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Abstract. The spreading dynamics of information and diseases are usually
analyzed by using a unified framework and analogous models. In this paper,
we propose a model to emphasize the essential difference between information
spreading and epidemic spreading, where the memory effects, the social
reinforcement and the non-redundancy of contacts are taken into account. Under
certain conditions, the information spreads faster and broader in regular networks
than in random networks, which to some extent supports the recent experimental
observation of spreading in online society (Centola D 2010 Science 329 1194).
At the same time, the simulation result indicates that the random networks
tend to be favorable for effective spreading when the network size increases.
This challenges the validity of the above-mentioned experiment for large-scale
systems. More importantly, we show that the spreading effectiveness can be
sharply enhanced by introducing a little randomness into the regular structure,
namely the small-world networks yield the most effective information spreading.
This work provides insights into the role of local clustering in information
spreading.
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1. Introduction

Understanding the dynamics of epidemic spreading is a long-term challenge and has attracted
increasing attention in recent years. Firstly, the fast development of database technology and
computational power has made more data available and analyzable to the scientific community.
Secondly, many new objects of study have come into the horizon of epidemiologists: for
example computer viruses, opinions, rumors, behavior, innovations, fads and so on. Lastly,
in addition to the compartment model and population dynamics [1], novel models and tools
appeared recently, inspired by empirical discoveries about network topology [2, 3], temporal
regularities of human activities [4–6] and scaling laws in human mobility [7, 8].

In the simplest way, we can roughly divide the human-activated spreading dynamics into
two classes according to the disseminules: one is the spreading of infectious diseases requiring
physical contacts and the other is the spreading of information, including opinions, rumors
and so on (here we mainly consider information whose value and authenticity need judgement
and verification by individuals, in contrast to information about jobs, discounts, etc). In the
early stage, scientists tried to describe these two classes by using a unified framework and
analogous models (see, e.g., [9, 10]), emphasizing their homology and yet overlooking their
essential differences. Very recently, scientists started to take into serious consideration the
specific features of information spreading [11, 12], as well as the different mechanisms across
different kinds of information [13]. Dodds and Watts [14] studied the effects of limited memory
on contagion, yet did not consider the social reinforcement. Some recent works indicate that
social reinforcement plays an important role in the propagation of opinions, news, innovations
and fads [15–19].

In this paper, we propose a variant of the susceptible–infected–recovered (SIR) model
for information spreading, which takes into account three different spreading rules from the
standard SIR model: (i) memory effects, (ii) social reinforcement and (iii) non-redundancy of
contacts. The main contributions are twofold. Firstly, we show that when the spreading rate λ is
smaller than a certain value λ∗, the information spreads more effectively in regular networks than
in random networks, which to some extent supports the experiment reported by Centola [20]:
behavior spreads faster and can infect more people in a regular online social network than
in a random one (with not more than 200 people in the experiment). We further show that
with the increasing of the network size, the value of λ∗ will decrease, which challenges the
validity of Centola’s experiment [20] for very-large-scale networks. Secondly, the effectiveness
of information spreading can be remarkably enhanced by introducing a little randomness into
the regular structure, namely the small-world networks [21] yield the most effective information
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spreading. This result is complementary to the traditional understanding of epidemic spreading
on networks where infectious diseases spread faster in random networks than in small-world
networks.

2. Model

Consider a network with N nodes and E links representing the individuals and their interactions,
respectively. Hereinafter, for convenience, we use the language of news spreading, but our model
can be applied to the spreading of many kinds of information such as rumors and opinions, not
limited to news. At each time step, each individual adopts one of four states: (i) Unknown—the
individual has not yet heard the news, analogous to the susceptible state of the SIR model.
(ii) Known—the individual is aware of the news but not willing to transmit it, because she is
suspicious of the authenticity of the news. (iii) Approved—the individual approves the news and
then transmits it to all her neighbors. (iv) Exhausted—after transmitting the news, the individual
will lose interest and never transmit this news again, analogous to the recovered state in the SIR
model.

At the beginning, one node is randomly chosen as the ‘seed’ and all others are in the
unknown state. This seed node will transmit the news to all her neighbors and then become
exhausted. Once an individual (in either an unknown or a known state) receives news, she will
judge whether it is true depending on the number of times she has heard it—news or a rumor
is more likely to be approved if heard many times (a very recent model allows the infectivity
and/or susceptibility of hosts to be dependent on the number of infected neighbors [22]). The
present rules imply two features of information spreading, namely memory effects and social
reinforcement, which are usually neglected in the standard SIR model and its variants for rumor
propagation.

In our model, we assume that for a given individual if she receives the news at least once
at the t th time step and she has received this news m(t) times until time t (m(t) is a cumulative
number), the probability that she will approve it at time t is P(m) = (λ − T )e−b(m−1) + T , where
λ = P(1) is the approving probability for the first receipt. T ∈ (0, 1] is the upper bound of
the probability indicating maximal approving probability. Here we do not consider the interest
decay, and we assume that the time scale of news spreading is much faster than our memory
decay. After approval, she will transmit the news to all her neighbors in the next time step and
then become exhausted. If an individual, in either an unknown or a known state, does not receive
any news in the t th time step, nothing will happen no matter how many times this individual has
received the news. The memory effects are embodied by m(t), which is a cumulative number
instead of the independent spreading rates for different contacts in the standard SIR model. With
increasing m, P(m) will infinitely approach T and the speed is determined by the parameter
b > 0, which reflects the social reinforcement effect. Figure 1 shows the approving probability
as a function of m, given different b. Larger b indicates stronger social reinforcement. For
example, P(2) is equal to 0.227 when b = 0.2 and is equal to 0.486 when b = 0.8. Since an
individual who has transmitted the news will immediately become exhausted, our model ensures
that each link is used at most once without any redundancy of contacts. The spreading process
comes to an end when no new individual approves the news and spreads it.

We perform our model on three kinds of networks with an identical node degree k.
(i) Regular networks. A regular network is a one-dimensional ordered network with periodic
boundary conditions, where each node is connected to its k nearest neighbors, namely to the
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Figure 1. The approving probability as a function of m.

k/2 nearest neighbors clockwise and counterclockwise [21]. Note that, in the literature on graph
theory, the term ‘regular networks’ usually stands for networks whose nodes are of the same
degree and thus the following homogeneous small-world networks are also regular. In this paper,
we follow the literature on complex networks and use the term ‘regular networks’ to represent
networks with ordered structure. (ii) Homogeneous small-world networks. The homogeneous
small-world network is constructed by randomly reshuffling links of a regular network, while
keeping the degree of each node unchanged [23]. According to the link exchanging method [24],
at each time step, we randomly select a pair of edges A–B and C–D. These two edges are
then rewired to be A–D and B–C. To prevent multiple edges connecting the same pair of
nodes, if A–D or B–C already exists in the network, this step is aborted and a new pair of
edges is randomly selected. We implement pE steps, where p indicates the randomness of the
network. (iii) Random networks. Repeating the above rewiring operations many times leads
to a homogeneous random network. Theoretically speaking, a homogeneous random network
is obtained only for p → ∞; we here consider p ∈ [0, 10] and when p > 1, the topological
statistics are very close to those of random networks. In all simulations, the node degree is set to
k = 6, and we have carefully checked that the results are not sensitive to the node degree unless
k is very large or very small.

3. Results

We denote by R the number of approved nodes of the news. Larger R at the final state indicates
broader spreading. We first compare the spreading processes on regular and random networks.
Figure 2 reports four typical examples with different λ values and fixed b = 0.8. Surprisingly,
for small λ (e.g. figure 2(a)), the spreading on regular networks is faster and broader than
that on random networks. These results are in accordance with the online social experiment of
Centola [20] and yet against the traditional understanding of network spreading [28]. With the
increasing of λ, the random networks will be favorable for faster and broader spreading. Figure 3
shows the dependence of the number of approved nodes at the final state on the parameter λ.
There is a crossing point at about λc ≈ 0.145, after which R of random networks exceeds that of
regular networks. The inset shows the difference between the number of final approved nodes
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Figure 2. The number of approved nodes as a function of time on a regular
network (black squares) and on a random network (red circles). The parameters
are N = 500, k = 6, b = 0.8 and T = 1. The results are obtained by averaging
over 500 independent realizations.

on regular and random networks, namely Rre− Rra against λ. With very large λ, almost every
node will run into the approved state and thus R is not sensitive to the network structure, but the
spread on random networks is still faster than that on regular networks (see, e.g., figure 2(d)).

Figure 4 displays the crossing point λc as a function of the network size N . When N is
small, λc decreases sharply with increasing N , whereas as N gets larger, λc becomes insensitive
to N . As a whole, λc shows non-increasing behavior versus N . Note that the phenomenon that
spreading on regular networks is faster and broader than that on random networks will be more
remarkable and easier to observe if λc is large. Therefore, our result about λc(N ) indicates that
for large-scale systems, Centola’s experimental results may not hold or will be weakened to
some extent.

In a previous study on the SIR model, it was pointed out that the number of recovered nodes
at the end of evolution increases with increasing randomness p in small-world networks [29].
In contrast, our simulations show that the number of approved nodes in the final state does
not monotonically increase with increasing p; instead, an optimal randomness p∗ exists subject
to the highest R. Figure 5 shows the dependence of the number of final approved nodes on the
randomness p given b = 0 (triangles), b = 0.4 (squares) and b = 0.8 (circles). With strong social
reinforcement, even very small randomness can bring a remarkable improvement in the number
of final approved nodes, R. Take the case b = 0.8 for example; on the regular networks (i.e.
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Figure 3. The dependence of the number of approved nodes at the final state on
the parameter λ for regular (red solid line) and random (blue dash line) networks.
The parameters are N = 500, k = 6, b = 0.8 and T = 1, the same as those for
figure 2. The inset shows the number of final approved nodes on regular networks
Rre minus that on random networks Rra, against λ. The results are obtained by
averaging over 500 independent realizations.

Figure 4. The dependence of λc on the network size N . The parameters are k = 6,
b = 0.8 and T = 1. The results are obtained by averaging over 500 independent
realizations.

p = 0), R is 205, whereas by introducing a tiny randomness p = 0.02, this number will suddenly
increase to 6593, which is also higher than for the random networks (i.e. p = 1, R = 4049). We
also plot the clustering coefficient C as a function of p in figure 5. As expected, C decreases
with increasing p. The results indicate that local clustering can to some extent enhance the
approving rate of information, which refines the completely negative valuation of the clustering
coefficient in epidemic spreading [25–27].

The dependence of optimal randomness p∗ on the strength of social reinforcement b given
different N values is shown in figure 6, where one can observe that stronger social reinforcement
(i.e. larger b) results in smaller p∗. In the presence of weak social reinforcement (i.e. small b),
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Figure 5. The number of final approved nodes against the randomness p given
b = 0 (triangles), b = 0.4 (squares) and b = 0.8 (circles). Other parameters are
N = 104, k = 6, λ = 0.2 and T = 1. The results are obtained by averaging over
10 000 independent realizations. The clustering coefficient C , as a monotonic
function of p, is also displayed.

Figure 6. The dependence of optimal randomness p∗ on the strength of social
reinforcement b given different N values. The results are obtained by averaging
over 500 independent realizations.

our result (p∗ is close to 1) is analogous to the well-known one [28, 29] that the speed and range
of spreading obey the relation ‘Random > Small-World > Regular’. In contrast, the small-world
networks yield the most effective spreading when social reinforcement plays an important role
(i.e. large b).

To further investigate the advantages of small-world networks for information spreading,
we calculate the complementary cumulative distribution p(R > Rc), namely the probability that
in a realization the information has reached more than Rc individuals. As shown in figure 7, the
advantages of small-world networks are twofold. Compared with random networks, there is
higher probability to spread out (see the region when Rc is small). For example, in small-world
networks, p(R > 10) = 0.703, whereas for random networks, this number is only 0.460. If the
information can spread out, like an epidemic disease, then in both kinds of networks it can reach
a majority of the population. Comparing with regular networks, information in small-world
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networks can spread wider. According to figure 7, the maximum R in regular networks is only
1680, while in small-world networks it can reach 9900 individuals with a probability of 0.684.

4. Conclusion and discussion

Thanks to the fast development of database technology and computational power, detailed
analysis of information spreading in large-scale online systems has become feasible nowadays.
In our opinion, the similarity between information spreading and epidemic spreading is
overemphasized in previous studies (see, e.g., the models summarized in the review article [30]),
and currently we should turn to the other side of the matter: revealing the essential difference
between them. The significant difference may include: (i) Time decaying effects. An infectious
disease can exist for more than thousands of years in human society and still remain active,
but no one is willing to spread news one year old. Actually, our attention to information
decays very fast [31], and thus when we model information spreading, especially if it involves
multiple information competing for attention, we have to consider the time decaying effects.
(ii) Tie strength. It is well known that in social networks, ties with different strengths
play different roles in maintaining the network connectivity [32], information filtering [33],
information spreading [34] and so on. We guess that the weak ties provide faster paths for
information spreading, while the strong ties provide trust paths (i.e. with high infectivity).
However, this point is still unclear to date. (iii) Information content. Information with
different contents may have very different spreading paths, and even with the same content,
different expressions may lead to very different performances. Some of them are born with
fashionable features, while others are doomed to be kept from being known. Whether these
two kinds of information are different only quantitatively or they follow qualitatively different
dynamic patterns is still under investigation [35]. (iv) Role of spreaders. A recent analysis
on Twitter shows that different kinds of spreaders, such as media, celebrities, bloggers and
formal organizations, play remarkably different roles in network construction and information
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spreading [36], which may result in different spreading paths and outbreaking mechanisms
from epidemic spreading. (v) Memory effects. Previous contacts could impact the information
spreading in current time [14]. Such memory effects can be direct, since an agent may tend
to be interested in or disgusted with objects heard many times, and/or indirect since previous
contacts could change the tie strength that further impacts the current interactions. (vi) Social
reinforcement. If more than one neighbor approved the information and transferred it to you,
you have high probability of approving it. Generally speaking, if an agent twice receives an
information item recommended by her neighbors, the approval probability should be much
larger than twice the approval probability with a single recommending. (vii) Non-redundancy
of contacts. People usually do not transfer an information item more than once to the same guy,
which is very different from sexually transmitted diseases, to name one example.

In this paper, we propose a simple model for information spreading in social networks
that considers the memory effects, social reinforcement and non-redundancy of contacts. Under
certain conditions, the information spreads faster and broader in regular networks than in
random networks, which to some extent supports Centola’s experiment [20]. At the same time,
we show that random networks tend to be favorable for effective spreading when the network
size increases, which challenges the validity of Centola’s experiment for large-scale systems.
Furthermore, simulation results suggest that by introducing a little randomness into the regular
structure, the small-world networks yield the most effective information spreading. Although
this simple model cannot take into account all the above-mentioned features of information
spreading, it largely refines our understanding of spreading dynamics. For example, traditional
spreading models on complex networks show that diseases spread faster and wider in random
networks than in small-world networks [28, 29], yet our results suggest that the small world may
be the best structure for effective spreading under the consideration of social reinforcement.
Indeed, information in small-world networks has much higher probability to spread out than
in random networks, and can spread much broader than in regular networks. In addition, local
clustering is well known to play a negative role in spreading [25–27], while our model indicates
that local clustering is very helpful in facilitating the acceptance/approval of information for
individuals and thus can, to some extent, speed up the spreading.
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