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Abstract

Let us fix a conformal class [g0] and a spin structure σ on a compact
manifold M . For any g ∈ [g0], let λ+

1 (g) be the smallest positive eigenvalue of
the Dirac operator D on (M,g, σ). In a previous article we have shown that

λ+
min(M,g0, σ) := inf

g∈[g0]
λ+

1 (g)vol(M,g)1/n > 0.

In the present article, we enlarge the conformal class by adding certain singular
metrics. We will show that if λ+

min(M,g0, σ) < λ+
min(S

n), then the infimum
is attained on the enlarged conformal class. For proving this, we solve a
system of semi-linear partial differential equations involving a nonlinearity
with critical exponent:

Dϕ = λ|ϕ|2/(n−1)ϕ.

The solution of this problem has many analogies to the solution of the Yam-
abe problem. However, our reasoning is more involved than in the Yamabe
problem as the eigenvalues of the Dirac operator tend to +∞ and −∞.

Using the spinorial Weierstraß representation, the solution of this equation
in dimension 2 shows the existence of many periodic constant mean curvature
surfaces.
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1 Introduction

Let M be a compact n-dimensional manifold, n ≥ 2, with a fixed conformal class [g0]
and a fixed spin structure σ. Let g be conformal to g0, i.e. g ∈ [g0]. The classical
Dirac operator Dg on (M, g, σ) has discrete real spectrum with finite multiplicities.
The eigenvalues tend to +∞ and −∞. The dimension of the kernel of Dg is a
spin-conformal invariant, i.e. dim kerDg = dim kerDg0 for all g ∈ [g0]. We denote
the first (=smallest) positive eigenvalue of Dg by λ+

1 (g), and the first (=largest)
negative eigenvalue by λ−1 (g).

Finding bounds for this eigenvalue has attracted much interest during the last
decades. Among several estimates [Lic63, Fri80, Kir86, Kir88, KSW98, KSW99]
in terms of a positive scalar curvature bound, let us mention the following estimate
due to Friedrich [Fri80]. If the minimum of the scalar curvature of (M, g) is at least

s > 0, then
(
λ±1 (g)

)2 ≥ n
4(n−1)

s.

An improvement of this inequality that is important in conformal geometry was
derived by Hijazi [Hij86] in terms of the first eigenvalue λ1(Lg) of the conformal
Laplacian Lg = 4 n−1

n−2
+ scalg, namely

(
λ±1 (g)

)
≥ n

4(n− 1)
λ1(Lg) (1.1)

if n ≥ 3. On the other hand, if the Yamabe invariant

Y (M, [g0]) = inf
g∈[g0]

∫
M

scalgdvolg

vol(M, g)(n−2)/n
∈ (−∞, n(n− 1)]

is non-negative, one can use the conformal transformation formula for the scalar
curvature [Bes87, Theorem 1.159], and one obtains that

λ1(Lg)vol(M, g)2/n ≥ Y (M, [g0]).

Together with (1.1), we get

∣∣λ±1 (g)
∣∣ vol(M, g)1/n ≥

√
n

4(n− 1)
Y (M, [g0]). (1.2)

That this inequality even holds in dimension n = 2, was proved by C. Bär [Bär92].
In this special case, the Gauss-Bonnet theorem tells us that Y (M) = 4πχ(M), hence
we obtain ∣∣λ±1 (g)

∣∣ area(M, g)1/2 ≥ 2
√
π (1.3)

if M is diffeomorphic to S2, but we do not get a bound for other surfaces. Equality
in (1.2) and (1.3) hold for the round spheres.
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Hence, if we know that the value of Y (M, [g0]) and if Y (M, [g0]) is positive, then
we have obtained a positive lower bound

∣∣λ±1 (g)
∣∣ vol(M, g)1/n that is uniform on the

conformal class [g0]. From now on, we will restrict to the first positive eigenvalue,
in order to simplify the presentation (see the remark below).

For any compact Riemannian spin manifold (M, g0) with invertible Dirac operator,
the existence of a positive lower bound for λ+

1 (g)vol(M, g)1/n was derived by J. Lott
[Lot86]. His estimate does not require that Y (M, [g0]) is positive, but needs the
weaker assumption that the Dirac operator is invertible. Unfortunately, his bound
is not explicit, and for most spin-conformal manifolds the determination of the value
of the associated infimum

λ+
min(M, [g0], σ) := inf

g∈[g0]
λ+

1 (g)vol(M, g)1/n (1.4)

is still a challenging open problem.

A key idea of J. Lott’s article [Lot86] is to derive a lower bound for the first Dirac
eigenvalue in terms of the supremum of a conformally invariant functional, a version
of this functional will be explained in Section 2.

In our article [Amm03a], we started to study this functional in more detail. In
particular, we showed that Lott’s result extends to the case that the Dirac operator
has non-trivial kernel. We show that

λ+
min(M, [g0], σ) > 0

for any compact Riemannian spin manifold (M, [g0], σ).

Furthermore, it was shown that

λ+
min(M, [g0], σ) ≤ λ+

min(S
n),

where S
n = (Sn, gcan) denotes the sphere with its standard Riemannian metric of

constant sectional curvature 1. This bound has been proven in [Amm03a] unless
kerD 6= {0} and n = 2. The remaining case kerD 6= {0} and n = 2 was given in
[AGHM08].

In the present article, we discuss whether the associated infimum in (1.4) is attained.
For having a well-behaved minimization problem, it is reasonable to replace the
conformal class [g0] in (1.4) by its L∞-completion [g0]. Here, by definition a metric
f 2g0 is in [g0] if f is a real-valued L∞ function. The first positive eigenvalue of the
Dirac operator extends naturally to this completion (see Section 3). We show that
if we have the strict inequality

λ+
min(M, g0, σ) < λ+

min(S
n) =

n

2
ω1/n
n , (1.5)
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then the infimum is attained by a generalized metric g ∈ [g0]. This minimizer has
the form g := |ϕ|4/(n−1)g0 where ϕ is a spinor of regularity C2. The set ϕ−1(0) :=
{x ∈M |ϕ(x) = 0} is called the nodal set of ϕ or the set of degeneration of g.

THEOREM 1.6. Let M be a compact manifold of dimension n ≥ 2 with a fixed
conformal class [g0] and a spin structure σ. Assume that (1.5) holds. Let α :=
2/(n− 1) if n ≥ 4, and let α ∈ (0, 1) if n ∈ {2, 3}.

(A) Then there is a spinor field ϕ ∈ C2,α(ΣM) ∩ C∞(Σ(M r ϕ−1(0))) on (M, g0)
such that

Dg0ϕ = λ+
min |ϕ|2/(n−1)ϕ, ‖ϕ‖2n/(n−1) = 1. (1.7)

(B) There is a g ∈ [g0] such that

λ+
1 (g)vol(M, g)1/n = λ+

min.

The metric has the form g = |ϕ|4/(n−1)g0 where ϕ is a spinor as in (A).

(C) If dimM = 2, then the metric g is smooth and the nodal set ϕ−1(0) is finite.
Furthermore

#ϕ−1(0) < genus(M).

In particular, if M is diffeomorphic to a 2-torus, then the nodal set ϕ−1(0) is
empty.

Inequality (1.5) has been proven if M is conformally flat, if D is invertible, and if the
mass endomorphism is not identically zero (after a possible change of orientation if
dimM ≡ 3 mod 4) [AHM03a]. The mass endomorphism is a section of End(ΣM)
defined as the zero order term of the development of the Green function for the
Dirac operator at the diagonal with respect to a conformal coordinate map.

Furthermore, (1.5) is known for many Riemann surfaces (i.e. n = 2), e.g. all rect-
angular tori have a spin structure such that (1.5) holds.

The Euler-Lagrange equation (1.7) of the above minimization problem has a par-
ticularly nice interpretation in dimension n = 2. Locally the equation (1.7) can
be translated into a conformal constant mean curvature immersion into R3. This
translation is a spinorial extension of the Weierstrass representation (see Section 9).
By pasting together these local surfaces one obtains a “periodic branched conformal
cmc immersion”.

More exactly, let (M, g) be a compact Riemann surface together with its universal

covering π : M̃ → M . A periodic branched conformal cmc immersion based on
(M, g) is by definition a smooth map F : M̃ → R3 together with finitely many points
p1, . . . , pk ∈ M , the so-called branching points, such that the following properties
hold:
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(1) Periodicity: There is a homomorphism h : π1(M) → R
3, the periodicity map,

such that for any γ ∈ π1(M), and x ∈ M̃ one has

F (x · γ) = F (x) + h(γ).

Here · denotes the action of π1 on M̃ via Deck transformation.

(2) Conformality: The restriction of F to M̃ \ π−1({p1, . . . , pk}) is a conformal
immersion.

(3) Branching points: We have dFq = 0 for any q ∈ π−1({p1, . . . , pk}). The order of
the first non-vanishing term in the Taylor development of dF in q is called the
branching index of F at q.

(4) CMC: The image F
(
M̃ \ π−1({p1, . . . , pk}

)
is an immersed surface with con-

stant mean curvature.

The following principle yields the existence of many periodic branched conformal
cmc immersions. The set of periodic branched conformal cmc immersions, H 6= 0, is
essentially (see Section 10 for a precise statement) in bijection with the stationary
points of the variational problem associated to our minimization problem. In partic-
ular, all minimizers of (1.4) give rise to periodic branched conformal cmc immersions.
We obtain

Principle for construction of cmc-surfaces. Assume that the Riemann spin
surface (M, g, σ) carries a metric g such that the first positive eigenvalue of the
Dirac operator is smaller than 2

√
π/area(M, g). Then there is a periodic branched

conformal cmc immersion F based on (M, g). The regular homotopy class of F is
determined by the spin-structure σ. The indices of all branching points are even,
and the sum of these indices is smaller than 2genus(M). In particular, if M is a
torus, there are no branching points.

Some examples of branched conformal cmc immersions that may arise by this prin-
ciple are given in Section 10.

The problem that we are discussing in this article has many relations to the Yamabe
problem. For a given compact conformal manifold (M, [g0]) the Yamabe problem
is the problem to find a metric g in [g0] of constant scalar curvature. The problem
has been affirmatively solved by Trudinger, Aubin, Schoen and Yau, see [LP87] for
a good overview. At first, due to the conformally invariant character of our problem
and of the Yamabe problem, certain bounded, but non-compact Sobolev embeddings
play an important role. In the solution of both problems it is useful to break the
conformal invariance by perturbing a parameter. For this perturbed parameter the

5



embeddings are compact, and standard methods yield the existence of a minimizer.
It then has to be checked whether the perturbed minimizers converge to a minimizer
of the unperturbed problem, or whether they concentrate in some points. In the
Yamabe problem the minimizers converge if

Y (M, [g0]) < Y (Sn) (1.8)

holds. In our variational problem, the minimizers converge if (1.5) holds. Secondly,
(1.2) implies that any manifold satisfying (1.5) satisfies (1.8) as well. Hence, proving
(1.5) for a given spin-conformal manifold (M, [g0], σ) solves the Yamabe problem on
this manifold.

The structure of the article is as follows. In Section 2 we reformulate the problem of
minimizing the first Dirac eigenvalue as a variational problem. We will see that it
is natural to admit in the infimum (1.4) certain singular metrics namely “metrics”
conformal to g0 whose conformal factor might vanish somewhere. Such metrics —
called generalized metrics — are the subject of Section 3. In the following section,
we discuss the round sphere. This example is helpful to obtain a deeper understand-
ing for the analytical difficulties. However, it can be skipped if the reader is only
interested in the main results of the article. Section 5 is devoted to certain regular-
ity issues that will become important in Section 6, where the variational problem
is finally solved. We then show in Section 7 how this implies the main theorem.
The singularities of the minimizers are discussed in Section 8. In Section 9 we recall
the spinorial Weierstrass representation. Section 10 uses the spinorial Weierstrass
representation to derive the application to constant mean curvature surfaces. Sev-
eral examples are included. In Appendix A we summarize (without proofs) some
analytical tools. This appendix shall also serve as a reference for fixing the notations
for Sobolev spaces and Hölder spaces. In Appendix B we proof a proposition about
Hölder spaces, as we could not find a proof in the literature.

Remark (The first negative eigenvalue). The infimum is also attained in (1.4) if
we replace λ+

1 by |λ−1 |. In the case n 6≡ 3 mod 4 this is obvious: there exists an
automorphism of the spinor bundle anticommuting with D, hence λ−1 (g) = −λ+

1 (g).
In the case n ≡ 3 mod 4, the proof for λ−1 is up to the obvious sign changes completely
identical. In almost all references cited in the introduction, all statements for λ+

1

also hold for |λ−1 | and vice versa. The only exception is [AHM03a].

Historical comment. Most of the results in this article were first published in the
author’s habilitation [Amm03b]. The first preprint version appeared on the arxiv
in 2003, a simplified and stronger version in 2006. After the preprint version was
available, several young mathematicians published results extending this article or
strongly related to it, e.g. Simon Raulot, Nadine Große and Andreas Hermann.

Acknowledgements. I am very much indebted to Christian Bär for various sup-
port. Thank you also to Emmanuel Humbert for his continuing interest in conformal
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spin geometry and his deep analytical ideas. Many electronic and personal discus-
sions with Robert Kusner and Karsten Grosse-Brauckmann were also very helpful.
I also want to thank B. Booss-Bavnbek, Oussama Hijazi, Sebastian Montiel, Sergiu
Moroianu, Victor Nistor, Reiner Schätzle and Guofang Wang for several stimulating
discussions related to this article. Thanks also to Simon Raulot and Nadine Große
for their interest in the preprint version of this article.

2 The associated variational principle

The goal of this section is to reformulate the problem of minimizing the first Dirac
eigenvalue in a conformal class as a variational problem. The choice of a good func-
tional is not very easy, as we would like to find a functional which is both bounded
and conformally invariant. The Dirac operator D has a simple behavior under con-
formal change of the metric, its square D2 transforms in a more complicated way.
Hence, it is desirable to use a functional that contains only terms in Dϕ and ϕ and
no term depending on D2ϕ. The Fq-functional defined in (2.2), q = 2n/(n + 1),
is such a conformally invariant, bounded functional, and it will turn out that by
working with this functional we obtain the desired results.

Remark. In case, that the reader of our article is already familiar with the ana-
lytical problems of the Yamabe problem, he might find it enlightening to compare
this problem to our problem. Many techniques from the resolution of the Yamabe
problem can be carried over to our setting. However, several arguments from the
resolution of the Yamabe problem fail. Two main problems arise: on the one hand
the spectrum of D is neither bounded from below nor from above, on the other
hand, we are working with sections of a vector bundle instead of functions, hence
the standard maximum principle is not available. Such arguments will have to be
replaced by other approaches.

At first, we recall some basic definitions and facts from spin geometry. For details we
refer to textbooks as for example [LM89, Roe88, Fri00] or to the beautifully written
self-contained introduction [Hij01].

Let M be a compact manifold equipped with a Riemannian metric g0 and a spin
structure σ. Assume that g is a metric conformal to g0. One associates to (M, g, σ)
a natural complex vector bundle over M called the spinor bundle Σ(M, g, σ) →M .
Sections of this bundle are called spinor fields or simply spinors. The bundle car-
ries a hermitian metric, a metric connection, and a Clifford multiplication. These
additional structures are used to define the Dirac operator Dg : Γ(Σ(M, g, σ)) →
Γ(Σ(M, g, σ)), which is a first order elliptic differential operator. The Dirac oper-
ator Dg is essentially self-adjoint, and hence it has a self-adjoint extension. As a
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consequence of standard elliptic theory, the spectrum is real and discrete, and all
multiplicities are finite.

In the following, the spin structure σ will be fixed (and often suppressed in the
notation), whereas the metric g varies inside the conformal class [g0]. Some objects
will be noted with an index g, which means that they are defined with respect to g
whereas the same object without the index g indicates that it is defined with respect
to the fixed background metric g0 (with some exceptions that are apparent from the
context). For example, dvolg is the volume element associated to g and dvol = dvolg0
is the one associated to g0. We will frequently use several norms, as for example
‖ϕ‖Lp and ‖ϕ‖Hq

1
that are defined with respect to g0 unless otherwise stated. We

summarize their definition and some important analytical tools in Appendix A.

The spectrum of the Dirac operator Dg will be denoted as

. . . ≤ λ−2 (g) ≤ λ−1 (g) < 0 = . . . = 0 < λ+
1 (g) ≤ λ+

2 (g) ≤ . . . ,

where each eigenvalue appears with its multiplicity. Note that 0 may be an eigen-
value or not, and thus Dg may be invertible or not. Elliptic theory shows

lim
k→∞

λ+
k (g) = − lim

k→∞
λ+
−k(g) = ∞.

The following transformation formula will be of central importance. To our know-
ledge, the earliest reference is Hitchin [Hit74]. Another reference written up in a
more self-contained manner is [Hij01].

PROPOSITION 2.1 (Conformal transformation formula for D). Let g = f 2g0,
f : M → R smooth and positive. There is an isomorphism of vector bundles
F : Σ(M, g0, σ) → Σ(M, g, σ) which is a fiberwise isometry such that

Dg(F (ϕ)) = F
(
f−n+1

2 Dg0f
n−1

2 ϕ
)
.

It is convenient to define
F̃ (ϕ) = F (f−n−1

2 ϕ).

We will use this isomorphism F̃ to identify spinors associated to conformal metrics.
With this identification the conformal transformation formula reads as

Dg(ϕ) = f−1Dg0(ϕ),

and |ϕ|g = f−n−1

2 |ϕ|g0. In particular, with this identification the kernels of Dg

and Dg0 coincide. It is easy to verify that with this identification, the expression∫
〈Dgϕ, ϕ〉gdvolg is conformally invariant. The Lp-norm ‖ϕ‖Lp(g) :=

(∫
|ϕ|pgdvolg

)1/p
is conformally invariant if and only if p has the value pD := 2n/(n− 1). Similarly,
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‖Dgϕ‖Lq(g) is conformally invariant if and only if q has the value qD := 2n/(n+ 1).
Note that qD

−1 + pD
−1 = 1.

For any q ∈ [qD, 2] and for any Hq
1 -spinor ϕ that is not in the kernel of the Dirac

operator we define

F g
q (ϕ) =

∫
〈Dgϕ, ϕ〉gdvolg
‖Dgϕ‖2

Lq(g)

, µgq := µq(M, g, σ) := supF g
q (ψ), (2.2)

and Fq := F g0
q , µq := µg0q . The well-definedness of F g

q and some basic properties are
given by the following lemma.

LEMMA 2.3. Let q ∈ [qD,∞). Let ϕ be a spinor field of regularity Hq
1 , Dϕ 6= 0.

Then, Fq(ϕ) is well-defined and real. Furthermore Fq : Hq
1 \ kerD → R is Fréchet

differentiable with derivation given by

dFq(ϕ)(ψ) =
2

‖Dϕ‖2
Lq

∫
〈ϕ− ρq,ϕ|Dϕ|q−2Dϕ,Dψ〉, (2.4)

where ρq,ϕ = Fq(ϕ)‖Dϕ‖2−q
Lq . The supremum µq is positive and finite.

From the above considerations it is evident that the functional Fq is conformally
invariant if and only if q = qD.

Proof. Let ϕ be a spinor field of regularity Hq
1 , Dϕ 6= 0. Take p with p−1+q−1 = 1,

q ≥ 2n
n+1

. Because of ϕ ∈ Hq
1 →֒ Lp, we see with Hölder’s inequality that 〈Dϕ,ϕ〉 is

integrable. Thus, the numerator of Fq is well-defined, and hence Fq is well-defined.
The self-adjointness of D implies that Fq(ϕ) is real. Moreover, because Hq

1 →֒ Lp

is bounded we see that |
∫
M
〈Dϕ,ϕ〉| ≤ ‖Dϕ‖Lq ‖ϕ‖Lp is bounded from above by a

multiple of ‖ϕ‖2
Hq

1

. Using Theorem A.2 we obtain ‖ϕ‖Hq
1
≤ C (‖Dϕ‖Lq + ‖π(ϕ)‖Lq)

where π is the L2-orthogonal projection onto the kernel of D. We see that Fq is
bounded on Hq

1 ∩ (kerD)⊥ \ {0}. An arbitrary spinor field ϕ ∈ Hq
1 is written as the

sum of ϕ1 ∈ kerD and a non-zero ϕ2 ⊥ kerD. As Fq(ϕ) = Fq(ϕ2), we see that µq
is finite.

Because of ϕ ∈ Hq
1 , we have |Dϕ|q−2Dϕ ∈ Lp. Hence the right hand side of (2.4)

defines a continuous functional on Hq
1 . We denote the functional by ψ 7→ RHSϕ(ψ).

Similarly, one sees that

Fq(ϕ+ ψ) −Fq(ϕ) − RHSϕ(ψ) ≤ o(‖ψ‖Hq
1
),

hence Fq is Fréchet differential with derivative ψ 7→ RHSϕ(ψ).

If ϕ is an eigenspinor to a positive eigenvalue, then µq ≥ Fq(ϕ) > 0. ✷
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PROPOSITION 2.5 (Properties of µgq). The function µgq : [qD,∞) → (0,∞) is
continuous from the right, and

µ2(M, g, σ) = (λ+
1 (g))−1

Furthermore, if vol(M, g) = 1, then µgq is non-increasing in q.

The function q 7→ µgq is sketched in Figure 1.

Proof. We assume vol(M, g) = 1, the statements for vol(M, g) 6= 1 then follow by
rescaling.

That µgq is non-increasing follows easily from the Hölder inequality.

In order to show the continuity from the right, let q ≥ qD be given. We take a
smooth spinor field ϕ such that F g

q (ϕ) ≥ µgq − ε. Observe that

F g
q′(ϕ) =

‖Dgϕ‖2
Lq(g)

‖Dgϕ‖2
Lq′(g)

F g
q (ϕ).

The function q′ 7→ ‖Dgϕ‖Lq′ (g) is continuous, hence if q′ ≥ q is sufficiently close to q,
then

µgq′ ≥ F g
q′(ϕ) ≥ F g

q (ϕ) − ε ≥ µgq − 2ε.

Because q 7→ µgq is non-increasing, the continuity from the right follows.

The formula µg2 = (λ+
1 (g))−1 follows directly if one writes ϕ as a sum of eigenspinors

and evaluates F g
2 (ϕ). ✷

Remark. In Proposition 6.1 we will see that the supremum defining µgq is attained
for q > qD by a C2,α-spinor and the C1,α-norm of the minimizers are uniformly
bounded on each compactum in (qD,∞). This implies that the function

[qD,∞) → (0,∞], q 7→ µgq

is also continuous from the left. We do not carry out this argument in detail as it
will not be used later.

PROPOSITION 2.6.

µqD(M, g0, σ) =
1

λ+
min(M, g0, σ)

Proof. We have already seen that µqD is conformally invariant, i. e. for g1 ∈ [g0]

µqD(M, g0, σ) = µqD(M, g1, σ).
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q

µq

qD 2

(λ+
1 )−1

µqD

Figure 1: µq as a function of q

The previous proposition states that

µqD(M, g1, σ) ≥ µ2(M, g1, σ) =
(
λ+

1 (g1)
)−1

if vol(M, g1) = 1, and it follows

µqD(M, g0, σ) ≥ 1

λ+
min(M, g0, σ)

.

It remains to show the inverse inequality which amounts to showing

sup
g∈[g0]

λ+
1 (g)−1vol(M, g)−1/n ≥ supFqD .

For any ε > 0 we take a smooth spinor ϕε with FqD(ϕε) ≥ supFqD − ε and
‖Dϕε‖LqD = 1. After a small perturbation of ϕε we can assume that Dϕε has
no zeros. We set

gε := |Dϕε|4/(n+1)g0.

Then we have vol(M, gε) = 1, and |Dϕε|gε has constant length 1. Hence,

F (M,g0,σ)
qD

(ϕε) = F (M,gε,σ)
qD

(ϕε) = F (M,gε,σ)
2 (ϕε) ≤ µ2(M, gε, σ) = λ+

1 (gε)
−1.

This implies the proposition. ✷

Now, as we have understood the relationship between the supremum of FqD and the

infimum of λ+
1 vol1/n, we want to establish a relationship of the maximizers of FqD
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and the minimizers of λ+
1 vol1/n. This will require some knowledge about the Euler-

Lagrange equation.

One easily sees that
Fq(sϕ+ ψ) = Fq(ϕ)

for any ψ ∈ kerD and s ∈ R∗. Hence maximizers of Fq appear in families and it
will be convenient to choose a good representative for each family of maximizers.

LEMMA 2.7 (Euler-Lagrange equations of Fq.). Let q ∈ [qD, 2], and choose p with
q−1 + p−1 = 1. Suppose that Fq has a maximizing spinor ϕ1 ∈ Hq

1 \ kerD. Then
there is a maximizing spinor ϕ ∈ Hq

1 \ kerD, ϕ ∈ R∗ϕ1 + kerD, such that

Dϕ = µ−1
q |ϕ|p−2ϕ, ϕ ∈ Hq

1 , ‖ϕ‖Lp = 1 (2.8)

Proof. We normalize ϕ1 such that ‖Dϕ1‖Lq = 1, thus ρq,ϕ1
= µq. As ϕ1 is a

maximizer, dFq(ϕ1) : Hq
1 \ kerD → R is identically zero. Because of (2.4) we see

that τ := ϕ1−µq|Dϕ1|q−2Dϕ1 ∈ Lp is a weak solution of Dτ = 0, hence it is smooth
and in the kernel of D. Then, ϕ2 := ϕ1 − τ = µq|Dϕ1|q−2Dϕ1 satisfies Dϕ1 = Dϕ2

and hence

ϕ2 = µq|Dϕ2|q−2Dϕ2, ϕ2 ∈ Hq
1 , ‖Dϕ2‖Lq = 1. (2.9)

Taking norms we obtain

|ϕ2| = µq|Dϕ2|q−1 = µq|Dϕ2|q/p.

|Dϕ2|q−2 = |Dϕ2|−(q−1)(p−2) =
(
µ−1
q |ϕ2|

)−(p−2)

Hence ϕ := µ−1
q ϕ2 satisfies (2.8). ✷

THEOREM 2.10.

(a) Let ψ be a maximizing spinor of FqD , and suppose that ψ is smooth and that
Dψ vanishes nowhere. Then g := |Dψ|4/(n+1)g0 is a smooth metric minimizing
λ+

1 vol1/n in the conformal class [g0].

(b) Let g ∈ [g0] be a (smooth) metric minimizing λ+
1 vol1/n, and let ψ be an eigen-

spinor of Dg to the eigenvalue λ+
1 (g), then the length of |ψ|g is constant and ψ

maximizes FqD .
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Proof.

(a) Let ψ be a maximizing spinor. According to the previous lemma, there is an
s ∈ R∗ and a τ ∈ kerD such that ϕ := sψ + τ satisfies (2.8) with q = qD and
p = pD. In particular, |ϕ|pD−1 = µqD |Dϕ| = sµqD |Dψ| vanishes nowhere. The

metric gϕ := |ϕ| 4

n−1 g0 satisfies vol(M, gϕ) = 1 and |ϕ|gϕ = 1. Then

(
λ+

1 (gϕ)
)−1 ≥ F gϕ

2 (ϕ) = F gϕ
qD

(ϕ) = F g0
qD

(ϕ) =
µ−1
qD

∫
|ϕ|pD

µ−2
qD

(∫
|ϕ|(pD−1)qD

)2/qD = µqD .

As µ−1
qD

= λ+
min we see that λ+

1 (gϕ) ≤ λ+
min, hence gϕ minimizes

λ+
1 vol1/n. By a simple rescaling argument one sees that

g := |Dψ|4/(n+1)g0 =

(
1

s

)4/(n+1)

|Dϕ|4/(n+1)g0 =

(
λ+

min

s

)4/(n+1)

gϕ

minimizes λ+
1 vol1/n as well.

(b) By rescaling we can assume that vol(M, g) = 1. Unless otherwise indicated all
volume measures, norms, scalar products and Dirac operators in this proof are
with respect to g. In order to show that |ψ|g is constant, we define

ft :=
1 + t|ψ|2g(∫ (

1 + t|ψ|2g
)n)1/n .

One calculates d
dt
|t=0ft = |ψ|2g −

∫
|ψ|2g. All metrics f 2

t g have volume 1. Hence,

as the infimum of λ+
1 vol1/n is attained in g, we have λ+

1 (g) ≤ λ+
1 (gt), and hence

µ2(M, g, σ) = F g
2 (ψ) ≥ F f2

t g
2 (ψ) =

∫
〈Dψ,ψ〉∫
f−1
t |Dψ|2 .

For t = 0 equality is attained. Hence
∫

|Dψ|2 ≤
∫
f−1
t |Dψ|2.

Using Dψ = λ+
1 (g)ψ and deriving with respect to t yields

0 = −
(
λ+

1 (g)
)2
∫ (

|ψ|2g −
∫

|ψ|2g
)
|ψ|2g.

The right hand side is equal to −
(
λ+

1 (g)
)2 ∥∥|ψ|2g −

∫
|ψ|2g

∥∥
L2

= 0, hence |ψ|g is
constant.

This implies that F g
q (ψ) is independent of q, thus

FqD(ψ) = F g
2 (ψ) =

(
λ+

1 (g)
)−1

=
(
λ+

min

)−1
.

And hence FqD attains it supremum in ψ. ✷
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Remark. Later on, we will see that maximizers of FqD that vanish nowhere are
always smooth.

3 Generalized metrics

Unfortunately, we cannot exclude that maximizers of Fq vanish somewhere. Maxi-
mizers with zeros correspond to metrics with certain singularities, more precisely to
metrics whose conformal factor has zeros. These metrics are the main object of this
section. We will summarize some facts about the size of the zero set of maximizers
in Section 8.

Roughly speaking, generalized metrics are metrics of the form f 2g0 where f ∈
L∞, f ≥ 0. However, for technical and formal reasons it is better to use the following
definition.

Definition. Let g0 be a smooth metric on a compact manifold M . A generalized
metric is a tuple (f, g) where g ∈ [g0] and f ∈ L∞, f ≥ 0. If h > 0 is smooth,
we identify (fh, g) with (f, h2g). Furthermore we identify g ∈ [g0] with (1, g).
Generalized metrics having a representative of the form (f, g0) are called conformal
to g0, and those having a representative (1, g), g ∈ [g0] are called regular metrics —
they correspond to metrics in the ordinary sense. The set of all generalized metrics
conformal to g0 is called the L∞-completion [g0] of the conformal class [g0]. The
volume of g ∈ [g0] is defined as

∫
fndvolg0 . For a generalized metric we say that

f−1(0) is the set of degeneration.

Remark. The reader should pay some attention to the following technical difficulty:
If f vanishes on an open set, then the L∞-(2, 0)-tensor f 2g0 does not determine (the
equivalence class) (f, g0).

However, despite of this remark and slightly abusing the notation, we will write f 2g0

instead of (f, g0). Formally f 2g0 is a generalized metric in the above sense, not an
L∞-(2, 0)-tensor.

Let us now assume that M carries a fixed spin structure σ. For any generalized
metric g = f 2g0 we want to define a spinor bundle and a Dirac operator on (M, g, σ)
in such a way that the results of the previous section carry over to this generalization.
In particular, the functional Fq has to be defined and has to be conformally invariant
for q = qD.

As a vector bundle the spinor bundle Σ(M, g, σ) is defined to be Σ(M, g0, σ), and
due to our identification of spinors for different metrics in a fixed conformal class this
construction does only depend on the conformal class [g0] and not on the metric g0

14



itself. For any x ∈ M and any spinor ϕ in the fiber of Σ(M, g, σ) over x we define
the pointwise norm

|ϕ|g :=




f(x)−

n−1

2 |ϕ|g0 if f(x) 6= 0
∞ if f(x) = 0 and ϕ(x) 6= 0
0 if f(x) = 0 and ϕ(x) = 0

Again, this norm does not change if we replace the background metric g0 by a metric
conformal to g0. For smooth sections ϕ of Σ(M, g, σ) such that |ϕ|g < ∞ almost
everywhere we define the H2

1 (M, g, σ)-norm as

(∫
f−1|Dg0ϕ|2g0 dvolg0

)1/2

+

(∫
|ϕ|pD

g0
dvolg0

)1/pD

<∞

where we used the conventions 0−1r = ∞ for r > 0 and 0−10 = 0. The Sobolev
space H2

1 (M, g, σ) is the associated completion.

LEMMA 3.1. There is a natural inclusion

H2
1(M, g, σ) →֒ H2

1 (M, g0, σ)

Proof. Cauchy sequences with respect to the normH2
1 (M, g, σ) are also Cauchy se-

quences with respect toH2
1 (M, g0, σ). Thus we obtain a bounded mapH2

1 (M, g, σ) →
H2

1 (M, g0, σ). In order to prove injectivity of this map one shows that if ϕi is a
Cauchy sequence in H2

1 (M, g, σ) converging to 0 with respect to H2
1 (M, g0, σ), then

it converges to 0 with respect to the H2
1 (M, g, σ) as well. ✷

We define the Dirac operator Dg : H2
1 (M, g, σ) → L2(M, g, σ), Dg(ϕ) := f−1Dg0(ϕ).

The spinor Dg(ϕ) is well-defined almost everywhere, as

{x ∈ M |Dg0(ϕ)(x) 6= 0 and f(x) = 0}

has measure zero. It is easy to verify that all these definitions only depend on the
conformal class of g0 and not on g0 itself. Furthermore, we can reformulate the
definition of the above Sobolev space as

H2
1 (M, g, σ) =

{
ϕ ∈ Γ(Σ(M, g, σ))

∣∣∣
∫
|Dgϕ|2g dvolg <∞

}
.

We now extend the definitions F g
2 and λ+

1 (g) to the L∞-completion of the conformal
class.

Definition. For g = f 2g0 ∈ [g0] and any ϕ ∈ H2
1 (M, g, σ) \ kerD we define

F g
2 (ϕ) :=

∫
〈Dg0ϕ, ϕ〉g0 dvolg0∫
f−1|Dg0ϕ|2g0 dvolg0

.

15



Because of
∫
f−1|Dg0ϕ|2g0 dvolg0 ≥ 1

‖f‖L∞

∫
|Dg0ϕ|2g0 dvolg0

F g
2 (ϕ) ≤ ‖f‖L∞ F g0

2 (ϕ)

the functional is well-defined and bounded on H2
1 (M, g, σ) \ kerD.

It is also not hard to see that the supremum is attained. In fact, let (ϕi) be a
sequence of spinors in H2

1 (M, g, σ) \ kerD with F g
2 (ϕi) → supF g

2 , normalized such
that

∫
f−1|Dϕi|2 = 1. Then a subsequence (ϕik) converges weakly in H2

1 (M, g, σ),
weakly in H2

1 (M, g0, σ) and strongly in L2(M, g0, σ) towards a ϕ∞ ∈ H2
1 (M, g, σ) \

kerD. Hence, limF g
2 (ϕik) ≤ F g

2 (ϕ∞). Thus, the supremum is attained in ϕ∞. In
analogy to Lemma 2.3 one gets for any smooth test spinor ψ

∫
〈f−1Dϕ− (F g

2 (ϕ))−1 ϕ,Dψ〉,

which implies τ := Dgϕ− (F g
2 (ϕ))−1 ϕ ∈ kerD and finally for ϕ̃1 := ϕ∞ + F g

2 (ϕ)τ

Dgϕ̃1 = (F g
2 (ϕ̃1))

−1 ϕ̃1.

Definition. The first positive Dirac eigenvalue of (M, g, σ), g = f 2g0 ∈ [g0] is

λ+
1 (g) :=

(
sup

{
F g

2 (ϕ) |ϕ ∈ H2
1 (M, g, σ) \ kerD

})−1
.

A non-trivial spinor with
Dgϕ = λ+

1 (g)ϕ

is an eigenspinor to the eigenvalue λ+
1 (g).

As we have already seen, this definition coincides with the definition of the first
positive Dirac eigenvalue and a corresponding eigenspinor if g is regular.

Most of the statements of the previous section still hold in a modified version for
generalized metrics, the proofs are nearly identical. For example one can extend
Proposition 2.6 to the following.

PROPOSITION 3.2.

inf
g∈[g0])

λ+
1 (g)vol(M, g)1/n = inf

g∈[g0]
λ+

1 (g)vol(M, g)1/n = µqD(M, g, σ)−1.

The equation infg∈[g0] λ
+
1 (g)vol(M, g)1/n = µqD(M, g, σ)−1 is exactly the statement

of Proposition 2.6 and the equation infg∈[g0]
λ+

1 (g)vol(M, g)1/n = µqD(M, g, σ)−1 can
be proven with exactly the same proof.

Similarly, we obtain an analogue of Theorem 2.10.
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THEOREM 3.3. Let (M, g0, σ) be a compact Riemannian spin manifold.

(a) Let ψ be a maximizing spinor of FqD (with regularity H∞
1 ). Then g := |Dψ|4/(n+1)g0

is a generalized metric minimizing λ+
1 vol1/n in [g0], the L∞-completion of the

conformal class [g0].

(b) Let g = f 2g0 ∈ [g0] be a generalized metric minimizing λ+
1 vol1/n, and let ψ be

an eigenspinor of Dg to the eigenvalue λ+
1 (g), then the length of |ψ|g is constant

on M \ f−1(0) and ψ maximizes FqD .

The proof of this theorem is essentially the same as the proof of Theorem 2.10. Later,
we will see that any maximizing spinor has regularity C2,α, hence g = |Dψ|4/(n+1)g0

is always a generalized metric.

4 The case of the sphere

The sphere Sn = (Sn, can) with the round sphere is an important example. On
the one hand the invariant λ+

min of the round sphere is contained in many equations
and inequalities. On the other hand the round sphere has a large conformal group,
and hence studying the minimizers on the sphere helps to understand the analytical
difficulties. In particular, we will see why the conclusion in Theorem 6.2 does not
hold if µqD = µSn

qD
. (Recall qD = 2n/(n+ 1).)

The invariant λ+
min(S

n) is not hard to calculate if one uses the fact that the Yamabe
invariant of the round sphere

Y (Sn) := inf
g∈[can]

∫
scalg dvolg

vol(M, g)(n−2)/n

is attained for g = can, and hence Y (Sn) = n(n− 1)ω
2/n
n , where ωn := vol(Sn). The

Hijazi inequality (1.1,1.2) tells us, that

λ+
min(S

n)2 ≥ n

4(n− 1)
Y (Sn) =

n2

4
ω2/n
n . (4.1)

Recall that the sphere of constant sectional curvature 1 carries a Killing spinor ψ to
the constant −1/2, i.e. it satisfies

∇Xψ = −(1/2)X · ψ.

Note that this condition implies that the length of ψ is constant. Because of Dψ =
(n/2)ψ we obtain

λ+
min(S

n) ≤ λ+
1 (Sn)vol(Sn)1/n ≤ n

2
ω1/n
n . (4.2)
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And then
λ+

min(S
n) =

n

2
ω1/n
n .

The above Killing spinor satisfies

(FqD(ψ))−1 =
n

2
ω1/n
n (supFqD)−1 ,

hence FqD attains its supremum in such Killing spinors.

Let A : Sn → Sn be an orientation preserving conformal diffeomorphism. Then
the pullback of any spinor ϕ with respect to A is a section of A∗(Σ(Sn, can)) =
Σ(Sn, A∗ can), and as before we identify Σ(Sn, A∗ can) ∼= Σ(Sn, can) by using the

map F̃ described after Proposition 2.1. If ϕ is a solution of (2.8), then this pull-
back, denoted by A∗ϕ, is a solution of this equation as well. Furthermore if ϕ
maximizes FqD , then A∗ϕ is also a maximizer. As a consequence, all conformal im-
ages of Killing spinors to the constant −1/2 are maximizers of FqD . The following
proposition shows that there are no other maximizers on Sn.

PROPOSITION 4.3. If ψ is a spinor of regularity C2 that attains the supremum of
FqD , then there is a Killing spinor ϕ to the Killing constant −1/2 and an orientation
preserving conformal diffeomorphism A : S

n → S
n with A∗ϕ = ψ.

Later on we will see that any maximizer of regularity Hq
1 with q > qD is even C2.

Hence the statement also holds under this weaker assumption.

LEMMA 4.4. Let (M, g, σ) be an arbitrary Riemannian spin manifold (not neces-
sarily complete or compact). Assume that there is a spinor ψ of constant length 1
and with Dψ = λψ. Then

scal = 4
n− 1

n
λ2 − 4|∇̃ψ|2,

where ∇̃Xψ := ∇Xψ + λ
n
X · ψ denotes the Friedrich connection on spinors.

Proof of the lemma. The Friedrich connection is a metric connection, hence

0 =
1

2
d∗d〈ψ, ψ〉 = Re〈∇̃∗∇̃ψ, ψ〉 − 〈∇̃ψ, ∇̃ψ〉.

The twisted version of the Schrödinger-Lichnerowicz formula yields
(
D − λ

n

)2

= ∇̃∗∇̃ +
scal

4
− (n− 1)λ2

n2
.

Hence (
λ− λ

n

)2

= 〈∇̃∗∇̃ψ, ψ〉 +
scal

4
− (n− 1)λ2

n2
.

We obtain
n− 1

n
λ2 = 〈∇̃ψ, ∇̃ψ〉 +

scal

4
.

✷
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Proof of the proposition.

We have to show that the supremum is not attained by any other spinor. For proving
this, assume that ψ is a maximizer, ‖ψ‖LqD = 1. As the Dirac operator on S

n has
kernel {0}, the spinor satisfies the Euler-Lagrange equation (2.8).

On the open subset Sn \ ψ−1(0) we define the metric

g1 := |ψ| 4

n−1 can .

In this metric (2.8) transforms into a solution of

Dg1ψ = λ+
minψ |ψ|g1 ≡ 1.

On the one hand, one calculates

scalg1 = 4
n− 1

n− 2
|ψ|−n+2

n−1 ∆can|ψ|
n−2

n−1 + scalcan|ψ|−
4

n−1

and integration yields

∫

Sn\ψ−1(0)

scalg1 dvolg1 =

∫

M\ψ−1(0)

4
n− 1

n− 2
|ψ|n−2

n−1 ∆can|ψ|
n−2

n−1 + n(n− 1)|ψ|2n−2

n−1 dvolcan

=

∫

Sn

4
n− 1

n− 2

∣∣∣d|ψ|
n−2

n−1

∣∣∣
2

can
+ n(n− 1)|ψ|2n−2

n−1 dvolcan, (4.5)

where the last term arises by partial integration. In order to make this step precise
one has to exhaust M \ ψ−1(0) by smooth manifolds with boundary and partially
integrate over these exhausting manifolds. The boundary terms vanish in the limit,
as ψ → 0 on the boundaries and d|ψ| is bounded.

It is a standard fact from the resolution of the Yamabe problem (see e.g. [LP87])
that any H2

1 function f satisfies

∫
Sn 4n−1

n−2
|df |2 + n(n− 1)f 2 dvolcan

(∫
Sn f

2n
n−2 dvolcan

)n−2

n

≥ Y (Sn) = n(n− 1)ω2/n
n . (4.6)

Setting f := |ψ|n−2

n−1 , we obtain
∫
Sn f

2n
n−2 = 1, and hence the right side of (4.5) is

bounded from below by n(n− 1)ω
2/n
n .

One the other hand, the previous lemma provides

scalg1 ≤ 4
n− 1

n

(
λ+

min

)2
= n(n− 1)ω2/n

n ,
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and as vol(Sn \ψ−1(0), g1) = 1, we see that we must have equality in all inequalities
involved, in particular in (4.6). An application of the maximum principle [LP87]
yields that f does not vanish, and hence ψ has no zeros. Furthermore, g1 is a
metric of constant scalar curvature conformal to Sn, and such a metric is necessarily
of the form g1 := A∗ can for an orientation preserving conformal diffeomorphism
A : Sn → Sn. With respect to g1 we obtain ∇̃ψ = 0, hence ψ is a Killing spinor on
(Sn, g1). This implies that ϕ := (A−1)∗ψ is a Killing spinor on Sn. ✷

Remark. There are solutions to (2.8) that do not maximize the functional. An easy
construction of such a solution is as follows. The map A : S2 = C ∪ {∞} → S2 =
C∪{∞}, z 7→ zk, k ∈ N \ {0} is conformal with branching points 0 and ∞. If ϕ is a
solution of Dϕ = c|ϕ|2ϕ, then the pullback ψ := A∗ϕ is a solution of Dψ = c|ψ|2ψ
on S2 \{0,∞}. Here ψ is a section of the pull-backed spinor bundle, which is defined
using the pull-backed spin structure. The pull-backed spin structure on S2 \ {0,∞}
coincides with the standard spin structure iff k is odd. If k is odd, one can show that
the extension of ψ by setting ψ(0) = 0 and ψ(∞) = 0 is a solution of Dψ = c|ψ|2ψ
on S2. However,

∫
|ψ|4 = k

∫
|ϕ|4. This implies F(ψ) = k−1/3F(ϕ). Hence, if ϕ is a

Killing spinor, and k ≥ 3, k odd, then ψ is a non-maximizing solution.

5 Regularity theorems for the Euler-Lagrange

equations

In this section we want to study solutions of the Euler-Lagrange equations. The first
subsection “Removal of singularities” will be used in the following section to extend
a solution of Rn = Sn \ {South Pole} to a solution on Sn. The second subsection
proves that solutions of the Euler-Lagrange equations are C2,p−2.

5.1 Removal of singularities

THEOREM 5.1 (Removal of singularities theorem). Let p ∈ [ n
n−1

,∞). Let (U, g) be
a (not necessarily complete) Riemannian manifold equipped with a spin structure, let
x ∈ U . Assume that ϕ ∈ Lp(Σ(U \ {x}), g) satisfies weakly on U \ {x} the equation

Dϕ = λ|ϕ|p−2ϕ. (5.2)

Then this equation even holds weakly on U . In particular, the distribution Dϕ does
not have singular support in x and is contained in Lq.
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Proof. Let ψ be a smooth spinor compactly supported in U . We have to show
∫

U

〈ϕ,Dψ〉 = λ

∫

U

〈|ϕ|p−2ϕ, ψ〉. (5.3)

For any small ε > 0 we choose a smooth cut-off function ηε : U → [0, 1] with ηε ≡ 1
on Bε(x), with |∇ηε| ≤ 2/ε and with support in B2ε(x). We rewrite the left hand
side as

∫

U

〈ϕ,Dψ〉 =

∫

U

〈
ϕ,D

(
(1 − ηε)ψ + ηεψ

)〉
(5.4)

=

∫

U

〈
ϕ,D

(
(1 − ηε)

)
ψ
〉

+

∫

U

〈ϕ, ηεDψ〉 +

∫

U

〈ϕ,∇ηε · ψ〉

As ϕ is a weak solution of (5.2) on U \ {x}, the first term equals to

λ

∫
〈|ϕ|p−2ϕ, (1 − ηε)ψ〉,

and for ε→ 0 it tends to the right hand side of (5.3).

Let q be related to p via 1/q + 1/p = 1. The absolute value of the second term is
bounded by

‖ϕ‖Lp(B2ε) ‖Dψ‖Lq(B2ε)

which tends to 0 for ε→ 0.

Finally, the absolute value of the third term is bounded by

2

ε
‖ϕ‖Lp(B2ε) ‖ψ‖Lq(B2ε) ≤ C ‖ϕ‖Lp(B2ε) ε

n
q
−1.

Our condition p ≥ n
n−1

yields q ≤ n, and hence the third term also tends to 0 for
ε → 0. ✷

5.2 Regularity

THEOREM 5.5 (C1,α-regularity theorem). Suppose that ϕ ∈ Hq
1 , q ∈ [qD, 2] is a

solution of equations (2.8). Suppose that there is an r > pD such that ‖ϕ‖Lr < ∞.
Then ϕ is C1,α for any α ∈ (0, 1).
Furthermore, we obtain a uniform bound of the C1,α-norm in the following sense.
Let us choose k,K > 0 such that ‖ϕ‖Lr < k and µq ≥ K. Then for any α ∈ (0, 1)
there is a constant C depending only on (M, g, σ), p, r, K, k and α with

‖ϕ‖C1,α ≤ C.
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Remark. The following example shows that the theorem cannot hold without the
Lr-bound. Let M = Sn and p = pD. Let ψ be a Killing spinor to the Killing
constant −1/2. Suppose ‖ψ‖LpD = 1. Let A : Sn → Sn be an orientation preserving
conformal diffeomorphism, such that the differential in a given point x0 ∈ Sn satisfies
(dA)x0

= 2 Id. Then Ai is again an orientation preserving conformal diffeomorphism
with (dAi)x0

= 2i Id. It follows that ψi = d(Ai)ψ is a family of solutions of (2.8),
maximizing FqD . However, for any r > pD one can show that ‖ψi‖Lr → ∞ for
i→ ∞. Hence, the Lr-bound is necessary for the theorem to hold.

Remark. The theorem will be applied in several versions. At first, we will apply
it when p < pD. In this case the Sobolev embedding Hq

1 →֒ Lr, r = nq
n−q > qD,

already provides the required Lr-bound for ϕ. However, the r given by the Sobolev
embedding depends on p. It will be of central importance to obtain a bound that
is uniform for p → pD. After having proved Theorem 6.2 the uniformity statement
in the above theorem will be used to obtain a bound that is uniform for p → pD.
Finally, the regularity theorem will be applied in the case p = pD. In this case an
additional Lr-bound is required as well.

Proof of the theorem. The proof uses the following “bootstrap argument”. At
first, we assume r < n n+1

n−1
. As ϕ is Lr, the right hand side of (2.8), i.e. |ϕ|p−2ϕ,

is Lr/(p−1) →֒ Ls with s := r/(pD − 1) = r n−1
n+1

< n. We apply the Global Lp-
estimates A.2 or the Interior Lp-estimates A.1 with N := K := M and get ϕ ∈
Hs

1 . Using the Sobolev embedding I, Theorem A.5 (a) one obtains ϕ ∈ Lr
′

with

r′ = ns
n−s =

rnn−1

n+1

n−r n−1

n+1

. Using r > pD = 2n/n − 1 one sees that r′ > r, hence we have

obtained stronger regularity for ϕ. We iterate this argument and get Lr̃-bounds for
arbitrarily large r̃. For any r̃ > n n+1

n−1
, we obtain ϕ ∈ H s̃

1 with s̃ := r̃/(pD − 1) > n.
We apply the Sobolev embedding theorem II, Theorem A.5 (c) and obtain ϕ ∈ C0,α

for any α ∈ (0, 1). Hence |ϕ|p−2ϕ is C0,α as well, and applying Schauder estimates
A.3 we get ϕ ∈ C1,α for arbitrary α.

The uniformity of the upper bound is clear from the construction. ✷

The bootstrap can be continued and we obtain better regularity.

PROPOSITION 5.6 (Improved regularity). We assume the assumptions of the pre-
vious theorem.

(1) Let U := M \ ϕ−1(0). Then ϕ|U ∈ C∞(U).

(2) If p > 2, then ϕ ∈ C2,α for any α ∈ (0, 1) ∩ (0, p− 2]. Furthermore,

‖ϕ‖C2,α ≤ C,

where C depends only on (M, g, σ), p, r, K, k and α.
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(3) If n = 2 and p = pD = 4, then ϕ ∈ C∞. Furthermore,

‖ϕ‖Cm ≤ C,

where C depends only on (M, g, σ), p, r, K, k and m.

Proof. (1) On U we can continue the bootstrap argument and apply inductively
the Schauder estimates Theorem A.3. We conclude that ϕ is smooth on U . We
obtain (1). Note, that we have not proved that ‖ϕ‖Cm(U) is finite, as there is no
control on high derivatives close to the nodal set.

(2) Let p > 2. We know that ϕ is C1,α for any α ∈ (0, 1). Hence, using Appendix B
one sees that |ϕ|p−2ϕ is C1,α for α ∈ (0, 1)∩(0, p−2]. The Schauder estimates imply
that ϕ is C2,α.

(3) Similarly, if n = 2 and p = 4, then ϕ 7→ |ϕ|p−2ϕ is also smooth in 0. Hence the
bootstrap can go on with higher order Schauder estimates, and we inductively get
ϕ ∈ Cm(M) for any m. The construction obviously provides uniform bounds. We
obtain (3). ✷

6 Solution of the variational principle

PROPOSITION 6.1. Let q and p be related via 1/p + 1/q = 1. For q ∈ (qD, 2) the
supremum µq of Fq is attained by a spinor field ϕ ∈ C2,α, α ∈ (0, 1) ∩ (0, p − 2],
1/p+ 1/q = 1. The spinor ϕ can be chosen such that ϕ is a solution of (2.8).

Proof. Let ϕi be a maximizing sequence for Fq, i. e. Fq(ϕi) → µq. We may assume
‖Dϕi‖Lq = 1, and that ϕi is orthogonal to kerD. After taking a subsequence there
is a ϕ∞ ∈ Hq

1 such that ϕi converges weakly to ϕ∞ in Hq
1 . Thus ‖Dϕ∞‖Lq ≤

lim inf ‖Dϕi‖Lq = 1. The compactness of the embedding Hq
1 →֒ Lp provides a

subsequence, that converges strongly to ϕ∞ in Lp. This implies
∫
〈Dϕi, ϕi〉 =

∫
〈Dϕi, ϕi − ϕ∞〉

︸ ︷︷ ︸
≤‖Dϕi‖Lq‖ϕi−ϕ∞‖Lp

+

∫
〈Dϕi, ϕ∞〉

︸ ︷︷ ︸
→

R

〈Dϕ∞,ϕ∞〉

→
∫
〈Dϕ∞, ϕ∞〉.

Hence,

µq = limFq(ϕi) = lim

∫
〈Dϕi, ϕi〉
‖Dϕi‖2

Lq

≤
∫
〈Dϕ∞, ϕ∞〉
‖Dϕ∞‖2

Lq

= Fq(ϕ∞) ≤ µq.

As a consequence, we have equality in all inequalities, in particular ‖Dϕ∞‖Lq = 1.
According to Lemma 2.7 one can find s ∈ R

∗ and τ ∈ kerD such that ϕ = sϕ∞ + τ
solves (2.8). Proposition 5.6 (Improved Regularity) tells us that ϕ is C2,α. ✷
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THEOREM 6.2 (Uniform C0-estimate). Let ϕ be a solution of (2.8) with p ∈ [2, pD)
and µq ≥ µSn

qD
+ ε, ε > 0. Then there is a constant C = C(M, g, σ, ε) such that

‖ϕ‖C0 < C.

Remark. The conclusion of this theorem does not hold any longer, if we drop the
condition µq > µSn

qD
. In fact, if q = qD and (M, g, σ) = Sn, then there is the following

counterexample: Let A be an orientation preserving conformal map Sn → Sn with
a repelling fixpoint x0 as described in the first remark in Subsection 5.2. Let ϕ be
a Killing spinor. As seen in the previous section ϕ is a maximizer of FqD and a
solution of (2.8). The images ϕk := (Ak)∗ϕ under the conformal maps Ak are also
maximizers of FqD and solutions of (2.8). However, as easily seen, ‖ϕk‖C0 tends to
∞ for k → ∞.

Proof of Theorem 6.2. Assume that such a constant does not exist. Then we
find a sequence of solutions ϕk of

Dϕk = µ−1
qk

|ϕk|pk−2ϕk, ϕk ∈ Hqk
1 , ‖ϕk‖Lpk = 1 (6.3)

1/qk = 1 − 1/pk, µqk ≥ µSn

qD
+ ε and

‖ϕk‖C0 → ∞. (6.4)

Let us assume for a moment that p∞ := lim inf pk < pD. In this case, we can

choose a subsequence with pk → p∞. We have 1 = ‖ϕk‖pk

Lpk =
∥∥∥ |ϕk|pk−2ϕk

∥∥∥
qk

Lqk
=

µqk
qk‖Dϕk‖qkLqk . We conclude that ϕk is bounded in H q̃

1 for a q̃ > qD, and hence
in Lr for an r > pD. Then the regularity theorem (Theorem 5.5) says that ‖ϕk‖C0

is bounded, in contradiction to (6.4). Hence, the case p∞ < pD can not occur, i.e.
lim pk = pD.

There is a sequence of points sk ∈ M with

mk := |ϕk(sk)| = max
{
|ϕk(x)|

∣∣x ∈M
}
→ ∞.

The idea is to blow up suitably the metric such that we obtain in the limit a solution
on Euclidean Rn.

We define

g̃k := (mk)
2(pk−2)g

ϕ̃k := (mk)
(pk−2)n−1

2
−1ϕk.

One easily verifies
|ϕ̃k(sk)|g̃k

= 1, (6.5)
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and obviously (2.8) transforms into

Dg̃k
ϕ̃k =

1

µqk
|ϕ̃k|pk−2

g̃k
ϕ̃k. (6.6)

We calculate

‖ϕ̃k‖pk

Lpk (g̃k) = µqk

∫
〈Dg̃k

ϕ̃k, ϕ̃k〉g̃k
dvolg̃k

= µqk

∫
〈Dgϕ̃k, ϕ̃k〉 dvolg

= (mk)
2((pk−2)n−1

2
−1) ‖ϕk‖pk

Lpk (g)︸ ︷︷ ︸
=1

.

We can assume that mk ≥ 1. As pk ≤ pD implies (pk − 2)n−1
2

− 1 ≤ 0, we obtain

‖ϕ̃k‖Lpk (g̃k) ≤ 1. (6.7)

The injectivity radius of (M, g̃k) tends to infinity, i.e. for any R > 0 there is a
k0 = k0(R) ∈ N such that for all k ≥ k0 the exponential map expg̃k

sk
: Tsk

M → M
with respect to g̃k and based in sk is a diffeomorphism on the ball of radius R
around 0. Now, we identify (Tsk

M, g̃k) with (Rn, geucl). Then gk := (expg̃k
sk

)∗g̃k is
Riemannian metric on BR(0) that coincides with geucl in 0. In the limit k → ∞ the
metrics gk converge to geucl in the C∞-topology.

As already said in previous sections, the construction of the spinor bundle, its scalar
product and its connection depend on the Riemannian metric (and the spin struc-
ture). In order to work out the blowup construction one has to define a pullback
of the spinors ϕ̃k ∈ Γ(Σ(M, gk, σ)) via normal coordinates and then obtain a spinor
in Γ(Σ(BR(0), geucl)). In the literature two such pullbacks are used, a pullback
construction carried out in [AGHM08] and inspired by [BG92], or via radial par-
allel transport (see e.g. the solution of the index problem in [Roe88] using Getzler
rescaling). Both pullbacks can be used here. The pullback in [AGHM08] has bet-
ter approximation properties, and is an important tool if one wants to study fine
asymptotics of the blowup. However, the pullback via radial parallel transport is
technically simpler to introduce, hence it will be used here.

For R > 0 let Σ0(BR(0), geucl) (resp. Σsk
(M, gk, σ)) be the fiber of Σ(BR(0), geucl)

over 0 (resp. Σ(M, gk, σ) over sk). Let us define the radial vector field X =
r∂r =

∑
xi∂xi on BR(0) ⊂ Rn. Its length is the distance from 0. For sufficiently

large k, the exponential map of (M, gk) based in sk, denoted by expg̃k
sk

is a diffeo-
morphism from BR(0) onto its image. One chooses a (complex) linear isometry
Σ0(BR(0), geucl) → Σsk

(M, gk, σ). This map extends uniquely to a fiber preserving
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map A : Σ(BR(0), geucl) → Σ(M, gk, σ), such that

Σ(BR(0), geucl)
A−→ Σ(M, gk, σ)

↓ ↓

BR(0)
exp

g̃k
sk−→ M

commutes and such that

A(∇Xϕ) = ∇
(exp

g̃k
sk

)∗(X)
Aϕ.

In a neighborhood of sk, this condition can be equivalently characterized by saying
that ϕ 7→ A◦ϕ◦(expg̃k

sk
)−1 maps parallel sections of Σ(BR(0), geucl) to radially parallel

sections of Σ(BR(sk), gk, σ). One easily sees that A is a fiberwise isometry, but the
connection on the spinor bundle is not preserved. However, this will not matter, as
in the limit k → ∞, R fixed, the connections converge in the C∞-topology.

Let k ≥ k0(R). On (BR(0), geucl) we define the spinor

ϕk := A−1 ◦ ϕ̃k ◦ expg̃k
sk

and the operator Dk : Γ(Σ(BR(0), geucl)) → Γ(Σ(BR(0), geucl)),

Dk := A−1 ◦Dgk
◦ A,

where Dgk
is the Dirac operator on (BR(0), gk). We obtain

Dkϕk =
1

µqk
|ϕk|pk−2ϕk

Note that
‖ϕk‖C0(BR(0)) ≤ |ϕk(0)| = 1.

Hence, we may apply the interior Lp- and the Schauder-estimates A.1 and A.3 to
conclude that

‖ϕk‖C1,α(BR/2(0)) ≤ C(R),

with constants C(R) and k(R). The constant C(R) does not depend on k if gk is
sufficiently C∞-close to geucl. In particular, the C∞-convergence gk → geucl says that
C(R) does not depend on k for k ≥ k1(R).

Compare Dk with the Dirac operator Deucl on Euclidean Rn. (For similar and more
explicit calculations the reader might consider e.g. [Pfä02] for pullback via radial
parallel transport, and [AGHM08] for the other pullback method). We have

‖(Deucl −Dk)ϕk‖C0,α(BR/2(0),geucl) ≤ τk,R‖ϕk‖C1,α(BR/2(0),gk),
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with limk→∞ τk,R = 0. The convergence is not uniform in R, but this will not matter
in the following.

We choose a sequence of radii Rm → ∞. For each Rm, the Arcela-Ascoli theorem
(Theorem A.4) allows us to choose a subsequence of (ϕk) converging in C1(BRm(0), geucl).
After passing to a diagonal sequence, we see that there is a spinor ϕ∞ on Rn, such
that ϕk|BR(0) converges to ϕ∞|BR(0) ∈ C1(BR(0), geucl) for all R > 0.

Then ϕ∞ is a solution of

Deuclϕ∞ =
1

µqD
|ϕ∞|pD−2ϕ∞

on Rn.

The estimate (6.7) says that ‖ϕ̃k‖Lpk (BR(sk),egk) ≤ 1. Hence, for any ε > 0 and R > 0
there is k2 = k2(R, ε) such that

‖ϕk‖Lpk (BR(0)) ≤ 1 + ε

for all k ≥ k2. Because of the C1-convergence ϕk → ϕ∞, Fatou’s lemma yields

‖ϕ∞‖LpD (BR(0)) ≤ 1

for any R ∈ (0,∞), and finally for R = ∞.

We identify ϕ∞ via stereographic projection with an LpD -spinor ϕ̂∞ on S
n\{South pole}

with the identification provided by the application F̃ directly after Proposition 2.1.
We obtain

DSn

ϕ̂∞ =
1

µqD
|ϕ̂∞|pD−2ϕ̂∞ (6.8)

and ‖ϕ̂∞‖LpD ≤ 1. The removal of singularities theorem, i.e. Theorem 5.1, says that
(6.8) holds on the whole sphere Sn.

∫

Sn

〈Dϕ̂∞, ϕ̂∞〉 = µ−1
qD

‖ϕ̂∞‖pD

LpD (Sn),

‖Dϕ̂∞‖LqD (Sn) = µ−1
qD

∥∥∥ |ϕ̂∞|pD−1ϕ̂∞

∥∥∥
LqD (Sn)

= µ−1
qD

‖ϕ̂∞‖pD−1
LpD (Sn),

µSn

qD
≥ FSn

qD
(ϕ̂∞) = µqD‖ϕ̂∞‖2−pD

LpD (Sn) ≥ µqD

which is apparently a contradiction to our assumption µqD ≥ µSn

qD
+ ε. ✷
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PROPOSITION 6.9. If there is a p0 < pD and an r > pD such that for all t ∈
(p0, pD) there is a solution ϕt of equation (2.8) with p = t, 1/q + 1/p = 1 and such
that ‖ϕt‖Lr is bounded by a constant C independent from t, then there is a sequence
ti → pD such that ϕti converges in the C1-topology to a solution of equation (2.8)
with p = pD.

Proof. For p sufficiently close to pD, we know because of Proposition 2.5 that µt
is bounded from below by a positive constant. Thus, we can apply the regularity
theorem (Theorem 5.5) which tells us that (ϕt) is uniformly bounded in C1,α. Hence,
for a sequence (ti) with ti < pD, converging to pD, the spinor fields ϕti converge in
the C1-topology to a C1-spinor field ϕpD

which is a solution of equation (2.8) with
p = pD. ✷

7 Proof of the main theorem

In this section we want to prove the main result of this publication, namely Theo-
rem 1.6.

Proof of Theorem 1.6. Proposition 6.1 tells us that for any q ∈ (qD, 2), qD :=
2n/(n + 1), the functional Fq is attained by a maximizer denoted ϕq satisfying

Dϕq = µ−1
q |ϕq|p−2ϕq, ϕq ∈ Hq

1 , ‖ϕq‖Lp = 1

where p and q are related via p−1 + q−1 = 1. We have assumed that λ+
min(M, g, σ) <

λ+
min(S

n) which is equivalent to µqD > µSn

qD
. As the function q 7→ µq is continuous

from the right (Proposition 2.5), we see that there is an ε > 0 such that µq > µSn

qD
+ε

for q close to qD. For such q, Theorem 6.2 implies that ϕq are uniformly bounded in
the C0-norm, and then we can use Theorem 5.5 to conclude that these ϕq are even
uniformly bounded in C1,α. The Theorem of Arcela-Ascoli (Theorem A.4) implies
that there is a sequence qi → qD such that ϕqi converges in the C1-norm to a solution
ϕ of

Dϕ = λ+
min |ϕ|pD−2ϕ, ϕ ∈ C1, ‖ϕ‖LpD = 1

Theorem 5.5 and Proposition 5.6 then show that ϕ has the desired regularity, and
statement (A) is proven.

We will now show that statement (B) follows from statement (A). If we have a
solution as in (A), then we set g1 := f 2/(n−1)g0 with f = 〈ϕ, ϕ〉. Note that
vol(M, g1) =

∫
|ϕ|2n/(n−1) = 1.

The transformation formula for the Dirac operator under conformal changes (Propo-
sition 2.1) implies that there is a spinor ϕ1 on (M, g1, σ) such that

Dg1ϕ1 = λϕ1, |ϕ1|g1 ≡ 1.
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Then obviously, λ+
1 (g1) = λ+

min and (B) follows.

Statement (C) of Theorem 1.6 will follow from Proposition 8.4, proven in the next
section.

8 The nodal set

In this section we want to study that the zero set of solutions of the Euler-Lagrange
equation

Dϕ = c|ϕ|p−2ϕ. (8.1)

Note that often the zero set of a function ϕ solving an equation of the above type
is denoted as the nodal set of ϕ.

The following theorem is due to C. Bär [Bär97] for smooth P .

THEOREM 8.2 (Nodal sets for Dirac Operators). Let (U, g) be a Riemannian man-
ifold and let ϕ be a solution of

Dϕ = P · ϕ
where P is a smooth function. Then the nodal set of ϕ has Hausdorff dimension at
most n− 2.

Unfortunately, (8.1) has not the desired form as P = c|ϕ|p−2 is not smooth for p 6∈ Z,
and Bär’s proof does not extend to such a P . Nevertheless, we conjecture that the
theorem also holds for P = c|ϕ|p−2, p > 2.

CONJECTURE 8.3. The nodal set of any solution of (8.1) has Hausdorff dimension
at most n− 2.

If n = 2 and p = pD = 4, then we have better regularity. In this case solutions of
equation (8.1) and the corresponding P = c|ϕ|2 are smooth. Hence, using [Bär97,
Main Theorem], one sees that in this case the nodal set of a solution is a discrete
subset. The following proposition controls its cardinality.

PROPOSITION 8.4. On a compact spin surface (M, g, σ) of genus γ let ϕ be a
solution of equation

Dϕ = λ|ϕ|2ϕ, ‖ϕ‖L4 = 1.

Then the number of zeros of ϕ is at most γ − 1 + λ2

4π
.

In particular, this implies part (C) of Theorem 1.6.
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Proof. We set g1 := |ϕ|4g. Then outside the zero set we know by Lemma 4.4 that
the Gauss curvature of g1 is at most λ2. Furthermore vol(M, g1) = 1. Let ϕ(p) = 0.
The integral of the geodesic curvature with respect to g1 over small simply closed
loop around p is close to −2(2jp+1)π, where jp is the order of the first non-vanishing
term in the Taylor expansion of ϕ in p. We remove small open disks around the zeros
of ϕ from M , and we obtain a surface with boundary M ′. With the Gauss-Bonnet
theorem we obtain

2π χ(M ′) =

∫

M ′

Kg1 +

∫

∂M ′

kg1 ≤ λ2 −
∑

(2jp + 1)2π.

And hence 2π (2−2γ) = 2π χ(M) ≤ λ2−4π
∑
jp, which implies the proposition. ✷

9 The spinorial Weierstrass representation

The aim of this section is to recall the spinorial Weierstrass representation.

Weierstrass published a representation of minimal surfaces in R3 in terms of holo-
morphic functions [Wei66]. His article deals only with local questions, everything
is described in a fixed conformal chart of the surface. From a modern (chart free)
point of view, it is clear that these holomorphic sections should be interpreted as a
section of the spinor bundle, and “holomorphy” translates into a “harmonicity”, i.e.
the surface is minimal iff the corresponding spinor ϕ satisfies Dϕ = 0.

During the 20th century several attempts were undertaken to globalize the Weier-
strass representation and to adapt it to arbitrary surfaces. Unfortunately, most
approaches replaced Weierstrass’ original approach by a formulation in terms of a
holomorphic 1-form and a holomorphic function. The corresponding formulae for
non-minimal surfaces were quite involved, and hence not very suitable for applica-
tions.

An amazing breakthrough was achieved by work of D. Sullivan, R. Kusner, and
N. Schmitt around 1990, and independently by U. Abresch. In early 1989, Dennis
Sullivan put together some unpublished notes explaining the spinorial character of
the Weierstrass representation for minimal surfaces. In spring 1989, Robert Kusner
realized that the spinor formalism is not limited to minimal surfaces, but extends to
conformal immersions of arbitrary surfaces, as described below. These techniques
were presented in Sullivan’s CUNY seminar in 1992, and spread around among
the experts rapidly. Kusner’s results found their continuation in the PhD thesis
of Nicholas Schmitt [Sch93]. Schmitt found many interesting applications of the
spinorial Weierstrass representation. The results of Kusner and Schmitt led to the
publications [Sch93] and [KS96].
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Independently, Abresch developed a spinorial Weierstrass representation for constant
mean curvature surfaces. Unfortunately, the resulting document of Abresch, some
handwritten lecture notes from a conference in Luminy, were never published.

We also want to mention an earlier result of Pinkall [Pin85]. In the special class of
oriented surfaces, Pinkall’s result establishes a bijection between regular homotopy
classes of immersions of oriented surfaces M and Z2-valued quadratic forms on
H1(M,Z2). These quadratic forms are in bijection with the spin structures obtained
in the spinorial Weierstrass representation.

More recent literature concerning this representation can be found for example in
[Bär98, Fri98, Amm98] and in articles by Pinkall, Taimanov, M.U. Schmidt, Morel,
Voss and their collaborators. However, this list is far from being exhaustive.

In our exposition we roughly follow [KS96, Fri98]. The setting for the spinorial
Weierstrass representation is as follows. Let M be a compact Riemann surface of
genus γ. The vector bundles Λ1,0T ∗M and Λ0,1T ∗M are defined as the complex
linear part and the complex anti-linear part of T ∗M ⊗R C. The compositions

I1,0 : T ∗M → T ∗M ⊗R C → Λ1,0M

I0,1 : T ∗M → T ∗M ⊗R C → Λ0,1M

of the complexification and the projection on Λ1,0M resp. Λ0,1M define vector space
homomorphisms T ∗M ∼= Λ1,0M and T ∗M ∼= Λ0,1M . These map I1,0and I0,1 preserve
the natural connections. However, one should pay attention to the fact, that these
maps do not preserve lengths, but 2Re g(I1,0(α), I1,0(β)) = 2Re g(I0,1(α), I0,1(β)) =
g(α, β). The maps 2(I1,0)−1 resp. 2(I0,1)−1 is denoted as the real part, namely
Re (α) = 2(I1,0)−1(α) for α ∈ Γ(Λ1,0M) and the same notation is used in the (0, 1)
case. Complex conjugation maps Λ0,1M to Λ1,0M and vice versa.

As the second Stiefel-Whitney-class of M is the mod 2 reduction of the Euler-class
of TM → M , one sees that M is spin. However, the space of spin structures on
M is not unique: it is an affine space for the group H1(M,Z2) = (Z2)

2γ, where γ
denotes the genus of M . Hence, there are 4γ spin structures on M .

If a spin structure is fixed, then the associated vector bundle with respect to the
standard representation of S1 on C is a complex line bundle Σ+M satisfying Σ+M⊗
Σ+M ∼= Λ0,1M . If we equip Σ+M with the natural hermitian metric, we can choose
this map such that the hermitian metric (res. the connection) on Λ0,1M is the tensor
product metric (resp. tensor product connection).

We define Σ−M to be Σ+M with the conjugated complex structure. In particular,
there is a natural anti-linear conjugation map Σ+M → Σ−M , the hermitian product
defines a complex bilinear metric contraction Σ−M ⊗ Σ+M → C, and Σ−M ⊗
Σ−M ∼= Λ1,0M . In particular, Σ−M ⊗ Λ0,1M = Σ−M ⊗ Σ+M ⊗ Σ+M = Σ+M ,
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and hence the Dolbeault operator is a map ∂ : Γ(Σ−M) → Γ(Σ+M), and similarly
∂
∗

= −∂ : Γ(Σ+M) → Γ(Σ−M).

We define c1,0 and c0,1 as the compositions

TM
b→ T ∗M

I1,0

→ Λ1,0M = Σ−M ⊗ Σ−M = HomC(Σ+M,Σ−M),

TM
b→ T ∗M

I0,1

→ Λ0,1M = Σ+M ⊗ Σ+M = HomC(Σ−M,Σ+M).

Composing c1,0 with complex conjugation yields c1,0 and vice versa. One calculates

c1,0(X)c0,1(Y ) + c1,0(Y )c0,1(X) = g(I(X), I(Y )) + g(I(Y ), I(X)) = g(X, Y ).

As a consequence, the map

TM → End
(
Σ+M ⊕ Σ−M

)
, X 7→

√
2

(
0 c0,1(X)

−c1,0(X) 0

)

satisfies the Clifford relations.

One sees, that the sum ΣM := Σ+M ⊕ Σ−M can be identified with the standard
spinor bundle on M in such a way that the above map is the Clifford multiplication,
and such that Σ+M resp. Σ−M are the positive resp. negative half-spinors.

The Dirac operator can be written in this notation as

D =
√

2

(
0 ∂
−∂ 0

)
: Γ
(
Σ+ ⊕ Σ−

)
→ Γ

(
Σ+ ⊕ Σ−

)
.

Now let us assume that ϕ = (ϕ+, ϕ−) is a solution of Dϕ = H|ϕ|2ϕ, where H is a
real-valued function on M . This means

−
√

2∂ϕ+ = H|ϕ|2ϕ−
√

2∂ϕ− = H|ϕ|2ϕ+

We define

α :=
√

2



ϕ+ ⊗ ϕ+ + ϕ− ⊗ ϕ−
iϕ+ ⊗ ϕ+ − i ϕ− ⊗ ϕ−

2iϕ+ ⊗ ϕ−


 ∈ Γ(Λ0,1 ⊗R R

3).

Let M̃ denote the universal covering of M , and π1(M) the group of Deck transfor-
mations.
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As ∂α = dα is imaginary, we can find a function F : M̃ → R3, such that dF = Re α,
and there is a homomorphism V : π1(M) → R3, such that

F (p · γ) = F (p) + V (γ) ∀p ∈ M̃, γ ∈ π1(M)

One calculates that F is a conformal map with possible branching points,

|dF | = |Re α| =
1√
2
|α| = |ϕ|2,

and that F (M) has mean curvature H .

Hence, the map F satisfies Properties (1) to (3) from the introduction, i.e. it is a
periodic branched conformal immersion F based on (M, g) with mean curvature H .

In any zero of the spinor ϕ, the map F has a branching point. If F vanishes of order
k, then α vanishes of order 2k. Hence, all branching points of F are necessarily of
even order.

Summarizing the above statements, we obtain for any solution of Dϕ = H |ϕ|2ϕ a

periodic branched conformal immersion of M̃ into R3 which is uniquely determined
up to translation. If ϕ solves Dϕ = H |ϕ|2ϕ, then −ϕ as well, and the corresponding
F is the same. Hence, we obtain a well-defined map

{
solutions of
Dϕ = H |ϕ|2ϕ
on M

}
/±1 −→

{
conformal periodic H-immersions
M̃ → R3 with branching

points of even order

}
/trans-
lations

and one can show that this map is even a bijection.

The inverse of this map is given by restricting a parallel spinor on R3 to F (M) and
by performing a conformal change [Bär98].

If H is constant, then there is also another version of the spinorial Weierstrass
representation, where the target space is S3 instead of R3. We view S3 as SU(2)
with a bi-invariant metric of constant curvature 1, the multiplication in SU(2) is
denoted with •. The periodicity condition (1) has to be replaced by

(1’) Left periodicity: There is a homomorphism h : π(M) → SU(2), the periodicity

map, such that for any γ ∈ π1(M), and x ∈ M̃ one has

F (x · γ) = h(γ) • F (x).

Here · denotes the action of π1 on M̃ via Deck transformation.
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One obtains a bijection

{
solutions of
Dϕ = c |ϕ|2ϕ
on M

}
/±1 −→

{
conformal left periodic H-im-
mersions M̃ → SU(2) with
branching points of even order

}
/Left mul-
tiplication

where c =
√
H2 + 1. For details see [Vos99, Mor02, Amm03b].

10 Applications to constant mean curvature sur-

faces

If the dimension of M is 2, then (1.7) reads as

Dϕ = λ+
min |ϕ|2ϕ, ϕ ∈ H

4/3
1 , ‖ϕ‖L4 = 1 (10.1)

and according to the regularity theory ϕ is even smooth.

The spinorial Weierstrass representation explained in the previous section tells us,
that such a solution can be used to construct certain immersions with constant mean
curvature.

Combining the previous results we obtain the following application that is a stronger
version of the “Principle for construction of cmc-surfaces” mentioned in the intro-
duction.

PROPOSITION 10.2. Assume that the Riemann spin surface (M, g, σ) satisfies

λ+
min(M, [g], σ) < 2π. (10.3)

Then there is a periodic branched conformal cmc immersion F : M̃ → R3 based on
(M, g). The mean curvature is equal to λ+

min(M, [g], σ) and the area of a fundamental
domain is 1. The regular homotopy class of F is determined by the spin-structure σ.
The indices of all branching points are even, and the sum of these indices is smaller
than 2genus(M). In particular, if M is a torus, there are no branching points.

The proof is a direct consequence of Theorem 1.6 and the previous section.

There are many examples of stationary points of the functional. However, it is still
open whether they are the maximizers or not. Note, that by changing the orientation
of a surfaces, a maximizers ψ of FqD on M turns into a minimizer ψ′ of FqD on the
surface with reversed orientation M ′, with FM ′

qD
(ψ′) = −FM

qD
(ψ). Let us study some

examples.
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Examples.

(a) Let (M, g) be a 2-dimensional torus. Via a conformal change we can achieve that
g is flat, i.e. M = R2/Γ, equipped with the Euclidean metric. We assume that

the lattice Γ is generated by

(
1
0

)
and

(
x
y

)
, with y > 0. The spinor bundle of a

flat manifold is flat as well, hence the holonomy is a map Γ → SU(ΣpM). Indeed,
the image of this map is contained in {± Id}. We obtain a homomorphism
χ : Γ → {± Id}. This homomorphisms characterizes the spin structure σ in the
sense that two spin structures on (M, g) are isomorphic iff the homomorphisms
χ coincide, and to each such homomorphism there is a spin structure. The case
χ ≡ + Id corresponds to the so-called trivial spin structure σtr, the other cases
correspond to non-trivial spin structures. 1

At first, we deal with the case σ = σtr. In this case, after a possible rotation
and a possible homothety, we can achieve

|x| ≤ 1

2
, y2 + x2 ≥ 1, y > 0.

On (M, g, σtr) the kernel of D has complex dimension 2, and consists of parallel
spinors. If one carries out the constructions from the last sections for a parallel
spinor, then one obtains an affine conformal map F . Such an F is trivially a
periodic conformal immersion F based on (M, g) with vanishing mean curvature.
However, if y > π then one easily sees that λ+

min(M, g, σtr) < 2π. The proposition
yields the existence of a periodic conformal immersion F based on (M, g) with
constant mean curvature λ+

min(M, g, σtr), and the area of a fundamental domain
is 1. However, the proposition only provides the existence of the solution, but
we cannot characterize the maximizer. In our example, a family of solutions can
be explicitly written, namely it is the family of parametrized cylinders

F : R
2 → R

3

(
a
b

)
7→ P




√
y

4π
cos 4πb

y√
y

4π
sin 4πb

y
a√
y


 +X0

for any P ∈ O(3), X0 ∈ R3. We conjecture that these solutions are exactly
those that correspond to the maximizers and the minimizers of FqD , when we
normalize such that all spinors have L4-norm 1.

In the case σ 6= σtr we can achieve that

χ

(
1
0

)
= Id χ

(
1
0

)
= − Id,

1Note that this notation is a bit misleading, as it is only the trivial spin structure on M that
defines a non-trivial element in the bordism class.
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Figure 2: An unduloid in R3, visualized by Nicholas Schmitt, University of Tübingen,
Germany.

|x| ≤ 1

2
, y2 +

(
|x| − 1

2

)2

≥ 1

4
, y > 0.

The Dirac operator is always invertible.

One easily sees λ+
min(M, g, σ) ≤ π√

y
. Hence, the proposition yields solutions for

y > 4
π
. Once again, solutions can be explicitly written, namely the parameter-

ized cylinder

F : R
2 → R

3

(
a
b

)
7→ P




√
y

2π
cos 2πb

y√
y

2π
sin 2πb

y
a√
y


 +X0

for any P ∈ O(3), X0 ∈ R3. However, in some cases, e.g. if x = 0 and 4/π <
y < 1, these solutions no longer correspond to maximizers and minimizers, but
to saddle points of the functional. We conjecture that in the case x = 0, y < 1
the maximizers and minimizers correspond to the unduloid immersions (see
Figure 2). An unduloid is a surface of revolution of constant mean curvature.

(b) If M has genus 2, then as in the case of the torus, the dimension of the kernel
is independent of the metric, however it depends on the spin structure. If σ is a
spin structure such that (M,σ) is spin-cobordant 0, then the Dirac operator is
invertible for any metric. Again, as in the torus case, one can find for any ε > 0
a conformal classes g on M with λ+

min(M, [g], σ) < ε. [AH05]
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Figure 3: A periodic branched conformal minimal surface, visualized by K. Grosse-
Brauckmann, University of Darmstadt, Germany

(c) If the genus is larger than 2, then the kernel of the Dirac operator on a Rieman-
nian spin manifold (M,σ) depends on the metric. For example if M is a surface
of genus 3 equipped with the spin structure σ and the conformal structure g0

associated to the periodic conformal immersion with vanishing mean curvature
indicated in Figure 3. This immersion induces a harmonic spinor on (M, g, σ).
However, as (M,σ) is spin-cobordant 0, there is a perturbation [gt] of the con-
formal structure such that the Dirac operator on (M, gt, σ) has a trivial kernel
for small t 6= 0 [Mai97]. In this case

lim
t→0

t 6=0

λ+
min(M, [gt], σ) = 0,

hence there exist solutions of (10.1). Such a solution is visualized in Figure 4.

(d) Constant mean curvature immersions of T 2 into R3, in particular Wente tori
and twisty tori (Figure 5) also correspond to stationary points of FqD . However,
as they are not embedded [LY82] tells us that

∫
H2 ≥ 8π. On the other hand

maximizers and minimizers of FqD satisfy
∫
H2 = λ+

min
2 ≤ 4π, hence these tori

do not correspond to maximizers or minimizers.

Similar propositions also hold for immersions into S3 and into hyperbolic space H3,
see [Amm03b]. We will only specify the case of S3 = SU(2).
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Figure 4: A periodic branched conformal cmc surface, visualized by K. Grosse-
Brauckmann, University of Darmstadt, Germany

Figure 5: A twisty torus, a cmc immersed torus in R3, visualized by Nicholas
Schmitt, University of Tübingen, Germany
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Figure 6: An unduloid in S3, visualized by Nicholas Schmitt, University of Tübingen,
Germany.

PROPOSITION 10.4. Assume that the Riemann spin surface (M, g, σ) satisfies

λ+
min(M, [g], σ) < 2π. (10.5)

Let a ∈ (0, λ+
min(M, [g], σ) be given. Then there is a left periodic branched conformal

cmc immersion F : M̃ → SU(2) based on (M, g). The mean curvature is equal to

H =
√

(λ+
min(M, [g], σ)/a)2 − 1, and the area of a fundamental domain is a2. The

regular homotopy class of F is determined by the spin-structure σ. The indices of all
branching points are even, and the sum of these indices is smaller than 2genus(M).
In particular, if M is a torus, there are no branching points.

An example where the image of the periodicity map has a finite image in SU(2) is
given in Figure 6.

Remark. If (M, g) is an analytic Riemannian manifold of dimension 3, then there is
an analogue of the spinorial Weierstrass representation. This implies that solutions ϕ
of (2.8) can be geometrically interpreted as a conformal cmc embedding ofM\ϕ−1(0)
into a (non-complete) 4-dimensional Riemannian manifold (N, h). This manifold
(N, h) carries a parallel spinor whose restriction to (M, g) is again the solution
of (2.8). The manifold (N, h) depends on ϕ and is unique up to restriction to
subsets and coverings. A more detailed exposition of this 3-dimensional version is
work in progress by the author.

A Elliptic regularity

In this section we want to collect some facts about elliptic regularity for Dirac oper-
ators. The proofs of these statements are analogous to proofs of the corresponding
statements for the Laplace operators as done e.g. in [GT77] and [Ada75]. Details on
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how to prove most statements of this section are given also in [Amm03b]. Either a
proof is provided there or it is sketched how the statements are reduced to standard
theorems.

Let (N, g) be a Riemannian manifold, possibly with boundary, with a spin struc-
ture σ. The interior ofN is denoted asN0. The spinor bundle Σ(N, g, σ) is a complex
vector bundle carrying a natural connection and a natural hermitian metric.

We now define the Sobolev norms of spinor fields.

Definition (Sobolev spaces). For any spinor ψ smooth on N , and q ∈ (1,∞),
k ∈ N ∪ {0}, we define the Hq

k-norm of ψ as

‖ψ‖Hq
k(N,g,σ) =

k∑

l=0

(∫

N

∣∣∣∇ . . .∇︸ ︷︷ ︸
l−times

ψ
∣∣∣
q

dvolg

)1/q

.

When the domain of integration is clear, we simply write ‖ψ‖Hq
k

instead of ‖ψ‖Hq
k(N,g,σ).

The closure of the space of smooth spinors with respect to this norms is denoted
as Hq

k(Σ(N, g, σ)). If the underlying structure of Riemannian spin manifold is clear
from the context, we often write shortly Hq

k , or in other situations where we want
to emphasize the metric we write Hq

k(g). We will also write Lq for Hq
0 .

THEOREM A.1 (Interior Lp estimates). Let (N, g, σ) be a compact Riemannian
spin manifold, possibly with boundary. Let K be a compact subset of N0. Let ψ be
in Hq

k(Σ(N, g, σ)) and let ϕ ∈ H1
1 (Σ(N, g, σ)) be a weak solution (i.e. in the sense

of distributions) of
Dϕ = ψ

on N0. Then ϕ|K ∈ Hq
k+1(Σ(K, g, σ)) and

‖ϕ‖Hq
k+1

(Σ(K,g,σ)) ≤ C ·
(
‖ψ‖Hq

k(Σ(N,g,σ)) + ‖ϕ‖Lq(Σ(N,g,σ))

)
,

where C = C(N, g, σ,K, k, q), i.e. C depends only on N, g, σ,K, k and q.

Furthermore, if a sequence of metrics (gi)i∈N converges in the C∞-topology to a
Riemannian metric g, then the constants C can be chosen such that

sup
i∈N

C(N, gi, σ,K, k) <∞.

In order to prove the theorem, it is sufficient to prove it in the case that N and K
are small concentric geodesic balls, the radius being controlled in terms of curvature
bounds, and bounds on derivatives of the curvature. As explained in [Amm03b] this
can be done in a way analogous to the corresponding statement for the Laplacian in
[GT77]. The general statement then can be reduced to the special case by covering
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(the general) K by finitely many small open balls and an associated partition of
unity.

In the special case that the boundary of N is the empty set, and that K = N = N0,
then there is a stronger version, that will be used as well.

THEOREM A.2 (Global Lp estimates). Let (N, g, σ) be a compact Riemannian
spin manifold without boundary and ψ ∈ Hq

k(Σ(N, g, σ)). Then any weak solution
ϕ ∈ H1

1 (Σ(N, g, σ)) of
Dϕ = ψ

satisfies ϕ ∈ Hq
k+1(Σ(N, g, σ)), and there is a constant C = C(N, g, σ) such that

‖ϕ‖Hq
k+1

≤ C
(
‖ψ‖Hq

k
+ ‖πker(D)(ϕ)‖Lq

)

where πker(D) is the L2-orthogonal projection to the kernel of D.

The proof of this theorem is not difficult if one uses some facts about pseudodiffer-
ential operators, explained for example in [Tay81]. We abbreviate π := πker(D). The
spectrum of the elliptic operator D + π is bounded away from 0, hence it is invert-
ible and its inverse is a pseudodifferential operator of degree −1. Pseudodifferential
operators of degree −1 are continuous from Lq to Hq

1 . Hence,

‖ϕ‖Hq
1

= ‖(D + π)−1(D + π)ϕ‖Hq
1
≤ C‖(D + π)ϕ‖Lq ≤ C (‖Dϕ‖Lq + ‖π(ϕ)‖Lq) .

This is the statement of the theorem in the case k = 0, and the statement for k > 0
follows for example by using Theorem A.1.

However, a uniformity statement for converging gi → g as in Theorem A.1 does
not hold. If dim kerDg > lim supi dim kerDgi

, then one easily shows that there are
eigenspinors ϕi for Dgi

to eigenvalues λi → 0, λi 6= 0 with

‖Dϕi‖Lq(gi) + ‖πgi
(ϕi)‖Lq(gi)

‖ϕi‖Hq
1
(gi)

= λi,

which would contradict a uniform version of Theorem A.2.

We also need some facts about Hölder norms.

Definition (Hölder spaces). Let α ∈ (0, 1]. On C∞(Σ(N, g, σ)) we define the Hölder
norms

‖ϕ‖C0,α := ‖ϕ‖C0 + hölα(ϕ)

‖ϕ‖C1,α := ‖ϕ‖C0 + ‖∇ϕ‖C0,α = ‖ϕ‖C0 + ‖∇ϕ‖C0 + hölα(∇ϕ)

hölα(Q) := sup
{ |Q(x) − PγQ(y)|

d(x, y)α
| x, y ∈M,x 6= y, Pγ is the

parallel transport along a shortest geodesic γ from x to y.
}
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If the shortest geodesic is not unique, then we use the convention that the supremum
runs over all possible choices of shortest geodesics.

The completions of C∞(Σ(N, g, σ)) with respect to the Hölder norms C0,α and C1,α

define the Hölder spaces C0,α = C0,α(Σ(N, g, σ)) and C1,α = C1,α(Σ(N, g, σ)).

Hölder norms are important as they admit Schauder estimates.

THEOREM A.3 (Schauder estimates). Let (N, g, σ) be a compact Riemannian spin
manifold, possibly with boundary, and let K be a compact subset of N0. Suppose
ψ ∈ Ck,α(Σ(N, g, σ)), k ∈ N ∪ {0}. Then for any weak solution ϕ ∈ L1(Σ(N, g, σ))
of

Dϕ = ψ

we have ϕ|K ∈ Ck+1,α(Σ(K, g, σ)) and

‖ϕ‖Ck+1,α(Σ(K,g,σ)) ≤ C · (‖ψ‖Ck,α(Σ(N,g,σ)) + ‖ϕ‖C0(Σ(N,g,σ))

where C = C(N, g, σ,K, α).

Furthermore, if a sequence of metrics (gi)i∈N converges in the C∞-topology to a
Riemannian metric g, then the constants C can be chosen such that

sup
i∈N

C(N, gi, σ,K, k) <∞.

As before, one important special case is that N has empty boundary and K = N =
N0.

The proof can be done in a way analogous to the proof of the corresponding state-
ments for the Laplacian in [GT77]. Again it is sufficient to prove it for small con-
centric geodesic balls, and to glue them together. We omit the details. For a proof
for concentric geodesic balls is provided for example in [Amm03b].

In local charts one easily reduces the following theorem to the standard Arcela-Ascoli
theorem.

THEOREM A.4 (Arcela-Ascoli). Let (N, g, σ) be a Riemannian spin manifold,
possibly with boundary. For m ∈ N ∪ {0}, the inclusion Cm,α(Σ(N, g, σ)) →
Cm(Σ(N, g, σ)) is compact, i.e. a bounded sequence in Cm,α(Σ(N, g, σ)) has a sub-
sequence convergent in Cm(Σ(N, g, σ)).

Sobolev and Hölder spaces are related by several embedding theorems, some of
them are compact, others are only bounded. We summarize the embeddings that
are needed in the article.
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THEOREM A.5 (Embedding theorems). Let k, s ∈ N ∪ {0}, k ≥ s and q, r ∈
(1,∞). Let (M, g, σ) be a compact Riemannian spin manifold without boundary.
All spaces of functions are defined on sections of Σ(M, g, σ).

(a) (Sobolev embedding theorem I). If

1

r
− s

n
≥ 1

q
− k

n
, (A.1)

then Hq
k is continuously embedded into Hr

s .

(b) (Rellich-Kondrakov theorem). If strict inequality holds in (A.1) and if k > s,
then the inclusion Hq

k →֒ Hr
s is a compact map.

(c) (Sobolev embedding theorem II). Suppose 0 < α < 1, m ∈ {0, 1} and

1

q
≤ k −m− α

n
.

Then Hq
k is continuously embedded into Cm,α.

B Some facts about Hölder spaces

In this section we want to include some proofs of probably well-known statements
about Hölder spaces.

LEMMA B.1. Let V be a Euclidean vector space, α ∈ (0, 1), m ∈ N. Then the map
V →

⊗
m V ,

T : x 7→ |x|α−m x⊗ · · · ⊗ x︸ ︷︷ ︸
m times

is Cα.

Proof. Let x, y ∈ V . At first, we suppose that ‖x − y‖ < δ and ‖x‖ ≥ δ. Then
we calculate

‖x‖
∥∥∥ x

‖x‖ − y

‖y‖
∥∥∥ =

∥∥∥x− ‖x‖
‖y‖y

∥∥∥ ≤ ‖x− y‖ +
∣∣∣1 − ‖x‖

‖y‖
∣∣∣ ‖y‖ ≤ 2δ

Hence ∥∥∥ x

‖x‖ ⊗ · · · ⊗ x

‖x‖ − y

‖y‖ ⊗ · · · ⊗ y

‖y‖
∥∥∥ ≤ 2δm

‖x‖
This implies

|T (x)− T (y)| ≤
∣∣∣‖x‖α−‖y‖α

∣∣∣+ ‖x‖α 2δm

‖x‖ ≤ ‖x− y‖α + ‖x‖α−12δm ≤ (2m+ 1)δα.
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Now suppose that ‖x− y‖ < δ and ‖x‖ < δ. Then

|T (x) − T (y)| ≤ ‖x‖α + ‖y‖α ≤ 3δα.

Hence, we obtain |T (x) − T (y)| ≤ (2m+ 1)‖x− y‖ for all x, y ∈ V , and hence T is
Cα. ✷

PROPOSITION B.2. If V is a vector bundle over a compact Riemannian manifold,
and if ϕ is a C1,α-section of V , α ∈ (0, 1) then ψ = |ϕ|βϕ, β > 0 is a C1,γ-section
for γ := min{α, β}.

Proof. The section ϕ is obviously Lipschitz, hence |ϕ|β is Cβ. We have to show
that

∇ψ = |ϕ|β∇ϕ+ β〈∇ϕ, ϕ〉|ϕ|β−2ϕ

is Cγ . The first summand is a product of Cβ and Cα, hence Cγ. According to the
previous lemma, |ϕ|β−2ϕ⊗ ϕ is Cβ, hence the second summand is a product of Cα

and Cβ, hence also Cγ . ✷
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