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THE SOBOLEV NORM OF CHARACTERISTIC

FUNCTIONS WITH APPLICATIONS TO THE

CALDERÓN INVERSE PROBLEM

DANIEL FARACO AND KEITH M. ROGERS

Abstract. We consider Calderón’s inverse problem on planar domains Ω
with conductivities in fractional Sobolev spaces. When Ω is Lipschitz,
the problem was shown to be stable in the L2–sense in [18]. We remove
the Lipschitz condition on the boundary. To this end, we analyse the
Sobolev regularity of the characteristic function of Ω. For Ω a quasi-
ball, we compute ‖χΩ‖W s,p(Rd) in terms of the δ–neighbourhoods of the
boundary.

1. Introduction

The Calderón inverse problem consists of determining the conductivity of
the interior of a body from voltage and current measurements on the surface.
It arose originally in oil prospecting, however it now finds application in
electrical impedance tomography (EIT) (see for example [17]).

Let Ω be a bounded, simply connected domain, and let γ be a measurable
and bounded function on Ω representing the conductivity. The mathemati-
cal theory has been developed under the assumption of strong ellipticity;

K−1
6 γ(x) 6 K, a.e. x ∈ Ω,

for some K > 1. Given an electric potential on the boundary f ∈ H1/2(∂Ω),
there is a unique solution u ∈ H1(Ω) to the Dirichlet problem;

(1)

{
∇ · (γ∇u) = 0

u
∣∣
∂Ω

= f,

and, in the absence of sinks or sources, u describes the potential in the
interior of Ω. If, in addition, one knows the current perpendicular to the
boundary, then the Dirichlet–to–Neumann map Λγ can be defined by

(2) Λγ(f) = (γ∂νu)
∣∣
∂Ω
,
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where ν denotes the exterior unit normal. In 2006, Astala and Päivärinta [10]
established uniqueness in the plane for strongly elliptic conductivities with
no smoothness conditions on the boundary. That is to say

Λγ1 = Λγ2 ⇒ γ1(x) = γ2(x) a.e. x ∈ Ω ⊂ R
2.

See [15, 32, 37] for results in higher dimensions and [16, 22, 24] for recent
breakthroughs in the problem with partial data. Ultimately it is hoped that
algorithms can be created to reconstruct the conductivity (see for example
[14,26,27]). To this end, a number of stability results have been proven (see
for example [3, 4, 11,12]).

Unfortunately, there are counterexamples which show the problem is un-
stable for oscillating conductivities [4,6,29], necessitating some a priori con-
trol on the oscillation, in addition to ellipticity and measurability. An ac-
count of the state of the art is given in [5]. Recently, stability in the L2–sense
was shown in [18] for conductivities with a small amount of Sobolev regu-
larity.

In contrast with the work of Astala and Päivärinta, whose result held
for general domains, the proof in [18] only works for domains which are
Lipschitz. The missing ingredient in order to extend the result to general
domains was control of the Sobolev regularity of characteristic functions. A
number of results in this direction had already been proven by Sickel [34].
His results are summarized in the following lemma.

Lemma 1.1. [34] Let E ⊂ R
d be a bounded set satisfying

(3)

∫ 1

0

∣∣(∂E)δ

∣∣ dδ

δ1+ps
<∞,

where s > 0. Then

χE ∈W s,p(Rd), 1 6 p <∞.

On the other hand, if E is a John domain with dimP (∂E) > d− ps. Then

χE /∈W s,p(Rd), 1 6 p <∞.

Here (∂E)δ = { y ∈ R
d : dist(y, ∂E) 6 δ } and dimP denotes packing

dimension. We will also consider the Minkowski and Hausdorff dimensions,
denoted respectively by dimM and dimH (see for example [19]). The defini-
tion of John domains can be found in [34].

Another result in the negative direction was proven by Triebel [38, The-
orem 3 (iii)]. He proved that there exists a star–like domain E with ∂E an
α–set, where α = d− ps, such that

χE /∈W s,p(Rd), 1 6 p <∞.

For the definition of α–sets and star–like domains, see [38].
A set that has been used recurrently in the literature as a test for this

question is the Koch snowflake, and the following corollary is easily deduced
from Lemma 1.1.
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Corollary 1.2. [34, Remark 3.10] Let E be the interior of the Koch snowflake.

Then
log 4

log 3
< 2 − ps ⇒ χE ∈W s,p(R2), 1 6 p <∞,

and
log 4

log 3
6 2 − ps ⇐ χE ∈W s,p(R2), 1 6 p <∞.

Snowflakes are the canonical examples of quasiballs. In this work we show
that for quasiballs (see for example [9]) the positive result of Sickel is optimal
and one can almost compute ‖χE‖W s,p(Rd).

Theorem 1.3. Let 1 6 p < ∞, 0 < s < 1, and E ⊂ R
d be a K-quasiball.

Then

‖χE‖W s,p(Rd) ≈

(
|E| +

∫ δ⋆

0

∣∣(∂E)δ

∣∣ dδ

δ1+ps

)1/p

,

where δ⋆ = inf{δ : E ⊂ (∂E)δ}.

Here, A ≈ B denotes the existence of a constant c = c(d, p, s, δ⋆,K) such
that c−1B 6 A 6 cB. The condition that E is a quasiball is unnecessary
for the upper bound and this is due to Sickel [34], however we will provide
a direct proof that will enable us to prove the lower bound.

In particular, dimM (∂E) < d − ps implies that the integral is finite and
so

χE ∈W s,p(Rd), 1 6 p <∞,

and dimM (∂E) > d− ps implies that the integral is unbounded and so

χE /∈W s,p(Rd), 1 6 p <∞.

This sidesteps the question of Remark 3.9 of [34], where it is asked for which
boundaries the packing dimension and Minkowski dimension coincide.

To see that the lower bound of Theorem 1.3 is in some sense a refinement
of the negative part of Lemma 1.1, we consider the lower Minkowski content
of the boundary defined by

Mα
∗ (∂E) = lim inf

δ→0

|(∂E)δ|

δd−α
.

If E is a quasiball such that Md−ps
∗ (∂E) > 0, then we see from Theorem 1.3

that χE /∈ W s,p(Rd). In particular for the snowflake, M
log 4
log 3
∗ (∂E) > 0 (see

for example [28]), so that χE /∈ W s,p(R2) when 2 − ps = log 4
log 3 , which yields

the following strengthening of Corollary 1.2.

Corollary 1.4. Let E be the interior of the Koch snowflake. Then

log 4

log 3
< 2 − ps ⇔ χE ∈W s,p(R2), 1 6 p <∞.
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We remark that the previous discussion can be sharpened further by re-
placing the appearance of δd−α in the definition of the Minkowski content
with a gauge function h : [0, 1] → [0, 1] such that

∫ 1

0

h(δ)

δ1+ps
dδ = ∞,

and using lower and upper Minkowski dimensions.
According to [38, pp.466], one of the outstanding problems in the theory

of function spaces is to characterize the sets whose characteristic functions
are pointwise multipliers for Sobolev spaces (also Besov spaces; see [25]),
and so we note the application to this area.

Corollary 1.5. Let E ⊂ R
d be a quasiball. Then χE is a pointwise multi-

plier for W s,p(Rd), with 1 6 p <∞, 0 < s < 1, if and only if (3) holds.

This is a consequence Theorem 1.3 combined with the fact thatW s,p(Rd)∩
L∞(Rd) is a multiplication algebra (see [31] or [23, Theorem A.12]).

These results are also of interest when determining how composition with
quasiconformal maps affects Sobolev spaces (see [8, 18] for related results).
In particular if we combine Lemma 1.1 with the recent estimates of Smirnov
[9, 36] for the Hausdorff dimension of quasicircles, which by [7] imply the
same bound for the Minkowski dimension, we obtain the following result.

Corollary 1.6. Let E be a K-quasidisc with s < 4K
p (K+1)2

. Then

χE ∈W s,p(R2), 1 6 p <∞.

We also mention that Brandolini, Hofmann, and Iosevich [13] proved that

if ∂E is C3/2, then

(4)

∫

Sd−1

|χ̂E(Rω)|2dω 6 CER
−(d+1), R > 1.

Their interest in this problem was motivated by a result of Landau regarding
the distribution of lattice points, as well as the Falconer distance problem
(see [30]). Using the fact that W s,2(Rd) = Hs(Rd), and polar coordinates,
Lemma 1.1 implies that

∫ ∞

1

∫

Sd−1

|χ̂E(Rω)|2dωRd−1+2sdR 6 CE , 2s < d− dimM (∂E),

where dimM denotes the upper Minkowski dimension. Thus, it seems plau-
sible that (4) holds in further generality. We do not pursue this here.

Finally we note the application to our original motivation; stability for
the Calderón inverse problem. We remove the Lipschitz condition from the
result of [18].

Theorem 1.7. Let Ω be a bounded planar domain and let 0 < s < 2−dimM (∂Ω)
2 .

Suppose also that γ1, γ2 are conductivities satisfying

K−1
6 γ1, γ2 6 K and ‖γ1‖W s,2(R2), ‖γ2‖W s,2(R2) 6 Γ.
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Then there exist c(K), C(K,Γ, s,diam(Ω),dimM (∂Ω)) > 0 such that

‖γ1 − γ2‖L2(Ω) 6
C

| log(ρ−1)|cs2 ,

whenever ρ = ‖Λγ1 − Λγ2‖H1/2(∂Ω)→H−1/2(∂Ω) 6 1.

Remark 1.8. As the conductivities are bounded on a bounded domain, L2–
Sobolev regularity follows from Lp–Sobolev regularity, and vice versa.

The paper is structured as follows: In Section 2 we prove Theorem 1.3,
in Section 3 we show how to deduce Theorem 1.7 as a consequence, and in
Section 4 we return to Lemma 1.1, proving a refinement.

2. Proof of Theorem 1.3

If ∂E had nonzero measure, then it is clear that

(
|E| +

∫ δ⋆

0

∣∣(∂E)δ

∣∣ dδ

δ1+ps

)1/p

= ∞.

On the other hand, in [34, Lemma 3.1] it was proven that in this case we
also have ‖χE‖W s,p = ∞, and so we can assume that |∂E| = 0.

Now, by Fubini’s theorem,

‖χE‖
p
W s,p(Rd)

= |E| +

∫

Rd

∫

Rd

|χE(x) − χE(y)|p

|x− y|d+ps
dxdy

= |E| +

∫

E

∫

Rd\E

dxdy

|x− y|d+ps
+

∫

Rd\E

∫

E

dxdy

|x− y|d+ps

= |E| + 2

∫

E

∫

Rd\E

dxdy

|x− y|d+ps
.

Thus, it will suffice to prove that

∫

E

∫

Rd\E

dxdy

|x− y|d+ps
≈ |E| +

∫ δ⋆

0

∣∣(∂E)δ

∣∣ dδ

δ1+ps
.

First we prove the upper bound, without assuming that E is a quasiball,
recovering the result of Sickel [34]. To this end, we fix λ > 1 and define the
sets Ej by

Ej = { y ∈ E : λ−j+1 > dist(y, ∂E) > λ−j },

so that ∫

E

∫

Rd\E

dxdy

|x− y|d+ps
=
∑

j∈Z

∫

Ej

∫

Rd\E

dxdy

|x− y|d+ps
.
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The sets Ej with λ−j > δ⋆ = inf{δ : E ⊂ (∂E)δ} are of course empty. Now,
with y ∈ Ej , by two changes of variables

∫

Rd\E

dx

|x− y|d+ps
=

∫

(Rd\E)−y

dz

|z|d+ps

6

∫

Rd\B(0,λ−j)

dz

|z|d+ps

= λpsj

∫

Rd\B(0,1)

dz

|z|d+ps
6 Cλpsj .

Substituting in, we see that
∫

E

∫

Rd\E

dxdy

|x− y|d+ps
6 C

∑

j∈Z

λpsj |Ej |.

Now taking λ = 2 we have |Ej | 6 |(∂E)2−j+1 |, so that

∫

E

∫

Rd\E

dxdy

|x− y|d+ps
6 C


|E| +

∑

j : 2−j+26δ⋆

2psj |(∂E)2−j+1 |




6 C


|E| +

∑

j : 2−j+26δ⋆

∫ 2−j+2

2−j+1

δ−ps|(∂E)δ|
dδ

δ




6 C

(
|E| +

∫ δ⋆

0
|(∂E)δ|

dδ

δ1+ps

)
,

(5)

and we are done.

For the lower bound, we recall that quasiconformal mappings are qua-
sisymmetric (see for example [21]). We write E = f(Bd), where there exists
a continuous strictly increasing bijection η : [0,∞] → [0,∞] such that for
all triples x, x′, x′′ ∈ R

d it holds that

(6)
|f(x) − f(x′)|

|f(x) − f(x′′)|
6 η

( |x− x′|

|x− x′′|

)
.

Taking x′ = x′′ we see that η(1) > 1, and x = 0 we see that

(7) δ⋆
6 sup

x∈∂Bd

|f(x) − f(0)| 6 η(1) inf
x∈∂Bd

|f(x) − f(0)|.

Fix λ = η(3)η(1)3. We claim that for every y ∈ ∂E and every j satisfying
λ−j+1 6 δ⋆, there exists y′ ∈ E and y′′ ∈ Ec such that

(8)
B
(
y′, λ−j

)
⊂ B

(
y, λ−j+1

)
∩ Ej ,

B
(
y′′, λ−j

)
⊂ B

(
y, λ−j+1

)
∩ (Ec)j ,

where Ej is defined as before and (Ec)j is defined by

(Ec)j = { y ∈ Ec : λ−j+1 > dist(y, ∂E) > λ−j }.
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To see this, we note that by definition y = f(x) for some x ∈ ∂B
d, and

we let y′ = f(x′) be such that |x′−x| = 2r
3 and B(x′, r

3) ⊂ B(x, r)∩B
d, and

r is chosen so that

(9)
λ−j+1

η(3)η(1)
= max

z∈∂B(x′, r
3
)
|f(z) − f(x′)|.

Now, for j satisfying λ−j+1 6 δ⋆, we can suppose that r 6 3/2. To see this
we will show that when r = 3/2, the right hand side of (9) is larger than left
hand side, so that r can be made smaller to find equality. When r = 3/2 we
have that x′ = 0 and that B(x′, r

3) = B(0, 1
2). Now by quasisymmetry we

have that for x ∈ ∂B
d and z ∈ ∂B(0, 1

2),

|f(x) − f(0)| 6 η
( |x− 0|

|z − 0|

)
|f(z) − f(0)|

= η(2)|f(z) − f(0)|.

Combined with (7), when λ−j+1 6 δ⋆ this yields

max
z∈∂B(0, 1

2
)
|f(z) − f(0)| >

δ⋆

η(2)η(1)
>

λ−j+1

η(3)η(1)
.

Thus we can suppose that r 6 3/2.
Now we apply the quasisymmetry condition to x, x′, and z ∈ ∂B(x′, r

3),
so that

|f(z) − f(x)| 6 η
( |z − x|

|z − x′|

)
|f(z) − f(x′)|

6 η(3)|f(z) − f(x′)| 6 λ−j+1.

In other words,

(10) f
(
B
(
x′,

r

3

))
⊂ B(f(x), λ−j+1) ∩ E.

On the other hand, if we let zj denote the z which fulfills the maximum
in (9),

|f(zj) − f(x′)| 6 η
( |zj − x′|

|z − x′|

)
|f(z) − f(x′)|

6 η(1)|f(z) − f(x′)|,(11)

and for w ∈ ∂B
d,

|f(z) − f(x′)| 6 η
( |z − x′|

|z − w|

)
|f(z) − f(w)|

6 η(1)|f(z) − f(w)|.(12)

Here we use that fact that r 6 3/2. Combining (11) and (12), we get

|f(z) − f(w)| >
λ−j+1

η(3)η(1)3
= λ−j .
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Using (10), this yields

(13) f
(
B
(
x′,

r

3

))
⊂ B(f(x), λ−j+1) ∩ Ej .

Now, f
(
B(x′, r

3)
)

is a quasiball and thus contains a ball comparable to its
diameter. Indeed, by applying quasisymmetry to the points z, zj ∈ ∂B(x′, r

3)
and x′ we obtain that

|f(zj) − f(x′)| 6 η(1)|f(z) − f(x′)|.

We see that

|f(z) − f(x′)| >
λ−j+1

η(3)η(1)2
= η(1)λ−j .

That is to say,

B
(
f(x′), η(1)λ−j

)
⊂ f

(
B
(
x′,

r

3

))
.

Combining this with (13) this yields

B
(
f(x′), η(1)λ−j

)
⊂ B(f(x), λ−j+1) ∩ Ej

as desired. The argument for (Ej)
c is slightly easier.

Now recall that

‖χE‖
p
W s,p(Rd)

> |E| +
∑

j : λ−j+16δ⋆

∫

Ej

∫

Rd\E

dxdy

|x− y|d+ps
,

where we define Ej with the constant λ = η(3)η(1)3. By (8), for y ∈ Ej ,
there exists a ball B(y′′, λ−j) ⊂ (Ej)

c such that dist(y, y′′) 6 2λ−j+1. Thus,
∫

Rd\E

dx

|x− y|d+ps
>

∫

(Ec)j

dx

|x− y|d+ps

> C

∫

B(y′′,λ−j)

dx

λ(−j+1)(d+ps)
> Cλpsj ,

so that

(14) ‖χE‖
p
W s,p(Rd)

> |E| + C
∑

j : λ−j+16δ⋆

λpsj |Ej |.

Now, we consider a maximal collection of disjoint balls {B(yk, λ
−j+2)}

with centres yk ∈ ∂E, and denote the cardinality by Υj . Then we have that

|(∂E)λ−j+2 | 6 CΥjλ
−dj .

On the other hand, when λ−j+1 6 δ⋆, by (8), there exist corresponding balls
{B(y′k, λ

−j)} of radius λ−j contained in Ej which must be disjoint due to
the fact that {B(yk, λ

−j+2)} are disjoint. Thus,

|Ej | > Υjλ
−dj

> C|(∂E)λ−j+2 |.
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Substituting into (14) we see that

‖χE‖
p
W s,p(Rd)

> |E| + C
∑

j : λ−j+16δ⋆

λpsj |(∂E)λ−j+2 |

> |E| + C
∑

j : λ−j+16δ⋆

∫ λ−j+2

λ−j+1

δ−ps|(∂E)δ|
dδ

δ

> C

(
|E| +

∫ δ⋆

0
|(∂E)δ|

dδ

δ1+ps

)

and we are done. �

Remark 2.1. It is clear from the previous proof that the δ–neighbourhoods
of ∂E can be replaced by the δ–neighbourhoods of ∂E relative to E defined
by

(∂E)δ = { y ∈ E : dist(y, ∂E) 6 δ }.

However, we also see that when E is a K-quasiball, we have that

|(∂E)δ| ≈ |(∂E)δ| when δ 6 c(K)δ⋆.

3. Proof of Theorem 1.7

We begin by recalling the weak formulation of the problem. For non-
smooth domains, H1/2(∂Ω) is defined to be H1(Ω)/H1

0 (Ω), where H1
0 (Ω) is

the closure of C∞
0 (Ω) in H1(Ω). The dual is denoted by H−1/2(∂Ω). For

ϕ ∈ H1(Ω) we denote ϕ+H1
0 (Ω) by ϕ

∣∣
∂Ω

.

Now Λγ

(
ψ
∣∣
∂Ω

)
is defined to be the unique element of H−1/2(∂Ω) which

satisfies 〈
Λγ

(
ψ
∣∣
∂Ω

)
, ϕ
∣∣
∂Ω

〉
=

∫

Ω
γ∇u · ∇ϕ

whenever ϕ ∈ H1(Ω), where u ∈ H1(Ω) is the unique solution to
{∫

Ω γ∇u · ∇φ = 0

u− ψ ∈ H1
0 (Ω)

whenever φ ∈ H1
0 (Ω). When the boundary and solution are sufficiently

smooth, by the trace and divergence theorems, these definitions correspond
with those of the introduction.

The following version of Theorem 1.7 on balls was proven in [18].

Proposition 3.1. [18] Let C > 1 and 0 < s < 1/2. Suppose that γ̃1, γ̃2 are

conductivities satisfying

K−1
6 γ̃1, γ̃2 6 K and ‖γ̃1‖W s,2(R2), ‖γ̃2‖W s,2(R2) 6 Γ.

Then there are constants a(K), A(C,K,Γ) > 0 such that

‖γ̃1 − γ̃2‖L2(D) 6
A

| log(ρ−1)|as2 ,
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whenever ρ = ‖Λγ̃1
− Λγ̃2

‖H1/2(∂D)→H−1/2(∂D) 6 CK2.

Lemma 3.2. [18] Let Ω ⊂ C be a bounded domain, and suppose that γ1, γ2

are conductivities on Ω satisfying

K−1
6 γ1, γ2 6 K.

Let γ̃1 = γ1χΩ + χD\Ω and γ̃2 = γ2χΩ + χD\Ω. Then

‖Λγ̃1
− Λγ̃2

‖H1/2(∂D)→H−1/2(∂D) 6 CK2 ‖Λγ1 − Λγ2‖H1/2(∂Ω)→H−1/2(∂Ω).

Combining the results to obtain Theorem 1.7 is now easy. By scaling, we
can suppose that Ω ⊂ D, and by hypothesis

‖γ1‖W s,2(R2), ‖γ2‖W s,2(R2) 6 Γ, s <
2 − dimM (∂Ω)

2
.

By Lemma 1.1,

χΩ, χD\Ω ∈W s,2(R2), s <
2 − dimM (∂Ω)

2
,

and so, as W s,2(Rd)∩L∞(Rd) is a multiplication algebra (see [23, Theorem
A.12] or [31]),

χΩγ1, χΩγ2 ∈W s,2(R2), s <
2 − dimM (∂Ω)

2
.

Thus, by the triangle inequality, we have that

‖γ̃1‖W s,2(R2), ‖γ̃2‖W s,2(R2) 6 C(Γ, s,dimM (∂Ω)), s <
2 − dimM (∂Ω)

2
,

and we are in position to apply Proposition 3.1. Writing κ(ρ) = A

| log(ρ−1)|as2
,

we observe that

‖γ1 − γ2‖L2(Ω) = ‖γ̃1 − γ̃2‖L2(D)

6 κ
(
‖Λγ̃1

− Λγ̃2
‖H1/2(∂D)→H−1/2(∂D)

)

6 κ
(
‖Λγ1 − Λγ2‖H1/2(∂Ω)→H−1/2(∂Ω)

)
,

where the final inequality is by Lemma 3.2, and we are done. �

4. Refinements of Lemma 1.1

The negative part of Theorem 1.3 for quasiballs relied on the property (8),
that quasiballs are ‘biporous’ (see for example [7,39] for definitions and the
relations between porosity, quasisymmetric maps and the Cauchy integral).
A set in some sense opposite to one enjoying the property (8) is a hairy ball;
a set whose boundary consists of the unit circle together with pieces of Koch
curves which protrude inward and outwards.

On the other hand, for such balls, a stronger version of Lemma 1.1 holds.
We can remove the hairs, as they have measure zero, and so in fact the
characteristic function of a hairy ball belongs to W s,p(Rd) for s < 1/p.
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To capture this phenomena in general we consider the following definition.

Definition 4.1. We say that x ∈ ∂⋆E if

0 < |E ∩B(x, r)| < |B(x, r)| for all r > 0.

It is clear that points in the interior of E, denoted by Eo, do not belong
to ∂⋆E. Similarly this is true of E

c
= R

d\E. Thus,

∂⋆E ⊂ R
d\(Eo ∪ E

c
) = ∂E,

which yields

dim(∂⋆E) 6 dim(∂E).

In particular, for a hairy ball the inequality is strict, and so the following
lemma is in some sense stronger than the positive part of Lemma 1.1.

Lemma 4.2. Let E ⊂ R
d be bounded with dimM (∂⋆E) < d− ps. Then

χE ∈W s,p(Rd), 1 6 p <∞.

Proof. We appeal to Proposition 3.1 of [20]. It states that for all sets E there

exists a second set Ẽ, differing from E on a set of zero Lebesgue measure,
such that

(15) ∂Ẽ ⊂ ∂⋆E.

Writing

χE = χ
Ẽ

+ χ
E\Ẽ

− χ
Ẽ\E

,

we have

‖χ
E\Ẽ

‖W s,p(Rd) = ‖χ
Ẽ\E

‖W s,p(Rd) = 0.

Thus, the result follows by proving

(16) χ
Ẽ
∈W s,p(Rd), 1 6 p <∞,

for p and s which satisfy dimM (∂⋆E) < d − ps. However this condition

implies that dimM (∂Ẽ) < d−ps by (15), and so (16) follows from Lemma 1.1.
�

Remark 4.3. A refined version of Theorem 1.7, with s < 1 − dimM (∂E)/2
replaced by s < 1 − dimM (∂⋆E)/2 follows by using Lemma 4.2 instead of
Lemma 1.1.

It is a natural to ask what are the weakest conditions under which results
of this type hold. To this end, one can remove points from the boundary
and/or change the definition of fractal dimension. The following definition
of a boundary not only excludes the hairs, but also the peaks of cusps.

Definition 4.4. We say that x ∈ ∂⋆⋆E if

0 < lim inf
r→0

|E ∩B(x, r)|

|B(x, r)|
6 lim sup

r→0

|E ∩B(x, r)|

|B(x, r)|
< 1.
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Again we note that,
∂⋆⋆E ⊂ ∂E⋆,

so that
dim(∂⋆⋆E) 6 dim(∂⋆E).

Lemma 4.5. Let E ⊂ R
d be bounded and suppose that dimH(∂⋆⋆E) > d−ps.

Then

χE /∈W s,p(Rd), 1 6 p <∞.

Proof. We prove the contrapositive. That is to say, if

χE ∈W s,p(Rd), 1 6 p <∞,

then dimH(∂⋆⋆E) 6 d− ps, where dimH denotes the Hausdorff dimension.
To see this, we note that the boundary ∂⋆⋆E consists of non–Lebesgue

points. That is to say if x ∈ ∂⋆⋆E, then

(17) lim inf
r→0

1

|B(x, r)|

∫

B(x,r)
|χE(y) − χE(x)| dy > 0.

On the other hand, it is a classical result in potential theory (see for
example Theorem 6.2.1 of [1]) that the set of non–Lebesgue points Σf of a

Sobolev function f ∈W s,p(Rd) defined by

Σf =
{
x : lim inf

r→0

1

|B(x, r)|

∫

B(x,r)
|f(y) − f(x)| dy > 0

}
,

has (s, p)-capacity zero. Thus, if χE ∈W s,p(Rd), then the (s, p)–capacity of
∂⋆⋆E would be less than or equal to the (s, p)–capacity of ΣχE which would
be zero. Finally, it is well known (see for example Theorem 5.1.13 of [1])
that this implies that dimH(∂⋆⋆E) 6 d− ps. �

We remark that a consequence of (8) is that ∂E = ∂⋆E = ∂⋆⋆E for quasi-
balls. Thus Lemma 4.5 is weaker than the negative part of Theorem 1.3 for
quasiballs, however it has the advantage of being true for general sets. This
suggests that the Hausdorff dimension of the boundary may characterize
the smoothness of a characteristic function. Sickel [35] proved however that
neither Hausdorff nor Minkowski dimension, combined with any of our defi-
nitions of a boundary, can serve for this purpose. He constructed a bounded
set E (in a certain sense a limit of the classical Nikodym domain) satisfying

χE ∈W s,p(R2), 1 6 p <∞ ⇔ α < 2 − ps,

where dimH(∂E) < α < dimM (∂⋆⋆E). Thus, the Hausdorff dimension is too
small to characterise the smoothness of characteristic functions in general,
and the Minkowski dimension too large. In particular we see that there exist
bounded sets E with dimM (∂⋆⋆E) > d− ps such that

χE ∈W s,p(Rd), 1 6 p <∞.

Thus, the condition that E is a quasiball in the negative parts of our results
cannot be removed completely.
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Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, 28049 Madrid,

Spain

E-mail address: keith.rogers@icmat.es




