruinsma et al. 2011);

and other misfolded proteins such as mutated HSPB5

causing neuropathy (Arndt et al. 2010; Chavez Zobel

et al. 2003; Sanbe et al. 2009; Vicart et al. 1998).

Collectively, these data demonstrate that, in mammalian

cells, HSPB8 is able to recognize and interact with a large

variety of misfolded protein conformations, avoiding their

irreversible aggregation and promoting their autophagy-

mediated disposal.

Here, we investigated whether the potent autophagy facil-

itator HSPB8 decreases the aggregation propensity of the five

DPRs and decreases their accumulation, comparing its effica-

cy on the five different DPRs. Collectively, our data demon-

strated that the activity of HSPB8 is not limited to classical

misfolded proteins, but extends in cells to a large variety of

aberrant peptides that may generate aggregating species.

Methods

Chemicals

The chemicals used were Z-Leu-Leu-Leu-al (MG132)

(Sigma-Aldrich, C2211) and 3-methyladenine (3-MA)

(Selleckchem, S2767).
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Plasmids and siRNA

The FLAG-tagged plasmids coding for FLAG-polyGA,

FLAG-polyGP, FLAG-polyGR, FLAG-polyPR, and FLAG-

polyPA were kindly provided by Prof. Daisuke Ito (Keio

University School of Medicine). All plasmids code 100 re-

peats for each DPRs (Yamakawa et al. 2015). pCI-HSPB8

plasmid is routinely used in our laboratory and it has been

previously described (Crippa et al. 2010b; Rusmini et al.

2013). pcDNA3 (Life Technologies, V790-20) plasmid was

used to normalize for transfected plasmid DNA amount.

pEGFPN1 (Clontech Lab, U55762) plasmid was used to eval-

uate transfection efficiency by fluorescent microscopy.

To silence endogenous HspB8 expression, we used a cus-

tom small interfering RNA (siRNA) duplex (HspB8 target

sequence: CGG AAG AGC UGA UGG UAA AUU; non-

target target sequence: UAG CGA CUA AAC ACA UCA

AUU) (Dharmacon, Thermo Scientific Life Sciences).

Cell cultures and transfection

The immortalized motoneuronal cell line NSC34 is routinely

used in our laboratory (Crippa et al. 2010a, 2010b; Piccioni

et al. 2002; Rusmini et al. 2011; Simeoni et al. 2000) and has

been transfected with Lipofectamine (Life Technologies,

18324020)/transferrin (Sigma-Aldrich, T8158), as previously

described (Crippa et al. 2016b; Giorgetti et al. 2015), using

0.6 μg of plasmid DNA, 4 μL of transferrin solution, and 2 μL

of Lipofectamine (for well of 12-well plate). siRNA transfec-

tion was performed with Lipofectamine 2000 (Life

Technologies, 11668019) using 40 pmol of target RNA and

following manufacturer’s instructions.

Microscopy analyses

NSC34 cells were plated in 24-well multiwell plates contain-

ing coverslips at 35,000 cells/well density, transiently

transfected with the plasmid coding for FLAG-DPRs as pre-

viously described. Then, the cells were fixed and processed as

previously described (Sau et al. 2007). The following primary

antibodies were used to analyze protein distributions: mouse

monoclonal ANTI-FLAG M2 (dilution 1:500; Sigma,

F3165), homemade rabbit polyclonal anti-HSPB8 no. 3 (dilu-

tion 1:200), and homemade rabbit polyclonal anti-human

HSPB8 no. 25 (dilution 1:200). All antibodies were diluted

in TBS-T containing 5% nonfat dried milk powder

(Euroclone, EMR180500). Secondary antibodies were as fol-

lows: Alexa Fluor 488 anti-mouse (dilution 1:1,000; Life

Technologies, A11017) and Alexa Fluor 594 anti-rabbit (dilu-

tion 1:2,000; Life Technologies, A11072) in TBS-T contain-

ing 5% nonfat dried milk powder (Euroclone, EMR180500).

Cells were stained with Hoechst to visualize the nuclei.

Images were acquired with LSM510 Meta system confocal

microscope (Zeiss, Oberkochen, Germany). Images were

processed with the Aim 4.2 software (Zeiss).

WB analysis and FRA

NSC34 cells were plated in 12-well plates at 80,000 cell/

well (three wells for each condition to be tested; n = 3).

Cells were transfected, as described above, 24 h after plat-

ing. In experiments involving autophagy blockage, 10 mM

3-MAwas added to the cells for the last 48 h prior to protein

extraction. Proteasome inhibition was performed by adding

10 μM MG132 treatment for the last 16 h (overnight treat-

ment). Cells were harvested and centrifuged 5 min at 100×g,

72 h after plating, at 4 °C; the cell pellets were re-suspended

in PBS (Sigma-Aldrich, P4417) added of the protease inhib-

itor cocktail (Sigma-Aldrich, P8340) and homogenized

using slight sonication to lyse cells and nuclei as previously

described (Crippa et al. 2016a; Crippa et al. 2016b; Giorgetti

et al. 2015; Rusmini et al. 2013). Total proteins were deter-

mined with the bicinchoninic acid method (BCA assay;

Euroclone, EMP014500).

Western blot (WB) was performed on 10% SDS–poly-

acrylamide gel electrophoresis loading 20 μg of total pro-

tein extracts. Samples were then electro-transferred to ni-

trocellulose membrane (Bio-Rad 1620115) using a trans-

Blot apparatus (Mini Trans-Blot Cel l ; Bio-Rad

Laboratories). The membranes were treated with a

blocking solution containing 5% nonfat dried milk pow-

der (Euroclone, EMR180500) in Tris-buffered saline with

Tween 20 (0.01%) (TBS-T; Tris base 20 mM, NaCl

140 mM, pH 7.6) for 1 h and then incubated with one

of the following primary antibodies: (a) mouse polyclonal

ANTI-FLAG M2 (dilution 1:1000; Sigma-Aldrich,

F1804) to detect DPRs; (b) mouse monoclonal anti-

TUBA (dilution 1:4000; Sigma-Aldrich, T6199); and (c)

homemade rabbit polyclonal anti-HSPB8 no. 25 (Carra

et al. 2008a; Carra et al. 2005) (dilution 1:3000).

Immunoreactivity was detected using the following sec-

ondary peroxidase-conjugated antibodies: goat anti-rabbit

(dilution 1:10,000; Santa Cruz Biotechnology, sc-2004)

and goat anti-mouse (dilution 1:10,000; Santa Cruz

Biotechnology, sc-2005). Signals were revealed by chemi-

luminescence detection kit reagents (Clarity™ Western

ECL Blotting Substrate; Bio-Rad, 170-5060). The same

membranes were subsequently processed with different

antibodies to detect the levels of different proteins in the

same sample, after stripping for 20 min at room tempera-

ture (StripABlot; Euroclone, EMP100500). Filter retarda-

tion assay (FRA) was performed using a Bio-Dot SF

Microfiltration Apparatus (Bio-Rad). Eight micrograms

of the total proteins were filtered through a 0.2-μm cellu-

lose acetate membrane (Whatman, 100404180). The

membranes were probed as described for WB.

HSPB8 enhances autophagy clearance of C9ORF72 RAN-translated DPRs 3



A ChemiDoc XRS System (Bio-Rad) was used for the

image acquisition ofWB and FRA. Optical density of samples

assayed withWB or FRAwas detected and analyzed using the

Image Lab software (Bio-Rad). Statistical analyses have been

performed using the relative optical densities defined as the

ratio between the optical densities of each independent bio-

logical sample (n = 3) and the mean optical density of control

samples.

Statistical analysis

Data are presented as mean ± SD. Statistical analyses

have been performed by using one-tailed unpaired

Student’s t test to compare data between two groups and

one-way ANOVA to compare more than two groups of

data. When ANOVA resulted significant, we performed

the Tukey’s post hoc test (and one-tailed unpaired

Student’s t test when the variances between groups were

highly different) (see figure legends for details) for mul-

tiple comparisons. Computations were done with the

PRISM (ver. 6.0 h) software (GraphPad Software, La

Jolla, CA, USA).

Results

Biochemical characterization of DPRs in immortalized

motoneurons

To evaluate the biochemical behavior of the DPRs deriving

from RAN translation of the G4C2 of the C9ORF72 tran-

script, we used artificial cDNAs expressing each single

flagged DPR under the control of the CMV promoter. We kept

neuronal cell growth and transfection conditions identical for

all plasmids carrying the five different DPR-encoding se-

quences in order to ensure DPR identical expression. We ini-

tially tested in immortalized motoneurons the level of the five

DPRs by immunofluorescence (IF), WB, and FRA using an

anti-FLAG antibody. Fig. 1a illustrates the IF analysis, which

revealed that the five DPRs have very different intracellular

localization and aggregation propensity. In fact, polyGAwas

uniformly distributed into the entire cytoplasm of motoneuro-

nal cell, with very few detectable small aggregates, while

polyGP and polyPA mainly distributed in peripheral cell re-

gion possibly associated to the cell membranes. Only polyGR

and polyPR were clearly detectable in aggregate form. The

polyGR inclusions mainly localized in the cytoplasm, while

Fig. 1 DPRs overexpression in

NSC34 cells. a Confocal

microscopy analysis of NSC34

cells shows DPRs localization

(×63 magnification); scale bars

30 μm. b, c NSC34 cells were

collected 48 h after transfection

with FLAG-polyDPRs (GA, GP,

GR, PR, PA). b WB shows DPR

total levels. TUBAwas used as

loading control. c FRA shows

PBS insoluble fraction of DPRs.

Bar graph represents the FRA

mean relative optical density

computed over three independent

biological samples for each con-

dition (n = 3) ± SD (**p < 0.01,

***p < 0.001; one-way ANOVA

followed by Tukey’s test)
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the polyPR inclusions were confined into the cell nucleus. By

analyzing DPR levels inWB, we found that their SDS-soluble

monomeric forms considerably varied, being very high for the

polyGP, moderate for the polyPA, low for polyPR, and absent

for polyGR and polyGA. At longer exposure of the ECL-

processed membrane from WB, a tiny band of polyGA ap-

peared (not shown). Expression of the polyGP resulted in two

proteins with different molecular weight (M.W.) (about 40 and

55 kDa), while that of polyPA was observed at an apparent

M.W. of 95 kDa and polyPR was observed at an apparent

M.W. of 37 kDa (Fig. 1b). It is well known that proteins that

have a high tendency to form aggregates become insoluble

and cannot be detected with conventional WB (Tebbenkamp

and Borchelt 2009). These aggregated species are instead de-

tected with FRA (Carra et al. 2008a; Crippa et al. 2010b;

Rusmini et al. 2013). We then analyzed by FRAwhether the

DPR species that are not detected by conventional WB, such

as polyGA, polyGR, and polyPR, would instead accumulate

in the form of aggregated species. In line with our hypothesis,

the highest amount of PBS-insoluble material was found in

lysates of motoneurons expressing the polyGA, polyPR, and

polyGR, which were undetected or only moderately detected

byWB (Fig. 1c). Conversely, polyGP and polyPAwere main-

ly accumulated in form of SDS-soluble species and only poor-

ly accumulated in form of PBS-insoluble species in motoneu-

rons (Fig. 1b, c). These data indicate the existence of an in-

verse correlation between solubility and accumulation into

insoluble aggregates of the five DPRs. We thus analyzed

whether the different biochemical properties of the DPRs

may relate to their selective intracellular processing by the

PQC system. We selectively blocked autophagy or protea-

some with the inhibitors 3-MA and MG132 respectively. We

focused on the total levels of insoluble materials, which cor-

respond to the species that accumulate probably due to an

inefficient removal by the PQC system. The data suggested

that the various DPRs are differentially degraded by these two

alternative systems. In fact, autophagy blockage performed

using the inhibitor 3-MA resulted in a significant increased

of the insoluble fractions of most DPRs, except for polyPR

(Fig. 2a). The levels of insoluble polyGA were increased ca.

2.5-folds by autophagy blockage. A similar effect was ob-

served for polyPA (which also contains the hydrophobic ami-

no acid alanine), although its soluble and insoluble levels are

very low compared to the other DPRs. Interestingly, these two

Fig. 2 Effect of autophagy and proteasome inhibitors on the PBS

insoluble levels of DPRs. NSC34 cells were collected 48 h after

transfection with FLAG-polyDPRs (GA, GP, GR, PR, PA). a FRA

shows PBS insoluble fraction of DPRs after 48 h of autophagy

inhibition treatment with 10 mM 3-MA. Bar graph represents the FRA

mean relative optical density computed over three independent biological

samples for each condition (n = 3) ± SD (*p < 0.05, **p < 0.01,

***p < 0.001; Student’s t test). b FRA shows PBS insoluble fraction of

DPRs after 16 h of proteasome inhibition treatment with 10 μMMG-132.

Bar graph represents the FRA mean relative optical density computed

over three independent biological samples for each condition

(n = 3) ± SD (***p < 0.001; Student’s t test)
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DPRs have a very different biochemical behavior in basal

condition, since polyGA has the highest tendency to aggre-

gate, while polyPA poorly aggregates and mainly exists in

PBS soluble forms (see Fig. 1b, c). Moreover, both insoluble

polyGA and polyPA accumulate when autophagosome forma-

tion is inhibited; in basal condition, only the polyGA remains

present in large insoluble amounts in motoneuronal cells; it is

likely that these DPRs (but not the polyPA) might be partially

resistant to clearance using the autophagosome pathway. The

effects of 3-MAwere even more robust on the DPRs contain-

ing glycine; in fact, polyGP and polyGR, we noted, respec-

tively, ca. 5- and 3.5-fold increases when autophagosome for-

mation was inhibited with 3-MA (Fig. 2a). Notably, while in

basal condition (see Fig. 1c), polyGP poorly aggregates,

polyGR forms large amounts of PBS-insoluble materials.

Therefore, the presence of a proline instead of an arginine,

together with the glycine, significantly modified the capability

of these DPRs to be removed using autophagy. Instead, the

clearance was almost complete for the polyGP and only mod-

erate for the polyGR. Similar results were observed for the

other DPR containing arginine. In contrast, the polyPR, which

exists both in PBS-soluble and insoluble forms, apparently is

not processed utilizing the autophagic system on our moto-

neuronal cells; in fact, we found very high levels of polyPR

accumulating in basal condition (Fig. 1c), which were not

modified by 3-MA (Fig. 2a). Collectively, these results sug-

gest that autophagy participates to the clearance of DPRs,

except for polyPR.

Concerning the contribution of the proteasome in the re-

moval of DPRs, we found that only polyGP insoluble species

were significantly accumulated following proteasome inhibi-

tion (Fig. 2b). Instead, the insoluble levels of the other four

DPRs remained unchanged before and after MG132 treat-

ment. In combination, these data show that in immortalized

motoneurons, polyGP is the only DPR processed by both

degradative systems, while the other mainly relies on func-

tional autophagy.

Upregulation of HSPB8 decreases the accumulation

of DPRs

Previous studies, including ours, demonstrated that HSPB8

can recognize a number of misfolded proteins associated to

neurodegenerative conditions (ARpolyQ, HTT, mutant

SOD1, TDP-43 and its disease-associated fragments, A-beta,

alpha-syn) (Bruinsma et al. 2011; Carra et al. 2008a; Crippa

et al. 2010a; Crippa et al. 2010b; Giorgetti et al. 2015;

Rusmini et al. 2013;Wilhelmus et al. 2006), and even proteins

unrelated to NDs (Arndt et al. 2010; Chavez Zobel et al. 2003;

Sanbe et al. 2009). HSPB8, acting in concert with the BAG3-

HSP70 machinery, facilitates the autophagic removal of

misfolded proteins. Our biochemical characterization showed

that polyGA, polyGR, and polyPR mainly accumulate in the

PBS-insoluble fraction; moreover, except for polyPR, whose

levels are unchanged upon autophagy inhibition, the other

four DPRs analyzed are all cleared by autophagy. Here, we

analyzed whether HSPB8 can also recognize the RAN trans-

lated Baberrant^ DPR species that cannot be considered

Bmisfolded proteins^ and normally do not exist in cells, facil-

itating their autophagy-mediated clearance.

To this purpose, we upregulated or silencedHSPB8 expres-

sion in immortalized motoneurons expressing each single

DPR and wemeasured the variation of aggregates of insoluble

material in IF and FRA, respectively. Figure 3 shows that

HSPB8 overexpression fully removes all five detectable

DPRs from cells, independently from their intracellular local-

ization or aggregated status. In fact, both the soluble cytoplas-

mic polyGA and the two aggregated polyGR and polyPR

species disappeared in cells overexpressing HSPB8. Also,

the membrane associated polyGP and polyPA DPRs were

undetectable in the presence of overexpressed HSPB8. In line

with the IF analysis, the data obtained with FRA, reported in

Fig. 4a, clearly demonstrated that increased levels of HSPB8

greatly reduced the accumulation of insoluble species formed

by all DPRs. The effect of HSPB8 was particularly pro-

nounced on polyGA, polyGR, and polyPR, for which the

removal of insoluble DPR species was almost complete, even

if these DPRs accumulated at very high levels in NSC34 cells

(see Fig. 1). PolyGP and polyPA are already actively proc-

essed by autophagy in basal condition (see Figs. 1c and 2b);

thus, the pro-autophagic facilitation exerted by HSPB8 was

slightly less evident for these DPRs. Notably, HSPB8 also

decreased the total PBS-soluble levels of the various DPRs,

measured by WB, except for PBS-soluble polyGR that is al-

most undetectable (Fig. 4b).

We then downregulated HSPB8 expression using a specific

siRNA (Fig. 5c). The IF analysis indicated that HSPB8 silenc-

ing resulted in an increased number of DPR positive cells,

without affecting distribution and localization in a measurable

manner (data not shown), since IF is not quantitative to eval-

uate the effect of HSPB8. By measuring its effects on the

levels of accumulation of PBS-soluble and insoluble DPR

species we found that the levels of insoluble polyGA,

polyGP, and polyPA (although the latter accumulating at low-

er levels) species formed inNSC34 cells were increased by the

removal of endogenous HSPB8 (Fig. 5a). Insoluble polyGR

species, which significantly increased after autophagy block-

age (Fig. 2a), also tended to increase when HSPB8 is silenced,

without reaching a statistical significance (Fig. 5a).

Conversely, polyPR remained unchanged both after autopha-

gy blockage (Fig. 2a) and HSPB8 dowregulation (Fig. 5a). It

is likely that the endogenous HSPB8 levels are not sufficient

to clear polyPR aggregates from motoneuronal cells via au-

tophagy. However, exogenously expressed HSPB8 (at higher

levels) greatly facilitated autophagic clearance of polyPR sol-

uble and insoluble species (see Fig. 4). Thus, polyPR, which
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has a high tendency to aggregate (Fig. 1c), could readily ac-

cumulate in PBS-insoluble forms that are less efficiently de-

graded by autophagy. Increasing the expression of HSPB8

might keep polyPR in a state competent for clearance, as it

occurs following overexpression of HSPB8 (Fig. 4). Notably,

with HSPB8 silencing, we did not find an increase of the

soluble levels of DPRs in WB (Fig. 5b), suggesting that the

endogenous HSPB8would act primarily on the insoluble DPR

species. Instead, upon HSPB8 overexpression, both soluble

and insoluble DPR species significantly decreased in immor-

talized motoneurons. In combination, these results suggest that

overexpressed HSPB8may keep all DPRs in a state competent

for disposal by the cells, avoiding their aggregation.

Discussion

In this study, we provide a biochemical characterization of

five different RAN translated DPRs from the C9ORF72 tran-

script containing an expanded G4C2 stretch in immortalized

motoneuronal cells. Since DPRs cannot be considered as clas-

sical misfolded proteins, but likely generate abnormal struc-

tures uncommon for neuronal cells, we also evaluated whether

HSPB8, a chaperone able to enhance misfolded protein au-

tophagic clearance, was active on the five DPRs.

We found that the five DPRs have a very different locali-

zation and propensity to accumulate in immortalized moto-

neurons. Formation of insoluble material was very low for

the polyGP and polyPA DPRs, which seems to be processed

via autophagy; instead, the three remaining DPRs analyzed

showed a very high tendency to accumulate in form of insol-

uble species. Interestingly, the polyGP and polyPA are un-

charged DPRs with a compact flexible coil structure (Lee

et al. 2016). The solubility data that we obtained are generally

in line with a previous report from Yamakawa et al. (2015),

even if in this study, differences were reported by using alter-

native cell lines (N2a and 293T cells). Concerning the pre-

ferred pathway of degradation, this was not uniform for the

five DPRs. Of all five DPRs, only the polyGP seems to be

efficiently removed via the proteasome, while the others are

apparently mainly degraded via autophagy, except for

polyPR, which is not significantly affected by 3-MA treatment

or HSPB8 depletion. Since polyPR inclusions are mostly de-

tectable in the nucleus, it is possible that they cannot be

cleared by autophagy, which is exclusively a cytoplasmic pro-

cess. The fact that HSPB8 is active also on this DPR in basal

condition suggests that the action of this chaperone may take

place before polyPR nuclear import and aggregation. Despite

their different localization, all DPRs clearance was enhanced

by HSPB8. Instead, in N2a and 293T cells, also polyGR and

polyPR can be cleared via this pathway (Yamakawa et al.

2015). In combination, these results suggest that different

mammalian cell lines differentially use both degradative path-

ways to clear the DPRs. Although the proteasome or

autophagy-mediated clearance of the five DPRs seems to vary

based on the cell type used, at least in motoneuronal cells, the

presence of proline only with glycine (in polyGP), and not

Fig. 3 Effect of HSPB8 overexpression on DPRs distribution. NSC34

cells were fixed 48 h after transfection with FLAG-polyDPRs (GA, GP,

GR, PR, PA) and pCI-HSPB8 or pcDNA3. IF shows DPRs distribution

(×63 magnification); scale bars 30 μm
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with arginine or alanine (in polyPR and polyPA, respectively)

correlates with the utilization of the proteasome pathway rath-

er than the autophagic pathway for clearance.Whether it is the

type of amino acid or rather the differential tendency to form

oligomeric aggregation-prone species that influences the path-

way that is mainly degrading one specific type of DPR will

require future investigations.

Next, we tested the effects of upregulation and downregu-

lation of HSPB8 on DPRs accumulation and clearance in mo-

toneurons. The selection of HSPB8 was based on the follow-

ing reasons: (1) as previously mentioned, HSPB8 was shown

to enhance the autophagy-mediated clearance of a large vari-

ety of aggregation-prone proteins associated with motoneuron

and neurodegenerative diseases (Carra et al. 2013; Crippa

et al. 2013b; Rusmini et al. 2016); (2) HSPB8 is induced in

the motor neuron surviving at late stage of disease in the spinal

cord of SOD1 ALS mice, as well as in patients affected by

ALS (Crippa et al. 2010a; Crippa et al. 2010b); and (3) muta-

tions in the HSPB8 gene lead to motor neuropathy (Evgrafov

et al. 2004; Ikeda et al. 2009; Irobi et al. 2004; Kwok et al.

2011; Tang et al. 2005; Ghaoui et al. 2016). Altogether, these

findings support the interpretation that deregulation in the ex-

pression levels of HSPB8 might render motoneurons more

vulnerable to proteotoxic insults, while its induction might

protect against the toxicity exerted by aggregation-prone spe-

cies, including DPRs, which accumulate with high frequency

in ALS and FTD patients (Al-Sarraj et al. 2011). We found

that HSPB8 overexpression significantly and robustly coun-

teracts the accumulation of insoluble species of all five DPRs.

Exogenously expressed HSPB8 decreased the accumulation

of both aggregating species and the total soluble protein levels

detectable in WB. We noticed that HSPB8 is particular active

in decreasing the levels of those DPRs characterized by an

high propensity to form insoluble species (polyGA, polyGR,

and polyPR), including polyGA, which is the one showing the

strongest propensity to generate Congo red or thioflavin T

positive amyloidogenic fibrils (May et al. 2014; Chang et al.

2016) with a parallel β-sheet structure like those of the beta-

amyloid (Chang et al. 2016; Edbauer and Haass 2016).

Notably, the polyGA has been reported to be less toxic

(Freibaum et al. 2015; Lee et al. 2016; Mizielinska et al.

2014; Wen et al. 2014) than polyGR and polyPR (two highly

charged and polar DPRs, since they contain the arginine ami-

no acid), which are thought to be the most toxic at very low

concentrations.

When we silenced the endogenous expression of HSPB8,

we found a significant increase of insoluble species of three

out of five DPRs (polyGA, polyGP, and polyPA); the effect on

Fig. 4 Effect of HSPB8 overexpression on DPRs levels. NSC34 cells

were collected 48 h after transfection with FLAG-polyDPRs (GA, GP,

GR, PR, PA) and pCI-HSPB8 or pCDNA3. a FRA shows PBS insoluble

fraction of DPRs. Bar graph represents the FRA mean relative optical

density computed over three independent biological samples for each

condition (n = 3) ± SD (**p < 0.01, ***p < 0.001; Student’s t test). b

WB shows DPR total levels; TUBAwas used as loading control
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polyPA was significant, but the total levels of accumulated

material remain low. Conversely, polyGR tended to increase,

even if the variation was not statistically relevant. Instead,

polyPR levels remained unaffected upon depletion of

HSPB8. Interestingly, the downregulation of endogenous

HSPB8 has no effect on the overall soluble levels of the

DPRs, suggesting that in resting cells, HSPB8 would only

target aggregating species, favoring their autophagy-

mediated clearance. This interpretation is supported by the

observation that the only DPR that is poorly processed by

autophagy in motoneurons, namely polyPR, is also the only

one that is not affected by the depletion of HSPB8. Altogether,

the study here reported has shown that HSPB8 recognizes and

facilitates clearance of insoluble species of these peculiar

DPRs, whose structuresmay not reflect those typically formed

by Bclassical^misfolded proteins responsible for neurodegen-

erative diseases. It remains to be determined how HSPB8

recognizes these structures, and whether it acts also on a

mixed pool of the five DPRs or rather it preferentially binds

to the more aggregation-prone species.
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