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BACKGROUND: To investigate small-nucleolar RNAs (snoRNAs) as reference genes when measuring miRNA expression in tumour
samples, given emerging evidence for their role in cancer.
METHODS: Four snoRNAs, commonly used for normalisation, RNU44, RNU48, RNU43 and RNU6B, and miRNA known to be
associated with pathological factors, were measured by real-time polymerase chain reaction in two patient series: 219 breast cancer
and 46 head and neck squamous cell carcinoma (HNSCC). SnoRNA and miRNA were then correlated with clinicopathological
features and prognosis.
RESULTS: Small-nucleolar RNA expression was as variable as miRNA expression (miR-21, miR-210, miR-10b). Normalising miRNA
PCR expression data to these recommended snoRNAs introduced bias in associations between miRNA and pathology or outcome.
Low snoRNA expression correlated with markers of aggressive pathology. Low levels of RNU44 were associated with a poor
prognosis. RNU44 is an intronic gene in a cluster of highly conserved snoRNAs in the growth arrest specific 5 (GAS5) transcript,
which is normally upregulated to arrest cell growth under stress. Low-tumour GAS5 expression was associated with a poor
prognosis. RNU48 and RNU43 were also identified as intronic snoRNAs within genes that are dysregulated in cancer.
CONCLUSION: Small-nucleolar RNAs are important in cancer prognosis, and their use as reference genes can introduce bias when
determining miRNA expression.
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There is increasing interest in measuring the levels of microRNAs
(miRNAs) in tumours using real-time polymerase chain reaction
(RT–PCR) methods as markers of pathology and prognosis (Catto
et al, 2009; Hummel et al, 2010). Real time polymerase chain
reaction determines the relative expression of variably expressed
target miRNAs in comparison with one or more stably expressed
reference genes (also called housekeeping or internal control
genes). This normalisation is required to allow for variability in
miRNA quantity and/or cDNA synthesis. However, uncertainty
remains over the normalisation process and selection of appro-
priate reference genes (Hui et al, 2009; Chang et al, 2010), and their
impact on results obtained (Gee et al, 2008; Peltier et al, 2008).
This uncertainty has implications for the development of clinically
useful miRNA signatures, as it does for gene expression signatures
such as Oncotype Dx (Kaklamani, 2006; van den Broek et al, 2009).
The current convention for miRNA RT–PCR is to normalise to

one reference gene (usually RNU6B, RNU44 or RNU48) (Roa et al,
2010). These small-nucleolar RNAs (snoRNAs), non-protein
coding RNA, are approximately 70 nucleotides in length, and

involved in processes such as site-specific modification of
nucleotides in target RNAs (Mattick and Makunin, 2005). The
snoRNAs RNU48, RNU44 and RNU43 are members of the large
C/D box family, thought to direct 20-O-ribose methylation in
ribosome biogenesis (Kiss, 2002). RNU6B (U6) is part of the U6
small-nuclear ribonucleoprotein, a component of the spliceosome
upon which splicing of pre-mRNA occurs. The Applied Biosystems
Megaplex miRNA assay pool (Applied Biosystems, Warrington,
UK) and associated RT–PCR arrays, such as Applied Biosystems
Taqman Low-Density Arrays (Applied Biosystems), recommend
using the average of RNU44 and RNU48 (with U6 additionally in
the latest version) (Product Information for TaqMan Array Gene
Signature Cards, 2010; Hui et al, 2010).
Although the function of snoRNAs is still poorly understood,

recent evidence suggests they are deregulated in cancer. The non-
coding growth arrest specific transcript 5 gene (GAS5), which
encodes multiple snoRNAs, induces growth arrest and apoptosis in
breast cancer cell lines, and is significantly downregulated in breast
cancer (Mourtada-Maarabouni et al, 2009). Growth arrest specific
transcript 5 gene appears to suppress transcriptional activity induced
by glucocorticoid receptors by inhibiting the binding of receptors to
glucocorticoid response elements (Kino et al, 2010). Another
snoRNA, U50, is involved in the development of prostate and breast
cancer, although its function is unknown (Dong et al, 2009).
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Given the emerging evidence for a role of snoRNAs in cancer,
the aim of the work reported here was to investigate the
appropriateness of their use as reference genes when measuring
miRNA expression in tumour samples. Tumour expression of the
snoRNAs RNU44, RNU48, RNU43 and U6 was studied in relation
to clinicopathological features and prognosis, and as reference
genes for normalisation of miRNA expression data. The work was
carried out in two series of patients: 219 breast cancers and 46
head and neck squamous cell carcinoma (HNSCC).

MATERIALS AND METHODS

Clinical samples

Ethical approval was obtained from the local research Ethics
Committees (Oxford and South Manchester). The breast cancer
series consisted of 219 patients with early-first primary breast
cancer, treated in Oxford between 1989 and 1992. Patients received
surgery followed by adjuvant treatment. The data set was complete
for age, nodal status, definitive surgery, relapse and survival. The
patient demographics and details of treatments given are provided
in (Camps et al, 2008) and Supplementary Table 1. The HNSCC
series comprised of 46 patients with primary HNSCC. Full-patient
demographics and treatment details are provided in (Gee et al,
2010) and Supplementary Table 1. All patients underwent surgical
resection with curative intent, and post-operative radiotherapy was
given to all but five patients.

RNA extraction

Patient tumour samples taken at operation were placed in
RNAlater (Applied Biosystems) for up to 12 h before cryopreserva-
tion in liquid nitrogen. Subsequently, the samples were divided
and half paraffin embedded for histological analysis. The RNA was
extracted from the remaining tissue using Tri Reagent (Sigma-
Aldrich, Poole, UK). Quality and quantity of RNA were confirmed
using the NanoDrop ND-1000 spectrophotometer and the Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).
Cases were excluded in which tumour was present in o10% of a
representative hematoxylin and eosin section.

Real time-reverse transcription PCR

Expression of miR-210, miR-21, miR-10b, miR-342 and miR-30a-
3p, and three snoRNAs, RNU43, RNU44 and RNU48 were
measured by RT–PCR according to the TaqMan MicroRNA Assay
protocol (Applied Biosystems) in the entire breast cancer series.
U6 was also measured on a subset of 48 of the 219 breast cancer
cases, chosen as they were the most representative of the various
molecular subtypes of breast cancer (e.g., Luminal A). The
expression of miR-210, miR-21, miR-10b, RNU43, RNU44 and
RNU48 was measured in the HNSCC series. Complementary DNA
was synthesised from 5ng of total RNA using TaqMan miRNA
primers and the TaqMan MicroRNA Reverse Transcription Kit
(both from Applied Biosystems). Real-time polymerase chain
reaction was carried out in triplicate as described previously
(Camps et al, 2008). Fold changes in miRNA expression were
determined by the 2-DDCt method. In which discussed, results
were also normalised using RNU43, RNU44, RNU48 and U6 (for
the subset of breast cases), the average of two snoRNAs or the
median of three snoRNAs.

Immunohistochemistry

Immunohistochemistry for HIF-1a was performed on sections
from formalin-fixed, paraffin-embedded tumour biopsy samples.
Details of antibodies and scoring system are given elsewhere
(Beasley et al, 2002).

Microarray data

A total of 72 of the 219 samples in the breast cancer series and the
46 HNSCC samples were also expression profiled using Affymetrix
GeneChips (Santa Clara, CA, USA), with standard pre-processing
and normalisation (Winter et al, 2007; Loi et al, 2008). To assess
relationship between probe sets to GAS5 and outcome in breast
cancer, a large breast cancer series was also used (n¼ 152, Loi
et al, 2008), which overlapped by 72 cases with the Camps series of
219 (details in Supplementary Table 1). Published metagene
signatures were used: to determine molecular classification of
subtype (Sorlie et al, 2001); to measure hypoxia (Winter et al, 2007;
Buffa et al, 2010); for proliferation, invasion and immune response
scores (Desmedt et al, 2008); and for ErBB2 scores (genes in
common between (Desmedt et al, 2008) and (Wirapati et al,
2008)). For the 219 breast cases, miRNA expression profiles were
also measured using 200 ng of total RNA on Illumina (San Diego,
CA, USA) miRNA arrays version 1 as per the manufacturer’s
instructions. Average signal was background subtracted with local
background subtraction (BeadStudio, Illumina), quantile normal-
ised and logged (base2) in R.6 (http://www.r-project.org/).

Gene mapping

Small-nucleolar RNAs were mapped to genomic regions using the
gene accession numbers and the UCSC browser. Publically
available data sets were accessed using Oncomine (http://
www.oncomine.org).

Statistical methods

The gene stability measure (M), mean pairwise variation for a gene
compared with all other tested reference genes, was derived from
the GeNorm algorithm (Vandesompele et al, 2002) and the
SLqPCR package (http://www.bioconductor.org). Unless otherwise
stated, correlations of snoRNAs and miRNAs, with clinical and
pathological variables, were assessed using the appropriate non-
parametric methods (Spearman’s test for continuous variables,
Wilcoxon, Kruskal–Wallis or Mann–Whitney’s U-test for catego-
rical variables). Correlation between snoRNA and probe sets was
performed using Pearson correlations. Tumour recurrence and
death were calculated from the time of surgery, for the breast series
according to STEEP criteria (Hudis et al, 2007) or as previously
defined by us (Camps et al, 2008). Univariate survival analysis was
carried out by applying the log-rank test to miRNA or snoRNA
expression levels stratified by median values. Disease-specific
overall survival (called overall survival in the rest of this article),
recurrence-free survival (RFS) and distant RFS (DRFS) were
considered as outcomes. Where Cox survival analyses were used,
the fractional rank of the miRNA or snoRNAs was considered: the
patients were ranked using expression levels and the ranks were
normalised between 0 and 1. SPSS 17 (SPSS Inc., Chicago, IL, USA)
and R.6 (http://www.r-project.org) were used for statistical
analyses.

RESULTS

SnoRNAs, commonly used as reference genes, show high
variability of expression in cancer

We first noted that the expression of snoRNAs was highly variable
in cancer, with similar ranges of values to some of the most
varying miRNAs (Figure 1). In the 219 breast cancer cases, miR-21,
which has been found in multiple studies to be a prognostic factor
in breast cancer (Yan et al, 2008), had a median value of 0.20, an
interquartile range of 0.18 and a s.d. of 0.14. Similarly, RNU44 had
a median value of 0.20, an interquartile range of 0.20 and a s.d. of
0.17. This wide range of values was even more striking in the
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subset of 48 cases (Figure 1B), in which U6 had also been
measured. These 48 cases were chosen for further analysis as they
were the most representative of the different breast cancer
molecular subtypes (Simpson et al, 2010), and are therefore
genetically relatively distinct from each other. This can be more
formally measured by the M values, a measure of the mean
pairwise variation for a gene compared with all other tested control
genes (higher number representing greater noise/variability). We
found in the breast series that RNU43 RNU44 and RNU48 had
M value as 1.32, 1.22 and 1.27, respectively. The values for the 48
breast cancer subset were 1.59, 1.42 and 1.76, respectively. The
corresponding values for the 46 HNSCC were 0.70, 0.72 and 0.62,
respectively.

SnoRNAs used as reference genes introduce bias

For each miRNA studied, there was a tighter correlation between
the raw and normalised values when measured by microarray than
by RT–PCR (Supplementary Table 2 and Supplementary Figure 1).
For example, for miR-210, the Spearman’s correlation coefficient
(r) was 0.94 when comparing raw and normalised microarray
breast cancer data, whereas it was 0.89 for raw and normalised
RT–PCR data (Po0.001 for both) (Supplementary Figure 1).
Concerningly, given many papers have been published on miR-21,
the corresponding r values of miR-21 were 0.24 for microarray and
0.34 for RT–PCR, suggesting there is significant variability with
probe or primer variants.
For the five miRNA measured in the 219 breast cancer cases and

the three miRNA measured in the 46 HNSCC cases, contrasting
results were obtained for normalisation. Normalisation could
either unmask or mask associations between miRNA expression
and clinicopathological factors (Figure 2). The former type of
problem occurred when the miRNA was not associated with a

given clinicopathological factor until it was normalised to the
control gene(s). The latter occurred when the miRNA was
associated with a given clinicopathological factor only before it
was normalised. These misassociations are shown graphically in
Figure 2A (219 breast cases) and Figure 2B (46 HNSCC cases), and
with P-values in Supplementary Figures 3A and B. This finding is
further illustrated for miR-10b in the HNSCC series in which
normalisation to the three reference genes (which trend down with
poor prognosis, as does miR-10b) abrogated the association of
unnormalised miR-10b levels with prognosis (Figure 2, panels
C–D, P-values 0.027 and 0.716, for raw and normalised data,
respectively). The opposite effect (when normalisation enhanced
significance) was observed for miR-210 in the breast cancer cases,
which goes up in association with a poor prognosis. The P-values
for miR-210 and RFS were 0.01 and 0.003 for raw and normalised
data, respectively, data not shown.

snoRNA expression is associated with clinicopathological
factors

To understand why these snoRNAs reference genes may introduce
bias, we looked at their relationship with clinicopathological
factors, gene expression signatures of biological phenotypes and
the expression of miRNA processing genes (Dicer and Argonaute 2,
henceforth called AGO2). The uncorrected snoRNAs were directly
associated with multiple factors, including oestrogen receptor (ER)
status, grade, microarray-based markers of proliferation and
invasion, and miRNA processing genes (Figure 3A, and with
P-values in Supplementary Figure 3C). For example, RNU48 was
negatively correlated with tumour grade (Figure 3B). The miRNA
varied significantly across molecular subtype classification (data
available for 216 of 219 cases), with higher levels associated with
Luminal A tumours: RNU43 P-value 0.023; RNU44 P-value 0.044.
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Figure 1 Values of snoRNAs vary as widely as miRNAs. Box and whisker plots of snoRNA and miRNA expression in the 219 breast cancer cases
(A), a subset of 48 cases, chosen as most representative of the various molecular subtypes of breast cancer (B), and the HNSCC series (C). For all plots,
relative expression measured by RT–PCR: shown as median (line) and interquartile range (box), outliers (circles) and extreme cases (stars).
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Figure 3C shows the results for one representative snoRNA. In
addition, we studied the expression of snoRNAs when normalised
to the other snoRNAs. We noted many examples of potential bias
introduced by the other snoRNAs. For example, RNU44 was
positively correlated with proliferation score only when normal-
ised to RNU48 or to the average of RNU48 and RNU43. As RNU48
and RNU43 were negatively correlated with proliferation score,
this suggested normalising to them introduced bias.

RNU44 expression is associated with survival

In 219 patients with breast cancer, lower level of tumour RNU44
expression was an adverse prognostic factor for overall survival
and DRFS in univariate analysis when considered as a binary
variable divided by median value (Figures 4A and B). Expression
of RNU44 was also significant in a Cox regression model (P-value
0.049), with a hazard ratio of 0.5 and 95% confidence intervals of
0.26–0.99. This was not significant in multivariate analysis
(Supplementary Table 3). In the series of 46 HNSCC, RNU44
lower than the median was again associated with a poor prognosis,

but this was not statistically significant, perhaps because of the
small numbers of cases available (Figure 4C). A survival curve for
miR-210, which we and others (Camps et al, 2008) have previously
shown to be prognostic in breast and HNSCC, is provided for
comparison (Figure 4D).

RNU44 is an intronic snoRNA within GAS5, which is
associated with prognosis in HNSCC and breast cancer

To elucidate the mechanism by which the three snoRNAs were
associated with pathological factors and survival, we mapped the
snoRNAs to their genomic location. RNU44 mapped to an intronic
region of Homo sapiens growth arrest specific 5 non-protein
coding RNA (GAS5, RefSeq NR_002578.2). The GAS5 transcript,
which contains a cluster of highly conserved snoRNAs, can be
interrogated with multiple probes available on Affymetrix arrays
(Figure 5A). We found a correlation between several of these
probe sets and the relative expression of RNU44, measured by
RT–PCR (Table 1, and Figure 5B, one representative probe
set shown).
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Figure 2 Normalising miRNA expression data to snoRNAs introduces bias. Association between miRNA and clinicopathological factors can be
over- or underestimated, depending on the interaction with snoRNA control. MicroRNA and snoRNA measured by RT–PCR in 219 breast cancers (A) and
46 HNSCCs (B). Background colour of box indicates type of misassociation: green boxes – miRNA associated with factor before it is normalised to
snoRNA; yellow boxes – miRNA not associated until normalised; white boxes – consistent association between miRNA and factor whether normalised or
not; ±show direction of statistically significant correlation (if any). ER status: oestrogen receptor status; nodal status: binary; smoking/alcohol status: never,
ex-user, current user. DRFS or RFS: distant recurrence-free survival or recurrence-free survival (STEEP criteria), OS, overall survival; expression stratified by
median value, positive correlation, higher level associated with poorer prognosis. Details of microarray-based classifications, including hypoxia metagene
score, proliferation score, invasion score, immune response score (Imm. Resp.) and scoring system for immunohistochemistry, in methods section. AGO2,
EIF2C2, (Argonaute 2), ISCU, Iron-Sulphur Cluster Homologue (Escherichia coli), CA9, carbonic anhydrase 9; (C and D) Kaplan–Meier curves for overall
survival for patients with HNSCC according to expression of miR-10b measured by RT–PCR, stratified by median value. (C) shows relative expression
of miR-10b only, (D) shows miR-10b normalised to three control genes. The colour reproduction of this figure is available on the html full text version of the
manuscript.
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Growth arrest specific 5 has previously been reported to be
downregulated in breast cancer compared with normal tissue
(Mourtada-Maarabouni et al, 2009); however, its role in prognosis
or in other cancers has not been elucidated. We examined its
expression in publically available data sets using Oncomine.
Growth arrest specific 5 was downregulated by 2.9-fold (P-value
6.21� 10�7) in a microarray of 22 glioblastoma multiforme
compared with normal brain samples (Lee et al, 2006).
In our series of HNSCC, when expression values for the probes

to GAS5 were explored as prognostic markers, a trend similar to
the one seen for RNU44 was observed in Kaplan–Meier analyses
(Table 1 and Figure 5C, one representative probe shown).
Specifically, a high level of GAS5 was associated with a good
prognosis. At the conclusion of follow-up, only 55% of patients
with GAS5 less than median were alive, whereas 84% of patients
with GAS5 higher than median were still alive (probe set
224841_x_at, P-value 0.042). Results for the other three probe
sets are shown in Supplementary Figure 2. Of note, only the probe
sets with a strong correlation to RNU44 were significantly
associated with prognosis. Owing to the small size of the series,
it was not possible to perform multivariate analysis.

Next, we examined the subset of the series of 219 patients with
breast cancer for which Affymetrix gene expression data were
available (the overlapping series of 152 cases). A similar trend was
observed with lower levels of GAS5 being associated with a poor
prognosis but this was not statistically significant (Table 1).

RNU43 and RNU48 are also intronic snoRNAs within genes
that are associated with cancer

RNU43, which was lower in tumours with a poorer prognosis
(although not statistically significantly), mapped to an intronic
region of H. sapiens ribosomal protein L3 (RPL3, RefSeq
NM_001033853.1 and NM_000967.3). Alternate transcriptional
splice variants, encoding different isoforms, have been charac-
terised. RPL3 belongs to the L3P family of ribosomal proteins and
encodes a ribosomal protein that is a component of the 60S
subunit. In publically available data sets, interrogated using
Oncomine, RPL3 was downregulated: two-fold in ovarian adeno-
carcinoma compared with normal ovary (P-value 6.94� 10�10)
(Welsh et al, 2001), and 36-fold in breast tumour stroma compared
with normal stroma (P-value 1.06� 10�28) (Finak et al, 2008).
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(measured by RT–PCR) and clinicopathological factors. Blue background – negative correlation; pink background – positive correlation; white background –
no correlation, except * (significant association with molecular subtype).M value – gene stability measure, defined as average pairwise variation of a particular
gene with all other control genes, measured by geNorm algorithm. ER, oestrogen receptor; AGO2, EIF2C2, Argonaute 2; ISCU, Iron-Sulphur Cluster
Homologue (E. coli); DRFS, distant recurrence-free survival (STEEP criteria), Cox regression. Proliferation, ErBB2, invasion scores derived from microarray;
HIF nuclear scores from immunohistochemistry, details in Materials and Methods section. Results shown for Spearman correlation (continuous variables),
Mann–Whitney (two categorical variables), Kruskal–Wallis (42 categorical variables). (B) RNU48 decreases significantly with histological grade
(Kruskal–Wallis). (C) RNU44 varies across molecular subtype of breast cancer (Kruskal–Wallis). For panels B–C, results show relative expression
measured by RT–PCR in the breast cancer series (where available): shown as median (line) and interquartile range (box), outliers (circles) and extreme
cases (stars). The colour reproduction of this figure is available on the html full text version of the manuscript.
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When mapped to Affymetrix probe sets (Supplementary
Table 4) in our series, the results were complex. In the HNSCC
series, there was a good correlation between several probe sets and
RNU43 measured by RT–PCR, but RPL3 was not associated with
prognosis. In the breast series, there was a poor correlation
between RPL3 and RNU43, but low levels of RPL3 were associated
with a poor prognosis in this series.
RNU48 is also an intronic snoRNA, within chromosome 6 open

reading frame 48 (c6orf48 or G8). C6orf48 is part of the major
histocompatability complex III tissue-protective factor produced
in response to chronic inflammation, and polymorphisms in the
c6orf48 gene are associated with susceptibility to infection (Kerr
et al, 2005). Several Affymetrix probe sets map to the region
containing c6orf48: 220755_s_at and 222968_at. Only 222968_at
correlated with RNU48 by RT–PCR but in a negative direction
(Spearman’s r �0.344, P value 0.012), suggesting that these probe
sets are not a helpful way of interrogating RNU48 values.

RNU6B may be associated with fewer clinicopathological
factors than the other snoRNAs

U6 was not directly associated with clinicopathological factors,
with the exception of invasion gene expression signature score.
It was associated with several factors when normalised to the
average of other snoRNAs, suggesting that these were introducing
bias into the results (Figure 3A). We were only able to test the use
of four control genes in the small subset of 48 cases. In this small
series, normalising to four genes abrogated the statistically
significant association of miR-210 or miR-30a-3p with prognosis,
suggesting that noise was introduced. However, normalising to

U6 alone gave as good as, or better significance, than normalising
to multiple genes, suggesting that U6 is a more stable reference
gene than the other snoRNAs tested (Supplementary Table 5).

DISCUSSION

Normalisation of miRNA data measured by RT–PCR is critical to
interpreting clinical significance and developing miRNA as tumour
markers. Our work highlights several key problems in the way this
has been carried out, and may explain many opposing or non-
confirmatory studies in this area. The first issue we noted was that
snoRNAs had highly variable expression and introduced noise
when used as controls. For microarray data, there was a good
internal correlation between quantile normalised and non-normal-
ised data for a given miRNA, however, the internal correlation
between the relative expression by RT–PCR of miR-210, and
miR-210, normalised to three control genes, was noisier. This is
likely to be because of the robustness of standardisation of gene
array data, with thousands of probes contributing to normalisation
of arrays and well-validated methodology. miR-210 is among the
miRNAs most reproducibly associated with outcome, is highly
expressed and has a wide range of expression levels, but the above
issue will be even more important in the case of less varying and
lower expressed miRNAs.
Indeed, the noise introduced by normalising to snoRNAs may

explain why RT–PCR has been questioned as the ‘gold standard’
for validating miRNA results by Git et al (2010), who found in a
comparison of multiple platforms and RT–PCR that false-positive
calls were more likely to be generated by RT–PCR than by
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Figure 4 RNU44 is prognostic in HNSCC and breast cancer. (A) Overall and (B) distant recurrence-free Kaplan–Meier survival curves for patients with
breast cancer stratified according to relative expression of RNU44 measured by RT–PCR. (C) Kaplan–Meier curve showing overall survival of patients with
HNSCC stratified according to relative expression of RNU44 measured by RT–PCR. (D) Distant recurrence-free Kaplan–Meier survival curves for patients
with breast cancer stratified according to relative expression of miR-210 measured by RT–PCR, provided for comparison (n¼ 219). For all four panels,
expression levels are stratified by median value.
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shown. (C) Growth arrest specific 5 is a marker of prognosis in HNSCC. Kaplan–Meier curve of RFS for patients with HNSCC stratified according to
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Table 1 Correlation between RNU44 and Affymetrix probes to GAS5

Affymetrix probe set Value
RNU44

(RT–PCR)
Recurrence-free

survival 224741_x_at 224821_x_at 227517_x_at 228238_s_at

Series
HNSCC (n¼ 46)
224741_x_at CC 0.392 n/a 0.992 0.491 0.57

P 0.004** 0.042 o0.001 o0.001 o0.001
224841_x_at CC 0.402 0.992 n/a 0.499 0.578

P 0.002** 0.042 o0.001 o0.001 o0.001
227517_x_at CC 0.332 0.491 0.499 n/a 0.833

P 0.017* 0.937 o0.001 o0.001 o0.001
228238_s_at CC 0.238 0.571 0.578 0.833 n/a

P 0.092 0.933 o0.001 o0.001 o0.001

Breast (n¼ 152)a

224741_x_at CC 0.452 n/a 0.987 0.358 0.466
P o0.001** 0.073 o0.001 o0.001 o0.001

224841_x_at CC 0.443 0.987 n/a 0.381 0.458
P o0.001** 0.115 o0.001 o0.001 o0.001

227517_x_at CC 0.305 0.358 0.381 n/a 0.882
P 0.009** 0.962 o0.001 o0.001 o0.001

228238_s_at CC 0.305 0.446 0.458 0.882 n/a
P 0.009** 0.852 o0.001 o0.001 o0.001

Abbreviations: CC¼ correlation coefficient; n/a¼ not available; P¼ two-tailed significance; RT–PCR¼ real-time polymerase chain reaction. aLoi series – overlap of 72 cases with
Camps series. The values shown in italics are statistically significant (P-values o0.05). *Po0.05, **Po0.01, ***Po0.001.
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microarray. We noted that expression of snoRNAs varied as much
as miR-21, which has been associated with prognosis in multiple
studies (Markou et al, 2008; Yan et al, 2008). The M values for the
snoRNAs were higher than expected: for example, in a study of
multiple mRNA housekeeping genes, Vandesompele et al (2002)
typically found when three housekeeping genes were measured
thatM values were less than 0.5 . This may be because of biological
differences, such as the existence of multiple subtypes of breast
cancer, with different intrinsic snoRNA levels, and variation
among samples induced by ER and HER2 status, the heterogeneity
in HNSCC site subtypes and differences in relative amounts of
tumour and stromal tissue between samples. In addition, it may
relate to sample collection methods. The sample collection for
HNSCC was carried out by clinical fellows in the operating
theatre to a highly standardised protocol, while for the breast
samples it was performed according to standard surgical
procedure. Although this may have contributed to reduced
variability in the HNSCC, it did not eliminate the problems of
normalisation, and illustrates the pitfalls of attempting to
introduce miRNA-based signatures to routine clinical practice.
Raw data are expected to be noisy but normalisation to genes,

which also have variable expression, introduces more noise and
possibly bias in the results. Normalisation of miR-10b to the three
control genes (which also trend down with poor prognosis, albeit
not significantly) abrogated the association of miR-10b with a
good prognosis, whereas for miR-210, which is a marker of poor
prognosis, the opposite effect was observed (i.e., increased the
association), although the results were significant whether normal-
ised or not. This suggested that in some cases, use of snoRNAs as
reference genes introduces bias as well as noise. For miRNA, with a
large expression range and strong signal, such as miR-210,
normalisation problems may be less important than for miRNA
with a small range or subtle, although important, biological effect
(e.g., miR-10b).
This is, to our knowledge, the first study showing association

between snoRNAs with multiple factors, including ER status, grade
and miRNA processing genes such as Dicer and AGO2. This
implies that regulation of ribosomal RNA cannot be considered
independently from, and may interact both with, these biologically
important factors, and with the processing of other noncoding
RNA such as miRNA by their interaction with Dicer and AGO2. Of
note, the snoRNAs varied significantly across molecular subtype
classification, implying the alteration of multiple species of RNA,
both ‘coding’ and ‘non-coding’, across the groups. Furthermore,
the finding that RNU44 levels were highest in Luminal A type
breast tumours may have been expected from the observation that
RNU44 is linked to ER status – however, it is interesting that
RNU43, which is not linked to ER status, is even more highly
correlated with Luminal A tumours. Recently, poor concordance
between molecular classification when using different algorithms
has been described (i.e., they did not reliably assign the same
patients to the same molecular subtypes) (Weigelt et al, 2010). The
future addition of information about snoRNAs and other small
non-coding RNAs may improve the performance of such
classifiers.
This is also, to our knowledge, the first study showing an

association between snoRNAs, such as RNU44, and prognosis in
both breast and HNSCC. The association between low expression
of RNU44 and poor prognosis is in keeping with the study of
Mourtada-Maarabouni et al (2009), showing that GAS5 sensitises
cells to apoptosis in response to stress. Cells which fail to express
GAS5 will evade apoptosis in response to the stressful stimuli,
which a tumour cell would experience in a poorly vascularised
microenvironment, intermittently depleted of nutrients and
oxygen. Mourtada-Maarabouni et al (2009) attempted to elucidate
the smallest possible area required for apoptosis induction, but
their focus was on exons rather than introns (such as RNU44).
However, as shown in Figure 5A, it is only the intronic snoRNA

that are highly conserved through evolution, suggesting these are
the main functional components of GAS5. Furthermore, it is the
first time that low GAS5 expression has been shown to be a marker
of poor prognosis in HNSCC (and breast).
Where there was a good correlation between probe set and

intronic gene (e.g., 224741_x_at and 224841_x_at for RNU44),
these microarray data can be mined for prognostic association,
however, where there is a poor correlation (e.g., 227517_x_at or
228238_x_at), data mining was not possible (Table 1, Supplemen-
tary Figure 2). Indeed, Figure 5A shows that the probe set
228238_x_at would be too short to cover the area of GAS5-
containing RNU44.
This was reinforced by the complex relationship between

RNU43 and RPL3. In many cases, introns containing snoRNAs
occur within protein-coding transcripts, encoding ribosomal
proteins, and others involved in ribosomal biogenesis, and
RNU43 would initially appear to be an example of this type of
parallel genetic output. However, the mapping of RNU43 to RPL3-
linked Affymetrix probe sets has not shown a good link between
RPL3 and RNU43, so further work is required to elucidate the
reason for the difference (for example trough differential regula-
tion of a snoRNA to its host gene, or through alternative splicing,
as there are several transcript variants giving rise to different
isoforms of RPL3).
U6, highly conserved across evolution, has multiple copies in the

genome, and appears to be upregulated in cervical cancer and
correlate with progression (Hansen et al, 2009). Of note, when
miRNA were normalised to U6, there were fewer errors in
association between miRNA and clinicopathological factors,
and fewer direct associations between U6 and these factors
(Figure 3A).
Taken together, these data suggest that RNU44, commonly used

for normalisation of miRNA (especially as it appears in the
Applied Biosystems Megaplex Pool and Low-Density miRNA
array), is a poor choice of normalisation gene. U6 appears the
most stable of the snoRNAs tested in breast cancer. Caution should
be exercised in using RNU43 and RNU48. RNU43, RNU44 and
RNU48 were recommended by manufacturers, because of their
stability across multiple normal tissue types (Wong et al, 2007),
rather than their stability between normal compared with tumour
tissue, or different grades of tumour.
The reason for the association between these snoRNAs and

clinicopathological factors is not known at present. Many occur in
polycistronic clusters, or in imprinted regions, suggesting that they
are specifically regulated and in turn have specific regulatory roles
in the differential modification of selected target RNAs and in the
synthesis of ribosomal proteins (Mattick and Makunin, 2005).
Ribosomal DNA occurs at many known recombination hot spots

(Stults et al, 2009) and ribosomal proteins are known to be
dysregulated in cancer (van Riggelen et al, 2010), but little is
known about how this occurs, or the role of their intronic
snoRNAs. We noted generally lower levels of the snoRNAs in
association with poor prognosis or more aggressive tumours. A
decrease in ribosomal protein biogenesis may contribute to
chromosomal instability, a hallmark of cancer. For example,
depletion of RPL3 (and other members of the Yph1 complex)
resulted in an increase in abnormal mitoses and aberrant
metaphase plates (Killian et al, 2004). Additionally, many
chemotherapeutic agents inhibit the biogenesis of ribosomes
(Killian et al, 2004), so downregulating these proteins may evade
chemotherapy.
In summary, the clear dysregulation of multiple snoRNAs

and their host genes in cancer suggests a novel area of research in
cancer initiation and progression. Their use as reference
genes can introduce bias when determining miRNA expression,
which is reduced by the use of U6, and by validating tissue-
specific control genes in relevant cancer (rather than normal)
samples.
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