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Abstract

Word associations have been used widely in psychology, but the validity of their application strongly depends on the number

of cues included in the study and the extent to which they probe all associations known by an individual. In this work, we

address both issues by introducing a new English word association dataset. We describe the collection of word associations

for over 12,000 cue words, currently the largest such English-language resource in the world. Our procedure allowed subjects

to provide multiple responses for each cue, which permits us to measure weak associations. We evaluate the utility of the

dataset in several different contexts, including lexical decision and semantic categorization. We also show that measures

based on a mechanism of spreading activation derived from this new resource are highly predictive of direct judgments of

similarity. Finally, a comparison with existing English word association sets further highlights systematic improvements

provided through these new norms.

Keywords Word associations · Mental lexicon · Networks · Similarity · Spreading activation

Introduction

The “word association game” is deceptively simple: you

are presented with a word (the cue), and you have to

respond with the first word that comes to mind. Playing

the game feels effortless, automatic, and often entertaining.

Generating a word associate is easy and indeed, responding

with a word that is not the first thing that comes to mind

turns out to be quite difficult (Playfoot et al., 2016). The

simplicity of the task makes it an attractive methodological

tool, and a remarkably powerful one: word associations

reveal mental representations that cannot be reduced to

lexical usage patterns, as the associations are free from

the basic demands of communication in natural language

(Szalay & Deese, 1978; Prior & Bentin, 2008; Mollin,
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2009). As a technique, it is closely related to other subjective

fluency tasks like the semantic feature elicitation task

(McRae et al., 2005; Vinson & Vigliocco, 2008) and various

category fluency tasks (e.g., Battig & Montague, 1969) in

which participants list as many exemplars for a category

such as animals within a 1-min period. Relative to other

tasks, however, the word association technique provides us

with a more general and unbiased approach to measure

meaning (Deese, 1965). This means that a variety of stimuli

can be used as cues, regardless of their part-of-speech or

how abstract or concrete they are. Taken together, these

properties make word associations an ideal tool to study

internal representations and processes involved in word

meaning and language in general.

In this paper, we present a new and comprehensive set

of word association norms from the English Small World

of Words project (SWOW-EN).1 The data were collected

between 2011 and 2018 and consist of +12,000 cue words

and judgments from over 90,000 participants. This makes it

comparable in size to a similar project in Dutch (De Deyne

et al., 2013b) and substantially larger than any existing

English-language resource.

The collection and usage of word association norms have

a long history. One of the most widely used resources comes

from the University of South Florida norms (Nelson et al.,

1See https://smallworldofwords.org
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2004, USF norms,). Although it first appeared in 2004,

it has been cited over 1,900 times and is still the most

commonly used resource in English. The collection of these

norms started more than 40 years ago and involved over

6,000 participants. They contain single-word association

responses from an average of 149 participants per cue

for a set of 5,019 cue words.2 Another commonly used

resource is the Edinburgh Associative Thesaurus (EAT;

Kiss, Armstrong, Milroy & Piper, 1973), a dataset collected

between 1968 and 1971. It consists of 100 responses per cue

for a total of 8,400 cues. More recently, British English word

associations have also been collected as part of the Birkbeck

norms which contain 40 to 50 responses for over 2,600

cues (Moss & Older, 1996). Looking beyond English, there

are word-association datasets with 1,000+ cues available in

other languages including Korean (3,900 cues; Jung et al.,

2010) and Japanese (2,100 cues; Joyce, 2005). The largest

collection is available for the Dutch language (SWOW-NL)

for which the most recently released dataset consists of over

12,000 cues (De Deyne et al., 2013b) and the latest iteration

contains data for over 16,000 cues. This last dataset uses the

same procedure as the one described here.

The remainder of the paper consists of two parts. In the

first part, we describe the new dataset and its properties.

In the second part, we evaluate the validity of these data,

focusing on measures of lexical centrality and semantic

similarity. Doing so allows us to demonstrate two ways in

which we believe these data have broad applicability in the

field, capitalizing on its unique scale (in terms of number of

cues) and depth (in terms of number of responses).

Data collection

The data described in this paper are part of an ongoing

study to map the human lexicon in major languages of

the world. Across these different languages, we have tried

to keep the procedure as closely matched as possible.

The original data collection project began in 2003 in

Dutch (De Deyne & Storms, 2008b; De Deyne et al.,

2013b), and since that time some minor changes have been

implemented. First, although the earliest data collection

relied on pen-and-paper tasks, the majority of the data

collection for it (and all of the data collection for this

project) has relied on a web-based task. Over the time

frame of the project, we also implemented minor cosmetic

changes to the website to enhance readability and to

accommodate changes in web technology. Most notably,

recent versions of the website have accommodated a

wider variety of devices, reflecting changes in Internet

2Most of this work was done by hand, and a vivid account of this ordeal

is available at http://w3.usf.edu/FreeAssociation/Intro.html

usage in which more people rely on mobile devices. In

response to interest from other researchers, we also decided

to add a question about participant education levels at

a point where the study was already underway. Minor

alterations notwithstanding, the core word-association task

has remained unchanged throughout the project—one in

which the overriding consideration has been to keep the task

short, simple, and inclusive.

Method

Participants

Participants were recruited online, using a crowd-sourced

approach that relied on social media, e-mail, and university

Web sites. No restrictions were placed on participating apart

from the requirement that participants be a fluent English

speaker. People interested in participating despite a lack

of English fluency were referred to other languages in the

Small World of Words project as appropriate (currently 14

languages are included).

While there were no age restrictions, only data for

participants aged 16 years and above were used, as we were

mainly interested in the representation of a mature lexicon.

The participants consisted of 88,722 volunteers, of whom

54,712 (62%) identified as female, 33,710 (38%) identified

as male, and 300 (<1%) responded using the unspecified

gender category. The average age was 36 years (SD =

16). Besides gender and age, we also collected information

about the native language of the participants. This was done

in two steps. First, we asked the participants to indicate

whether they were a native speaker of English. Depending

on their answer, they were able to choose from a list of

English-speaking regions, or from a list with most non-

English languages spoken in the world. Most people (81%)

were native American English speakers (50%), with British

(13%), Canadian (11%), and Australian (5%) speakers as

next three largest groups represented in the data. In 2013, we

also began collecting information about level of education,

so these data are available for 40% of the participants.

Most of our participants had at least a college or university

bachelor (81%) or master degree (37%). This suggests a

fairly homogeneous sample in terms of education, with

some degree of selection bias evident.

Materials

Stimulus materials (cue words) were constructed using a

snowball sampling method, allowing us to include both

frequent and less-frequent cues at the same time. The

procedure also allowed us the flexibility to add cue words

that were part of other published studies, which we did

over the course of seven different iterations over the years.
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The final set consisted of 12,292 cues included all 1,661

primes and targets from the Semantic Priming Project of

Hutchison et al. (2013), all 5,019 cues from the University

of South Florida norms (Nelson et al., 2004) and most of the

cues that were part of previously published English word

modality norms (Lynott & Connell, 2013) and semantic

feature production norms (McRae et al., 2005).

Procedure

The study was approved by the KU Leuven Ethics Commit-

tee (ref. G-2014 07 017), and the procedure was identical

to the Dutch language data (SWOW-NL) reported by De

Deyne and Storms (2008b) and De Deyne et al. (2013b).

Participants were instructed that a word would appear on

the screen and they were asked to respond with the first

three words that came to mind. If they could not think of

any further responses, they could indicate this by pressing

the “No More Response” button. If a word was unknown,

they were asked to select the “Unknown Word” button.

They were also instructed to respond only to the word dis-

played on top of the screen (not to their previous responses)

and to avoid typing full sentences as responses. Each

participant was presented with a list of 14 to 18 stimuli. The

stimuli presented were selected randomly from those cues

with the fewest responses in the current iteration. Each

stimulus appearing on the screen was followed with a form

consisting of three text fields, one for the first (R1), second

(R2), and third (R3) response. Once a field was completed

by pressing enter or clicking a button, that entry could no

longer be changed. The response remained on the screen

but the color of the response was changed from black to

gray.

Data preprocessing

The data were normalized in a number of steps. We first

removed tags, quotes, final punctuation, and double spaces.

In some cases, participants indicated unknown words or

missing responses literally rather than pressing the button.

For example, people sometimes typed unknown word, no

response, or ? rather than pressing the labeled buttons.

These responses were recoded as “Unknown word” and

missing (“No more responses”) responses. Only unique

responses were included, with duplicate responses to a

specific cue by the same participant recoded as missing

responses. This affected 3,222 responses. Next, a small

number of cues were recoded, which will be discussed in

the coming paragraphs. In what follows, we will focus on

American English, as most of the participants spoke this

variant. A basic flowchart outlining the various steps of

filtering the data is presented in Fig. 1.

Fig. 1 A simplified flowchart providing a schematic overview of how the preprocessing steps affected the number of participants, cues, and

responses

Behav Res (2019) 51: –1987 006 989



Exclusions

We excluded participants from the dataset if they did not

meet our a priori criteria. First, we excluded participants

that used short sentences. This was determined by counting

the number of verbose responses (n-gram with n > 1)

and removing those participants where more than 30% of

the responses consisted of these n-grams (2,088 or 2.4%

of participants).3 We excluded participants for whom fewer

than 80% of the responses were unique (i.e., they gave

the same response to many different cue words, 754 or

0.8% of participants). We also removed participants with

fewer than 60% of their responses appearing on an English

word list. The word list was compiled by combining word

forms occurring at least twice in the English SUBTLEX

(Brysbaert & New, 2009) combined with the spelling

list of American English extracted from the VarCon list

(Atkinson, 2018) and a list of spelling corrections used in

this study (see infra). This removed 1,201 or 1.4% of the

participants. Finally, participants who indicated that they

did not know more than 60% of their words were also

excluded. This removed 1,815 (2.0%) of the participants.

Although the goal of data collection was to recruit 100

participants for every cue word, the logistics of large-

scale data collection mean that there were some cases

in which this number was exceeded. For consistency, the

current release of the SWOW-EN dataset includes only

100 participants per cue. In those cases where more than

100 responses were available for a cue, we preferentially

included data from fluent speakers from major countries

in the English-speaking world (Australia, Canada, Jamaica,

New Zealand, Puerto Rico, United Kingdom, United States

of America, Republic of Ireland, and South Africa). As

a result, a total of 177,120 responses are not further

considered in this report and the final dataset then consisted

of 83,864 participants and 3,684,600 responses.

Canonical forms

Following pre-processing and participant screening, all

responses were recoded in a more canonical form. For

nouns, we removed both indefinitive and definitive particles

(a and the, respectively). For verbs, we removed the

infinitival particle to. Some responses suggest explicit word

completions because participants preceded their response

with a hyphen (-) or ellipsis (...). To be able to interpret these

responses, we added the cue word as part of the response

3Participants might match multiple removal criteria simultaneously.

The numbers reported here do not consider overlapping matches,

but report only the number of participant matching each criterion

separately.

(e.g., if the cue word was pot and the response was -ato it

was recoded as potato). Similarly, we corrected responses

(and occasionally cues) that unambiguously referred to

proper nouns, but were spelled with lower case (e.g., lego

becomes Lego). More generally, to the best of our ability,

we manually spell-checked all responses occurring at least

two times and added proper capitalization in cases that were

mostly unambiguous.

Multiple spellings

Our goal is to provide a resource which can be used in a

uniform way across a broad range of studies. One of the

trade-offs we face is how to deal with regional variations in

spelling found in UK, Australian, Canadian, and other forms

of English besides American English. In the remainder of

the article, we focus on American English (spell-checked)

responses, leaving room to re-analyze and further collect

data in future work and making the raw uncorrected data

available as well, which might be of interest when studying

spelling difficulties.

In practice, this led to the following changes. There are

a number of words that appeared as cues in multiple forms

corresponding to regional spelling variations (e.g., odor and

odour), and in such cases we included only the American

English variant. Accordingly, our analyses did not consider

aeroplane, arse, ax, bandana, bannister, behaviour, belly-

button, centre, cheque, chequered, chilli, colour, colours,

corn-beef, cosy, doughnut, extravert, favour, fibre, hanky,

harbour, highschool, hippy, honour, hotdog, humour, judg-

ment, labour, light bulb, lollypop, neighbour, neighbour-

hood, odour, oldfashioned, organisation, organise, paper-

clip, parfum, phoney, plough, practise, practise, pro-

gramme, pyjamas, racquet, realise, recieve, saviour, seper-

ate, smokey,theatre, tresspass, tyre, verandah, whisky, WIFI,

and yoghurt. These cue words and their responses were

removed and only the American cue variant was retained.

Some cues also occurred with or without spaces or dashes

(e.g., bubble gum and bubblegum). We replaced black

out, break up, breast feeding, bubble gum, cell phone,

coca-cola, good looking,goodlooking,good looking,hard

working,hard-working, lawn mower, seat belt and tinfoil

with blackout, breakup, breastfeeding, bubblegum, cell-

phone, Coca Cola, good-looking,hardworking,lawnmower,

seatbelt and tin foil. For consistency, we also replaced

two cues that only occurred with British spelling, aeon

and industrialise, with their American counterparts, eon

and industrialize. Finally, we changed bluejay, bunk bed,

dingdong, dwarves, Great Brittain, lightyear, manmade,

miniscule, and pass over to blue jay, bunkbed, ding dong,

dwarfs, Great Britain, light year, man-made, minuscule

and passover. Along the same lines, for the purposes of

Behav Res (2019) 51: –1987 006990



Table 1 The ten most frequent response words, calculated using the

first response (R1) data only or aggregating over all three responses

(R123)

Types Tokens

R1 R123 R1 R123

Money Money Money Money

Food Water Food Water

Water Food Water Food

Car Red Car Car

Love Love Music Music

Work Work Old Green

Bad Bad Sex Red

Good Fun Love Love

Man Good Dog Work

Me Man Bird Old

In the “types” column, frequency is defined as the total number of

cue words for which the response was produced at least once. That

is, the types-based measure ignores the strength of the association and

merely looks at the number of cues to which the response is associated,

whereas the tokens-based measure is sensitive to the number and

strength of the associations. For the “tokens” columns, frequency is

measured as the total number of times that the response word was

produced

analysis, we Americanized all non-American spellings in

the response data. The resulting dataset reduced the original

12,282 to cues 12,218 words.

Distributional properties of cues and responses

Our initial look at the data examines how responses are

distributed across cues: how often do people produce

idiosyncratic “hapax legomena” responses? How does the

number of types (unique words) increase as a function of

the number of tokens (unique responses) in the data? How

often are people unable to produce a response?

Types and tokens

Aggregating across all three responses, there were 133,762

distinct word forms (types) produced in the dataset, of

which only 76,602 appeared only once. If we restrict

ourselves to the first response, there are 64,631 types, of

which 33,410 words occurred only once. Those responses

that occur only once are referred to as hapax legomena

responses. While these are sometimes removed (Nelson

et al., 2004), our approach is to retain these, in line with

the Dutch SWOW data from De Deyne et al. (2013b). This

approach reflects the view that these are not unreliable

responses but simply reflect the long tail of the frequency

spectrum. Of the first responses (R1), 2.8% of the total

number of response tokens and 51.7% of response types

were hapax legomena; when we consider all three responses

(R123), the percentages are similar (2.3% of tokens and

57.3% of types). The ten most frequent types and tokens

for R1 and R123 are shown in Table 1. Regardless of how

frequency was calculated, most words in the top ten were

the same.

In natural language, the number of word types is

boundless, as new words are coined all the time. This is

captured by Herdan’s law, which describes an empirical

exponential relation between the number of distinct words

and the size of the text (the so called type-token ratio).

According to Herdan’s law, we might expect that the number

of distinct responses in the word association task also

increases as we collect more data, although the number of

new responses will gradually drop as the dataset gets larger

(Herdan, 1964).

To provide a sense of how the number of distinct

cue-response pairs (types) increases as a function of the

total number of responses tokens, we estimated vocabulary

growth curves for the first response data (R1) and the

complete dataset (R123). The results are shown in Fig. 2,

which plots the number of types observed as a function of

the number of tokens examined for the empirical data (solid

lines). Because there are three times as many responses

in R123 as in R1, we fit a finite Zipfian Mandelbrot

model to both datasets using the zipfR package (Evert &

Baroni, 2007). Perhaps unsurprisingly, the model fit curves

(dashed lines in Fig. 2 show that the number of new types

steadily increases as a function of the number of tokens

collected. The continued growth in the curve highlights the

productive nature of human language: there appears to be

no adequate sample size to capture all words in a language.

More interesting perhaps is the fact that the rate with which

new types are added is higher for the R123 data than for

the R1 data, reflecting the fact that the second and third

responses do not merely constitute more data, they also

elicit different responses from R1. As we will see in later

sections, this increased response heterogeneity results in

denser networks that produce better estimates of various

kinds of language-related behavior.

Missing and unknown responses

Recall that participants pressed either “Unknown word”

upon presentation of the cue (which we classify as an

unknown response) or “No more responses” after a first

responses was given (which we classify as missing). How

often did this occur? This question is interesting because

it provides a window into the breadth and depth of shared

lexical knowledge. Overall, the average percentage of cue

Behav Res (2019) 51: –1987 006 991
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Fig. 2 Vocabulary growth curve comparing the empirical or observed

growth with the estimates from a finite Zipfian Mandelbrot (fZM)

model (Evert & Baroni, 2007). The curves show how the number

of different types (y-axis) increase as a function of the number of

response tokens (x-axis). The vertical lines indicate the total number

of observed tokens for R1 and R123. The productivity of human lan-

guage is evident in the fact that regardless of the sample size, new word

types are continuously produced. This effect is greatest when includ-

ing second and third responses (R123) rather than only first responses

(R1)

words which people marked as unknown was 2.5%.4 For the

second association (R2), 4.3% of responses were missing,

and for the third association (R3) this number increased to

9.2%. This suggests that most cues were well known and the

procedure was not too difficult, insofar as most people were

able to provide at least three responses per cue.

Network components and lexical coverage

A common application of word association data is to create

a semantic network, and with that in mind we report

statistics for the SWOW-EN dataset that are relevant to such

applications. As usually formulated, an association network

is a graph in which each node corresponds to a word, and

an edge connects nodes i and j if any person produces word

j as a response when presented with word i as a cue (De

Deyne & Storms, 2008a, see for instance; De Deyne et al.,

2016; Dubossarsky et al., 2017; Steyvers & Tenenbaum,

2005). There is some variation in how these networks are

constructed. Sometimes the edges are directed, reflecting

the fact that word associations are often asymmetric, while

other studies do not use this information. Similarly, edges

are sometimes, but not always, weighted, in order to reflect

the frequency with which word j appeared as a response to

word i. It is also commonplace to include only those words

that appeared as cues within the network, which produces

loss of data which might bias other quantities derived from

4The range was between 0% and 52% per cue, remembering that we

excluded anyone who gave 60% or more of these responses. Only

1,815 people (i.e., 2% of the full dataset) were excluded on that basis.

this network (for instance, the number of incoming links;

see De Deyne et al. (2014)). Finally, it is typical to retain

only the largest strongly connected component. This ensures

that only those words that have both ingoing and outgoing

edges are retained and that there is a path connecting all

possible pairs of words in the graph.

In this section, we make use of two different graphs based

on the maximal strongly connected component. The first

graph, GR1, was constructed using only the first response

data (R1), whereas the second graph GR123 was based on

all responses produced (R123). It turns out that almost

all words form part of the maximal strongly connected

component and therefore only a few of the cue words were

removed for either graph. For GR1, the maximal component

consisted of 12,176 vertices, with only 41 words missing

from this component.5 For GR123, the maximal component

consisted of 12,217 vertices; only one vertex (anisette), was

not included.

How much data was lost by adopting this network

representation? That is, given that we reduced the raw data

R1 and R123 to graphs GR1 and GR123 that are defined

over a set of 12,176 and 12,216 words, respectively, it is

natural to ask what proportion of participant responses are

“covered” by this reduced representation. To calculate the

coverage, we computed the average number of response

5These were anchovy, anisette, aorta, artichoke, bad weather, bee-

keeper, bouillon, bunkbed, CAD, campsite, cayman, chervil, cobweb,

demi, drove, eggy, endive, full moon, hissing, industrialize, intoxicate,

nectarine, newsstand, nightingale, patella, percolator,poach, profes-

sions, resentment, seahorse, shadowy, sideburns, situate, spilling,

striptease, synthesizer, teaser, thicken, ticklish, tomahawk and tribune.

Behav Res (2019) 51: –1987 006992
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Fig. 3 Density plot of the coverage based on single (R1) and continued responses (R123), where coverage in this context refers to the proportion

of responses (to a specific cue) that belonged to the set of cue words in the strongly connected component. The proportion of responses retained

for each cue is indicated by the x-axis and shows that most cues retain about 90% of their responses

tokens for each cue when only responses that are part of

the strongly connected component are considered. Overall

coverage was high. The average coverage for GR1 was 0.89

with a median of 0.91 and the total distribution is shown in

Fig. 3. The proportion of word associations retained within

the graph differed as a function of the cue word, ranging

from 0.11 (pituitary) to 1 (ache). The average coverage for

GR123 equaled 0.87 with a median of 0.88, with values

ranging from 0.41 (Homer) to 0.99 (ache). These numbers

show that in both the single response and in the multiple

response case the coverage is quite high: most responses that

are generated by the participants were also part of the set of

cues, and therefore were retained.

Response chaining

The use of a continued response paradigm makes it

possible to investigate the possibility that people engage

in response chaining—using their own previous response

as a cue or prime for their next response to the same

word.6 One effect of response chaining would be to increase

the heterogeneity of the overall response distribution. In

the (arguably unlikely) event that the later responses are

completely unrelated to the original cue, this heterogeneity

might be detrimental to the overall quality of the data.

Alternatively, if the chained responses are still related

to the original cue, the increased heterogeneity might be

beneficial in eliciting additional knowledge possessed by

participants, especially for cues that have a very dominant

6In this paper, we do not discriminate between direct chaining (e.g.,

sibling cues brother, and brother cues sister), versus a “latent variable”

account that views multiple responses as the outcome of a hidden

concept (e.g., extremity cues “body extremity” and “body extremity”

cues both arm and leg). Although direct and hidden chaining may

indeed represent different response processes, the data do not allow us

to distinguish between them.

response. As an example, consider the cue word brewery

for which the response beer occurs in 85% of R1. In this

case, it seems likely that beer is dominating or blocking

other strongly associated responses, and in such cases the

continued procedure enables us to assess the full response

distribution. In this section, we investigate the extent to

which response chaining is present, and what lexical factors

at the level of the cue or the preceding response determine

the amount of chaining.

Evaluating chaining

A simple way to test for response chaining is to compare

the conditional probability of making a specific R2 response

given that a particular R1 response was either made or not

made. For instance, consider the example shown in Table 2.

In this example, the cue word was sun, and we are interested

in determining whether a participant is more likely to give

star as their second response if their first response was

moon. To do so, we exclude all cases where a participant

gave star as their first response, and then construct the

2 × 2 contingency table for R1 against R2 for all remaining

participants. In this table, the first responses are categorized

as moon or ¬moon and the second responses are categorized

as star or ¬star. If the first response does not act as a prime

for the second response, there should be no association in

this table. To test this, we adopted a Bayesian approach for

the analysis of contingency tables (Gunel & Dickey, 1974;

Jamil et al., 2017), assuming a joint multinomial sampling

model. For the sun–moon–star example, the resulting Bayes

factor was 6.53 × 106 in favor of an association, with an

odds ratio of -3.88 (95% CI: -5.97 to -2.45). In other words,

in this example, we find very strong evidence for a chaining

effect.

More generally, we calculated the corresponding Bayes fac-

tor (BF) for all possible cue–R1–R2 triples. In approximately
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Table 2 Contingency table for the cue sun and the mediating effect of

R1 = moon on R2 = star

R2

R1 Star ¬ Star Total

Moon 13 12 25

¬ Moon 1 74* 75

Total 14 86 100

Note the sampling without replacement correction in the cell indicated

with (*) obtained by removing the occurrences of star as R1

1% of cases, we found strong evidence (Bayes factor >

10) for response chaining. Examples of such cue–R1–R2

triples are presented in Table 3. Moderate evidence (3 < BF

< 10) was found for 19% of cases. Some care is required

when interpreting the “moderate evidence” cases, as the

Bayes factor analysis yields moderate evidence anytime

the R2 being tested never appeared as an R1, and as a

consequence many of these weaker results may simply

reflect the increased heterogeneity in R2. While a more

sophisticated approach could be adopted that incorporates

R3, for the sake of brevity, we simply note the possibility

that a modest amount of response chaining exists in the data.

Using association frequency to predict
lexical processing

The first half of this paper described a number of properties

of the SWOW-EN dataset itself. In order to check the

validity of the data, in the next part we examine how well the

SWOW-EN data function as a predictor of other empirical

data relative to other corpora. For example, it is typically

assumed that response frequency (i.e., the number of times

Table 3 Top 10 mediated R2 responses for a specific cue and

preceding response R1 together with their Bayes factor and probability

compared to no chaining

Cue R1 R2 log(BF10) Probability

Gender Male Female 16.31 1.00

Siblings Brothers Sisters 14.29 1.00

Sibling Sister Brother 13.65 1.00

Hop Skip Jump 12.98 1.00

Parents Mother Father 12.77 1.00

Extremity Arm Leg 12.53 1.00

Condiments Salt Pepper 11.80 1.00

Korea North South 11.73 1.00

Commence Begin Start 11.68 1.00

Sex Male Female 11.64 1.00

word j is given as a response to cue word i) is related to the

strength of the association between words i and j , and as

such should correlate reasonably well with other measures

of semantic relatedness. Moreover, if we aggregate over

all cues within the SWOW-EN, and simply consider the

frequency with which word j appears as a response, we

should expect this to serve as a measure of the lexical

centrality. That is, the frequency of a response provides

us with an idea about which words are central or salient

in the lexicon and might determine how efficiently lexical

information can be retrieved.

To verify this, we used the response frequencies in

the SWOW-EN data to predict three relevant behavioral

measures. The first two measures were taken from the E-

lexicon project (Balota et al., 2007, http://elexicon.wustl.

edu/). They consisted of lexical decision and naming

latencies for over 40,000 English words. The last measure

was taken from the Calgary Semantic Decision (CSD)

project (Pexman et al., 2017), in which participants

performed a binary concrete / abstract judgment for 10,000

English words.

We computed correlations to the SWOW-EN response

frequencies using both the R1 data and the R123 data. For

comparison purposes, we computed the same correlations

for two additional word association norms (the USF norms

and the EAT norms). Because the number of responses per

cue varied in the USF data (mean = 144, range = [39,203]),

we sampled 100 responses per cue and removed 90 cues that

had fewer than 100 responses. This reduced the total set of

cues from 5018 to 4928.

Moreover, as word frequencies are one of the most

powerful predictors of word processing speed (Brysbaert

& New, 2009) in a variety of tasks like lexical decision

and naming, we also computed the correlation for the

SUBTLEX-US norms, as these norms captured more

variance than previously used word frequency norms

available (Brysbaert & New, 2009).7

Analysis and results

In keeping with previous studies (Balota et al., 2007;

Brysbaert & New, 2009), we used the z-transformed

response times for the lexical decision data and the naming

latency data. Additionally, in order to reduce skewness,

we log-transformed both the dependent and independent

variables in our analyses. To do so, the z-scores were

transformed to positive quantities by adding the minimum

of the obtained z-scores; for centrality scores, a constant of

1 was added.

7The frequency norms were based on word forms, since Brysbaert

and New (2009) also reported that the advantage in terms of variance

accounted for lemmas was minimal.
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Fig. 4 Pearson correlations rxy and 95% confidence intervals for nam-

ing and LDT data from the E-lexicon project and semantic decision

latencies from the Calgary Semantic Decision (CSD) project (correla-

tions multiplied by -1 for readability). Three different word association

datasets (EAT, USF, and SWOW-EN) and one language-based measure

of frequency derived from SUBTLEX are included. For the word-

association datasets, the partial correlations, indicated as rxy·z, are

calculated given word frequency based on z = SUBTLEX-WF; for

SUBTLEX-WF, the partial correlation rxy·z removes the effect of the

word-association datasets

The results of the correlation analyses are depicted

graphically in Fig. 4 (red bars). The correlation of the lexical

decision time and naming tasks is slightly higher for word

frequencies (SUBTLEX-WF) than for any of the four word-

association datasets. This is not surprising insofar as the

activation of semantic information in these tasks is limited.

In contrast, for the semantic categorization, task correlations

were of similar size.

Given the broadly similar performance of word-

association response frequency and word frequency as pre-

dictors in these tasks, a natural question to ask is whether

the word association data encode any additional informa-

tion not captured by word frequency. To that end, we also

calculated partial correlations between the association mea-

sures, after controlling for the word-frequency information

in SUBTLEX-WF (and vice versa). The results are shown

in pink in Fig. 4, and show a similar pattern as before, with

only modest differences between the four word association

norms. More importantly, they all show that a significant

portion of the variance is not captured by word frequency.

Curiously, the inverse relation does not necessarily hold, as

can be seen in the far right of Fig. 4: while word frequency

does contain unique information for the lexical decision and

naming tasks, it is almost entirely unrelated to semantic

categorization after controlling for word association.

Taken together, these results suggest that the response

frequencies in a word-association task do provide a valid

index of lexical processing, and one that contributes

considerable information over and above word frequency. In

addition, we find that their usefulness depends on the nature

of the task: word-association norms may be better suited

as predictors (relative to word frequencies) for semantic

tasks than for purely lexical tasks. Moreover, the fact that

the results for SWOW-EN were at least as good as older

norms is reassuring. It suggests that our continued-response

procedure, combined with the larger cue set, did not strongly

affect the validity of the association response counts, and

that our more heterogeneous participant sample did not

strongly affect the nature of the response frequencies.

Using word associations to estimate
semantic similarity

In the previous section, we sought to validate the SWOW-

EN norms in a somewhat simplistic fashion, focusing on

the overall response frequency for each word, aggregated

across cues. It is reassuring that the aggregated data

behave sensibly, but our expectation is that many interesting

applications of SWOW-EN norms would rely on the specific

patterns of cue-response association. To illustrate how

the SWOW-EN norms can be used in this fashion, we

now consider word associations as measures of semantic

similarity.8 The focus on similarity reflects the importance

that it plays within the psychological literature. Similarity

is a central concept in many cognitive theories of memory

and language. In priming, similarity between cue and target

8In the literature, “similarity” is often used as a more narrow term than

“relatedness”. In this article, we use the term relatedness to identify an

existing association (i.e., a direct path) between a cue and target and

use the term similarity to indicate the overlap in either direct or indirect

neighbors they have (see further).
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predicts the latency to process the target and the size of

the priming effect depends on how similar the prime is.9

In various memory-related tasks like free recall, word

associations are strong predictors of intrusion and recall

performance (Deese, 1959). Representational similarity as

measured by voxel analysis is also becoming increasingly

important in neuro-imaging approaches that try to uncover

the structure of semantic memory. Across a range of stu-

dies, the fMRI evidence indicates that the pattern of activa-

tion across different areas of the brain when reading com-

mon words (Mitchell et al., 2008) can be predicted from

distributional lexico-semantic models (Schloss & Li, 2016).

Against this backdrop, it seems sensible to consider how

the SWOW-EN norms might be used to measure semantic

similarity.

Threemeasures of semantic similarity

This section outlines three ways to estimate semantic

similarity between a pair of words. These three measures

vary systematically in terms of the amount of information

they use—in the simplest case we consider only the

direct neighbors between two words, whereas in the most

sophisticated case we consider the overall structure of

the semantic network. We chose these three measures to

highlight a tension in how word associations are used. For

instance, the direct associative strength (i.e., association

frequency) is often treated as a nuisance variable—in the

case of priming, tests of semantic facilitation are often

addressed by controlling for associative strength, while

manipulating the semantic relatedness between two words

(?[, see)for an extensive overview]Hutchison2003. In our

view, this is an unnecessarily limited approach, especially

now that large datasets such as the SWOW-EN norms

are available: as an alternative perspective, we suggest the

association data themselves provide a strong indication of

the similarity (and thus the meaning) of a word. Indeed,

this point was highlighted in the seminal work of (?[)p

vii]Deese1965, who argued that

“The interest of psychologists in associations has

always been misguided because the whole classi-

cal analysis of associations centered around the cir-

cumscribed and uninteresting problem of stimulus -

response, of what follows what.”

9A systematic study of priming would bring together both the notion

of association (forward and backward), spreading activation and

distributional overlap. A full evaluation of semantic priming is beyond

the scope of this article, as it depends on many properties such

as the inter stimulus interval or the nature of the task (naming or

lexical decision. However, a preliminary analysis using data from the

Semantic Priming Project (Hutchison et al., 2013) suggests that the

findings for priming match those of lexical centrality and similarity

where the performance of the new continued norms is as good or better

than previously used norms.

By focusing solely on the direct stimulus–response relation-

ship between a pair of words, we end up ignoring the rich

pattern of relationships that span the entire lexicon. It is this

idea that we explore with the aid of our three measures of

similarity. Each of these measures reflects the number of

paths shared between a cue and a target. The most common

case is that where only the neighbors shared by cues and

targets are considered. In this scenario, two words have a

similar meaning if they share many neighboring nodes and

we will use cosine similarity.

However, it is quite straightforward to extend the notion

of relatedness to incorporate indirect paths connecting cues

and targets as well, to capture a more global measure of

relatedness. In the following section, we will address both

scenarios.

Associative strength

The simplest possible measure of semantic relatedness is to

use the associative strength measure, p(r|c), the probability

of responding with word r when given word c as a cue.

In this case, the relatedness is expressed as a weighted

edge between cue and target. Since for most pairs of words

such a path does not exist, the use of this measure is

limited. Instead, we focus on “local” similarity based on the

neighboring nodes they share. Given two cues, a and b, and

a total of N different nodes, we measure their similarity S

as the cosine between them:

S(ca, cb) =

∑N
i=1 p(ri |ca)p(ri |cb)

√

∑N
i=1 p(ri |ca)2

√

∑N
i=1 p(ri |cb)2

(1)

This cosine similarity measure reflects the shared neighbors

between a and b and consists of a dot product of

the associative response strengths in the numerator and

divided by the L2-norm in the denominator. In contrast

to other distance metrics such as Euclidean distances, the

denominator normalizes the magnitude of each vector,

which makes both words comparable even when the amount

of information for them differs.

We include local similarity based on strength primarily as

a baseline measure of performance against judged similarity

data when comparing it to global similarity measures

derived from random walks which we will introduce in the

next section.

Pointwise mutual information

It has long been recognized that the simple frequency

of response p(r|c) is not an ideal measure of semantic

similarity (Deese, 1965, see p 10,). In recent years, an

information theoretic measure based on the full distribution
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of responses to cue word c – the positive pointwise mutual

information (PPMI) – has been shown to predict the

behavior in various language processing tasks (Recchia &

Jones, 2009, e.g.,). We calculated the PPMI measure as

follows:

PPMI(r|c) = max

(

0, log2

(

p(r|c)

p(r)

))

PPMI(r|c) = max

(

0, log2

(

p(r|c)
∑

i p(r|c)p(c)

))

PPMI(r|c) = max

(

0, log2

(

p(r|c)N
∑

i p(r|c)

))

(2)

In the second line of the equation, the denominator takes

into account how often a response is given for all cues i.

In the last line of the equation, we observe that the p(c)

is identical for all c and equals 1/N where N corresponds

to the number of cues (or vertices) in the graph. This

way, responses that are given very frequently for many

cues are considered less informative than responses that

are given for only a small number of cues. In contrast

to associative strength, this mutual information measure

thus considers distributional information derived from the

entire graph. In line with our previous work (De Deyne

et al., 2016; De Deyne et al., 2016), we apply point-wise

mutual information to the forward associate strengths. In

light of the typical results in text-corpus based studies, we

expect this approach to positively affect the performance in

semantic tasks (Bullinaria & Levy, 2007). After weighting

the responses according to Equation 2, we again calculated

local similarity as the cosine overlap between two words.

A randomwalk measure

The PPMI measure of relatedness extends the simple

associative strength measure by taking into account the full

distribution of responses to a particular cue word, but it

is still a “local” measure of similarity in the sense that it

only considers the responses to that specific cue. Taking

a more “global” network perspective it is easy to see that

similarity reflects more than just the immediate neighbors

of a word, and could equally consider indirect paths or

neighbors of neighbors as well, consistent with a spreading

activation mechanism (Collins & Loftus, 1975). In contrast

to local similarity, a global similarity measure also considers

the similarity among the neighbors themselves, leading to

a recursive interpretation based on the idea that a node

activates not only its neighboring nodes, but also the

neighbors of these neighbors, though one would expect

that these indirect relations contribute less to the overall

similarity than the more salient direct relationships.

A formal implementation of this principle relies on

a decaying random walk process (see Abott, Austerweil,

& Griffiths, 2015; Borge-Holthoefer & Arenas, 2010;

De Deyne, Navarro, Perfors, & Storms, 2012; Griffiths,

Steyvers, & Firl, 2007) and is closely related to measures

referred to as the Katz index, recurrence and the Neumann

kernel (Fouss et al., 2016) in other domains than psychol-

ogy. In this paper, we adopt the approach described in De

Deyne et al. (2016), and assume that the similarity between

pairs of words is captured by the distributional overlap of

the direct and indirect paths they share (Borge-Holthoefer

& Arenas, 2010; Deese, 1965; De Deyne et al., 2015). For

each node, this distributional representation constitutes a

weighted sum of paths. More formally, consider a walk of a

maximum length r = 3, where I is the identity matrix and

the damping parameter α < 1 governs the extent to which

similarity scores are dominated by short paths or by longer

paths (Newman, 2010):

Grw
(r=1) = I,

Grw
(r=2) = αP + I,

Grw
(r=3) = α2

P
2 + αP + I

(3)

During each iteration, indirect links reflecting paths of

length r are added to the graphs. Longer paths receive lower

weights because of the exponent r of α. In the limit, we

arrive at a simple representation based on the inverse of the

transition matrix:

Grw =
∑∞

r=0(αP)r = (I − αP)−1 (4)

A common problem is that such a walk will also be biased

toward nodes that are highly connected (Newman, 2010).

To address this, the matrix P is constructed by applying

the PPMI transformation to the raw association data and

normalizing the values to sum to 1. Finally, like the local

measure of similarity, we then take the cosine of the PPMI

row-normalized Grw distributions to calculate the similarity

of two words.

Benchmark data

To evaluate these measures of similarity, we rely on

seven existing datasets in which participants judged the

similarity of word pairs. We briefly describe these data

(see also De Deyne et al., 2016). In one study, SimLex-

999 (Hill et al., 2016), subjects were explicitly asked to

judge the similarity between words ignoring their potential

relatedness. In the remaining studies, participants were

asked to judge the relatedness of word pairs using rating

scales. These include the WordSim-353 relatedness dataset

(Agirre et al., 2009), the MEN data (Bruni et al., 2012),

the Radinsky2011 data (Radinsky et al., 2011), the popular

RG1965 dataset (Rubenstein & Goodenough, 1965), the
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MTURK-771 data (Halawi et al., 2012) and Silberer2014, a

large dataset consisting of mostly concrete words (Silberer &

Lapata, 2014).

Because the SWOW-EN dataset contains capitalization,

proper capitalization was restored in a number of evaluation

sets. Similarly, we checked the occurrence of proper nouns

among the EAT and USF cues and applied capitalization

where appropriate. We also checked the spelling mistakes

and variants and corrected mistakes or converted to Ameri-

can English to ensure maximal overlap between the datasets.

Results and discussion

The performance of all three similarity measures is shown

for each of the seven studies Fig. 5 and in Table 4, which

tells a very consistent story. Regardless of whether the

measures are computed using R1 data or R123 data, the

PPMI measure always outperforms the simpler associative

strength measure, and the random walk model always

performs at least as well as the PPMI measure, but usually

performs better.

For the associative strength and (to a lesser extent) PPMI

measures, the larger dataset based on R123 leads to better

predictions than the first response only data in R1, though

this effect is almost completely attenuated for the random

walk measure. There are some differences among the

various datasets—most measures performed worst on the

SimLex-999 dataset, in which participants were explicitly

trained to ignore relatedness when judging word pairs—

but even in this case the same pattern of performance is

observed.

Extending this analysis, we repeated the procedure above

for the USF norms, the EAT norms, and an aggregated

dataset that pooled the USF norms with the SWOW-EN

norms. The results are shown in Fig. 6 and Table 5. For

reasons of conciseness, this table only presents the (micro-

)averaged correlation across all seven datasets. The pattern

of results is similar, despite that only half of the similarity

pairs were present in all three word-association datasets.

In general, measures of similarity based on EAT, USF, and

the R1 data from SWOW-EN perform similarly, while the

larger R123 data from SWOW-EN yields somewhat better

performance. Finally, there is no evidence that combining

the USF and SWOW-EN R123 norms together improves

performance, as the red curves in Fig. 5 illustrate.

Overall, the results strongly favor the random walk

approach, especially when sparsity of the data is an issue.

The findings are in line with our previous work exam-

ining how people make judgments about very weakly

related words (De Deyne et al., 2016) and with other

recent approaches that show how indirect paths contribute

to semantic similarity (Kenett et al., 2017). Returning

to Deese’s (1965) comments quoted earlier, the central

intuition—namely that the simple stimulus-response contin-

gencies are the least interesting aspect to word association

data–seems to be borne out.

General discussion

In this article, we have presented a new dataset for

English word associations. It was constructed to capture
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Fig. 5 Pearson correlations and confidence intervals for judged simi-

larity and relatedness across seven different benchmark tasks. Predic-

tions are based on either local similarity using associative strength,

PPMI, or global similarity-based random walks (RW). Graphs includ-

ing the first responses (GR1) and all responses (GR123) show how

similarity interacts with the density of the graph
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Fig. 6 Comparison between two existing datasets (EAT and USF) and

SWOW-EN in predicting human similarity and relatedness judgments.

Pearson correlations and confidence intervals reflect micro-averaged

judgments across seven benchmark tasks. Predictions are based on

either local similarity using associative strength, PPMI, or global

similarity-based random walks (RW). In addition to the three associ-

ation datasets, a combination of USF and SWOW-EN (red curves) is

included as well showing that adding more data does not markedly

improve the results

a large portion of the mental lexicon by including over

12,000 cue words and 300 associations for each of these

cues. It includes the cues of the USF dataset, which will

facilitate further replications of previously obtained results,

but doubles the number of available responses per cue.

Because the total number of cues is considerably larger

than previous datasets, it is possible to derive an accurate

semantic network based on cue words only. The biggest

advantage of this is that it opens up a variety of new analyses

that take into account the overall structure of the cue-based

semantic network, some of which we have briefly outlined

in this paper.

The importance of rich association networks

One of the main points we have emphasized throughout is

the importance of considering association in context. This

was especially evident when using word associations to

predict semantic relatedness. As we have seen, the predic-

tive power of the norms varies considerably depending on

the density of the word association networks used, and the

amount and weighting of the information encoded in the

entire network. There is an enormous difference between

the worst performing measure and the best. When a ran-

dom walk measure is based on the SWOW-EN R123 data,

we obtain good predictions about semantic relatedness (r =

.81). Moreover, it is possible to produce good predictions

when a more sophisticated model (random walk) is applied

to comparatively impoverished data such as the EAT (r =

.73), and similarly, it is possible to get by with simplistic

measures (associative strength) when given rich data like

SWOW-EN R123 (r = .64). However, when the data are

less rich (EAT) and the measure is based on distributional

overlap based on simple associative strength, the predictive

power declines drastically, and the overall correlation with

semantic relatedness is a mere r = .46. The ability to pro-

duce quantitatively better predictions matters in a number

of areas. Many categorization accounts predict prototypi-

cality by considering how similar category exemplars are

to each other. Word associations offer a way to estimate

such prototypicality (De Deyne et al., 2008). Likewise, esti-

mates of similarity are also the key component in predicting

other aspects of word meaning such as connotation based

on valence, arousal and potency, concreteness or even age-

of-acquisition. In these cases as well, our findings suggest

that word associations often out-perform predictions based

on the most recent text models (De Deyne et al., 2016; Van

Rensbergen et al., 2016; Vankrunkelsven et al., 2018) using

a very sparse representation. More generally, we expect

that these findings will be useful across a range of studies

about psychological meaning, including priming studies and

patient studies where semantic effects might be small and

go undetected when the relatedness reflects distributional

properties in external language.

Comparison to other measures and approaches

It is unlikely that word-association measures will always

provide the best tool for studying semantic representa-

tion, and some comments about the relationship to other
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approaches are worth making. For instance, we found that

association response frequency correlates only moderately

with word frequency (r = .54), and while word asso-

ciation data seem well suited to semantic categorization

and semantic relatedness, word frequency measures (based

on the SUBTLEX-US data) performed better as predic-

tors of lexical decision times and naming (but see further).

That being said, in contrast to other subjective techniques

to elicit meaning, the information captured by an uncon-

strained word association task does seem to capture the right

kind of meaning; meaning that is not limited by defining,

characteristic, or entity features, but meaning that reflects

mental representations that include properties about conno-

tation, scripts and themes, properties notably absent from

other subjective measures such as feature norms (De Deyne

et al., 2008; McRae et al., 2005).

To verify if this indeed the case, we performed an

additional analysis comparing similarity benchmark data

introduced earlier and two publicly available feature sets:

the McRae feature norms for 541 nouns (McRae et al.,

2005) and the CSLB feature norms for 637 words (Devereux

et al., 2014). For conciseness, we only compared them to

the similarity estimates of SWOW-EN using all responses

with spreading activation strengths. Since most of these

norms are collected for concrete norms, only two studies,

Silberer2014 and MEN, had sufficient overlap with the

stimuli in the feature norms. Similarity was calculated in a

standard way, using the cosine overlap of the feature vector,

where each entry corresponds to the number of participants

that gave the feature for the concept. Using the McRae

norms, the results were r(65) = .64, CI = [.47, .77] for

MEN and r(2392) = .77, CI = [.75, .79] for Silberer2014.

For SWOW-EN, the results were r(65) = .85, CI =

[.76, .90] and r(2392) = .85, CI = [.84, .86] for the

same datasets. For the CSLB norms, we found r(132) =

.70, CI = [.60, .78] for MEN and r(3126) = .80, CI =

[.79, .81] for Silberer2014. Again, the correlations were

higher for SWOW-EN, r(132) = .90, CI = [.86, .93]

and r(3126) = .86, CI = [.85, .86] for MEN and

Silberer2014, respectively. In short, these findings suggest

that concept feature norms only partly capture meaning

involved similarity judgments as well. More generally,

it suggests that word association norms provide a more

reliable alternative for concept feature norms for a wide

variety of words and potentially the best semantic measure

available to date.

Looking beyond measures based on experimental tasks,

there are many lexico-semantic models that rely on

naturalistic text corpora as their input data, typically using

some form of dimensionality reduction to extract a semantic

representation (see Jones, Willits, Dennis, & Jones,

2015, for an overview). Here as well, word associations

outperform text-based semantic models. Previous work

using largely the same benchmarks presented here showed

that the best-performing text model resulted in a correlation

of r = .69, which was significantly lower than that of

the best-performing word-association model, r = .82 (De

Deyne et al., 2016).

Apart from their ability to predict, it is also important

to consider what kind of theoretical contribution subjective

measures of meaning can make, especially as improved

objective measures of language from corpora are becoming

available. Some researchers have argued that word-

association measures correspond to empty variables (as

discussed in Hutchison, Balota, Cortese, & Watson, 2008).

The underlying idea is that the processes involved in

generating them are likely to match other processes in

commonly used tasks such as priming or similarity ratings.

If so, this might explain their good performance in

comparison to objective text-based measures (e.g., Jones,

Hills, & Todd, 2015). At the same time, researchers have

criticized word associations to be underpowered as well,

because they only capture the most dominant responses,

whereas the amount of text that can be encoded in text-based

models is virtually limitless, which allows for the explicit

encoding of weak co-occurrence relations (Roelke et al.,

2018).

Our findings speak to both of these conjectures. First

of all, we agree that when causal claims about the nature

of semantic cognition are the objective, the question of

circularity should be taken seriously. Even so, it is far

from clear whether circularity through shared processes

leads to better predictions. Assuming that some processes

might be shared across different subjective tasks, there

are many reasons why prediction might be suboptimal.

Specific biases (e.g., a frequency bias) might mask the

content of representations, or the subjective judgments

might be idiosyncratic or fail to capture weak connections.

Furthermore, a priori, it is not clear whether the type

of responses found in associations are appropriate, and

perhaps more restrictive subjective tasks such as concept

feature generation are more predictive when in comes to

tasks tapping directly into word meaning. What we find

is that strength measures typically provide a poor account

of relatedness or similarity, and preliminary analyses

on priming. However, measures that incorporate indirect

informative relations systematically outperform simple

strength-based measures. As noted earlier, this was clearly

demonstrated when comparing the current norms with USF,

where we found that spreading activation almost completely

compensates the fact that only dominant responses are

encoded explicitly.
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Apart from the conclusions that can be drawn from

inference using very little data, there might be a more

important factor underlying the success obtained using word

associations. A recent study found that the performance

of word associations was mainly due to the fact that

for concrete concepts, word associations provide more

grounded representations than do text models. The same

study also evaluated emotional grounding in abstract words.

There as well, a sizable advantage of associations relative

to text-based representations can be explained because word

associations accurately capture crucial emotive factors such

as valence and arousal in abstract words, which make

up the majority of the words in our lexicon (De Deyne et al.,

2018).

Altogether, this suggests that studying word associations

can reveal properties about both the processes and nature of

the representations involved in semantic cognition. While

understanding the formation of word associations itself

is an aspirational goal (and supported by the convergent

validity provided in our findings), it would involve a

perceptual (and emotional) grounded model, where modal

specific representations are notoriously hard to obtain in

an unsupervised or objective fashion. For example, the

best-performing multimodal models are supervised learning

models trained on human naming data (e.g., Bruni, Tran,

& Baroni, 2014; Silberer & Lapata, 2014). For now, even

the most recent text-based lexico-semantic models provide

only weak-to-moderate correlations with word associations.

A representative example is a recent study by Nematzadeh

et al. (2017) in which the highest correlation obtained across

a variety of text-based models (including topic and word

embedding models) were used to produce word associations

was .27.

As text-based approaches of semantic cognition continue

to improve, it is also becoming increasingly clear that

more stringent criteria to evaluate them are needed. One of

the challenges is that much larger amounts of text might

be over-fitting the behavioral data leading to erroneous

conclusions about what kind of representations language

contributes to. An example is the capacity of extremely large

text models to encode some modal-specific representation

(Louwerse, 2011). Apart from the issue whether their size

is appropriate, this example also illustrates the difficulty

of proving the unique (causal) contribution given the

overlap with abundantly available modal-specific perceptual

information that is also contributing to our mental

representations through processes of perceptual simulation

or imagery. In areas such as these, both subjective internal

and objective external measures can contribute to our

understanding of word processing and semantic cognition

and taking a dialectic approach of comparing internal and

external language representations might provide a way

forward towards understanding the nature of our mental

representations.

On differences between norms

Throughout the paper, we have observed small but

consistent differences between the older USF and EAT

norms and the newer SWOW-EN dataset. In many cases,

the differences are simply a matter of scale: the SWOW-

EN dataset is much larger than earlier norms, and in some

cases this may provide an advantage. However, it is worth

noting some of the other differences between the dataset.

The current sample is without doubt more heterogeneous

than the EAT and USF samples, which were collected

predominantly among college students.

It is very likely that performance will be higher in

studies in which there is a close match in participant

demographics with any given word-association dataset. For

example, we expect that the associations in USF will

provide a good match when the participants are American

college students. Besides demographic differences and the

obvious difference between our continued response task and

the more traditional single response task, there are other

differences that need to be pointed out as well.

One notable difference lies in the task instructions.

The instructions we used were designed to elicit free

associations in the broadest possible sense, whereas in

the USF norms Nelson et al. (2004) participants were

asked to write down the first word that came to mind

that was “meaningfully related or strongly associated to

the presented cue word.” The fact that participants were

asked to give a meaningful response might affect the type

of responses that are generated. There is some indication

that this indeed might have resulted in a different type

of response, for example by considering the number of

times participants make reference to proper nouns (names

of people, movies, books, etc), which are not that common

in the USF norms. The selection of cue words itself is

likely to have contributed to this as well, as the current

set also included a small number of proper nouns, which

might have indicated to the participant that such words

were also valid responses. When we consider the EAT,

the differences in methodology and sample are somewhat

more pronounced. Not only are the EAT data older, they

were collected from British speakers that differed on other

demographic measures also (students between 17 and 22,

of which 64% were male). The instructions for EAT asked

participants to write down for each cue the first word it made

him or her think of, working as quickly as possible (Kiss

et al., 1973).
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Perhaps it comes as a surprise that in light of all these

differences, the three datasets often produce similar levels

of performance. It is especially noteworthy that measures

of semantic relatedness based on a “spreading activation”

measure proved to be highly robust to differences in the

datasets, again highlighting the value of using a method that

incorporates information about the global structure of the

semantic network.10

A final point to make when comparing different norms—

one that we have not focused on in this paper—is to

consider the differences between the English language

data (SWOW-EN) and the Dutch language data reported

previously (SWOW-NL). The literature on word processing

shows a strong English-language bias and some effects

might be language specific. While we have previously

investigated Dutch word associations and found similar

results for relatedness (De Deyne et al., 2015; De Deyne

et al., 2016), centrality effects in lexical processing were

better predicted by association response frequencies in

Dutch, even though external word frequency norms were

also based on SUBTLEX subtitles in Dutch (De Deyne

et al., 2014). There might be a number of factors underlying

this observation, such as systematic language differences,

demographic differences, or even differences in the quality

of the word frequency predictors. However, without further

systematic research, any claims in this area remains largely

speculative.

Future work

While we have focused our comparison mostly on previous

English word associations, one of the goals of the current

project is to collect these data for the most common

languages in the world. So far, the largest resource is the

Dutch SWOW-NL, which currently contains over 16,000

cue words and good progress is made on a similar

Mandarin Chinese project, for which we collected at least

50 participants generated three associates to each cue, for

over 8,500 cues.

In future research, we plan on extending the English

database along two major lines. First, we have omitted

10To further illustrate this point, we correlated the predicted

relatedness for the stimulus pairs of the seven studies described in

the previous section and compared how similar these predictions were

among models and found a correlation of .90 between the USF and the

comparable SWOW-EN norms using the global random walk measure

based on the first response, whereas the correlation was lower for the

local similarity measures: .84 for associative strength weights, .78 for

PPMI.

the discussion of response latencies for word associations.

Although these are now standard collected across the

different SWOW projects, a full treatment of the use and

properties of these latencies derived from the continued

word association task would be beyond the scope of this

article. Second, it would be good to keep extending the

words included, especially as new words are introduced

in the language. However, our results indicate diminishing

returns for adding a large number of new cues that are

likely low frequency. Instead, it might be useful to further

elaborate on the different English variants (e.g., British and

American) or supplement them with age-balanced data. We

also expect that better methods and models could further

enhance the use of word associations. For example, in the

current work, a subject’s primary, secondary, and tertiary

responses were simply added, which in some cases might

introduce a bias. Other ways of calculating associative

strength over multiple responses by non-linearly weighting

responses and considering sampling without replacement

for secondary and tertiary responses might be better suited

(De Deyne et al., 2013a; Maki, 2008). As demonstrated in

the current work, some degree of response chaining will

need to be considered as well.

Finally, in most research based on subjective or language

corpora, we assume that the language or responses averaged

over a large sample of speakers captures representations

at the individual level as well. Evidence across a wide

range of studies with different speakers suggests this is

indeed the case. While language and its communicative

role might be special in providing a pressure to align

our linguistic representations between different individuals,

many interesting questions about individual differences

remain unanswered. Partly, this has to do with the difficulty

to collect large samples of language from an individual.

However, recent work suggests that studying individual

networks might be feasible (Austerweil et al., 2012; Morais

et al., 2013) and ongoing work to extend this approach is

currently ongoing.

Altogether, we cannot help but agree with the closing

paragraph by Nelson et al. (2004, p. 406) in the context of

the USF norms: “Difficult as they are to collect, such norms

offer better maps for predicting performance in certain

cognitive tasks, and if anything, more norms are needed.”
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Appendix A

Supplemental Tables

Table 4 Pearson correlation for seven judged relatedness and similarity studies, using three theoretical measures of similarity (strength, PPMI,

and random walk) constructed using either R1 or R123 responses from SWOW-EN

Strength PPMI RW

Dataset N r CI r CI r CI

SWOW-EN R1

MEN 2706 .48 .45 .51 .64 .62 .66 .79 .78 .81

MTURK-771 716 .43 .37 .49 .62 .57 .66 .76 .73 .79

Radinsky2011 158 .39 .24 .51 .62 .51 .71 .77 .70 .83

RG1965 53 .60 .38 .74 .77 .62 .86 .90 .82 .94

Silberer2014 6404 .61 .59 .62 .73 .72 .74 .82 .81 .83

SimLex-999 988 .33 .27 .38 .54 .49 .58 .64 .60 .67

WordSim-353 311 .38 .28 .47 .54 .46 .61 .72 .66 .77

Micro AVG 11336 .53 .52 .54 .68 .67 .69 .79 .78 .80

SWOW-EN R123

MEN 2706 .61 .58 .63 .74 .72 .76 .81 .79 .82

MTURK-771 716 .56 .51 .61 .72 .68 .75 .77 .73 .79

Radinsky2011 158 .54 .42 .64 .71 .63 .78 .77 .70 .83

RG1965 53 .74 .58 .84 .86 .76 .92 .92 .86 .95

Silberer2014 6404 .69 .67 .70 .80 .80 .81 .84 .83 .85

SimLex-999 988 .45 .40 .50 .67 .64 .70 .68 .64 .71

WordSim-353 311 .51 .43 .59 .64 .57 .70 .74 .68 .78

Micro AVG 11336 .63 .62 .64 .77 .76 .77 .81 .80 .81

The “micro-averages” across datasets adjust for sample size by standardizing the ratings in each study and then correlating pooled data with

theoretical predictions

Table 5 Pearson correlation based on micro-averages over N = 5, 202 items of seven datasets involving similarity judgments and relatedness

derived from EAT, USF and SWOW-EN

N = 5202 Strength PPMI RW

Dataset r CI r CI r CI

EAT .45 .43 .47 .62 .61 .64 .73 .72 .75

USF .45 .43 .47 .65 .63 .66 .77 .76 .79

SWOW-EN R1 .46 .44 .48 .65 .64 .67 .78 .77 .79

SWOW-EN R123 .58 .56 .60 .75 .74 .76 .80 .79 .81

USF + SWOW-EN R1 .48 .46 .50 .70 .69 .72 .79 .78 .80

USF + SWOW-EN R123 .54 .52 .56 .76 .75 .77 .79 .78 .80

The columns refer to the role of weighting (associative strength or positive point-wise mutual information or PPMI ) and spreading activation

using random walks (RW). The last two rows show the results for combined datasets through the intersection of cues found and single responses

from USF and SWOW-EN
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Appendix B: Terms of use and online
materials

Fair use and referencing the data

The data can be used for research purposes only. It is sub-

ject to a Creative Commons Attribution-NonCommercial-

NoDerivs 3.0 Unported License and cannot be redistributed

or repackaged without explicit consent from the first author.

When using these data, please refer to them as the SWOW-

EN2018 word association data and unless needed, use the

corrected version for consistency. This project is a work in

progress so if you find these data useful, please consider

sharing our study: https://smallworldofwords.org/.

Available resources

Original and processed data All data is available at

https://smallworldofwords.org/project/research/.

The data consist of files with the original and processed

data as used in this manuscript. The original unprocessed

data file contains both participant and response information.

It consists of the complete raw uncorrected responses

and cues. These data might be useful for those interested

in spelling mistakes or would like to experiment with

other ways of normalizing responses. Each row in the file

consists of participant and response data. The participant

data include a unique participant identification number, age,

gender, education, city and country details, native language

and test date and time. The response data consist of the cue,

the first response (R1), the second response (R2) and the

third response (R3). For each of the three responses, the

original and spell-checked responses are included.

The second file is derived from the raw data and

consists of spell-checked cues and responses after removing

participants that did not meet selection criteria. In contrast

to the previous file, each cue has exactly 100 R1, R2, and

R3 responses. As described in the text, the responses were

also Americanized. We propose to use these data as much as

possible to facilitate comparison between results and refer

to this dataset as the SWOW-EN2018 data.

In addition, we also provide a list with manually

annotated spelling errors and welcome any suggestions to

further extend this list. The scripts to process the data and

calculate the measures reported in this paper can be obtained

from https://github.com/SimonDeDeyne/SWOWEN-2018.
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