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THE SOCIA L COSTS OF MONOPOLY AND REGULA TION 

A GAME THEORETIC A NA LYSIS * 

William P. Rogerson 

California Institute of Technology 

I. INTRODUCTION 

Posner (1975) made a significant contribution to the theory 

of regulation by pointing out that the existence of an opportunity 

to obtain monopoly profits will attract resources into efforts 

to obtain monopolies, and the opportunity costs of those resources 

are social costs of monopoly too. This general insight is undoubtedly 

true and is very useful in analyzing seemingly diverse types of 

behavior. In the process of such analysis several specific technical 

questions arise very naturally; Posner speculates on their answers 

but does not prove his assertions. The purpose of this paper is 

to explicitly address these unanswered questions. In general we 

wish to predict the behavior we would observe when a number of 

different firms compete for the right to earn a monopoly profit 

by receiving some sort of franchise. Would they spend more or 

less than the total potential monopoly profit? Posner speculates 

*I was supported by National Scientific Foundation Grant Number SOC 
77-80573 to Robert H. Bates and Canada Council Doctoral Fellowship 
Num�er 452-793798 while writing this paper. I would like to thank 
James S. Jordan, Roger Noll, Jennifer Reinganum, and Louis Wilde for 
helpful comments. 



that they would collectively spend precisely the potential profit. 

If ten firms are vying for a monopoly having a present value of 
$1 million, and each of them has an equal chance of obtaining 
it and is risk neutral, each will spend $100,000 (assuming 
constant costs) on trying to obtain the monopoly. Only one 
will succeed and his costs will be much smaller than the 
monopoly profits, but the total costs of obtaining the 
monopoly--counting losers' expenditures as well as winners-­
will be the same as under certainty.1 

How would this situation change if the current monopolist were to 

have an advantage over potential entrants at regulatory hearings 

to (possibly) reassign the franchise? Would firms collectively 

spend more or less? Would the current monopolist outspend or 

underspend the potential entrants? Posner speculates that the 

tendency for entrants to spend less because of their lower chances 

would be counteracted by their desire to spend more because owning 

2 

the monopoly is now worth more, and tha� therefore, a situation where 

the current monopolist has an advantage should not be any different. 

Technical analysis shows Posner's assertion that total 

expenditures of competing firms equals the franchise profit to 

be less general than he claimed. It is critical that we additionally 

assume that competitive pressures of some sort (such as entry) 

drive the value of the game for all firms to zero. In this case 

the long-run expected expenditures of firms will equal the franchise 

profit. However, expenditures may exceed, equal, or fall short of the 

1 Posner (1975) p. 812 
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franchise profit in any given period. If in addition, firms are 

identical and in a symmetric equilibrium, combined expenditures of 

firms will be precisely the franchise prof�t every period. Without the 

assumption that all values are zero, we can only say that the long-run 

expected expenditures of firms will not exceed the franchise profit. 

A s  before, expenditures may exceed, equal, or fall short of the 

franchise profit in any given period. For the case of identical firms 

in a symmetric equilibrium, we can prove that combined expenditures on 

the part of entrants will never exceed the franchise profit in any period. 

In a more specific model where entrants are identical 

and risk neutral and a Nash equilibrium concept is used, it is possible 

to prove that differing degrees of advantage conferred upon the 

current monopolist result in differing behavior on the part of the 

participating firms and in differing aggregate expenditures. An 

increased advantage to the current monopolist tends to decrease 

aggregate expenditures if firms discount future profits highly, 

if there are many potential entrants, or if the current monopolist's 

advantage is already quite high. On the other hand, an increased 

advantage to the current monopolist tends to increase aggregate 

expenditures if firms discount future profits very little, if there 

are few potential entrants, or if the current monopolist's advantage 

is already quite low. 

Furthermore, in this model, an increase in the competitive 

pressures in the form of an increased number of potential entrants 

does not drive the aggregate value of the game to zero even in the 

limit. Therefore, combined expenditures remain a discrete distance 

below the franchise profit even in the limit. This tendency becomes 
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more pronounced as the advantage to the monopolist is increased. A t  

least in some cases, therefore, we would never expect combined 

expenditures by firms to equal the franchise profit. 

II. THE GENERAL CA SE

We wish to model the idealized situation where n firms

compete for the right to operate a monopoly franchise which generates 

profits. A t  the start of each period, a government agency assigns 

rights to the franchise for that period. Firms spend money attempting 

to influence this decision. 

Formally, we construct an n-person infinite period game. 

There are n states; let state j be the state where firm j is currently 

the monopolist. Let x . . be the amount of money spent by firm i when1] 
state j occurs. The state space and firms' strageties are stationary. 

They are not dependent on t. A firm's probability of obtaining the 

franchise clearly will depend upon its and others' lobbying expenditures. 

It may also depend upon what state the world is in. For example, a 

firm's chances of success may be greater if it is the monopolist 

because it now has greater knowledge and expertise or because it has 

established a relationship with its regulators. Let fij be the 

probability of firm i succeeding in state j; f .. is a function o f1] 
(x1., . • •  ,x .). It must be true for every (x1., . • •  ,x . ) that 

J n] J n] 

n 
I: f . . = 1 'tj j 

i=l 1] 

fij > 0 'tj i,j. 

(1) 

(2) 
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Let � be the prof its that the successful firm earns in a period by 

operating the franchise. 

Firm i selects the strategy' vector Cxf1, • • •  , x�n). That is, 

firm i spends x�. if state j occurs. Let 8 .. be firm i's probability1] 1] 
of success in state j with the given strategies: 

eij fij Cxfj, x�j, • . •  , x�j) 

Let e be the matrix with Ci, j) entry of e . . •1] 

e [8ij l 

(3) 

(4) 

By (1) and (2) 8 is a stochastic matrix. The associated stochastic 

process is the one that determines which firm will be the monopolist 

for each period. 

Such a matrix always has a steady state solution--a 

vector y = [y1 , 
• • •  ,yn] such that 

(i) y. < 0 
1- 'tj i =l,
n 

(ii) I: Y. = 1 
i=l 1 

(iii) Y = ey 

(5) 

(6) 

(7) 

The steady state may not be unique; as well, the stochastic process 

may actually converge to some sort of cycle. However, at a minimum, 

the average of the cycle which the stochastic process converges to 

equals one of the steady states. Therefore, one of the steady states 



describes the long-run average probability distribution which the 

stochastic process will exhibit. (Which steady state does this 

depends on the initial point.) Long-run expected values for this 

process are therefore calculated by using one of the steady state 

distributions . .  See Gantmacher (1960) for a complete discussion 

of these points. 
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Before stating and proving the major theorem of this section, 

more notation needs to be introduced. Let e�.  be the probability of lJ 
firm i becoming the monopolist in period t given that firm j is 

currently the monopolist. That is, e�j is the (i,j) entry of e
t. 

Let R�j be the expected profit to firm i in period t given that the 

world is currently in state j. These returns can be defined 

recursively as follows: 

1 Rij = eij'JT - xfj 

t n t-1 1 Ri. = L: 6kj R.k J k=l l t = 2,3, . . •

I will assume that all firms calculate the value of the game by 

(8) 

(9) 

summing discounted expected profits, firm i using the discount rate 

Ci. Let V . . be the value of the game to firm i in the state j. lJ 

vij 

00 
L: c�-lRt 

t=l l ij (10) 

Finally, let S. be the surplus of 'IT over total firm expenditures which J 
occurs in state j. 

sj 'JT -
n 
L: x * 

i=l ij 

The major theorem of this section is that the long-run 

(ll) 

expected surplus that this game generates is a nonnegative weighted 

sum of the values {V . . }. l] 

Theorem 1: 

Proof: 

Let y be a steady state solution to 6. Then 

n 
L: y.S 

j= l J j 
n n 
L: L: y.(l - c.)V . .

i=l j=l J l lJ (12) 

See A ppendix o 

The value of the game to every player must always be nonnegative 

if we assume that the strategy of doing nothing at zero cost is 
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available to each player. Therefore, the RHS of (12) is nonnegative; 

therefore, so is the LHS. Therefore, the long-run expected surplus 

of 'IT over total expenditures is nonnegative. However, the surplus 

in any particular state could be negative. That is, in the general 

case we cannot predict anything about the surplus in any particular 

period; we can only predict that in the long run the average surplus 

will be nonnegative. Suppose, however, that the surplus generated 

was the same in every state. (This would occur, for example, 

in a symmetric equilibrium of identical firms. ) Then the surplus 

every period would be nonnegative. -



Finally, consider the case where the value of the game is 

zero for every player in every state. This might occur, for example, 

if there were many firms of each type and entry occurred. Then 

the firms collectively spend on average TI. If there is a symmetric 

equilibrium of identical firms they would then spend precisely TI 

every period in accord with Posner's prediction. 

III. A SPECIAL CASE

We can make a surprising number of predictions about the 

general case where all firms have different return functions, 

use different discount rates and no equilibrium concept is specified. 

However, the problem of identifying the effects of increasing the 

current monopolist's advantage is not tractable in such a setting. 

This problem does become tractable in the specific setting which is 
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presented in this section. As well the model of this section provides 

a useful concrete example of the propositions proved for the more 

abstract model. 

For expositional convenience assume that there are n + 1 

firms (instead of r) , 1 current monopolist and n potential entrants. 

Let f ij be given by

and by 

f . .  (0, ... ,0) 
l.J 

0 (13-a) 

13¥;ij 
' i = j 13 + E �· xjj kfj J 

) = 
� xij " i f j 

fij (xlj ' • · • ,xn +l,j 

6+ E �· xjj kfj J 

for every (x1., • . •  ,x +l . ) f 0, 
J n ,J 

where 13 is some real number greater than or equal to 1. Each 

firm' s chance of obtaining the franchise is simply the proportion 

of total lobbying expenditures that it accounts for weighted by 

an advantage for the current monopolist. All potential entrants 

are treated the same. Each firm faces the same return function 

if it becomes the monopolist. This is, therefore, in some sense 

the simplest specification of a case where the monopolist has 

an advantage. A s  well, assume that each firm uses the same 

discount rate, c. 

We will use the Nash equilibrium concept. 

Definition: 

The strategy vectors {xf, . • .  ,x�+l} are equilibrium 

strategies if for every i and j, xf satisfies 

VijCxf·····xt·····x�+l) sup V .. (x1*, • . .  ,x., • . .  ,x *+l) 
n+l l.J 1 n 

Xi ER+ 

9 

(13-b) 

(14) 

That is, x� must maximize (V.1, ... ,V. +l) given others' behavior. 1 i i,n 
Note that the domain of x. is Rn+l (where R+ = [o,oo)). In particular, 

]. + 
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the firm always has the option of doing nothing at zero cost and zero 

return. Recall from (13) that our return functions are particularly 

simple--a firm's probability of winning is not affected by which 

of the others is the monopolist so long as they all spend the same. 

Because of this we might hope for a particularly simple sort of 

equilibrium to occur; each firm' s strategy is one number, xe, if it is 

an entrant and another number, xm, if it is the monopolist. We 

will call this a symmetric equilibrium. 

Definition: 

An equilibrium {xf }��i is a symmetric equilibrium if there 

exist two numbers xe and xm such that for every i and j 

x * ij
i f. j { x ' 

x:, i j 

The major result of this section is the constructive proof of the 

existence and uniqueness of such a symmetric equilibrium. Since 

each player has the same strategy and it only varies as he is the 

entrant or monopolist, it will be seen that all of the variables 

indexed by (i,j) will only assume two values. We will employ the 

notational convenience of indexing them by "e" and "m" for the 

state of being the entrant or being the monopolist. 

Theorem 2: 

(15) 

Theorem 2: 

x e 

The unique symmetric equilibrium is 

Smr 
2 2 2 (Sn + 1) - en CS - 1) - 2cn(S -1) 

x m 
[ n - 1) n - -S-- xe. 

Other variables assume the following values (uniquely): 

8 1 
e 

= 
Sn + 1 

8 = Sn + 1 - n 
m Sn + 1 

Rl = __ 11_ - x e Sn + 1 e 

Rl = 11(Sn + 1 - n) _ x m Sn + 1 m 

V = � Rl + (1 - c) + en 8e Rl 
e D m D e 

V = (1 - c) + c 8e Rl + en 8e Rl 
m D m D e 

where 

D = (1 - c){(l - c) + c 8e(l + n)} 

Proof: 

See Appendix 

Before discussing the substantive qualties of the 

model one comment on uniqueness is in order. For the case where 
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(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

D 



c = 0, that is where the world ends after the first period, the 

symmetric equilibrium is in fact the unique equilibrium. Therefore, 

although I was unable to prove that the symmetric equilibrium is 

the unique equilibrium for the general case, my solution is a 

generalization of the unique solution for the one period case. 

It is interesting to note that although Ve and V m are always 

positive, R1 may be negative. (R1 must always be positive.) That is, e m 
entrants may play the game expecting to make a short-run loss and recoup 

it in the future by becoming the monopolist. Note also that V and V e m 
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are convex combinations of R1/(l - c) and R1/(l - c). That is, we can write m e 

where 

v e 

v m 

a 

a R1 + (1 - a)R1 
m e 

(1 - c) 

a R1 + (1 - a)R1 
e m 

(1 - c)

c Be 
(1 - c) + c(l + n)Be 

Therefore, being an entrant is equivalent to receiving the gamble 

(R1,R1) with probability (a,l - a) year after year. Similarly, m e 

(25) 

(26) 

(27) 

being the monopolist is equivalent to receiving the gamble (R1,R1) m e 
with probabilities (1 - a,a) every year. 

The theorems of the abstract model can be interpreted 

in our setting. Equation (12) becomes (28). 

Corollary 1: 

TI - n X - X e m (1 - c)(n Ve + Vm) (28) 

Proof: 

This is an immediate corollary of theorem 1. It can also 

be derived from Theorem 2 by performing the required algebra. D 

Since all firms are treated the same, in the long run 

each is equally likely to be the monopolist; that is Y. = l/(n + 1)J 

13 

for every j. As well, due to the symmetric nature of the equilibrium, 

the surplus, S., is the same in every state. This, therefore, is J 
the special case discussed in section II where the surplus is 

definitely nonnegative every period. 

It was also suggested in section II that entry of more 

players into the game might drive the aggregate value of the game, and 

thus by (12) also the expected surplus, to zero. We can investigate 

this question in the specific model of this section. Incidentally, 

this question also suggests that we might formally define an entry 

equilibrium into the game. Since Ve is always positive (see the proof 

of Theorem 2) we must assume the existence of some fixed cost of 

entry into the game varying across firms to generate an entry 

equilibrium. Interpret this fixal cost as an organization cost. In this 

context we are asking if the surplus of TI over firms' expenditures goes 

to zero when fixed organization costs are low enough for enough firms. 

Corollary 2: 

As n goes to infinity, the symmetric equilibrium converges 

to the following: 

lim x 
n-+oo e 0 (29) 
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s lim n x = 
2 2 TI n-+oo e S - c(S - 1) 

(30) 

Proof: 

s - 1 lim x = 2 2 n-+oo m S - c(S ·� 1) 
TI 

Simply perform the required operations. 

The case where the monopolist has no advantage (S = 1) 

(31) 

0 

might be used as a base case. In this case, as n grows expenditures by 

any particular firm go to zero, but expenditures by the aggregate 

converge upwards to TI. That is, entry causes aggregate expenditures 

to converge to TI and the aggregate value of the game to 

converge to zero as hypothesized. However, the situation changes 

as the advantage to the monopolist grows. Expenditures by the 

current monopolist do not disappear in the limit. Furthermore, 

aggregate expenditures are less than TI. That is, even in the limit 

TI exceeds aggregate expenditures and the aggregate value of the game 

is positive. (It is possible to prove that Ve goes to 0 even in this 

case, however). Therefore, entry might not always caqse lobbying 

expenditures to equal TI even if fixed organization costs are low. 

The tendency for a positive surplus to persist in the limit is 

more pronounced when the current monopolist is given a larger 

advantage. 

The question of the g;eneral effect of the size of B 

on the surplus remains to be investigated. 

Corollary 3: 

(i) 
D x 3 2 2 

e _ -n [(l - c)S + c] + ,2cn + n 
� - 2 TI 

* 
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(32) 

(ii) 
Dx m 
Di3

(Sn + 1) (1 - c) (2n - (Sn + 1)) + c(n2 + 1) 
*2 

2 n TI (33) 

(iii) D 
no (nx + x ) 

µ e m 
2 2 2 (1 + Sn)2n(l - S) + c(2 + 2Sn + 2n S - 2Sn ) 

*2 
2 n TI 

(34) 

where 

Proof: 

* 2 2 2 (Sn + 1) - en (S - 1) - 2cn(S - 1)

Simply perform the required operations. 

The firm receives two conceptually different rewards from 

winning the franchise. In the short run, it receives the franchise 

profit that period. From a longer-run perspective, its expected 

(35) 

0 

return for the rest of the game is also increased due to the monopolist's 

advantage. Therefore increasing (3 increases the value of winning by

by increasing the long-run expected returns. Simply considering this 

factor might lead us to expect that increases in S should result in 

increases in expenditures of all firms. That is, an increased reward 

should induce increased efforts to obtain it. However, two factors 

complicate this. First, changing (3 also changes the marginal return 

of the monopolist's and entrants' expenditures. In particular, the 

entrants' chances of winning are decreased for any given expenditure. 
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This might induce them to spend less as S rises. Second, the firms 

may respond to any change in the others' expenditures. However, 

certainly as the future matters more (i.e. , c is larger), we might 

expect our initial hypothesis to be more applicable since the effect 

of increasing S on the value of winning becomes larger. 

The signs of Dxe/DS and Dxm/DS are somewhat reflective of 

this intuition. When c is a neighborhood of O, Dxe/DB is always 

negative. However, as c increases beyond this point, the sign becomes 

ambiguous. The reverse is true for Dxm/DB. When c is in a neighborhood 

of 1, its sign is positive; as c decreases beyond this point, the sign 

becomes ambiguous. Finallly, as n increases, an entrant's probability 

of winning goes to zero. Therefore, we would'expect the long-run 

factor to become unimportant and for the entrant to behave in a 

fashion similar to his behavior when c equals zero. This in fact 

occurs. It is easy to see that for every (6,c) there exists an n° 

such that 

n > 
o Dx 

n => e Di3 < o. (36) 

The sign of the derivative of total expenditure per period 

with respect to S, �B (nxe + xm)' behaves even more intuitively. First, 

as for previous cases, the derivative is more likely to be positive 

as c increases, thereby increasing the effect of the long-run factor. 

Corollary 4: 

Let o·(B,n) 
2 Sn (6 - 1) + Sn - n 
2 Bn (S - 1) + Bn + 1 

(37) 

(i) 

< 0 < 
D(nx + x ) 

c = o <=> ;S 
m = o. 

> 0 > 

(ii) For every (6,n) � (l,00) x {l,2,3, ... } 

0 < o(B,n) < 1. 

(iii) DO 
DB > o, 

Do 
Dn > 0. 

Proof: 

Obvious. 

(38) 

(39) 

(40) 

0 

That is, for every (6,n) we can divide the interval [O,l] 

into two sections. If c is in the left section, expenditures fall 

(the surplus rises) as S rises; if c is in the right hand section, 

expenditures rise (the surplus falls) as S rises. Increasing S 

or increasing n moves this cutoff point to the right. Increasing 

B is initially more likely to cause a rise in expenditures; however, 

as it is continually increased it will eventually result in falls 

of total expenditures. The intuition behind the sign of Do/Dn is 

the same as used previously; as n increases, the probability of a 

given firm winning decreases and therefore tQe long-run effect 

matters less. 

Two other results in accord with the intuition of (iii) 

of Corollary 4 are: 

17 



Corollary 5: 

(i) For every (n,c) there exists a B0 such that 

o D B > B => DB (nxe + xm) < 0. 

(ii) For every (B,c) there exists an n° such that 
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(41) 

o D n > n => DB (nxe 
+ xm) < 0. (42) 

Proof: 

Obvious. 

IV. CONCLUSION 

D 

In general, the long-run expected surplus of the franchise 

profit over combined expenditures by the firms equals the long-run expected 

aggregate value of the game. Since the latter will generally be 

nonnegative, so is the former. If competitive pressures drive the 

latter to zero, the former is also zero. If in addition all firms 

are identical and the equilibrium is symmetric, we have Posner's 

assertion -- combined expenditures by firms will precisely equal 

the franchise profit every period, However, there is some question 

as to whether we can reasonably expect competitive pressures to 

drive the aggregate value of the game to zero. In the simple 

example of section III, increases in the number of potential entrants 

does not eliminate a positive aggregate value of the game, even in 

the limit. This tendency becomes more pronounced as the advantage 

to the current monopolist is increased. In this model, differences 

in the advantage of the monopolist resu•lt in differing behavior. 

An increased advantage to the current monopolist tends to decrease 

(increase) aggregate expenditures if firms discount future profits 

highly (very little), if there are many (few) potential entrants, or 

if the current monopolist's advantage is already quite high (low). 

Possibilities exist for applying and testing this model in 

real situations. The regulatory process is generally characterized 

by periodic review and (possible) reassignment of the franchise. 

19 

Firms are often required to report their expenditures associated with 

participation in this process. The franchise profit is also public 

information. Other phenomena may also be investigated with variants 

of this model. Many political processes fit very naturally into 

this framework. For example, political parties battling for electoral 

success over an infinite horizon of ten desire to win a particular 

election not only because of the immediate reward but also because 

their chances of winning subsequent elections are increased. The 

same type of reasoning applies to presidential candidates competing 

in a succession of primaries to win their party's nomination. I 

am currently working on these applications. 
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APPENDIX 

Proof of Theorem 1: 

The value functions must all satisfy 

n vij
1 Ri. + c. Z 8k.V.k. J l k=l J l 

Therefore 

n 
z y .V 

j=l J ij
n 
Z y .Rl 

j=l J ij + c. � ( � Y.t\.]v.k l k=l j=l J .J l 

n 
Z Y.R�. + c. 

n 
z y V 

k=l k ik' j=l J lJ l 

The last step is by (7) . Now reorganize. 

n n 
(1 - c.) Z y.V .. l j=l J l] 

Summing over i yields 

n n 
Z Z (1 - c.) Y.V ..

i=l j=l l J lJ 

Substitute (8) into (A -5). 

n n 
Z Z (1 - c.)y.V .. 

i=l j=l l J lJ 

z 
j=l 

1 YJ.
R . . •l] 

n 
z 

j=l 
yj [ �  R�.1 . 

i=l lJ. 

� y. [ � 8 .. TI - X�.J. 
j=l J i=l lJ lJ 
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(A -1) 

(A -2) 

(A -3) 

(A -4) 

(A -5 ) 

(A -6) 



Then by (1) we have 

n n 
l: l: (1 - c.) y.V .. 

i=l j=l i ] lJ 

Proof of Theorem 2: 

n 
L: y. (1T 

j=l ] 

n 

j:l 
yjsj. 

n 
L: x�.) 

i=l lJ 

For {x�}�+l
l to be an equilibrium, it is necessary and J J= 

(A -7) 

(A -8) 

D 

sufficient that x� is an optimal strategy for firm i when it takes J 
the others' strategies as given. A necessary and sufficient con-

2L 

dition for this latter event to hold is that the relevant functional 

equation of dynamic programming be satisfied [Denardo, 1967]. 

Choose an arbitrary firm i. Fix the other firms strategies 

at {xj }j,l.i" Then define (n + 1) real valued functions of a real 

variable. 

First for i f j, let a .. belJ 

Sx�. + x + L: xk . ' Sx�. + x + L: xk. f 0 JJ kfi J JJ k# J 

aij (x) = � 

Then for i j, let a .. be lJ 

kf j 

1, 

kfj 

Sx�. + x + L: �- _ 0 JJ kfi J -
kf j 

(A -9a) 
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kf i kf i i 

aii_(x) = 

�Bx + I xf , Bx + Z °'{· ' C 

(A -9b) 
1, Sx + L: x�. = 0 

kf i ;L 

Now define (n + 1) real valued functions over Rn+2
. 

gij (x,yl, · · · ,yn+l) 

_x_ ex cSx�. 
a .. (x) 1T - x + - y . + __ll_ 

lJ Cl· • ( x) i a (x) Y • � � J 

ex"( 
+ L: __ lsi__ 

kfi aij (x) yk' j f i 

kfj 

ex* � c� � 

(A -10) 

--- 1T- x + --- y + L: ---y a .. (x) a .. (x) i k.J.. a .. (x) k' lJ l] ;-l lJ 

j 

Then a nonnegative xt is optimal for firm i given the others' 

behavior if and only if there exist n + 1 real numbers (Vi1, . . .  , 

V. +l) such that (A -11) and (A -12) are satisfied. Furthermore, i,n 
V .. is the value of the game to firm i at state j.lJ 

v . . lJ sup giJ.(x, v.l, .. . ,V. ) 
xE[O,oo) i i,n+l 

for every j = 1, . . .  , n + 1. 

(A -11) 



g .. (x� . •  v.1, . • •  ,v. +l) l.J l.J i i ,n 

for every j 1, ... ,n + 1. 

sup giJ.(x,V.l, . . •  ,V ) 
xE[O,oo) l. i,n+l 

To prove existence, it is therefore sufficient to 

substitute the following 
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�j = 
{ Xe' k f j 

(A -13) 
xm' k = j 

vij 
{ Ve, i 

vm' i 

f j 
(A -14) 

j 

into (A -11) and (A -12) and verify that (A -11) and (A -12) are true. 

Since the selection of i was arbitrary, verification of optimality 

for one i is sufficient to guarantee optimality for all i's. This 

is straightforward. (A t least conceptually if not algebraically!) 

However, we do not obtain uniqueness in this fasion. A s  well, 

such a method gives no idea how I choose the values for x .. and 
l.J 

vij. Therefore, instead, I shall outline a more constructive proof. 

A nonnegative strategy (xe,xm) with associated values 

(V ,V ) is a symmetric equilibrium if and only if (A -11) and (A -12) e m 
are satisfied. We can rewrite (A -11) and (A -12) in simplier form 

because the strategies are so simple. Let 

a
e

(x) = 

am(x) = 

�Bx + x + (n - l)x , Sx + x + (n - l)x j 0 m e m e 

1, Bx
m 

+ x + (n - l)xe = 0 

�Bx + nx , Bx + nx 1 0 e e 

1, Bx + nxe = 0 

Then rewrite (A -10) as 

x ex c(Bxm + (n - l)xe) 
ge(x,ye,ym) = a (x) TI - x + a (x) Ym + a (x) Ye e e e 

en x 
(x ) - � TI - x + � + __ e gm ,ye,ym a (x) a (x) ym a (x) Ye·m m m 

Then (A -11) and (A -12) become 

v e ge(xe,Ve,Vm) 

Vm = gm(xm,Ve,Vm) 

ge(xe,Ve,Vm) sup ge(x,V ,V ) 
xE[O,oo) e m 

gm = (xm,Ve,Vm) sup 
xE[O,oo) 

gm(x,Ve,Vm). 
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(A -lSa) 

(A -lSb) 

(A -16a) 

(A -16b) 

(A -17) 

(A -18) 

(A -19) 

(A -20) 

That is, a nonnegative pair (xe,xm) is a symmetric equilibrium if 

and only if there exist numbers Ve and Vm such that (A -17) through 
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(A-20) are satisfied.* 

We thus have four equations in four unknowns -- xe, xm, 

Ve and Vm. Proving the theorem now amounts to proving the existence 

and uniqueness of a solution to these equations. 

First, I will show that the solution to xe and xm is 

necessarily interior; both xe and xm are positive. This will 

allow me to use the necessary conditions for an interior extremum. 

Suppose that both xe and xm equal 0. Then (A-17) and (A-18) become 

v = 0 e 
v = 0 m 

Then (A-19) and (A-20) are both the same equation. 

0 sup 
xE[O,oo) 

{11 - x, 

0, 

x ,,. 0 

x = 0 

Equation (A-23) i� of course, not true. Therefore, both xe and 

(A-21) 

(A-22) 

(A-23) 

xm cannot be zero. Suppose that xe equals 0. Then (A-17) and (A-18) 

require that Ve be 0 and Vm be (11 - xm)/(l - c). Then (A-20) 

becomes 

*Technically, for the "only if" to be true, we must prove that V .. l_J 
will only assume two values for firm i under (A-13), one for when 
i is the entrant and one for where i is the monopolist. This is 
easily seen to be true by using the direct definition of the value 
function (10). 

11 - x m 
-r-:-c = 

c 
1 - c m 

sup 
{ 11 - x + -- (11 - x ) , x -:f 0 

xE[O,oo) �-c� (11 - x ) x = 0 1 - c m ' 

(A-24) 

This clearly is only true if xm 0. (Otherwise choosing x < xm 
yields a supremum larger than 11 - xm/(l - c).) Therefore xm must 
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be zero as well which cannot be by previous considerations. Similarly, 

we derive a contradiction if we assume xm equals 0. 

Therefore, the first order conditions for an interior 

maximum are necessary for (A-19) and (A-20) to be true. If we 

differentiate ge and gm with respect to x twice we find a sufficient 

condition for both to be strictly concave in x is V > V • Itm- e 

is easy to prove that this is in fact the case� From (A-19) 

we have that 

Ve� g(O,Ve,Vm) 

cV e 

Since 0 < c < 1, Ve must be nonnegative. Then by (A-20), 

Vm � g(O,Ve,Vm) 

cV e 

Since Ve is nonnegative, Vm � Ve. 

Therefore, we can replace (A-19) and (A-20) by the 

necessary conditions for an interior maximum. They become, 

(A-25) 

(A-26) 

(A-27) 

(A -28) 
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respectively, (A-29) and (A-30). Note that ae(xe) equals am(xm). 

We will simply write a for this function of xm and xe. 

2 - (Sx + (n - l)x )n a 
v - v = m e 

c(Sx + (n - l)x ) 
(A-29) 

m e 

2a 
v - v = 

m e 

m e 

- Sn x e " 

c Sn x e 
(A-30) 

By equating the RHS of (A-29) and (A-30), it is now easy to prove 

that any pair (xe,xm) satisfies (A-29) and (A-30) only if

x m [ n - 1) n - -S- xe (A-31) 

That is, the RHS of (A-29) equals the RHS of (A-30) if and only if 

(A-31) is true. 

Taking stock for a moment, we now have that (xe,xm,Ve,Vm) 

is a solution to our original equations if and only if (A-17),. 
(A-18), (A-30) and (A-31) are satisfied. By algebraic manipulation, 

(A-17) and (A-18) can be seen to imply that 

v m v e 
(Sxm - xe)n + a(xe - xm) 

a - c(Sx - x ) m e 

Therefore, any xe and xm which are part of the solution must 

satisfy 

(Sxm - xe)n + a(xe - xm) 

a - c(Sxm - xe) 
a2 - Sn x " 

e 
c Sn xe 

(A-32) 

(A-33) 

In fact, (xe,xm) is a symmetric equilibrium if and only

if (A-33) and (A-31) are satisfied. This is clearly necessary. 

To see sufficiency, suppose that (xe'�m) does satisfy (A-33) and 

(A-31). Then since (A-17) and (A-18) are two linear equations in 

Ve and Vm' we can always find a solution for Ve and Vm which 

satisfies (A-17) and (A-18). Then since the solution satisfies 

(A-32) and since (xe,xm) satisfy (A-33), we know that (A-30) is 

satisfied as well. 
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There is precisely one solution to (A-33) and (A-31). It is 

x 
e 

x m 

Snn 
( Sn+ 1) 2 - cn2 (S

( n - l] n - -S- xe 

2 1) - 2cn(S - 1)

It is easy to verify that both numbers are positive. Now we 

(A-34) 

(A-35) 

simply substitute these back into (A-17) and (A-18) to determine 

Ve and Vm. Equations (A-17) and (A-18) can be viewed as two 

linear equations in two unknowns -- Ve and Vm. The determinant 

turns out to be nonzero and so there is precisely one solution, 

that given in the statement of Theorem 2. D 


