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Abstract—This paper presents the Smart Device specification
to interface with remote labs. To encourage the broader sharing
of remote labs, the Smart Device paradigm decouples the client
from the server and provides well-defined interfaces between
client and server. Such Smart Device services are exposed on the
Internet and enable interoperability with client applications, other
Smart Devices and external services (e.g. a booking service). This
papers presents the extensible and platform-agnostic specification
of the Smart Device services and internal functionalities. The
Smart Device specification contains sufficient service metadata
to enable the automatic generation of basic client applications.
The specification is illustrated through an example and first
implementations of the specification are presented.
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I. INTRODUCTION

The Smart Device paradigm originates from the RFID and
sensor world, where one adds information to a static sensor to
enhance its functionality. Thus, instead of a thermometer just
returning a voltage, a sensor provides additional information
such as the sensor ID, a timestamp or a data range. Thom-
son [1] defines that smart objects connected to the Internet need
some or all of the following capabilities: i) communication, ii)
sensing and actuating, iii) reasoning and learning, iv) identity
and kind, and v) memory and status tracking.

We extended Thomson’s proposition to support more com-
plex devices that are using web-based technologies, namely
to support remote labs [2]. We used this paradigm to specify
on one hand the remote lab interfaces exposed on the Internet
and on the other hand its internal functionalities [3]. Since
the Smart Device interfaces are well-defined, a Smart Device
becomes interoperable with other Smart Devices, external
services and client applications. Such interoperability fosters
reuse of applications and external services, and can provide
extra functionality to any Smart Device (e.g. booking and
authentication), simplifying the development of remote labs.
The specification is designed to enable any client application
developer to easily interface with a remote lab. Moreover, the
specification of the services is machine readable, enabling the
automatic generation of a skeleton of the client application.
The actual implementation of the specification, as well as the
remote lab software and hardware implementation, is left to
the lab owner’s discretion.

This paper presents the Smart Device specification together
with an example and multiple software packages demonstrating
implementations on different software and hardware platforms.
The specification uses open protocols, is easily extensible and
makes use of a slightly modified version of the Swagger [4]
web service description language to support WebSockets. Note

that the specification was first documented in deliverable D4.1
of the European FP7 project, Go-Lab [5].1

This paper is organized as follows: first we summarize the
Smart Device as a paradigm for remote labs. Then, we discuss
the architecture and interoperability features enabled by the
Smart Device. The next section is dedicated to describing the
Smart Device specification for remote labs in detail. Examples
and extensions are provided in the last section.

II. SMART DEVICES PARADIGM

The Smart Device paradigm revisits the traditional client-
server architecture, on which many remote lab implemen-
tations rely. The main differences between existing imple-
mentations and the Smart Devices’ are first the complete
decoupling between the server and the client, and second
the server representation as a set of well-defined services
and functionalities that enable interoperability [3], [6], [7].
Similar approaches were proposed at the sensor/actuator level
to enable the plug and play mechanism for Smart Electronic
Transducers which provides electronic data sheets describing
themselves [8]. This paper proposes a specification that handles
the interaction between clients and servers at the service level.

The decoupling removes the umbilical cord between the
client and the server so that they can live their own separate
lives. While in a traditional client-server architecture [9], the
server and client share a specification that is often uniquely
used by them. On the contrary, the Smart Device paradigm
defines one common specification that is shared by all Smart
Devices. This reuse of a common specification and the client-
server decoupling alleviates most of the problems developers
are facing when the client application needs to be adapted
to new OS/platforms, or if the client application is to be
integrated in other environments such as learning management
systems (LMS), or simply if additional features are added to
the server. Furthermore, interoperability with, and reuse of
existing applications and services becomes possible when labs
share a common specification.

Smart Devices mainly provide web services to access
sensors and actuators. Traditional solutions often provide a
monolithic interface without the possibility to specifically
access a given sensor or actuator [10]. The Smart Device
specification fully describes the Smart Device from a client
point of view by specifying only the interfaces, not the inner
working of the lab, which is left to the lab owner’s discretion.
The Smart Device specification is agnostic about the server-
side hardware, but re-engineers the software component by
adding ‘intelligence’ to handle complex tasks through the API.

1The Go-Lab project, http://www.go-lab-project.eu
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There is no assumption regarding the communication chan-
nels for Smart Devices [11]. The Internet is the de facto choice
for online labs [2], [12]. In addition, open Web technologies
enable a broader compatibility and adoption, while proprietary
technologies break the core ubiquitous access requirement.

The Smart Device may not necessarily provide a User
Interface (UI), but often proposes a minimal client UI. Thanks
to the interoperability provided by the Smart Device speci-
fication, client applications can be developed to operate with
different Smart Devices promoting reuse. Due to their ubiquity,
web browsers are the preferred environment to render the
client UI. There is often a direct relation between the Smart
Device sensors and actuators, and the client app rendering
their information. For example, an oscilloscope app renders
the voltage evolution measured by a sensor of the Smart
Device. In general, the Smart Device paradigm defines an ideal
autonomous device which provides internal functionalities and
that can be accessed through well-defined services.

III. SMART DEVICES FOR REMOTE LABS

A generic Smart Device can already be seen as an au-
tonomous online lab. On the other hand, it does not target a
specific purpose and therefore the expected requirements may
not be satisfied. The principal aim of remote labs is to represent
its partial or full state , at the client side, and to enable real-time
interaction. For example, it could be implemented in the form
of a simple oscilloscope depicting the temporal evolution of a
given sensor or a full 3D representation of the system. Inter-
acting with the physical lab by directly controlling actuators
or indirectly through a supervision stage (local controller or
other logic) should also be possible. When considering remote
labs, the client side that renders the server information needs
also to be taken into account. Remote lab client applications
are typically running in a Web browser. This specific choice
of open Web technologies enables a broader compatibility and
favors adaptation as well as adoption. Proprietary technologies
(e.g. Java or Flash) should be avoided since they limit the
ubiquity of the solution. The Smart Device paradigm enables
the rethinking of such an interface into a Web 2.0 interface.

The Smart Device provides interfaces to remote labs for
clients and external services through well-defined services and
internal functionalities. A precise definition of these services
and functionalities permits the decoupling between the client
and the server. Some of these services and functionalities are
meant for the client application, while others are meant for
the Smart Device. The Smart Device’s additional intelligence
and agility mainly comes from these internal functionalities.
The services and functionalities definition enables anyone to
design his/her own interface for accessing the Smart Devices
for any remote lab.

A service represents, for instance, a sensor or an actuator
exposed to the outside world (e.g. a client) through the API.
Services are fully described through metadata, so that a client
can use them without further explanation. A functionality is an
internal behavior of the Smart Device. There may be commu-
nication between internal functionalities and client applications
or external services through Smart Device services. While the
required services are fully specified, the functionalities are only
recommended and best practice guidelines are provided.

Fig. 1. UML Component diagram of different clients making use of the most
common Smart Device services (arrows represent calls).

For example, imagine an actuator service that enables
the client application to set the voltage of a motor, and
a functionality that checks if the maximum voltage is not
exceeded. The actuator service is well described by the Smart
Device metadata (see Subsection V-C). The internal validation
is left to the lab owner’s discretion, since it will be mainly ad-
hoc. Still, such a mechanism has to be implemented to ensure
the protection of the server and the connected equipment.

The Smart Device specification (see Section V) defines
the communication and interfaces between the client and
server, and sufficient information is provided to generate client
applications or reuse existing client applications. Since the
specification is common to many Smart Devices, client apps
are not tightly coupled to one server, encouraging interoper-
ability and reuse.

IV. THE SMART DEVICE ARCHITECTURE

The Smart Device specification provides a set of well-
defined interfaces that enable communication between the re-
mote lab, external services and applications. Figure 1 illustrates
a basic architecture with interaction examples that abstract
the implementation of a remote lab, by providing a set of
required and optional interfaces. The specification does not
define the communication between the Smart Device and the
Remote Lab equipment in Figure 1. The communication on
the left side of Figure 1 is what the Smart Device specifies,
namely the protocols and data formats of the interfaces of the
Smart Device (i.e., the ‘metadata’, ‘client’, ‘sensor’, ‘actuator’
and ‘logging’ interface in Figure 1). For instance, a metadata
repository can retrieve the metadata of any Smart Device, index
it and provide a lab search engine. Because the interfaces are
well-defined, client apps can be reused among Smart Devices.
For example, one Data Viewer Client or Learning Analytics
Client could retrieve data from any Smart Device and present it
to the user. Additionally, a metadata format that describes the
Smart Device, its functionalities and its services is specified.
Section V will elaborate on this metadata and each service
and functionality in detail. Below, we will discuss how Smart
Devices enable interoperability in the Go-Lab infrastructure.

1) The Smart Device in the Go-Lab Infrastructure: As de-
scribed above, the well-defined interfaces of the Smart Device,
ensure that a client app and a service can communicate with
any Smart Device. This section will discuss such a concrete
scenario with the Go-Lab platforms [13] that interact with the
Smart Device. Of course, any other service, platform or client
could make use of these interfaces to create features beyond
what is presented below. The Go-Lab overview component



Fig. 2. UML Component diagram of the interactions between different Go-
Lab services and the Smart Device.

diagram is shown in Figure 2. It depicts: (1) the Lab Reposi-
tory [13], which is a portal where teachers can find online labs
and resources to use in combination with these labs in their
courses; (2) the Inquiry Learning Space (ILS) Platform [13]
that provides a collaborative editor to assemble a learning
activity for students with the Lab Repository resources; (3) the
Learning Analytics Services [14], which are collecting tracked
user activities and analytics results; and (4) the Booking
System that provides a common UI for teachers to reserve
remote labs. In addition to enabling user interaction with the
remote lab equipment, the Smart Device enables the following
features in infrastructures such as the Go-Lab infrastructure:

a) Publishing labs on the Lab Repository: A lab owner
can publish any lab on the Go-Lab Lab Repository [13]2,
which provides a searchable catalogue of online labs. If a
lab supports the Smart Device specification, its metadata
can be retrieved and parts of the lab registration form can
be automatically completed. Additionally, the client apps to
control the lab can be added automatically, see step 1.1 & 1.2
in Figure 2. The annotated lab metadata can then be exploited
for search, but also to support the learning analytics services.

b) Tracking user activity: The Smart Device contains
a user activity logging service that enables the delivery of
learning analytics. Step 2.1 shows how the Inquiry Learning
Space (ILS) Platform [13] retrieves Smart Device user activity
logs and passes them to the Learning Analytics Services where
the user activity is stored and can be further analyzed.

c) Booking a lab: The Smart Device itself does not
necessarily contain a booking mechanism, but can use existing
booking mechanisms. When booking is required, a user re-
trieves an authentication token from the Booking System with
which she can authenticate to the Smart Device. The Smart
Device only contains logic to validate tokens. Step 3 illustrates
that the Smart Device has an Authentication component that
validates tokens with the Booking System.

Note that the above features will only be available if
the corresponding Smart Device services are implemented.
Publishing and retrieving lab metadata will work for any Smart
Device because the metadata service is required, but the other
features depend on optional services. In Section V, we will

2Golabz, http://www.golabz.eu

further elaborate on the optional and required Smart Device
services.

V. THE SMART DEVICE SPECIFICATION

This section presents selected parts of the
Smart Device specification in more detail. The
complete Smart Device specification is available at
https://github.com/go-lab/smart-device-metadata/raw/master/
smart-device-specification/Smart Device specification.pdf.

First, the communication protocol and the terminology used
are described. Then, we will elaborate on the Smart Device
well-defined services and internal functionalities.

A. Data Transfer Protocol

The goal of the Smart Device is to enable access to remote
laboratories via the Internet. The targeted client application is
a Web enabled client, which can run on a tablet. We rely on
open, standardised Web protocols to provide the data transfer
between the Smart Device, external services, and applications
to avoid dedicated plug-ins or customer lock-in. Typically,
widely used candidates are HTTP and recently WebSockets.
The problem with most HTTP-based Web Services is that
they follow a synchronous request-response schema. Hence,
data can often only be ‘pulled’ from the server, and the server
cannot initiate a ‘push’ of information to the clients. However,
remote laboratory experiments, often require asynchronous
data transfer, e.g. a lengthy experiment should be able to push
its results to the clients upon completion. HTTP solutions are
often inefficient, e.g. via long polling [15].

WebSockets [16] on the other hand are asynchronous by
nature and allow both pushing and pulling. This provides a
bidirectional, full-duplex communication channel. Although
WebSockets are a recent technology, they are supported by all
modern browsers3. Since WebSockets suppport both push and
pull technologies efficiently and often with less programming
effort than HTTP-based services, the Smart Device specifica-
tion uses the WebSocket protocol. Only the metadata service
that defines the other services (see Subsection V-C) will be
provided via HTTP GET to enable easy text retrieval.

B. Terminology and Concepts

The following terminology and concepts are used:

• The terms sensors and actuators reflect the travelling
direction of information relative to the Smart Device. For
example, a sensor enables the reading of a thermometer.
An actuator enables the setting of a value, e.g. setting a
motor voltage.

• Sensors and actuators can be physical (temperature sen-
sor), virtual (computed speed derived from a position
measurement) or complex, i.e. an aggregation of sen-
sors/actuators (the front panel buttons of an oscilloscope
or a 3D accelerometer).

• Both sensors and actuators can be configured, see the
metadata service in Subsection V-C.

3Can I use Web Sockets?, http://caniuse.com/websockets
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C. Metadata Service

The metadata service is a required service that is at the
core of the interoperability provided by the Smart Device
specification. The requirements of the metadata are:

• Describe the lab (e.g., the contact person and the goals),
which can be useful to allow automatic indexing by
search engines (see Subsection IV-1).

• Describe the integration with external services (e.g.,
authentication with a booking service)

• Describe the concurrency mechanisms (e.g., are lab ob-
servations allowed, while someone is doing an experi-
ment?)

• Describe and define the provided services (e.g., specify
the service requests and responses formats)

• Be easily extensible to enable adding extra services

First, we survey different Web service description lan-
guages and highlight our choice. Afterwards, the metadata
design choices and the metadata for the services is described,
and how metadata can be added for additional services.

1) Comparison of Web Service Description Languages:
Several options to describe Web service specifications have
been surveyed with the goal not to reinvent the wheel, but
to use open, robust and complete specifications. Furthermore,
some specifications already allow the automatic generation of
client applications. Since no Web service description languages
specific to the WebSocket protocol were found, SOAP and
REST-based description languages were considered.

One of the most popular Web service description languages
is WSDL4, which originally strongly focuses on SOAP, and
provides support for REST since version 2.0. However, cur-
rently limited software is available for WSDL 2.05. Other
description languages are dedicated to RESTful services.
WADL [17] can be considered as the REST equivalent of the
original SOAP-only WSDL. RSDL6 is more focused on the
structure of the Web service URIs. While RAML7 relies on
markdown and JSON Schema8.

Since all above mentioned languages were hard to use Web-
Sockets with, we have opted for Swagger v1.29. Swagger is
a JSON-based description language meant for RESTful APIs,
but it was easily extensible to WebSockets, while conserving
all of Swagger’s features. Since Swagger aims to describe web
services for both humans and computers, it strongly focuses on
automatically generating user interfaces, which is one of our
goals. Using JSON Schema, Swagger specifies the data format
of requests and responses. Due to its large and growing list of
supporting software, Swagger is growing in popularity. The
specification is open and the community is currently finalising
an updated version. In the remainder of this section, we will

4Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/
wsdl

5Web Services Description Language – Wikipedia, http://en.wikipedia.org/
wiki/Web Services Description Language

6RESTful Service Description Language (RSDL), http://en.wikipedia.org/
wiki/RSDL

7RESTful API Modeling Language (RAML), http://raml.org/
8JSON Schema specification – JSON Schema: core definitions and termi-

nology json-schema-core, http://json-schema.org/latest/json-schema-core.html
9Swagger website, http://swagger.wordnik.com/

elaborate on how we have applied and extended Swagger for
the Smart Device Specification.

2) Smart Device Metadata Design Choices: Based on the
requirements elicited above, the following main design choices
were made:

• Sensor & actuator metadata service: The metadata that
describes the available sensors and actuators is provided
by separate services. In this way a developer of a simple
Smart Device needs just to edit a few lines of metadata
and does not need to add complex descriptions and mod-
els of actuators and sensors. The Smart Device software
packages provided by Go-Lab (see Section VII) already
implement these services, so the developer can just edit
this implementation, which also keeps this metadata very
close to the actual sensor and actuator implementation.

• Service names: Each service requires a method name,
and each request and response of a service needs to
pass this method name (e.g. the service for the sen-
sor metadata is called ‘getSensorMetadata’). By passing
this name, a WebSocket can be reused (channeled) by
different services since the requests and responses can
be identified by method name. Additionally, the method
names are used to control access to services.

3) General Smart Device Metadata Specification: The of-
ficial Swagger RESTful API documentation specification can
be found on https://github.com/wordnik/swagger-spec/blob/
master/versions/1.2.md. The Swagger specification is typically
split over multiple files per service and served in the path
of a REST service. Since WebSockets are not hierarchically
organized in different URLs, we have opted to provide one
specification file, containing the general metadata and all
service-specific metadata.10 This section will introduce the
general structure of the adapted Swagger file. However, code
samples and exact field names are omitted for brevity, but are
available in the full specification.11 The metadata consists of
six parts:

a) Swagger-Related Metadata: Swagger requires to de-
clare the version of Swagger and the API. The version of
Swagger should not be changed by the developer.

b) General Metadata: These default Swagger fields
provide information about the lab, such as the name, a short
description, a contact person, and licensing information.

c) API Metadata: The root URL path of the Smart
Device services is described and all services are defined. Each
service will be described from Subsection V-F to V-J.

d) Authorisation Metadata: Swagger supports common
REST-based authentication and authorisation mechanisms, e.g.
OAuth. All these mechanisms can be used in the Smart
Device. For instance, in the Go-Lab booking system, we are
using a token-based authorisation, which can be modeled with
Swagger’s apikey type since the booking token is a sort of
temporary API key for the duration of the booking.

10Metadata specification examples for Smart Devices are available on
GitHub: https://github.com/Go-Lab/smart-device-metadata

11The full Smart Device specification is available at https://github.com/
go-lab/smart-device-metadata/raw/master/smart-device-specification/Smart
Device specification.pdf.
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e) Concurrent Access Metadata: We have extended
Swagger to model the concurrency models of remote labs.
Different concurrency schemes exist and it is up to the lab
owner to decide on an appropriate scheme. One can interact
with a lab in a synchronous or asynchronous way. In a
synchronous lab, the users are interacting directly with the
experiment and are aware of actions of other concurrent users.
When in the asynchronous mode, the user typically prepares
an experiment, submits it, waits to get results back, and is
not aware of other users. The rest of this metadata is for
synchronous labs, since asynchronous labs can deal internally
with concurrency issues. Typically two concurrency schemes
are possible: ‘concurrent’ and ‘roles’. Either users are allowed
to use the experiment at the same time or different user roles
control the access. Each role has a name, can declare which
services will be accessible for a user with that role and a
mechanism to select the role. Different mechanisms have been
identified to switch roles:

• Fixed role: The user cannot be promoted from one role
to another, e.g. the teacher can control the remote lab but
the students can only observe.

• Dynamic role: The role can change during the session,
e.g. a user observing can later control.

• Race: The first user who accesses when nobody is using
it, gets control. When occupied, the user has to retry.

• Queue: Upon access, the user is added to a first-come-
first-served waiting queue.

• Interruptor: The user can abort the session of another
user and take control of the Smart Device.

f) Models: This section lists all data models in JSON
Schema used in the service requests and responses.

4) Service Metadata Specification: This section discusses
how a service can be added as a JSON object in the API
metadata on a high level (for details, refer to the full spec-
ification). Optionally, new data models need to be declared
in the models section. However, we have tried to design the
specification so that for simple Smart Devices, developers do
not need to learn how to describe a service in Swagger. The
specification provides reusable service metadata descriptions
and models for the sensor, actuator and logging services.

A new API object needs to contain the path, description,
and also an optional ‘protocol’ field that the Smart Device
specification has been extended to support the WebSocket
protocol. Then a list of all operations of the service is specified
and its response messages that describe the error messages
(relying on HTTP status codes [18]). Each operation can
specify the protocol method, in case of WebSockets this is
typically ‘Send’, and one can define the type of WebSocket:
text or binary. Binary WebSockets can make the transmission
of binary data much more efficient, e.g. for video streaming.
Additional documentation can be provided in the ‘summary’
and ‘notes’ fields. Next, the service arguments and results
can be configured using JSON Schema primitives12, or the
ID of a model from the models metadata section. One can
also model the response format using any Internet Media
Type [19], e.g. for a service that returns images. The service

12JSON Schema specification – JSON Schema: core definitions and termi-
nology json-schema-core, http://json-schema.org/latest/json-schema-core.html

input arguments are typically represented as a data model.
Simple request models are provided, but more complex models
can be defined when needed. More information on adding a
new service can be found in the Swagger specification [4], the
JSON Schema specification and the available GitHub examples
which illustrate how we have extended Swagger.11

D. Sensor Metadata Service – getSensorMetadata

As mentioned, the sensor and actuator metadata are pro-
vided via separate services and not in the metadata description
itself. In this section we will elaborate on the sensor metadata.

The service is called ‘getSensorMetadata’, and can be
called like most Smart Device services with a JSON object by
specifying the ‘method’ field, and an optional authentication
token in case booking is required. As mentioned before this
method field enables the reuse of one WebSocket to channel
multiple services. The service returns an array describing each
sensor exposed to the outside world. Each sensor contains:

• The ID to identify the sensor, e.g. ‘3D-acc’.

• The full name, e.g. ‘3D acceleration’.

• The description, e.g. ‘the robot arm 3D acceleration’.

• The WebSocket type is ‘text’ or ‘binary’ (e.g. for video).

• The response type of the sensor service for the sensor
defined as an Internet media type [19], e.g. a webcam
sensor using JPEG compression uses image/jpeg.

• The measurement value array will contain a single value
for a simple sensor like a thermometer, but for a com-
plex sensor like an accelerometer, the array contains for
example 3 elements for the X-Y-Z acceleration. Values
are described with a name and unit. Since the set of
possible units is almost infinite, we recommend to use the
SI units [20] and the SI derived units.13 Optionally, a last
measured time stamp and a range minimum, maximum
and iteration step of the range in which the values safely
operate, can be added. Furthermore, for continuously
measured values the frequency at which the measurement
is updated can be provided in Hertz (s−1).

• The configuration parameters can be used to adjust the
sensor when requesting a sensor value (see Section V-F).
Each parameter has a name and data type as a JSON
Schema primitive, array or data model for complex pa-
rameters, e.g. to configure the video resolution.

• The access mode describes how the sensor can be ac-
cessed, e.g. some sensors can be measured once (pull)
while others provide a continuous data stream (push or
stream). For ‘push’ sensors, one can specify the nominal
update interval and whether the measurement frequency
can be modified by the user.

Both sensors and actuators can be configured, which means
that the information can be sent and received even for the
sensor. For example, the image resolution of a webcam sensor
can be configured. Similarly, for actuators some aspects may
be set through configuration (e.g. the gain of a power amplifier
could be configured), while the actual value is set through the
actuator value itself (see Subsection V-G). Typically sensors
and actuators are rarely configured.

13SI Derived Units – Wikipedia, http://en.wikipedia.org/wiki/SI derived
unit

http://json-schema.org/latest/json-schema-core.html
http://en.wikipedia.org/wiki/SI_derived_unit
http://en.wikipedia.org/wiki/SI_derived_unit
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Fig. 3. Sensor and actuator data structures.

Streaming video of the experiment is an essential service
that a Smart Device should provide through a sensor. We
recommend that such sensor treats the video image as an
encoded image, for example JPEG encoded. Using JPEG
encoding results in binary data which either should be trans-
mitted through a binary WebSocket (recommended), or it is
BinHex’ed prior to sending it using a textual WebSocket. If
further processing is required at the client side, a pixmap (pixel
array) could be used, this at the cost of being 10% to 90%
larger in size [21].

E. Actuator Metadata Service – getActuatorMetadata

As mentioned, the actuator metadata is also provided via
a service, named ‘getActuatorMetadata’. The service is very
similar to the sensor metadata service, so we will only discuss
the difference in the service response: the input type expresses
what data type can be used for a specific actuator in the
actuator service. By default this is JSON, but it can be set
to any Internet Media Type [19]. This replaces the response
type of the sensor metadata service.

F. Sensor Service – getSensorData

The sensor and the actuator data services are at the core
of the Smart Device interaction and both are quite similar.
They handle the main data exchange between clients and
the Smart Device. Both services in combination with their
metadata services enable developers to create apps that can
adapt to different Smart Devices, enabling app reuse and
interoperability. Similarly, different apps could be developed
for a Smart Device. For example, for a Smart Device that
provides a temperature measurement every second, one app
could just update a text field, while another app could visualize
the temperature evolution over time. This difference in app
functionality requires absolutely no change on the Smart De-
vice services. Furthermore, using the sensor metadata service,
these two proposed apps could be made interoperable and
reusable with any Smart Device.

Different sensors and actuators exist:

• Real: represents a physical sensor, e.g. a thermometer.
• Virtual: represents a computed sensor, e.g. a speed mea-

surement derived from a position measurement.
• Complex: represents the aggregation of sensors/actuators,

e.g. buttons on the front panel of an oscilloscope.

The data structure returned by a sensor or sent to an
actuator may vary depending on the number of values and the
measurement data structures. The data structure (see Figure 3)
contains three fields to enable flexible data representation. In

the ‘valueNames’ field, the names of the sensor or actuator
measurement value are listed as returned by the sensor or
actuator metadata services (see Subsection V-D). Then, the
actual data for each value is listed. Finally, the optional
‘lastMeasured’ array contains the timestamps when a value
was measured. This timestamp array should not be included
when sending data to set an actuator. The data as well as the
‘lastMeasured’ timestamps are listed at the same array index as
the value name, as indicated by the dashed lines in Figure 3.
The elements in the data array can be in different formats:
(1) a single value, e.g. temperature; (2) an array of values
representing a set of single values over time, e.g temperatures
over the last minute; (3) aggregated values representing a
sensor or actuator that returns multiple values, e.g. a 3D
accelerometer; (4) an array of aggregated values representing
a set of aggregated values over time, e.g. the 3D acceleration
over the last minute; and (5) complex data structures are used
when sensors and actuators require input and output not defin-
able with primitive variables or arrays, e.g. for complex JSON
objects or binary data. This data representation was chosen,
because flat array based data can be more efficient to process
than complex data structures interleaved with timestamps.

As an example of a complex data structure, a webcam can
be modelled as a single value sensor that returns a compressed
image, as an array of values based on the image bitmap or as
a binary value with JPEG encoded data. The choice between
the three representations is up to the lab owner.

A request to the getSensorData service is more complex
than the previous services due to possible authentication,
concurrency and configuration settings. Optionally, an access
role from the concurrency role list (see V-C3e) can be passed.
If no accessRole is available, the Smart Device can decide the
role. The Smart Device will decide whether these rights can
be granted and reacts accordingly.

The getSensorData service will return the data in the above
described data format (see Figure 3) together with the method
name, sensor ID and access role to foster possible WebSocket
reuse. This is in case the user has the controller role. But
when the user is an observer and does not have access to the
measured data the service can optionally provide extra waiting
information that can be used to display how long the user has
to wait and how many people are in front of her (e.g. the
queue size, position and waiting time left). Furthermore, the
sensor configuration might be used (e.g. for a video sensor), if
it is described in the sensor metadata. For example, this can be
very useful to adapt to the client screen size and network speed
by reducing the transmitted image resolution and compression
(if configurable). Similarly, the data transmission pace could
also be controlled. If the user temporarily needs to throttle the
video stream, the client can ask the Smart Device to reduce
the number of images sent per second by setting the update
frequency (see Subsection V-D). The sending may even be
interrupted by setting the update frequency to 0 Hz. It is up to
the application developer to take advantage of these features.

G. Actuator Service – sendActuatorData

The actuator service is very similar to the sensor service
(see Subsection V-F). The main difference with the sensor
service is the fact that the sendActuatorData service allows



the user to actually set the desired actuator value. Meaning
that the data model of Figure 3 is sent in the request.

The internal functionality of the Smart Device should first
validate the sent value (see V-K0c) prior to applying it to the
actuator itself. While sensors often do not have concurrency
issues, the actuator may also be controlled by another client
concurrently and its access needs to be moderated. Various
schemas can be implemented by the lab owner to internally
manage the actuator access (see V-C3e). In the following
examples, we will assume one of the most common scenarios:
a user can either control the lab or can observe what others are
doing. Given that the user has a controller role, the actuator
may set the value and acknowledge the actuator change by
returning the set values in the payload of the response. The
payload is optional and the format is not specified. As a good
practice we recommend to return the data of the actuator in
the same format as the request data format. This returned
actuator data in the payload can be used to update the client
application UI with the actual value. The client can assume
that the actuator has fulfilled the request when no errors are
returned. If the actuator is currently in use, a more specific
payload, detailing some information regarding the time the
user has to wait prior to control the actuator, similar to the
example in Subsection V-F.

Furthermore, a user with the ‘interruptor’ role can abort
the actuator control of current user. The way the conflict is
resolved and the policy to grant this role is defined by the lab
owner and/or the client application.

H. User Activity Logging Service – getLoggingInfo

The optional user activity logging service returns logged
user actions or lab status info in the ActivityStream 1.0
JSON format14. The ActivityStreams format is a JSON-based
specification to describe a sequence of user actions with a
timestamp and it is often used in social media platforms. To
retrieve a continuous stream of real time user activities of the
Smart Devices, the getLoggingInfo service can be called with
an optional authentication token to validate access (which is
recommended due to the privacy sensitive data).

I. Client Application Service – getClients

This optional service provides links to the client applica-
tions to operate the Smart Device. The client technology is not
strongly specified. The Go-Lab project advocates OpenSocial
gadgets [22], since they effortlessly run on the Go-Lab ILS
platform [13]. Upon sending a request to the getClients service,
a client app list will be returned, with for each item a type that
specifies the kind of application and a url. The current version
of the Smart Device specification contains the following exten-
sible list of types: ‘OpenSocial Gadget, ‘W3C widget’, ‘Web
page’, ‘Java WebStart’ and ‘Desktop application’.

J. Models Service – getModels

This optional service can provide several models of the
physical lab (i.e. the instrumentation) and its theoretical back-
ground. For instance, a 3D graphical model of the lab instru-
mentation can enable a client app to generate a GUI with a 3D

14The ActivityStreams specification is available at http://activitystrea.ms/
specs/json/1.0/

scale object that students can manipulate. With a mathematical
model of the experiment, a client app can be built with a local
simulation. This can provide an interactive simulated version
of a remote lab that can be used by students when the lab is
already in use (i.e. to provide a better observer mode). Due
to the wide range of existing formats to express graphical and
theoretical models (e.g. VRML15, X3D16 & MathML17), we
do not limit the specification and leave the model language
choice up to the lab owner.

K. Functionalities – Best Practices:

Internal functionalities are implementation suggestions for
the Smart Device. They are provided as best practices, since
the implementation of these functionalities are often ad-hoc
and strongly related to the connected equipment.

a) Authentication functionality: The Smart Device does
not need to contain a booking system. It can make use of an
external booking system, such as the Go-Lab booking system
(currently under development). When a user reserves a lab,
the Go-Lab booking system provides an authentication token.
At the booked time the user can connect to the Smart Device
with this authentication token. The Smart Device then contacts
the booking system to validate whether the user is currently
allowed to access the Smart Device. Thus, integrating the
booking service in the Smart Device requires little effort,
compared to providing its own authentication and booking
mechanisms.

b) Self and known state functionality: The precise
implementation of this recommended functionality is left to
the lab owner’s discretion. This functionality ensures that the
remote lab is reset to a proper state after an experimentation
session is completed or a system outage occurred, so that the
next user can properely use it. Since remote experiments are
supposed to be conducted from faraway, nobody is expected to
be around the experiment to put it back in a known state. Thus,
the system should be as autonomous as possible, which implies
an adequate and defensive software and hardware design that
is able to adapt to ‘any’ situation. We suggest to implement
the following procedures in the Smart Device: (1) automatic
initialization at startup, (2) reset to a known state after the last
client disconnects, and (3) potentially hardware calibration.

c) Security and local control: This functionality is rec-
ommended and its implementation is left to the lab owner’s dis-
cretion. At all time the security of the server and its connected
equipment must be ensured. All commands should be validated
before being forwarded to the connected equipment. This step
may require the addition of a local controller to track the
connected equipment’s state, e.g. a speed increase may need to
follow a ramp before being applied to a motor. Users often try
to take the system to its limits, i.e. not only the physical limit
of a given sensor/actuator, but also signal patterns on a sensor
over time may also need to be considered. Since the actuators
may be connected to the Internet, it is essential to validate all
applied values and to consider potential external constraints.
The lab owner should implement the following procedures in

15Virtual Reality Modeling Language (VRML), http://gun.teipir.gr/
VRML-amgem/spec/index.html

16X3D, http://www.web3d.org/standards
17MathML, http://www.w3.org/Math/
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the Smart Device: (1) value validation before applying data
to actuators, and (2) actuator state validation to check if the
command to be applied is safe.

d) Logging and alarms: This functionality logs session
and lab information, as well as user interactions. In case
of problems, alarms may be automatically triggered by this
functionality. Since a Smart Device will be typically online
unattended for an extended period of time, it is essential to
monitor it and have a method to perform post hoc analysis.
The user action should be logged, and can be made accessible
via the user activity logging service (see Subsection V-H).
But extra information should also be logged, e.g. the system
state and the environment (e.g. room temperature). Note that
some sensors may be available internally to the Smart Device,
but not necessarily accessible via the sensor service. We
suggest to track the following information: (1) user actions,
(2) the complete system state, and (3) its environment state.
Additionally, by definition the Smart Device is connected to
the Internet and has no knowledge of its clients. Proper action
is required to prevent abuse. A firewall or a DMZ18 may
protect it from attacks. While some hostile actions may be
reduced using such mechanisms, the Smart Device should
add internally additional measures: (1) validate the requests
sent by clients, (2) throttle continuous requests of a malicious
client, and (3) log all Internet connections for later analysis.
If an unexpected event occurs, its potential danger should be
assessed by the Smart Device and an alarm may be triggered.

e) Local simulation: When the experiment is busy or
unavailable, a local simulation might be a useful alternative for
waiting users. The simulation data could be read or modified
through virtual sensors/actuators. A mathematical model de-
scribing the physical equipment can be made available to the
client via the models service, which the client developer can
use to simulate the hardware. Such simulations can require
computational resources unavailable at the client. However,
this computation can be done server side and the results can
be sent to the client using virtual sensors and actuators.

VI. A DETAILED SMART DEVICE EXAMPLE

This section illustrates how a Web client interacts with
a simple Smart Device, with one sensor and one actuator.
Both the Smart Device and the Web client are available on
GitHub19. The full JSON messages are omitted for brevity,
but similar examples can be found in the full specification.11

The first step taken by the Web client is to ask the Smart
Device about its general capabilities using the metadata ser-
vice. This is done with an regular HTTP GET request to
http://serverIP/metadata. The Smart Device returns
JSON containing the metadata (see Figure 4). Then, the client
requests the available sensors from the Sensor Metadata Ser-
vice. This request is performed via a WebSocket. A JSON ob-
ject containing {"method": "getSensorMetadata"}

is sent to the server. Upon which the Smart Device replies
with another JSON object containing an array of avail-
able sensors {...["sensorID":"discPos", ...]}

and related information such as range, etc. The next step

18Demilitarized Zone (DMZ), http://en.wikipedia.org/wiki/DMZ
(computing)

19https://github.com/go-lab/smart-device/tree/master/Desktop/
Simple-examples

Fig. 4. The web client asks the Smart Device about the available sensors.

is to ask about available actuators with a similar request
(see Figure 5). The Smart Device replies that there is
one actuator: a motor, with "actuatorID":"motor",
"rangeMinumum":"-5" and "rangeMaximum":"5".
The client app has now enough information to build a basic
UI. In this case two UI fields: one to display the discPos

sensor value and one to set the motor actuator value.

The fields of the generated skeleton UI need to be popu-
lated with the data coming from the Smart Device. In other
words, we need to tell the Smart Device to start sending
measured values to the client via a WebSocket. This is done by
sending the request {"method": "getSensorData",

"sensorID":"discPos",...}. The Smart Device will
start pushing the measured values continuously to the client
(see Figure 6). The client application needs to parse the
received JSON objects and update the sensor field in its UI
with the received value.

When the user modifies the actuator value in the client UI,
a WebSocket request is sent to the Smart Device with the new
actuator value, {"authToken":"42FE36", "method":

"SendActuatorData", "actuatorID":"motor",

"values": [...]}. This request carries an authentication
token, which will be used by the Smart Device to verify that
access to the actuator is granted to the client application (e.g.
based on a lab booking of a user at a given time). To control
the access to the actuator, the Smart Device will contact
the booking service with the provided token. If the booking
service confirms the token, the new actuator value will first be
internally validated (e.g. within a specified range), and then
applied to the motor. If the token is invalid or if the value is
out of range, the value will not be applied to the motor and
an error message may be returned to the client application.

Upon completion of the remote experiment, the client
closes the WebSocket connections. Internally, the Smart De-
vice should go back to a known state and wait for the next user

http://en.wikipedia.org/wiki/DMZ_(computing)
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Fig. 5. The web client asks the Smart Device about the available actuators.

Fig. 6. The Smart Device pushes the measured values to the client. It also
receives and validates the actuator value prior to apply it to the motor.

to connect, e.g. set the motor voltage to ‘0’ to save energy.

VII. IMPLEMENTATION EXAMPLES

To illustrate that the Smart Device specification is software
and hardware platform agnostic, we have implemented the
specification on various platforms and with different program-
ming languages. These examples are publicly available on
GitHub20.

A. LabVIEW

The LabVIEW examples are designed for both desktop
computers and embedded hardware, i.e. the National Instru-

20https://github.com/go-lab/smart-device

ments myRIO. LabVIEW is a development environment well
known by many lab owners. A complete implementation is
available21 and executable on Windows, OSX and Linux.

B. Javascript

The Javascript examples are designed for small embedded
computers such as the Raspberry Pi or BeagleBone Black.
They rely on Node.js and Socket.IO to implement the services.
Hardware access is possible by either using on-board pins or
by interfacing other I/O modules via USB (e.g. Arduino).

C. The Smart Gateway

In some situations, it will not be possible to modify the
server of already existing labs, e.g. due to the lack of resources.
In this scenario, a Smart Gateway [23] that lies between the
client and the remote lab does the necessary translation to make
the remote lab behave like a Smart Device from a user point
of view. This translation is performed by the Gateway4Labs22,
a software orchestrator that relies on plug-ins to adapt the
different existing labs to the Smart Device specifications. The
Smart Gateway internal definition is beyond the scope of this
paper, but further reference can be found in [23].

VIII. STANDARDIZATION EFFORTS

To encourage and strengthen the adoption of the proposed
Smart Device specification, several partners of the Go-Lab
project are involved in the IEEE Working Group P187623 on
Networked Smart Learning Objects for Online Laboratories.
This group is sponsored by the IEEE Education Society. The
standardisation work is at an initial phase, however several
meetings were held to define the standard at three levels:
a pedagogical level, a service level, and a communication
protocol level. The pedagogical level describes how to package
resources in a standardised way and how to enable their inte-
gration in learning environments (e.g. LMS, MOOC platforms
or social media platforms). The service level standardizes how
clients communicate with a remote lab. The abstraction layer
provided by the Smart Device specification was well received
as a proposal and has the potential to become the seed of
the final IEEE specification, still to be drafted and finalised.
Finally, the communication protocol level standardizes the way
all the loosely coupled services and platforms supporting the
usage of remote labs could interoperate. Several Smart Device
services can enable such interoperability, with for example a
booking system or learning analytics services. Due to the early
stage of this standardization effort, it is hard at the time of
writing to assess the impact of the Smart Device specification
on the finalized standard. However, we believe that the Smart
Device characteristics are essential for the standard.

IX. CONCLUSION

In this paper, we presented the detailed Smart Device speci-
fication for remote experiments. We first summarized the Smart
Device paradigm and its application to remote labs. From
a client or external service point of view, the Smart Device

21https://github.com/go-lab/smart-device/tree/master/Desktop
22https://github.com/gateway4labs
23IEEE Working Group P1876, http://ieee-sa.centraldesktop.com/

1876public/
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is described through well-defined services and functionalities.
Services permit to access the inputs and outputs of the Smart
Device, such as sensors and actuators. Functionalities refer
to provided internal behavior such as range validation for an
actuator. The main goal of this paper is to define the services
and functionalities of a Smart Device using Swagger, a JSON-
based description language. This specification is sufficiently
detailed, thanks to the properties of Swagger, that a code
skeleton for the client application can be machine generated
without additional information from the lab owner. Further-
more, this shared specification enables a complete client-
server decoupling by enabling interoperability, thus allowing
the integration of Smart Devices in any environment, OS or
device. Additionally, we have shown that implementing the
specification is feasible by providing several examples and
templates for developers to get started. In the future, we
plan to develop more Smart Device enabled remote labs to
further assess the power of the specification. Some technical
assumptions are made when considering the client application
for remote labs. The first one implies that the client resides
typically in a recent Web browser that runs on a tablet, this
implies a plug-in free solution. In addition the means to
exchange information between the client and the server is
made using JSON encoded messages that are transmitted using
asynchronous WebSockets. Finally, the proposed specification
is open and can be extended at will.
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