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1 Introduction

The model. The SYK model is a quantum system with many degrees of freedom and

random all-to-all interactions. It is analytically solvable and exhibits interesting properties

at low temperatures. In particular, it has a collective mode that is similar to the Dray-

t’Hooft shock waves at the black hole horizon. The original model of Sachdev and Ye [1]

consists of pairwise coupled SU(M) spins. Kitaev [2, 3] proposed a simpler Hamiltonian

with N ≫ 1 Majorana sites and four-body interactions:

H = −
∑

j<k<l<m

Jjklm χjχkχlχm, where χjχk + χkχj = δjk. (1.1)

The couplings Jjklm are independent random variables with zero mean and the following

variance:

J2
jklm =

3!J2

N3
. (1.2)

They may be regarded as elements of an antisymmetric tensor such that 1
3!

∑
k,l,m J

2
jklm ≈

J2 for each j. The number J is the characteristic energy scale. This variant of the model

is also more convenient because disorder effects are weaker than in systems with pairwise

interactions. A slight generalization involves interactions of order q:

H =
iq/2

q!

∑

j1,...,jq

Jj1···jq χj1 . . . χjq , J2
j1···jq =

(q − 1)!J2

N q−1
(1.3)

In the N → ∞ limit, the model is solved using dynamical mean field theory. In-

deed, each variable χj is driven by the effective fermionic field ξj = −i ∂H/∂χj ∝∑
j2,...,jq

Jj2···jqχj2 . . . χjq . Being a sum of many random terms, ξj(τ) is Gaussian. Further-

more, χj2(τ), . . . , χjq(τ) are almost uncorrelated. Thus, one can write the self-consistency

(Schwinger-Dyson) equations for the imaginary time correlation functions

G(τ1, τ2) = −
〈
Tχj(τ1)χj(τ2)

〉
, Σ(τ1, τ2) = −

〈
T ξj(τ1)ξj(τ2)

〉
, (1.4)

in a closed form:

Ĝ−1 = −∂τ − Σ̂, Σ(τ1, τ2) = J2G(τ1, τ2)
q−1. (1.5)

The Green function G and self-energy Σ are antisymmetric functions of τ1, τ2 ∈ [0, β] with

antiperiodic boundary conditions, where β is the inverse temperature. These equations

can also be obtained from the high temperature diagrammatic expansion. It begins with
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the bare Green function Ĝb = (−∂τ )−1, i.e. Gb(τ, τ
′) = −1

2 sgn(τ − τ ′), denoted by a thin

solid line. Neglecting the diagrams that are suppressed by 1/N , the full Green function is:

= + + + + · · · (1.6)

The Schwinger-Dyson equations can be solved numerically; an analytic solution exists

for β, |τ1 − τ2| ≫ J−1. Sachdev and Ye [1] originally found the Green function at zero

temperature. When adapted to Hamiltonian (1.3), the solution (in the J |τ1 − τ2| → ∞
limit) reads:

Gβ=∞(τ1, τ2) = −b∆
∣∣J(τ1 − τ2)

∣∣−2∆
sgn(τ1 − τ2), ∆ =

1

q
, (1.7)

where b is some numerical factor (see table 1 on page 6). Parcollet and Georges extended

this result to finite values of β and argued that the form of the Green function indicates

an emergent conformal symmetry [4]:

G(τ1, τ2) ≈
(
2π

βJ

)2∆

G̃c

(
2πτ1
β

,
2πτ2
β

)
if |τ1 − τ2| ≫ J−1, (1.8)

where1

G̃c(ϕ1, ϕ2) = −b∆|ϕ12|−2∆ sgnϕ12, ϕ12 = 2 sin
ϕ1 − ϕ2

2
(1.9)

Note that self-consistency equations similar to (1.5) can be written for any model

with all-to-all interactions. However, their solution may not be physical if some ordering

occurs, such as in spin glasses. For the q = 4 SYK model, the transition to a glassy phase

is expected at extremely low temperature, Tglass ∼ Je−
√
N [5], so one may assume that

T ≫ Tglass for almost all purposes. The mean field solution is accurate if T ≫ J/N ; at

lower temperatures, quantum fluctuations should be taken into account [6].

Relation to black holes. A connection between this type of models and two-dimensional

gravity was first noted in [7]. Indeed, the Green function (1.8) can be interpreted as a

propagator of a fermion with certain mass and boundary conditions, between two points

on the asymptotic boundary of the hyperbolic plane. Correlation functions in real (rather

than imaginary) time are obtained by replacing the hyperbolic plane with a two-dimensional

anti-de Sitter space. More recently, a holographic correspondence has been found that

involves the dynamics and quantum fluctuations of space-time. To introduce it, let us

review some facts about classical gravity.

The Einstein theory is well-defined if the number of space-time dimensions d is 3 or

greater. For d = 2, an interesting theory can be obtained by replacing Newton’s constant

GN with a dynamical field called a dilaton. For example, the static solution of dilaton

gravity with a linear potential is the anti-de Sitter space AdS2, which may be regarded

as an “eternal” black hole. Gravitational waves only exist if d > 4. However, black holes

1The subscript c means “conformal” and the tilde “renormalized” (in this case, using a dimension-

less time).
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dℓ2 = −4 du dv
(1+uv)2

a) b) c)

Figure 1. (1 + 1)-dimensional black hole: a) Structure of space-time and infalling matter (shown

as red dotted lines); b) The gravitational perturbations has turned into a “shock wave”; c) The

same geometry in different coordinates.

have another kind of gravitational mode [8]. A “shock wave” at the past horizon can be

caused by any infalling object, as shown in figure 1. Such an object, even a very small

one, produces some perturbation of the metric that evolves in time. The passing of time is

represented by the transformation (u, v) 7→
(
eκtu, e−κtv

)
in Kruskal-Szekeres coordinates,

where κ is the surface gravity. Thus, the metric perturbation becomes localized at the past

horizon and amplified by the factor eκt. The effect of such a “shock wave” on a passing

particle appears as a kink on the particle’s worldline, see figure 1b. However, this apparent

space-time discontinuity can be removed by a coordinate change. In the AdS2 case, the

new coordinates can be chosen such that the metric remains the same but the boundary is

shifted as shown in figure 1c.

T’Hooft considered a pair of gravitational modes localized on the past and the future

horizons, wrote an effective action, and quantized it [9–11]. In this formalism, the infalling

matter directly interacts with the future horizon mode, which mediates its effect on other

modes. Likewise, any Hawking radiation particle must cross the past horizon, and thus,

interacts with the past horizon mode. This model provides, at least, a partial solution to the

black hole information paradox, showing how infalling objects can influence the outgoing

radiation. However, for a long time it remained controversial whether a shock wave on the

past horizon has any physical effect because it does not change the density matrix of fields

in the physical region. It turns out that, indeed, all naturally ordered (Keldysh) correlators

of physical observables remain the same, but the gravitational modes have a strong effect

on out-of-time-order correlators (OTOCs) of the form
〈
D(t)C(0)B(t)A(0)

〉
. The latter

were first discussed by Larkin and Ovchinnikov for a single particle in the semiclassical

approximation [12]; they characterize the sensitive dependence of the particle’s trajectory

on initial conditions. In the black hole context, this effect was studied by Shenker and

Stanford, first with a classical perturbation source [13], and then in the fully quantum

setting [14].

OTOCs provide a basis for comparison between black holes and conventional many-

body systems while not requiring a complete quantum theory of gravity. The black hole

OTOCs at early times (but after all two-point correlators have decayed) have some char-

acteristic properties that reflect the physics near the horizon [15]. One salient feature is
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their time dependence:

〈
D(t)C(0)B(t)A(0)

〉
− 〈DB〉〈CA〉 ∝ eκt, κ = 2πT, (1.10)

where T is the Hawking temperature. At later times, the exponential growth saturates.

This general behavior, indicating fast scrambling [16], is common in models with all-to-all

interactions, but the Lyapunov exponent κ is usually smaller. In fact, Maldacena, Shenker,

and Stanford [17] showed that κ 6 2πT for any quantum system at temperature T (under

some natural assumptions). Thus, the condition κ = 2πT is nontrivial. It is, actually,

rather difficult to satisfy. For example, consider the Heisenberg model with random Gaus-

sian couplings, J2
jk = J2/N . If the temperature is high, T ≫ J , then κ ∼ J ≪ T ; in

the opposite limit, the system freezes into a spin glass [18]. In general, low temperatures

are more favorable for saturating the Maldacena-Shenker-Stanford bound. However, when

T is small, most systems either develop some ordering or enter the Fermi liquid regime,

where energy relaxation and other nontrivial dynamics are slow. For example, the random

Hubbard model exhibits the first behavior if the on-site repulsion is strong and the second

one if the repulsion is weak.

The SYK model has the maximum Lyapunov exponent,

κ ≈ 2π

β
if βJ ≫ 1. (1.11)

This was reported by Kitaev [2] along with other results [3]: an approximate reparametriza-

tion symmetry, the existence of a soft (pseudo-Goldstone) mode, and its effective action.

Polchinski and Rosenhaus [19] studied the conformal four-point function, which is com-

plementary to the soft mode. Maldacena and Stanford undertook a thorough analysis of

the SYK model [20]. They found the conformal four-point function in an explicit form,

calculated a finite-temperature correction to the Lyapunov exponent, −(δκ)/κ ∼ (βJ)−1,

as well as giving detailed derivations of the previous results, computing various numerical

factors, and studying the q → ∞ limit. In [21–23] the authors made an explicit connection

between the SYK model and d = 2 dilaton gravity, identifying the soft mode with t’Hooft’s

gravitational modes. However, it remains unknown how to obtain the (βJ)−1 correction

to κ using this picture.

Further properties of the SYK model. Reparametrizations of time and the related

soft mode will play an important role, so let us describe them in some detail. When

βJ ≫ 1, the derivative term −∂τ in the Schwinger-Dyson equations (1.5) is relatively

small. Without this term, the equations are invariant under arbitrary changes of the time

coordinate:
G(τ1, τ2) −→ G

(
f(τ1), f(τ2)

)
f ′(τ1)

∆f ′(τ2)
∆

Σ(τ1, τ2) −→ Σ
(
f(τ1), f(τ2)

)
f ′(τ1)

1−∆f ′(τ2)
1−∆.

(1.12)

For example, Gβ=∞ defined by (1.7) can be transformed into the equilibrium Green function

at finite β (see (1.8), (1.9)) if we use f(τ) = τ∗e2πiτ/β , where τ∗ is an arbitrary constant

with dimension of time. (If one is uncomfortable with complex functions, f(τ) = τ∗ tan πτ
β

also works.)
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The soft mode manifold consists of all solutions of the approximate Schwinger-Dyson

equations for a given β. The equilibrium Green function is a solution, as is any function

of the form

G(τ1, τ2) = Gβ=∞
(
f(τ1), f(τ2)

)
f ′(τ1)

∆f ′(τ2)
∆ with f(τ) = const · eiϕ(τ)

= G̃c

(
ϕ(τ1), ϕ(τ2)

) (
J−1ϕ′(τ1)

)∆(
J−1ϕ′(τ2)

)∆
,

(1.13)

where ϕ(τ) takes values in the interval [0, 2π] with the endpoints glued. The above ex-

pression is invariant under certain transformations V of ϕ(τ) so that the functions ϕ and

V ◦ ϕ define the same G. These transformations act on the variable z = eiϕ(τ) by lin-

ear fractional maps preserving the unit circle, z 7→ az+b
cz+d . We call such maps “confor-

mal”; they form a group isomorphic to PGL(2,R). Thus, the manifold of distinct G’s is

PGL(2,R)\Diff(S1) ∼= PSL(2,R)\Diff+(S1).

When the derivative term is taken into account, only the equilibrium Green function

(whose actual form is different at short times, |τ1 − τ2| ∼ J−1) satisfies the Schwinger-

Dyson equations. The general quasi-solution (1.13) can be characterized by this effective

action [3, 20]

Ieff = −NαSJ
−1

∫ β

0
Sch
(
eiϕ(τ), τ

)
dτ, where Sch

(
f(x), x

)
=
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

(1.14)

To see where the Schwarzian derivative Sch(· · · ) comes from, let f(τ) = const·eiϕ(τ) and let

us expand G(τ1, τ2) = Gβ=∞
(
f(τ1), f(τ2)

)
f ′(τ1)∆f ′(τ2)∆ in powers of τ1 − τ2. Using the

fact that Gβ=∞(t1, t2) ∝ (t1 − t2)
−2∆ and Taylor expanding f and f ′ at τ+ = (τ1 + τ2)/2,

we find that

G(τ1, τ2) = Gβ=∞(τ1, τ2)

(
1 +

∆

6
Sch
(
f(τ+), τ+

)
(τ1 − τ2)

2 +O
(
(τ1 − τ2)

4
))

(1.15)

The physical effect of the second term (proportional to (τ1−τ2)−2∆+2 times the Schwarzian)

will be explained later. The coefficient αS in the action (1.14) can be determined numeri-

cally [20], while an analytic expression exists in a special case [20, 24]:

αS =
1

24π
for q → 2. (1.16)

The action achieves its minimum when ϕ(τ) = 2πτ
β up to a conformal map.

Much of the SYK physics is reflected in the expansion of the free energy in terms of

the large parameters N and βJ :

β(F −E0) = N

(
−s0−2π2αS(βJ)

−1+
π2

6
γ (βJ)−2+ · · ·

)
+
3

2
ln(βJ)+const+o(1) (1.17)

Here E0 is the ground state energy, which is proportional to N but subject to 1/N correc-

tions. The number s0, dubbed “zero-temperature entropy”, is the entropy per Majorana

site at very low temperatures (but above Tglass). It was first found [5] in the original

Sachdev-Ye model. For the SYK model, the “zero-temperature entropy” is [3, 20]

s0 = π

∫ 1/2

∆

(
1
2 − x

)
tan(πx) dx. (1.18)
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Meaning and where it appears Analytic expression

Scaling dimension of χj(τ) ∆ = 1/q

Overall factor in G(τ1, τ2)
q b = (q−2) tan(π/q)

2πq

Eigenvalue of the conformal kernel and

its derivative at h = 2 (section 2.2.3)

kc(h)=
p(h)

p(2)
, p(h)=

Γ
(
∆+ h

2

)
Γ
(
∆+ 1−h

2

)

Γ
(
1−∆+ h

2

)
Γ
(
1−∆+ 1−h

2

)

−k′
c
(2) =

π

sin(2π/q)
− q(q2 − 6q + 6)

2(q − 1)(q − 2)

Amplitude of the leading non-

conformal perturbation (section 3.1)
a0 (fitted to numerical data)

Coefficient in the UV correction to the

Green function (section 3.1)

αG = a0
(−k′c(2))

√
(q−1)b

Coefficient in the Schwarzian action

(section 3.2)

αS = a0

√
(q−1)b

6q

Coefficient in the non-local effective

action (section 6.2)

γ =
2a20

−k′c(2)

Table 1. Common numerical coefficients and functions.

The next term on the right-hand side of equation (1.17), N
(
−2π2αS(βJ)

−1
)
, is simply

the value of the Schwarzian action (1.14) for ϕ(τ) = 2πτ/β. The (βJ)−2 term (with the

coefficient γ given in table 1) was reported in [25, 26]. We will derive it from a correction to

the Schwarzian action that is non-local in time. Note that the omitted terms in parentheses

are expected to contain non-integer powers of βJ , e.g. (βJ)−2.77 for q = 4 [25].

The terms that do not scale with N , namely 3
2 ln(βJ) + const + o(1), are due to

quantum fluctuations [20]. Remarkably, this expression is valid even for βJ & N , when

the fluctuations of the soft mode are strong [25, 27, 28]. At such low temperatures, the

(βJ)−2 and higher-order terms are negligible, and the thermodynamics is more conveniently

described using the density of states [25]:

e−βF = Z =

∫
ρ(E) e−βE dE, ρ(E) ∝ es0N sinh

(
2π
√

2NαS(E − E0)/J
)
. (1.19)

Variants of the SYK model have been studied in [29–35].

1.1 Outline of the paper

Let βJ ≫ 1 and let us consider all quantities in the N → ∞ limit, or in the leading 1/N

order. We are still interested in subleading terms with respect to the small parameter

(βJ)−1. For the free energy, that means all terms in parentheses in (1.17). Similarly, one

may try to derive a systematic (βJ)−1 expansion for all tree-level correlators. The goal of

this paper is more modest. We will construct an effective theory of the soft mode that is
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one order more accurate than the Schwarzian action and make a similar improvement on

the gravity side (compared with [21–23]).

We first discuss the RG flow and interaction between UV and IR degrees of freedom

for the SYK model. Given the βJ ≫ 1 condition, it is useful to separate short times (UV),

where all calculations have to be done numerically, from the analytically tractable region,

τ ≫ J−1. The latter can be further subdivided into long times (IR) and intermediate time

scales, J−1 ≪ τ ≪ β (where τ is understood as |τ1 − τ2|). The intermediate asymptotics

are particularly simple and insightful. In this regime, the Green function has the form

G = GIR +GUV, where

GIR(τ1, τ2) ≈
(
1 +

∆

12

(
2π
β (τ1 − τ2)

)2
)
Gβ=∞(τ1, τ2), (1.20)

GUV(τ1, τ2) ≈ −αG

∣∣J(τ1 − τ2)
∣∣−1

Gβ=∞(τ1, τ2). (1.21)

The UV part results from an irrelevant perturbation, namely, the −∂τ term in the

Schwinger-Dyson equations. In the UV region, this perturbation is strongly nonlinear.

However, we may replace it with a weak perturbation source that is concentrated on the

lower end of the intermediate region and has the same response (as defined by GUV) for

longer time intervals. Indeed, this response is characterized by the scaling dimension h0 = 2

(related to the exponent −1 in (1.21)) and the overall factor αG. The effective perturba-

tion source and the corresponding response will be described in section 3. In practice, αG

is fitted to the numerically computed Green function [20]. Note that the nonlinear UV

dynamics also sources perturbations with scaling dimensions

h1 ≈ 3.77, h2 ≈ 5.68, . . . (for q = 4). (1.22)

The h = 2 perturbation source couples to the (τ1−τ2)2 term in GIR, contributing to the

free energy. The same coupling is applicable to the more general Green function deformed

by the soft mode (see (1.13), (1.15)), resulting in the Schwarzian effective action. Thus,

the coefficient αS in front of the Schwarzian is proportional to the the UV perturbation

amplitude a0, as is αG (see table 1). This leads to a linear relation between αG and αS ,

which was originally obtained by a different method [20].

The Schwarzian action can also be written using ϕ = ϕ(τ) as a time variable:

Ilocal
N

= −αS

∫ (
ε2

2
− ε′2

2
+ εε′′

)

︸ ︷︷ ︸
J−2 Sch(eiϕ,τ)

ε−1 dϕ, where ε(ϕ) = J−1dϕ

dτ
(1.23)

(The derivatives are defined with respect to ϕ.) We will find a non-local correction to it:

Inon-local
N

= −γ
2

[∫
ε(ϕ1)ε(ϕ2)

ϕ4
12

(
ln

(
ϕ2
12

ε(ϕ1)ε(ϕ2)

)
+ c

)
dϕ1

2π

dϕ2

2π

]

fin.

, ϕ12 = 2 sin
ϕ1 − ϕ2

2
(1.24)

where γ is given in table 1. The number c in this formula depends on the choice of

perturbation source and, ultimately, on the definition of the function ϕ. Indeed, ϕ describes
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the IR part of the Green function. In section 5.2, we give a certain prescription to extract

ϕ from G using an integral over time variables. This integral picks up a small contribution

from the region |τ1 − τ2| ∼ J−1, which introduces some ambiguity into the definition of ϕ.

The subscript “fin.” in (1.24) means excluding the UV divergent part; such a regularization

procedure is, actually, unique.

The non-local term in the effective action may be viewed as an intermedi-

ate step toward computing physical quantities such as the four-point correlator

〈Tχj(τ1)χj(τ2)χk(τ3)χk(τ4)〉. It turns out that for natural time orderings, e.g. τ1 > τ2 >

τ3 > τ4, non-local effects mostly cancel: the corrlator depends only on τ1 − τ2 and τ3 − τ4,

with some fast-decaying (as functions of τ2− τ3) terms due to the fields with higher scaling

dimensions, h1, h2, . . . This cancellation was first noted by Maldacena and Stanford [20],

who found the correlator by a different method (first for q → ∞, and then extrapolating

to arbitrary q). We give a qualitative explanation of this effect, comparing it with Debye

screening, and derive a certain identity for the four-point function. Such deep cancellation

does not occur for out-of-time orderings, e.g. τ1 > τ3 > τ2 > τ4.

As a separate problem, we consider a certain variant of Euclidean dilaton theory on

the unit disk. Fixing the boundary conditions that depend on an arbitrary function ε and

integrating out the bulk fields, we obtain exactly the same action, Ilocal + Inon-local. In

this case, the parameter c is well-defined, which is due to a more rigorous treatment of

the near-boundary region compared with the UV region for the SYK model. However,

the definition of the “conformal time” ϕ is intrinsically non-local; it is related to geodesic

distance between boundary points and involves the metric on the whole disc. So it is

not surprising that non-locality appears in this context. On the other hand, correlators

between boundary observables as functions of the proper time can only contain contact

terms (such as δ(τ1−τ2)) and global (i.e. time-independent) terms. This is due to Birkhoff’s

theorem in dilaton gravity [36], which says that the solution of the classical equations of

motion depends on one global parameter and is otherwise completely rigid. Thus, the

non-local action may be regarded as an artificial construct, but it is unambigously defined

and provides a more detailed correspondence with the SYK model than has previously

been known.

2 Formalism (part 1)

2.1 Replica-diagonal action

Basic form of the action functional. The Schwinger-Dyson equations (1.5) are exactly

the saddle point conditions for this effective action [3, 29]:

I[Σ, G] = N

(
− ln Pf(−∂τ−Σ̂)+

1

2

∫
dτ1 dτ2

(
Σ(τ1, τ2)G(τ1, τ2)−

J2

q

∣∣G(τ1, τ2)
∣∣q
))

. (2.1)

As discussed in appendix A, the functional integral of e−I[Σ,G] over Σ and G gives the

disorder-averaged partition function Z, whereas the physically relevant quantity is βF =

−lnZ. However, the difference between lnZ and lnZ is O(N2−q). Furthermore, the
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diagrammatic expansion around the saddle point correctly reproduces all connected 2n-

point functions in the leading order in 1/N . (An explicit calculation for n = 3 was done

in [37].) If greater accuracy is needed, one may use a similar action with M replicas and

do the usual M → 0 trick. The key assumption involved in the derivation of action (2.1)

is the replica-diagonal ansatz. We also note that the saddle point is a maximum in G and

a minimum in Σ and that I[Σ, G] is well-defined for any real number q > 2, though the

q = 2 case is degenerate in some respects.

The new formulation of the problem has some subtleties. First, the functional integral

should be taken in the complex domain. The exact definition is unclear, but it is not needed

for the asymptotic 1/N -expansion. The integration measure comes with a normalization

factor such that
∫

DΣDG exp

(
−N

2

∫
dτ1 dτ2Σ(τ1, τ2)G(τ1, τ2)

)
= 1. (2.2)

Lastly, the Pfaffian should be regularized to eliminate the UV divergence:

Pf
(
−∂τ − Σ̂

)
→

√
2
Pf(−∂τ − Σ̂)

Pf(−∂τ )
. (2.3)

Tilde notation for IR-normalized quantities. Let us transform the action (2.1) to

a different form so as to have easy access to the IR and intermediate asymptotics. We

regard the conformal saddle point (Σc, Gc) with Gc(τ1, τ2) =
(
2π
βJ

)2∆
G̃c

(
2πτ1
β , 2πτ2β

)
as a

zeroth approximation. The operator σ̂ = ∂τ is a perturbation. To simplify its treatment,

we replace the integral kernel σ(τ1, τ2) = δ′(τ1− τ2) with some nonsingular function, which

requires a new regularization scheme. So, let us consider the difference Ĩ between I[Σ, G]

and I[Σc, Gc]. It is finite for any nonsingular σ and can be written as

Ĩ = I − βE0 +Ns0. (2.4)

Furthermore, it is convenient to use a dimensionless time coordinate and correspondingly

renormalized fermionic fields χ̃j . The standard choice is

θ =
2πτ

β
, χ̃j,θ(θ) = χj(τ) ε

−∆
θ , where εθ =

2π

βJ
. (2.5)

But we can also change the frame θ to ϕ(θ), where ϕ is an arbitrary diffeomorphism of the

unit circle (represented by the interval [0, 2π] with the endpoints glued). In this case,

ϕ = ϕ
(
2πτ
β

)
, χ̃j,ϕ(ϕ) = χj(τ) εϕ(ϕ)

−∆, where εϕ(ϕ) = εθ
dϕ

dθ
= J−1dϕ

dτ
. (2.6)

(The frame subscript may be omitted when it is clear from the context.) In addition to

similar transformations of the Green function and self-energy, we combine the latter with

the perturbation source, that is, define Σ̃ in terms of Σ+σ. We will usually use the inverse

transformations:

G(τ1, τ2) = G̃ϕ(ϕ1, ϕ2) εϕ(ϕ1)
∆ εϕ(ϕ2)

∆,

Σ(τ1, τ2) = J2
(
Σ̃ϕ(ϕ1, ϕ2)− σ̃ϕ(ϕ1, ϕ2)

)
εϕ(ϕ1)

1−∆ εϕ(ϕ2)
1−∆,

σ(τ1, τ2) = J2σ̃ϕ(ϕ1, ϕ2) εϕ(ϕ1)
1−∆ εϕ(ϕ2)

1−∆.

(2.7)
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Now, the effective action has exactly the same form in any frame:

Ĩ[Σ̃, G̃]

N
=

[
− ln Pf(− ˆ̃

Σ) +
1

2

∫
dϕ1 dϕ2

(
Σ̃(ϕ1, ϕ2) G̃(ϕ1, ϕ2)−

1

q

∣∣G̃(ϕ1, ϕ2)
∣∣q
)]

reg.

− 1

2

∫
dϕ1 dϕ2 σ̃(ϕ1, ϕ2) G̃(ϕ1, ϕ2) (2.8)

where the subscript “reg.” indicates the difference between the expression in brackets and

its value at the conformal point (Σ̃c, G̃c).

The change from one frame to another is described by a diffeomorphism V : S1 → S1.

A corresponding operator Vh acts on functions as follows:

(Vhf)(y) =

(
dy

dx

)−h

f(x) for y = V (x). (2.9)

The choice of h depends on context (the physical meaning of f). Functions of one variable

whose transformation law is characterized by a given h will be called “h-forms”. It is easy

to define a similar action Vh1,h2 on functions of two variables. In this notation,

G̃V ◦ϕ = V∆,∆ G̃ϕ, Σ̃V ◦ϕ = V1−∆,1−∆ Σ̃ϕ, σ̃V ◦ϕ = V1−∆,1−∆ σ̃ϕ. (2.10)

Application to correlation functions. We now describe the diagrammatic calculus

for quantum fluctuations around the saddle point (Σ̃∗, G̃∗) for a fixed σ̃. It can be derived

by expanding the effective action in δΣ̃ = Σ̃ − Σ̃∗ and δG̃ = G̃ − G̃∗. The second-order

expansion is given in the next subsection. In general, the derivation is similar to that

of the high temperature expansion in appendix A. The saddle point expansion can also

be obtained by a resummation of high temperature diagrams. As is usual, the sum of

closed, connected diagrams represents lnZ, whereas the expansion of lnZ includes only

those diagrams that are connected along fermionic lines. This difference is not important

for our purposes because we work at the tree level. So, let us simply say that we consider

the logarithm of the partition function and correlators of the form

G̃(ϕ1, ϕ
′
1, . . . , ϕn, ϕ

′
n) = (−1)n

∑

j1,...,jn

〈
T χ̃j1(ϕ1)χ̃j1(ϕ

′
1) . . . χ̃jn(ϕn)χ̃jn(ϕ

′
n)
〉
. (2.11)

The diagrams for these quantities are built from 2n-gons, or “sheets” (arising from the

Taylor expansion of lnPf(−Σ̃)) that are connected at the sides without a border by “seams”

(coming from G̃q), see figure 2. Taking the tubular neighborhood of an embedding of such

a diagram into R
3, one obtains a three-dimensional handlebody whose genus g counts the

factors of N in G̃ as G̃ ∼ N1−g. In fact any closed diagram that is connected along

fermionic lines can be mapped to such a handlebody, see appendix A.

The connected part of correlator (2.11) is 2n times the n-th variational derivative of

lnZ with respect to σ̃. To find it at the tree level, i.e. in the leading order in 1/N , we may

approximate − lnZ by the saddle point value of the action, Ĩ∗. Hence,

G̃conn.(ϕ1, ϕ
′
1, . . . , ϕn, ϕ

′
n) ≈ −2n

δ(n)Ĩ∗
δσ̃(ϕ1, ϕ′

1) · · · δσ̃(ϕn, ϕ′
n)
. (2.12)
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Sheets: −N , −N , −N , . . .

(oriented clockwise or counterclockwise)

Seams:
3

N
,

3 · 2
N2

,
3 · 2 · 1
N3

.

(oriented up or down)

= G̃∗(ϕ,ϕ′)

Template for G̃(ϕ1, ϕ
′
1; . . . ;ϕn, ϕ

′
n) :

Figure 2. Diagrammatic calculus for the expansion of action (2.8) around the saddle point (Σ̃∗, G̃∗)

for q = 4. Degenerate 2-gon sheets representing G̃∗ may be attached directly to the template tabs.

When the building blocks are composed into a diagram, each orientation conflict between a sheet

and an adjacent seam or between a sheet and the template gives a factor of −1.

We will need the connected four-point function:

G̃conn.(ϕ1, ϕ2, ϕ3, ϕ4) = G̃(ϕ1, ϕ2, ϕ3, ϕ4)− G̃(ϕ1, ϕ2) G̃(ϕ3, ϕ4) (2.13)

= N F̃(ϕ1, ϕ2;ϕ3, ϕ4) ≈ N
(
Λ(ϕ1, ϕ2;ϕ3, ϕ4)− Λ(ϕ1, ϕ2;ϕ4, ϕ3)

)
,

where the notation F has been used in [20] (albeit in the standard τ variables) and Λ is a

sum of ladder diagrams:

Λ(ϕ1, ϕ2;ϕ3, ϕ4) = N−1

(
+ + · · ·

) [
the coefficients of the

diagrams are not shown

]

= + (q−1) + (q−1)2 + · · ·

(2.14)

These diagrams have a repeated element, the ladder kernel K, which is defined by cutting

the ladders along the dotted lines. It is the integral kernel of an operator acting on functions

on S1 ×S1. If an extra rung, split in half, is added on both ends of each ladder, the above

expression takes the form L = K +K2 +K3 + · · · = K(1−K)−1. Thus,

L(ϕ1, ϕ2;ϕ3, ϕ4) = (q − 1)
∣∣G̃∗(ϕ1, ϕ2)

∣∣ q−2
2 Λ(ϕ1, ϕ2, ϕ3, ϕ4)

∣∣G̃∗(ϕ3, ϕ4)
∣∣ q−2

2 (2.15)

is the integral kernel of L = K(1−K)−1, where

K(ϕ1, ϕ2;ϕ3, ϕ4) = (q − 1)
∣∣G̃∗(ϕ1, ϕ2)

∣∣ q−2
2 G̃∗(ϕ1, ϕ3) G̃∗(ϕ4, ϕ2)

∣∣G̃∗(ϕ3, ϕ4)
∣∣ q−2

2 . (2.16)

2.2 Conformal kernel and representations of PSL(2,R)

2.2.1 Conformal kernel

The action (2.8) is suited for the study of the SYK model near the conformal point (Σ̃c, G̃c),

which is a (non-unique) saddle point for σ̃ = 0. We would like to calculate the system
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response to small perturbations σ̃(ϕ1, ϕ2). In particular, a generic UV perturbation is

expected to have a similar effect to that of the kinetic term ∂τ in the original model. We

can also express various correlation functions by probing the system with additional IR

perturbations. So, let us expand the action near the conformal point. If Σ̃ = Σ̃c + δΣ̃ and

G̃ = G̃c + δG̃, then

Ĩ

N
≈ 1

4
Tr
(
ˆ̃
Gc δ

ˆ̃
Σ
)2
+
1

2

∫
dϕ1 dϕ2

(
δΣ̃(ϕ1, ϕ2) δG̃(ϕ1, ϕ2)−

q−1

2

∣∣G̃c(ϕ1, ϕ2)
∣∣q−2

δG̃(ϕ1, ϕ2)
2

)

− 1

2

∫
dϕ1 dϕ2 σ̃(ϕ1, ϕ2)

(
G̃c(ϕ1, ϕ2) + δG̃(ϕ1, ϕ2)

)
, (2.17)

where we have neglected terms of order 3 and higher. Let

g(ϕ1, ϕ2) = Rc(ϕ1, ϕ2) G̃(ϕ1, ϕ2), s(ϕ1, ϕ2) = Rc(ϕ1, ϕ2)
−1σ̃(ϕ1, ϕ2) (2.18)

where Rc(ϕ1, ϕ2) =
√
q − 1

∣∣G̃c(ϕ1, ϕ2)
∣∣ q−2

2 = −
√
(q − 1)b ϕ−1

12 G̃c(ϕ1, ϕ2)
−1 (2.19)

and let us also use the temporary notation f(ϕ1, ϕ2) = Rc(ϕ1, ϕ2)
−1Σ̃(ϕ1, ϕ2). Thus, (2.17)

becomes
Ĩ2
N

= −1

4

〈
δf
∣∣Kc

∣∣δf
〉
+

1

2
〈δf |δg〉 − 1

4
〈δg|δg〉 − 1

2
〈s|gc + δg〉, (2.20)

where the inner product is defined by the integral over S1 × S1 and

gc(ϕ1, ϕ2) = −
√
(q − 1)b ϕ−1

12 , (2.21)

Kc(ϕ1, ϕ2;ϕ3, ϕ4) = Rc(ϕ1, ϕ2) G̃c(ϕ1, ϕ3) G̃c(ϕ4, ϕ2)Rc(ϕ3, ϕ4)

= (q − 1) b |ϕ12|2∆−1|ϕ13|−2∆(sgnϕ13) |ϕ42|−2∆(sgnϕ42) |ϕ34|2∆−1.

(2.22)

Taking the saddle point with respect to δf , we obtain this very simple result:

Ĩ2[δg]

N
= −1

2

〈
s
∣∣gc + δg

〉
+

1

4

〈
δg
∣∣K−1

c − 1
∣∣δg
〉

(2.23)

If we also try to take the saddle point with respect to δg, we should get

(Ĩ2)∗
N

= −1

2

〈
s
∣∣gc
〉
− 1

4

〈
s
∣∣Kc(1−Kc)

−1

︸ ︷︷ ︸
Lc

∣∣s
〉
= −1

2

〈
σ̃
∣∣G̃c

〉
− 1

8

〈
σ̃
∣∣F̃c

∣∣σ̃
〉
, (2.24)

where

F̃c(ϕ1, ϕ2;ϕ3, ϕ4) = Rc(ϕ1, ϕ2)
−1
(
Lc(ϕ1, ϕ2;ϕ3, ϕ4)− Lc(ϕ1, ϕ2;ϕ4, ϕ3)

)
Rc(ϕ3, ϕ4)

−1.

(2.25)

The function F̃c is a special case of the connected four-point function F̃ defined

by (2.12), (2.13). However, the operator 1 − Kc has a null subspace that is generated

by the soft mode. Therefore, F̃c is only defined on the orthogonal complement of the null

subspace.
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Since the “conformal kernel” Kc is Hermitian with respect to a natural inner product,

it can be diagonalized by constructing a basis of normalizable or δ-normalizable eigenfunc-

tions. This has been accomplished in [19, 20]. However, the effect of UV perturbations at

the intermediate and IR scales can also be studied using non-normalizable eigenfunctions.

A helpful analogy is a quantum particle bound to a shallow 1D potential well. Its wave

function has long exponential tails on both sides of the well where the potential vanishes.

Such a tail, ψ(x) ∝ e−κx is a non-normalizable eigenfunction of the kinetic energy operator.

(Unlike plane waves, it is not even δ-normalizable.) In our case, the “potential well” is the

analytically intractable UV region, situated at the time scale |ϕ1 − ϕ2| ∼ ε = 2π/(βJ).

The “exponential tail” is the intermediate asymptotics of δG or g. Such asymptotics are

indeed exponential in the variable ξ = ln
(
|ϕ1 − ϕ2|/ε

)
.

2.2.2 Normalizable eigenfunctions and decomposition of identity

As mentioned in the introduction, the conformal symmetry is described by the group of

linear fractional maps z 7→ az+b
cz+d preserving the unit circle z = eiϕ. For simplicity, we

assume that the orientation of the circle is also preserved. The group G of such maps is

isomorphic to PSL(2,R). The Green function G̃(τ1, τ2) is transformed under conformal

and more general diffeomorphisms as a ∆-form in each variable. (This term is defined

below equation (2.9).) We simply call G̃ a (∆,∆)-form; similarly, the perturbation source

σ̃ is a (1 − ∆, 1 − ∆)-form. However, we have replaced σ̃ by s and G̃ by g using the

transformation (2.18). (Note that this transformation commutes with the action of G

because G̃c is invariant under that action.) Both s and g are (1/2, 1/2)-forms that are

antisymmetric and antiperiodic in each variable.

From now on, we use the notation and some results from a companion paper [38] on

the representations of G and its universal cover. In particular, Fµ
λ stands for the space of

λ-forms with the twisted periodicity condition f(ϕ + 2π) = e2πiµf(ϕ). For our purposes,

µ is either 0 or 1/2, but λ can be any complex number. Note that the space Fµ
λ comes

with a Hermitian inner product when λ = 1
2 but not in general. Indeed, the expression∫

f1(ϕ)
∗f2(ϕ) dϕ only makes sense (or more precisely, is G-invariant) if the integrand is a

1-form, that is, if ℜλ = 1
2 . It is interesting that F1/2

1/2 splits into two invariant subspaces

that consist of positive and negative Fourier harmonics, respectively:

F1/2
1/2 = D+

1/2 ⊕D−
1/2. (2.26)

The conformal kernel Kc is a Hermitian operator that acts in the space of (1/2, 1/2)-

forms, H = F1/2
1/2 ⊗F1/2

1/2 , and commutes with the G-action. Therefore, the study of Kc can

be simplified by reducing it to the intertwiner space HomG(U ,H) for each unitary irrep U .
In a slightly less abstract language, we should split H into isotypic components. Let us

first represent this space as follows:

H = F1/2
1/2 ⊗F1/2

1/2 =
(
D+

1/2⊗D+
1/2

)
⊕
(
D+

1/2⊗D−
1/2

)
⊕
(
D−

1/2⊗D+
1/2

)
⊕
(
D−

1/2⊗D−
1/2

)
. (2.27)

The tensor products of SL(2,R) irreps have been fully characterized [39, 40]. In particular,

the first term in the above equation is the sum of discrete series representations D+
h for
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h = 1, 2, 3, . . .. The second term splits into the principal series representations C0
h(1−h) for

h = 1
2 + is (s > 0). However, we are actually interested in antisymmetric (1/2, 1/2)-forms.

In the decomposition of D+
1/2 ⊗D+

1/2 into D+
h , they correspond to even values of h. The

full space of antisymmetric forms is represented as follows:

H− = Λ2
(
F1/2
1/2

) ∼=
( ∞⊕

n=1

D+
2n

)
⊕
( ∞⊕

n=1

D−
2n

)
⊕
(∫ ∞

s=0
C0
1/4+s2 ds

)
. (2.28)

Since each irrep occurs with multiplicity 1, all its elements are eigenfunctions of Kc. To

compute the four-point function, we need to find the corresponding eigenvalues as well as

the decomposition of the identity operator into projectors onto the irreps.

The identity operator acting in the space of antisymmetric forms has the integral kernel
1
2

(
δ(ϕ1 − ϕ3) δ(ϕ2 − ϕ4)− δ(ϕ1 − ϕ4) δ(ϕ2 − ϕ3)

)
. To represent it as a sum of projectors,

one can apply the decomposition of identity for D±
λ1

⊗ D±
λ2

(see the last section of [38])

to each term in (2.27). This gives an expression for δ(ϕ1 − ϕ3) δ(ϕ2 − ϕ4) which is then

antisymmetrized; it has the form
∑∞

n=1Π
discr.
2n +

∫∞
0 dsΠcont.

1/2+is. Maldacena and Stanford in

sections 3.2.2, 3.2.4 of their paper [20] did the calculation by a different method. It addition,

they expressed the discrete series projectors as residues of the meromorphic function that

defines the continuous series projectors:

1

2

(
δ(ϕ1 − ϕ3) δ(ϕ2 − ϕ4)− δ(ϕ1 − ϕ4) δ(ϕ2 − ϕ3)

)

=
1

2

[ ∞∑

n=1

Resh=2n+

∫ 1/2+i∞

1/2−i∞

dh

2πi

](
h− 1/2

π tan(πh/2)
Πh(ϕ1, ϕ2;ϕ3, ϕ4)

) (2.29)

The poles at h = 2n come from the normalization factor rather than the unnormalized

projector Πh, defined below. The projector kernel is expressed in terms of the variables

ϕjk = 2 sin
ϕj−ϕk

2 and a G-invariant cross-ratio χ:

Πh(ϕ1, ϕ2;ϕ3, ϕ4) = ϕ−1
12 ϕ

−1
34 Ψh(χ), χ =

ϕ12ϕ34

ϕ13ϕ24
=

(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
, zj = eiϕj .

(2.30)

The function Ψh has different expressions depending on the cyclic order of ϕ1, ϕ2, ϕ3, ϕ4;

they are not related to each other by analytic continuation.2 Things are slightly simplified

by reducing the six possible cyclic orders down to three cases:

OPE region I: ϕ1 > ϕ2 > ϕ3 > ϕ4 or ϕ3 > ϕ2 > ϕ1 > ϕ4, 0 < χ < 1,

OPE region II: ϕ2 > ϕ1 > ϕ3 > ϕ4 or ϕ3 > ϕ1 > ϕ2 > ϕ4, χ < 0,

OTO region: ϕ1 > ϕ3 > ϕ2 > ϕ4 or ϕ2 > ϕ3 > ϕ1 > ϕ4, χ > 1.

(2.31)

To describe Ψh, we will use the scaled hypergeometric function F(a, b, c;x) =

Γ(c)−1 F2 1(a, b, c;x) as well as these auxiliary functions:

Ah(u) = (1− u)hF(h, h, 1;u), u < 1,

Bh(u) = (1− u)hF(h, h, 2h; 1− u), 0 < u < 1.
(2.32)

2This is because the decompositions of identity for D+
1/2⊗D+

1/2, D+
1/2⊗D−

1/2, etc. have projector kernels

with different analytic properties. When they are combined, no single analytic continuation recipe works.
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Note that Ah(u) = A1−h(u) is a linear combination of Bh(u) and B1−h(u); any analytic

branch of Ah(u
−1) = A1−h(u

−1), Bh(u
−1), or B1−h(u

−1) can also be represented as such

a combination. In this notation,

Ψh(χ) =





1

cos(πh)

(
Γ(h)2 cos2 πh

2 Bh(1− χ)− Γ(1− h)2 sin2 πh
2 B1−h(1− χ)

)

for 0 < χ < 1,

1

cos(πh)

(
Γ(h)2 cos2 πh

2 Bh

(
(1− χ)−1

)
− Γ(1− h)2 sin2 πh

2 B1−h

(
(1− χ)−1

))

for χ < 0,

π

sin(πh)

(
Ah(1− χ) +Ah

(
(1− χ)−1

))
= Γ

(
h
2

)
Γ
(
1−h
2

)
F
(
h
2 ,

1−h
2 , 1

2 ;
(χ−2

χ

)2)

for χ > 1.

(2.33)

The ϕ1 ↔ ϕ2 symmetry takes χ to χ
χ−1 , and thus, 1− χ to (1− χ)−1.

2.2.3 General eigenfunctions and the corresponding eigenvalues

Let us now consider general, not necessarily normalizable, eigenfunctions of Kc. In this

setting, Kc may not be diagonalizable because the inner product is not available. In fact,

rank 2 generalized eivenvectors Ψ (such that (Kc − kc)
2Ψ = 0 but (Kc − kc)Ψ 6= 0) appear

in some situations. However, each ordinary or generalized eigenspace is G-invariant. An

effective strategy to search for (generalized) eigenvectors is to consider abstract represen-

tations of G and their realization by (1/2, 1/2) forms. Let us focus on the representation

F0
1−h for an arbitrary h. An intertwiner Wh from this representation to (1/2, 1/2)-forms is

given by the following equation:

(
Whf

)
(ϕ1, ϕ2) = (2π)−1

∫
Wh(ϕ1, ϕ2;ϕ0) f(ϕ0) dϕ0, (2.34)

Wh(ϕ1, ϕ2;ϕ0) = (sgnϕ12) |ϕ12|h−1|ϕ10|−h|ϕ20|−h, where ϕjk = 2 sin
ϕj − ϕk

2
. (2.35)

The integral kernel of Wh looks like the conformal three-point function of fields with

scaling dimensions 1
2 ,

1
2 , and h. We may think of (Whf)(ϕ1, ϕ2) as the response to a pertur-

bation of the form
∫
f(ϕ)O(ϕ) dϕ, where the field O has dimension h. This interpretation

provides some intuition but should be used with caution because in the present discussion,

h is arbitrary, whereas the OPE for the SYK model has a discrete dimension spectrum [20].

Now, the function Wh(ϕ1, ϕ2;ϕ0) with a fixed ϕ0 is by itself a good candidate for

an eigenfunction of Kc. The integral of Kc(ϕ1, ϕ2;ϕ3, ϕ4)Wh(ϕ3, ϕ4;ϕ0) over dϕ3 dϕ4 is

evalueted in two steps:

∝ ∝ −





 .

(2.36)
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In these diagrams, a line with label a stands for |ϕjk|a and an arrow from k to j for sgnϕjk.

Each step is performed using a star-triangle identity, where the integral is taken over the

middle point:

= − 4

π
Γ(1 + a) Γ(1 + b) Γ(1 + c) cos

(
π
2a
)
cos
(
π
2 b
)
sin
(
π
2 c
)






for a+ b+ c = −2.

(2.37)

The result is Wh(ϕ1, ϕ2;ϕ0) multiplied by the following number (i.e. the eigenvalue of the

conformal kernel) [3]:

kc(h) =
u
(
∆− 1−h

2

)
u
(
∆− h

2

)

u
(
∆+ 1

2

)
u
(
∆− 1

) , where u(x) = Γ(2x) sin(πx). (2.38)

Another form of this expression can be found in table 1 on page 6. All solutions of the

equation kc(h) = 1, i.e. the poles of the function kc(h)
1−kc(h)

, are real. We denote the positive

solutions by h0, h1, . . . in the increasing order; in particular, h0 = 2. Since kc(1−h) = kc(h),

there are also negative solutions.

3 The SYK model at low temperatures

We now take a break from the formal style of the previous section and try to describe some

interesting physics in the 1 ≪ βJ ≪ N regime using as crude approximations as reasonable.

The results concerning renormalization can be generalized and/or derived more rigorously

using additional formalism, which will be introduced later.

3.1 Renormalization scheme

The kinetic term −∂τ in the original effective action I[Σ, G] (see (2.1)) produces various

irrelevant perturbations to the conformal solution. Their intermediate asymptotic form is3

δG(τ1, τ2) = GUV(τ1, τ2) ≈ const · |J(τ1 − τ2)|1−hGβ=∞(τ1, τ2) if J−1 ≪ |τ1 − τ2| ≪ β,

(3.1)

where ℜh > 1. Many such terms contribute to the Green function, but we focus on a single

one. Being unable to analytically treat very short times, |τ1 − τ2| ∼ J−1, we replace ∂τ
(or equivalently, σ(τ1, τ2) = δ′(τ1 − τ2)) with a suitable source σ̃ for the modified action

Ĩ[Σ̃, G̃]. In doing so, we aim to reproduce the term in δG̃ that is characterized by a

particular exponent h.

At first sight, the exponent h seems to be arbitrary. Indeed, δG̃ is σ̃ multiplied by

the sum of ladders; if σ̃ is proportional to some power of τ1 − τ2, then so is δG̃. To be

more precise, let us use the transformation (2.18) from G̃ and σ̃ to g and s so that |g〉 =
3In general, δG denotes the difference between the actual and conformal Green functions, whereas GUV

is its part that increases toward the UV region. Thus, GUV does not include soft mode effects, which are

strongest in the IR. The soft mode is absent from the current setting but will be added later.
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Figure 3. Cartoon of the window function u dressing UV perturbations (left) and the response

δg = gUV,I to a UV perturbation sI (right) as a function of ξ = ln(|θ12|/ε).

Kc(1 − Kc)
−1|s〉. Taking the perturbation source s(ϕ1, ϕ2) ∝ |ϕ1 − ϕ2|−h sgn(ϕ1 − ϕ2),

which is the intermediate asymptotics of the unnormalizable eigenfunction W1−h defined

by (2.35), we obtain the response δg(ϕ1, ϕ2) of the same form, multiplied by kc(h)
1−kc(h)

. This

is equivalent to δG(τ1, τ2) ∝ |ϕ1 − ϕ2|1−hGβ=∞(τ1, τ2). However, the power law source is

not very natural because it directly influences the Green function at intermediate times,

whereas the physical effect is due to RG flow. For a clean setting, we should impose the

condition that the perturmation source is supported by a slightly extended UV region,

where |τ1 − τ2| is bounded from above by J−1 times some large constant. With such a

cutoff, the response is also concentrated at short time intervals, but only if kc(h)
1−kc(h)

is finite.

We will see that in the case of resonance, i.e. when kc(h) = 1, the response extends to

longer times and, ultimately, contributes to the IR properties of the model.

Let us describe our method in more detail. We work in the physical frame,4 θ = 2πτ/β.

The perturbation strength depends on the parameter ε = εθ = 2π/(βJ), which also sets

the UV cutoff for θ1 − θ2. We define the renormalization variable to be

ξ = ln
|θ12|
ε
. (3.2)

Our present analysis is limited to |θ1 − θ2| ≪ 1, therefore θ12 = 2 sin θ1−θ2
2 may be safely

replaced with θ1 − θ2. To impose gentle UV and IR cutoffs on the perturbation source,

we introduce a smooth window function u that spans a sufficiently wide interval of ξ (see

figure 3) and is normalized as follows:

∫ ∞

−∞
dξ u(ξ) = 1. (3.3)

The window remains fixed as the maximum value of ξ, equal to ln(βJ/π), goes to infinity.

Let h = hI be a positive solution of the equation kc(h) = 1 (for example, h0 = 2). The

corresponding perturbation source is

sI(θ1, θ2) = −aI εhI−1|θ1 − θ2|−hI sgn(θ1 − θ2)u(ξ) (3.4)

4Currently, ϕ(θ) = θ, but we will later use a nontrivial function ϕ that represents the soft mode.
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where the coefficient aI can be found by matching the analytically computed response

with the numerical solution of the Schwinger-Dyson equations. The factor εhI−1 is intro-

duced for the following reason. Translating s(θ1, θ2) to σ̃(θ1, θ2) to σ(τ1, τ2) according to

equations (2.18), (2.7) should give an expression that does not involve β. And indeed,

using (3.4), we get

σ̃I(θ1, θ2) = −aI
√
q−1 b1/2−∆ εhI−1|θ1− θ2|2∆−1−hI sgn(θ1 − θ2)u

(
ln |(θ1− θ2)/ε|

)
, (3.5)

σI(τ1, τ2) = −aI
√
q−1 b1/2−∆J2 |J(τ1 − τ2)|2∆−1−hI sgn(τ1 − τ2)u

(
ln |J(τ1 − τ2)|

)
. (3.6)

Note that
∫
−σI(τ1, τ2) (τ1 − τ2) dτ1 is also independent of J , and thus, σI(τ1, τ2) may

be regarded as an approximation to the kinetic term δ′(τ1 − τ2) up to a constant factor.

However, this factor need not be 1 because the perturbation by the kinetic term is nonlinear

and because the previously mentioned integral depends on the window function. (The only

exception is when q = 2 and I = 0, in which case the integral reduces to 2a0
∫∞
−∞ u(ξ) dξ =

2a0. Hence, a0 = 1/2 for q = 2; such linear fitting is implicit in appendix C of [24].)

We will use the fact that for each h, the function f(θ1, θ2) = |θ1 − θ2|−h sgn(θ1 − θ2) is

an approximate eigenfunction of the conformal kernel with the eigenvalue kc(h), assuming

that |θ1 − θ2| ≪ 1. Indeed, the equation Kcf ≈ kc(h)f is made local by interpreting it in

terms of the singularity at θ1 − θ2 → 0. As a partial justification, if both θ3 and θ4 are

far away from θ1, θ2, then the contribution of f(θ3, θ4) to (Kcf)(θ1, θ2) is nonsingular. We

take it without proof that if only one of the points is far away, then the contribution may

be neglected as well. So, it is sufficient to consider the eigenfunction equation in a small

neigborhood of some point θ. In this neighborhood, f(θ1, θ2) ≈ 41−hW1−h(θ1, θ2; θ + π),

where W1−h is the eigenfunction defined by (2.35). (As an aside, this argument suggests

that the perturbation source may be attributed to a field of conformal dimension 1 − hI
acting at the point θ + π, or even better, at an infinitely distant point.)

Now, we calculate the response gUV,I to the perturbation sI in the region |θ1−θ2| ≪ 1.

In the Fourier representation of the window function,

u(ξ) =

∫
dη

2π
ũ(η) eiηξ, (3.7)

ũ(η) is concentrated at small values of η because the window is wide. Plugging the Fourier

expansion into (3.4), we get

sI(θ1, θ2) = −aI εhI−1

∫
dη

2π
ε−iη |θ1 − θ2|−(hI−iη) sgn(θ1 − θ2) ũ(η). (3.8)

Thus, the window function serves to smear the power hI over a small imaginary width. For

each given η, the expression on the right-hand side is an eigenfunction of the conformal

kernel with the eigenvalue kc(h), where h = hI − iη. Therefore, the response is obtained

by multiplying the integrand by kc(h)
1−kc(h)

. Expanding kc(h) to the first order in h− hI , we

find that

gUV,I(θ1, θ2) ≈ −aI εhI−1|θ1 − θ2|−hI sgn(θ1 − θ2) v(ξ), (3.9)
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where

v(ξ) =
1

−k′c(hI)

∫
dη

2π
ũ(η)

1

−iη e
iηξ, (3.10)

and there is seen to be an RG equation relating the envelope function v to u:

dv(ξ)

dξ
=

1

k′c(hI)
u(ξ). (3.11)

Integrating with boundary condition v(−∞) = 0, we have v(ξ) = (k′c(hI))
−1
∫ ξ
−∞ u(ζ) dζ,

and in the intermediate region in which all of u has been integrated over in v,

gUV,I(θ1, θ2) ≈
aI

−k′c(hI)
εhI−1|θ1 − θ2|−hI sgn(θ1 − θ2) for ε≪ |θ1 − θ2| ≪ 1 (3.12)

Equivalently,

GUV,I(τ1, τ2)

Gβ=∞(τ1, τ2)
≈ − aI

(−k′c(hI))
√

(q − 1)b

∣∣J(τ1 − τ2)
∣∣1−h

for J−1 ≪ |τ1 − τ2| ≪ β. (3.13)

In particular, the coefficient for the leading UV correction, denoted by αG in [20] and

in (1.21), is

αG =
a0

(−k′c(2))
√

(q − 1)b
. (3.14)

3.2 Derivation of the Schwarzian action

Let us consider the Green function (or rather, the dynamical variable G in the action

I[Σ, G]) that is deformed by the soft mode. In the introduction, we both expressed it

exactly and found two main terms in the τ1 − τ2 expansion, see (1.13) and (1.15). Now

we are using slightly different notation, representing the soft mode by a function ϕ of the

variable θ = 2πτ/β and denoting the deformed Green function by G̃IR (because it does not

include the UV corrections):

G̃IR(θ1, θ2) = G̃c

(
ϕ(θ1), ϕ(θ2)

)
ϕ′(θ1)

∆ϕ′(θ2)
∆ (3.15)

≈ G̃β=∞(θ1, θ2)

(
1 +

∆

6
Sch
(
eiϕ(θ+), θ+

)
(θ1 − θ2)

2

)
for |θ1 − θ2| ≪ 1,

where

G̃β=∞(θ1, θ2) = −b∆|θ1 − θ2|−2∆ sgn(θ1 − θ2), θ+ =
θ1 + θ2

2
. (3.16)

The effective action for the soft mode arises due to the coupling between G̃ ≈ G̃IR and

a UV perturbation source in the full action Ĩ[Σ̃, G̃] as described by the last term in (2.8).

The leading source σ̃ = σ̃0 is given by (3.5) with I = 0, i.e. hI = 2. Integrating it against

G̃β=∞ gives some number that is independent of ϕ and proportional to ε−1 ∝ β. That is

just a contribution to the ground state energy, which can be subtracted. So, let us integrate

the source with the second term in (3.15):

Ilocal = −N
2

∫
dθ1 dθ2 σ̃0(θ1, θ2)

(
G̃IR(θ1, θ2)− G̃β=∞(θ1, θ2)

)

= −NαS ε

∫ 2π

0
Sch
(
eiϕ(θ), θ

)
dθ,

(3.17)
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where the coefficient αS is expressed as an integral over θ12 ≈ θ1 − θ2:

αS = a0
√
(q − 1)b

∆

12

∫ ∞

−∞
dθ12 |θ12|−1u

(
ln |θ12/ε|

)
= a0

√
(q − 1)b

6q
. (3.18)

Together with (3.14), this formula gives a relation between two physically significant

numbers:
αG

αS
=

12πq2

(−k′c(2))(q − 1)(q − 2) tan(π/q)
. (3.19)

3.3 Leading four-point function

The leading contribution to the four-point function is proportional to ε−1 ∝ βJ and comes

from the fluctuating soft mode. The general expression is

F̃ (−1)(θ1, θ2; θ3, θ4) = N
〈
δG̃IR(θ1, θ2) δG̃IR(θ3, θ4)

〉
local

, (3.20)

where the expectation value involves the functional integral over ϕ with the Schwarzian

action Ilocal. We assume that 1 ≪ βJ ≪ N ; the second inequality guarantees that the

fluctuations are small so that the Gaussian approximation works. The calculation was

first carried out in [20]. Our method is very similar, except that we eliminate gauge

degrees of freedom at the very beginning. Specifically, we express the Green function

G̃IR(θ1, θ2) = G̃c

(
ϕ(θ1), ϕ(θ2)

)
ϕ′(θ1)∆ϕ′(θ2)∆ in terms of the SL(2,R)-invariant observable

O(θ) = Sch
(
eiϕ(θ), θ

)
. (3.21)

Since the fluctuations are small, it is sufficient to expand O(θ) to the first order and

the action to the second order in δϕ(θ) = ϕ(θ)− θ. This formula serves both purposes:

Sch
(
eiϕ(θ), θ

)
=

1

2
+ δϕ′ + δϕ′′′ +

1

2
(δϕ′)2 − (δϕ′)(δϕ′′′)− 3

2
(δϕ′′)2 +O(δϕ3). (3.22)

Let δϕ(θ) =
∑

m(δϕ)me
imθ. The Fourier modes (δϕ)m with m = −1, 0, 1 are SL(2,R)

generators, and therefore, should cancel from physical observables. In particular,

δO(θ) = O(θ)− 1

2
≈ (∂θ + ∂3θ )δϕ(θ) = −i

∑

m

m(m2 − 1) (δϕ)me
imθ. (3.23)

An expression for δG̃IR = G̃IR − G̃c (in the linear approximation) will be derived in sec-

tion 5.1.3. It is given by (5.22), which is equivalent to the first line of the equation below;

the second line follows from the fact that δO does not have m = −1, 0, 1 Fourier harmonics:

δG̃IR(θ1, θ2)

G̃c(θ1, θ2)
≈ π

q

∫ ∣∣∣∣
θ10θ20
θ12

∣∣∣∣ δO(θ0)
dθ0
2π

(3.24)

=
2π

q

∫ θ1

θ2

θ10θ02
θ12

δO(θ0)
dθ0
2π

if 0 < θ1 − θ2 < 2π. (3.25)
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The last expression will be helpful for the analysis of the four-point function but we will

use (3.24) for now. Combining it with (3.20), we get

F̃ (−1)(θ1, θ2; θ3, θ4)

G̃c(θ1, θ2) G̃c(θ3, θ4)
=
π2

q2

∫
dθ5 dθ6
(2π)2

∣∣∣∣
θ15θ25
θ12

∣∣∣∣ P
(−1)(θ5, θ6)

∣∣∣∣
θ36θ46
θ34

∣∣∣∣ , (3.26)

where P (−1) is the correlation function of the observable δO to the ε−1 order:

P (−1)(θ1, θ2) = N
〈
δO(θ1) δO(θ2)

〉
local

. (3.27)

(The subleading ∼ ε0 term will be considered in section 6.2.) We find P (−1)(θ1, θ2) using

the quadratic expansion of the Schwarzian action in δϕ:

Ilocal
N

≈−2παSε

∫ (
1

2
− (δϕ′′)2 − (δϕ′)2

2

)
dθ

2π
=−παSε+παSε

∑

m

m2(m2−1)(δϕ)m(δϕ)−m.

(3.28)

It implies that

N
〈
(δϕ)m(δϕ)n

〉
local

=
1

2παSε

δm,−n

m2(m2 − 1)
for m,n 6= −1, 0, 1, (3.29)

and hence,

P (−1)(θ1, θ2) = N
〈
δO(θ1) δO(θ2)

〉
local

=
1

2παSε

∑

m 6=0

(m2 − 1)eim(θ1−θ2)

︸ ︷︷ ︸
−2π(δ′′(θ1−θ2)+δ(θ1−θ2))+1

. (3.30)

To complete the calculation, let us introduce a set of auxiliary variables and functions.

The final expressions will be different in the OPE and OTO regions, with those for OPE

regions I and II related by the symmetry θ1 ↔ θ2 of (3.26). However, for a fixed config-

uration of fermions, (3.26) is invariant under different choices of coordinates (fixing the

period of the circle to be 2π), which account for two possible cyclic orderings — shown for

each region in (2.31) — or eight possible linear orderings. Thus we are free to consider two

representative cases:

OPE region: 2π > θ1 > θ2 > θ3 > θ4 > 0,

OTO region: 2π > θ1 > θ3 > θ2 > θ4 > 0.
(3.31)

In both cases, the following variables are convenient to use:

θ = θ1 − θ2, θ′ = θ3 − θ4, ∆θ+ =
θ1 + θ2

2
− θ3 + θ4

2
. (3.32)

Now, we consider the function

Q(θ1, θ2, θ3, θ4) =

∫
dθ0
2π

|θ10θ20θ30θ40| (3.33)

=
2

π





(
π− θ−θ′

)(
cos∆θ+ + 2 cos θ

2 cos
θ′

2

)
+ 4 sin θ+θ′

2 +
(
sin θ + sin θ′

)
cos∆θ+ (OPE)

(π − 2∆θ+)
(
cos∆θ+ + 2 cos θ

2 cos
θ′

2

)
+ (4 + cos θ + cos θ′) sin∆θ+ (OTO)
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and subtract its m = 0 Fourier harmonic with respect to ∆θ+:

Q̌(θ1; θ2, θ3, θ4) = Q(θ1, θ2, θ3, θ4)− 4
π2

(
(π − θ) cos θ

2 + 2 sin θ
2

) (
(π − θ′) cos θ′

2 + 2 sin θ′

2

)

=
2

π





(
π+ sin θ−θ + sin θ′−θ′

)
cos∆θ+ − 2

π

(
2 sin θ

2 − θ cos θ
2

)(
2 sin θ′

2 − θ′ cos θ′

2

)
(OPE)

(π − 2∆θ+)
(
cos∆θ+ + 2 cos θ

2 cos
θ′

2

)
+
(
4 + cos θ + cos θ′

)
sin∆θ+

− 2
π

(
2 sin θ

2 + (π − θ) cos θ
2

)(
2 sin θ′

2 + (π − θ′) cos θ′

2

) (OTO)

(3.34)

Using this notation and representing P̂ (−1) as (2παSε)
−1(−∂2∆θ+

− 1) up to the m = 0

harmonic, we finally perform the integral in (3.26):

F̃ (−1)(θ1, θ2; θ3, θ4)

G̃c(θ1, θ2) G̃c(θ3, θ4)
=

π

2q2αSε
|θ12|−1|θ34|−1(−∂2∆θ+ − 1)Q̌(θ, θ′,∆θ+)

=
2

πq2αSε





(
1− θ

2 tan θ
2

)(
1− θ′

2 tan θ′

2

)
(OPE)

− π sin∆θ+

2 sin θ
2
sin θ′

2

− π(π−2∆θ+)

4 tan θ
2
tan θ′

2

+

(
1 + π−θ

2 tan θ
2

)(
1 + π−θ′

2 tan θ′

2

)
(OTO)

(3.35)

Let us briefly discuss some features of the four-point function. First, the OPE cor-

relator is independent of ∆θ+, which can be explained as follows. If in the derivation of

equation (3.26) we use (3.25) instead of (3.24), we will get

F̃ (−1)(θ1, θ2; θ3, θ4)

G̃c(θ1, θ2) G̃c(θ3, θ4)
=

4π2

q2

∫ θ1

θ2

∫ θ3

θ4

dθ5 dθ6
(2π)2

θ15θ52
θ12

P (−1)(θ5, θ6)
θ36θ64
θ34

. (3.36)

In the OPE case, the intervals [θ2, θ1] and [θ4, θ3] do not overlap. Therefore, the δ-function

terms in P (−1)(θ5, θ6) (see (3.30)) may be dropped and only the constant term remains.

A more physical explanation is this [20]: both δG̃IR(θ1, θ2) and δG̃IR(θ3, θ4) in (3.20) are

determined by the total energy of the system, which is subject to thermal fluctuation.

The OTO correlator is most interesting if we analytically continue it to real time,

t = −iτ = −i β
2πθ. More exactly, let us consider the function

−N−1F̃(θ1, θ2; θ3, θ4) =
〈
χ̃j(θ1) χ̃k(θ3) χ̃j(θ2) χ̃k(θ4)

〉
+
〈
χ̃j(θ1)χ̃j(θ2)

〉〈
χ̃k(θ3)χ̃k(θ4)

〉
,

2π + ℜθ4 > ℜθ1 > ℜθ3 > ℜθ2 > ℜθ4,
(3.37)

where θ1, θ2 are close to i2πβ t with order of 1 precision, θ3, θ4 are close to 0, and t is large.

In this limit,

−N−1F̃ (−1)(θ1, θ2; θ3, θ4) ≈
i

2αSε
e−i(θ1+θ2−θ3−θ4)/2

(
2b1/q

q
θ
−2/q−1
12

)(
2b1/q

q
θ
−2/q−1
34

)
.

(3.38)

This expression is a special case of an ansatz that is discussed in the next section. Thus,

the out-of-time-order correlator is proportional to βJ
N eκt, where κ = 2π

β . The exponen-

tial growth saturates when βJ
N e2πt/β ∼ 1, at which point the ladder diagrams no longer

dominate and one has to include multiple parallel ladders.

– 22 –



J
H
E
P
0
5
(
2
0
1
8
)
1
8
3

4 Discussion of out-of-time-order correlators

This section is a bit of a digression. We speculate about OTOCs in general systems

with all-to-all interaction and a single characteristic time. Some of the ideas were part

of the original program [15] that led to the study of the SYK Hamiltonian; other come

from [14, 17, 41]. We add some new interpretations and a convenient ansatz.

The intuition. Maldacena, Shenker, and Stanford [17] proved the upper bound κ 6 2π
β .

The saturation of this bound, found in the SYK model at low temperatures, is a signature

of quantum coherence. This intuition has been gained from the study of OTOCs in black

holes: the Lyapunov exponent κ has the maximum value when the collision of gravitational

shock waves is described by t’Hooft’s effective action [9–11], whereas inelastic scattering

results in a negative correction to κ [14]. In the former case, t’Hooft defined an S-matrix

that describes the gravitational interaction of infalling matter and outgoing radiation;

it has been further discussed in [42, 43]. We will define a similar S-matrix for a fairly

general quantum system at finite temperature. It characterizes the discrepancy between

the full theory (i.e. the SYK or a similar many-body Hamiltonian) and its naive version

that ignores 1/N effects. Such an S-matrix is not unitary, but it is almost unitary if the

Lyapunov exponent is close to the upper bound.

The naive model includes a small fraction of the actual degrees of freedom, e.g.

χ1, . . . , χn for n ≪ N , while the rest of the system is replaced by an oscillator bath as

originally proposed by Feynman and Vernon [44]. In the SYK case,

Hnaive = i
n∑

j=1

χjξj +Hbath, (4.1)

where ξj are some linear combinations of elementary fermionic operators that constitute

the bath. The bath Hamiltonian is quadratic in the elementary fermions but its exact form

is not important; it is sufficient to assume that 〈T ξj(τ1)ξk(τ2)〉bath = −Σ(τ1, τ2) δjk and

that the higher-order correlators are given by Wick’s theorem. On the other hand, the bath

may be described as n species of Majorana fermion in AdS2 with Dirichlet-like boundary

conditions. Such a model is expected to reproduce equal-time correlation functions of

simple observables, or even the observables that are evolved by the Heisenberg equation

over a short period. It should also work for correlators of the form 〈X1(t1) · · ·Xs(ts)〉 with
t1 < · · · < tr > · · · > ts. These are exactly the correlators that can be measured without

reversing the arrow of time or calculated using the Keldysh formalism.

Embedding the naive Hilbert space into the full Hilbert space. Since the naive

model is reasonably accurate for many purposes, one may try to map its Hilbert space

Hnaive to the Hilbert space H of the actual system. Let us examine this problem and see

how it is related to out-of-time-order correlators. In fact, there is no genuine embedding

Hnaive → H because the bath has continuous spectral density, and therefore, Hnaive is

infinite-dimensional. But we may restrict Hnaive to those quantum states that are easy to

produce within some time and energy constraints.
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As is usual, one begins by defining a set of observable and then constructs the Hilbert

space. For a sufficiently short time interval ∆t and an energy bound Emax, we consider

the operators X =
∫
f(t′)χj(t

′) dt′, where the function f is concentrated in the interval

[t − ∆t, t + ∆t] and its Fourier transform at energies below Emax, with exponentially

decaying tails. Let us include the products of 0, 1, 2, . . . such operators, up to a given

number. Fixing the details of this definition, we obtain a finite-dimensional subspace At

of the operator algebra Anaive.

Now, the Hilbert space Hnaive is defined by the operator algebra and the thermal state

via the Gelfand-Naimark-Segal construction. Specifically, we interpret each operator X as

a state vector |X〉naive and define the inner product using the thermal expectation value in

the naive model:

〈Y |X〉naive = 〈Y †X〉naive. (4.2)

A more constructive description is this: |X〉naive = (X⊗I)|I〉naive, where |I〉naive is the ther-
mofield double state. But mathematically, the thermofield double state is simply the vector

associated with the identity operator. (How else can we define it if we begin with local

observables but no vectors or Hamiltonian?) The same construction is applicable to opera-

tors of the full model. It gives the Hilbert space H = Hphysical ⊗H∗
physical. In this case, the

thermofield double state has an independent definition, |I〉 = Z−1/2
∑

m e
−βEm/2|m,m〉.

Restricting the space of operators to At, we obtain the subspace Ht ⊆ Hnaive. Each

element X ∈ At can also be interpreted as an operator acting on the physical system.

Thus, Ht is mapped to the full Hilbert space H. This map is not unitary because the inner

product 〈Y |X〉 = 〈Y †X〉 is silghtly different from the previous one. But since the naive

model works well for simple observables, the difference should be negligible. More exactly,

we assume that5

〈Y |X〉 − 〈Y |X〉naive = O(N−1)
∥∥|Y 〉naive

∥∥ ∥∥|X〉naive
∥∥. (4.3)

There are actually two embeddings! The implicit constant in the big-O notation

in (4.3) depends on the dimension of the Hilbert space Ht. Surely, as we include more

observables, the naive model becomes less accurate. However, there is a more serious

problem: the accuracy deteriorates dramatically if we allow products of operators χj(t
′) in

a large time window. Fortunately, there is a way to refine the definition of the embedding

so as to mitigate this effect. In general, we divide the window into small overlapping

intervals centered at t1 > t2 > · · · > ts and write the naive operator we want to embed as

X = X1X2 · · ·Xs, where Xj ∈ Atj . Alternatively, we can use the reverse time order, X̃ =

X̃s · · · X̃2X̃1. Any operator of the naive theory can be expressed as a linear combination of

operators of the first or the second type using the commutation relations of free fermions.

It turns out that the embedding based on either ordering is reasonably good but the errors

grow exponentially with time if the two orderings are mixed.

5The bound (4.3) imposes a constraint even on those states that are produced with difficulty, i.e. such

that
∥

∥|X〉naive
∥

∥ is much smaller than the operator norm of X. For example, the annihilation operator of

a particle with energy much higher than the temperature creates an excitation on the other side of the

thermofield double, though with a tiny amplitude.
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To keep things simple, we will not discuss large continuous windows, but rather,

consider the space of operators A{0,t} that act in two disjoint intervals, [−∆t,∆t] and

[t − ∆t, t + ∆t]. The elements of A{0,t} are operators of the form X = XtX0, where

Xt ∈ At and X0 ∈ A0. We assume that t is sufficiently large so that any connected

two-point function between times 0 and t is very small. In the naive theory, this implies

that Xt and X0 almost commute (or anticommute). Furthermore, if Xt, Yt ∈ At and

X0, Y0 ∈ A0, then

〈
YtY0

∣∣XtX0

〉
naive

=
〈
Y †
0 Y

†
t XtX0

〉
naive

≈ 〈Y †
0X0〉naive〈Y †

t Xt〉naive. (4.4)

Thus, the Hilbert space H{0,t} is simply the (Z2-graded) tensor product of H0 and Ht. The

two embeddings are as follows:

Sout, Sin : H{0,t} → H, Sout|XtX0〉naive = |XtX0〉, Sin|XtX0〉naive = ±|X0Xt〉 (4.5)

(In the last equation, the minus sign is chosen if both X0 and Xt have odd fermionic parity.)

To see that Sout is indeed an embedding of Hilbert spaces (with reasonable accuracy), we

check that it does not distort the inner product too much:

〈YtY0|naive S†
outSout|XtX0〉naive = 〈Y †

0 Y
†
t XtX0〉 ≈ 〈Y †

0X0〉naive〈Y †
t Xt〉naive. (4.6)

Here, we have used the assumptions that Keldysh correlators are faithfully described by the

naive model and that the connected two-point functions like 〈〈χj(t)χj(0)〉〉 are negligible.

(Recall that the naive model obeys Wick’s theorem.) The same argument is applicable to

Sin. However,

〈YtY0|naive S†
outSin|XtX0〉naive = ±〈Y †

0 Y
†
t X0Xt〉 6≈ 〈Y †

0X0〉〈Y †
t Xt〉. (4.7)

because OTOCs are not generally reproduced by the naive model. Therefore, Sout 6= Sin;

the difference is given by

∥∥(Sout − Sin)|XtX0〉naive
∥∥2 =

〈
[Xt, X0]

†[Xt, X0]
〉
. (4.8)

S-matrix and quantum coherence. The state Sout|XtX0〉naive = (XtX0⊗I)|I〉 (where
|I〉 is the thermofield double of the physical system) may be regarded as an outgoing

scattering state. In the bulk picture (if one exists), such a state is described as a pair of

wave packets on a future time slice [14, 45]. Similarly, Sin|XtX0〉naive is an in-state. Thus,

the scattering operator is S = S†
outSin. Because both Sout and Sin are almost-isometric

embeddings, we have

‖S‖ 6 1 +O(N−1). (4.9)

The relations between the operator S and OTOCs can be summarized as follows:

〈YtY0|naive S|XtX0〉naive ≈ ±〈Y †
0 Y

†
t X0Xt〉 (4.10)

〈YtY0|naive (I − S)|XtX0〉naive ≈ 〈Y †
0X0〉〈Y †

t Xt〉 ∓ 〈Y †
0 Y

†
t X0Xt〉 (4.11)

〈
YtY0

∣∣
naive

(2I − S − S†)
∣∣XtX0

〉
naive

≈
〈
[Yt, Y0]

†[Xt, X0]
〉

(4.12)
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Replacing S with S† in (4.10), (4.11) changes the order of times from 0t0t to t0t0. The

square brackets denote the supercommutator, [A,B] = AB ∓BA.

Let us focus on the early times when connected OTOCs of the form (4.11) are small.

For the SYK model, they are of the order of λ = βJ
N e(2π/β)t; more generally, λ ∝ N−1eκt.

We assume this to be an upper bound for all suitably normalized operators XtX0 ∈ A{0,t}
so that ‖I − S‖ ∼ λ ≪ 1. If S is unitary, then 2I − S − S† = (I − S)†(I − S) = O(λ2),

implying this property (provided X0 and Xt are suitably normalized):

Coherent early-time regime: 〈[Xt, X0]
†[Xt, X0]〉 = O(λ2). (4.13)

On the contrary, the typical behavior in most systems is 〈[Xt, X0]
†[Xt, X0]〉 ∼ λ. We cannot

exclude the possibility of restoring unitarity by adding new states that are generated by

more complex operators of the naive model. However, their connected OTOCs would

have to scale as
√
λ, which is unlikely. Property (4.13) has previously been noticed for

black holes [15] and it holds for the SYK model at low temperatures. Douglas Stanford

and Yingfei Gu independently showed (in private discussions) that it follows from the

condition κ = 2π
β . We will employ the same idea (based on [17]) together with some

simplifying assumptions that are natural for systems with all-to-all interactions.

Single-mode ansatz for early-time OTOCs. Let us use the variable θ = 2π
β τ = i2πβ t,

define the dimensionless Lyapunov exponent

κ̃ =
β

2π
κ, 0 < κ̃ 6 1, (4.14)

and consider four complex times θ1, θ2, θ3, θ4 such that

θ1, θ2 = i
2π

β
t+O(1), θ3, θ4 = O(1), 2π + ℜθ4 > ℜθ1 > ℜθ3 > ℜθ2 > ℜθ4. (4.15)

Generalizing (3.38) and similar equations for gravitational shock waves [14], we expect the

connected OTOC to have the following form:

〈
X1(θ1)X2(θ2)

〉 〈
X3(θ3)X4(θ4)

〉
∓
〈
X1(θ1)X3(θ3)X2(θ2)X4(θ4)

〉

≈ C−1eiκ̃(π−θ1−θ2+θ3+θ4)/2ΥR
X1,X2

(θ1 − θ2)Υ
A
X3,X4

(θ3 − θ4)

(4.16)

with O(λ2) accuracy, where λ = C−1e2πκ̃t/β . The diagram on the left conveys the

intuition: the process is mediated by some mode (“scramblon”) with the propagator

C−1eiκ̃(π−θ1−θ2+θ3+θ4)/2, whereas ΥR and ΥA are the vertex functions. Alternatively, one

may regard C−1eiκ̃π/2 as the propagator and define

Υ̃R
X1,X2

(θ1, θ2) = e−iκ̃(θ1+θ2)/2ΥR
X1,X2

(θ1−θ2), Υ̃A
X3,X4

(θ3, θ4) = eiκ̃(θ3+θ4)/2ΥA
X3,X4

(θ3−θ4).
(4.17)

For the SYK model, one of the vertex functions satisfies the equation (KR − 1)Υ̃R
χ,χ = 0,

where KR(θ1, θ2, θ3, θ4) = (q − 1)G̃R(θ1, θ3) G̃
A(θ4, θ2)

∣∣G̃W(θ3, θ4)
∣∣q−2

is a retarded kernel

(cf. (2.16)) where retarded, advanced, and Wightman Green functions are defined with re-

spect to the imaginary part of Euclidean time arguments θi. Likewise, Υ̃
A
χ,χ is an eigenvalue
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1 eigenfunction of an analogously defined advanced kernel. This was the first derivation

of the Lyapunov exponent in the zero-temperature limit [2] and one of the methods used

in [20] to compute the (βJ)−1 correction.

Applying the arguments of [17] to correlators of the specific form (4.16), one can

show that

ΥR
X1,X2

(θ)∗ = ΥR
X†

2 ,X
†
1

(θ∗), ΥR
X2,X1

(θ) = ΥR
X1,X2

(2π − θ) (and similarly, for ΥA); (4.18)

ΥR
X†,X(θ), ΥA

X†,X(θ) > 0 for 0 6 θ 6 2π, C > 0. (4.19)

It follows that up to O(λ2) terms,

〈[
X3(θ), X1

(
θ + i2πβ t

)] [
X2

(
i2πβ t

)
, X4(0)

]〉
≈ 2 cos(κ̃π/2)

C
eκ̃(2π/β)tΥR

X1,X2
(θ)ΥA

X3,X4
(θ).

(4.20)

For the SYK model, both the decoherence factor cos(κ̃π/2) and the number C are propor-

tional to (βJ)−1; hence, the OTOC of commutators has a finite limit at zero temperature.

The coherent regime. In the SYK case (see (3.38)), the functions Υ̃R and Υ̃A are

obtained by applying the sl2 generators L−1 and L1 to one of the variables of the conformal

Green function. In Lorentzian time, they generate, respectively, an exponentially growing

and an exponentially decreasing perturbation. By definition, the operator Lm is minus the

Lie derivative along the vector field v(θ) = eimθ. Its action on 1/q-forms of the variable θj

is given by L
(j)
m = −eimθj (∂θj + im/q). Thus,

Υ̃R
χ̃,χ̃(θ1, θ2) =

(
L
(1)
−1 G̃c

)
(θ1, θ2) = −2b1/q

q
e−i(θ1+θ2)/2 θ

−2/q−1
12 . (4.21)

This result can be generalized. We conjecture that if the Lyapunov exponent is close

to the upper bound, then

Υ̃R
X1,X2

(θ1, θ2) = i
〈
[pout, X1(θ1)]X2(θ2)

〉
, Υ̃A

X3,X4
(θ1, θ2) = i

〈
[pin, X3(θ3)]X4(θ4)

〉
(4.22)

C = i
〈
[pin, pout]

〉
(4.23)

where pout = poutnaive + poutother and pin = pinnaive + pinother are defined in a suitable effective

theory. For the SYK model, it is the naive theory augmented with the soft mode, such

that poutnaive = iL−1, p
in
naive = iL1, and the operators poutother, p

in
other act on ϕ ∈ Diff+(S1) on

the left (i.e. by changing the value of ϕ(θ) rather than the time variable θ). The complete

picture, including the connection to a 2D black hole, has been worked out in [21–23]. In

the black hole case, the naive description is the low-energy field theory, whereas the other

degrees of freedom are a pair of gravitational shock waves [9–11]. Note that in any case,

the main contribution to C in (4.23) comes from [pinother, p
out
other]. Further details will be

given elsewhere.
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5 Formalism (part 2)

The purpose of this section is to develop tools that have (among others) the following

applications. By using the conformal three-point function Wh(θ1, θ2; θ0), we will derive

the expression for δG̃IR in terms of δO and extend the formula for gUV,I(θ1, θ2) from

|θ1 − θ2| ≪ 1 to the general case. A four-point conformal function will be employed

in section 6 to find a non-local order ε2 correction to the Schwarzian action, which is

itself proportional to ε = 2π/(βJ). We will later study the full four-point function. Its

leading ∼ βJ term is not conformal and comes from the soft mode, whereas the subleading

∼ 1 correction has both conformal and non-conformal pieces. Their calculation is quite

technical, and various identities obtained here will come in useful.

5.1 Properties and some applications of conformal functions

5.1.1 The 2- and 3-point functions and an elementary 4-point function

We consider the 2-point function Uh of fields with scaling dimension h, the function Wh

(which defines an intertwiner from (1 − h)-forms to antisymmetric (1/2, 1/2)-forms), and

the unnormalized projector kernel Πh discussed in section 2.2.2. Let us put all definitions

in one place:

Uh(ϕ1, ϕ2) = |ϕ12|−2h, Wh(ϕ1, ϕ2;ϕ0) = ϕ−1
12

∣∣∣∣
ϕ10ϕ20

ϕ12

∣∣∣∣
−h

, ϕjk = 2 sin
ϕj − ϕk

2

(5.1)

Πh(ϕ1, ϕ2;ϕ3, ϕ4) = ϕ−1
12 ϕ

−1
34 Ψh(χ), where χ =

ϕ12ϕ34

ϕ13ϕ24
(5.2)

The function Ψh, defined by (2.33), has a succinct integral representation:

Ψh(χ) = π

∫ ∣∣∣∣
ϕ10ϕ20

ϕ12

∣∣∣∣
−h∣∣∣∣

ϕ30ϕ40

ϕ34

∣∣∣∣
h−1 dϕ0

2π
. (5.3)

(The integral converges if 0 < ℜh < 1, but the resulting expression extends to a meromor-

phic function of h.) Let us write this identity in an operator form, along with a similar

relation between the 2- and 3-point functions:

Πh = πWhW
T
1−h, Wh = π

cos(πh) Γ(2h)

cos2 πh
2 Γ(h)2

W1−hUh (5.4)

Here, WT
1−h is the operator with the integral kernel WT

1−h(ϕ0;ϕ1, ϕ2) = W1−h(ϕ1, ϕ2;ϕ0);

it maps antisymmetric (1/2, 1/2)-forms to (1−h)-forms. The operator Uh is an intertwiner

from F0
1−h to F0

h . The product of operators in the above equations is defined as an integral

over dϕ0/(2π).

5.1.2 Fourier representation

Let fh,m be the m-th Fourier harmonic, fh,m(ϕ0) = eimϕ0 regarded as an element of F0
h .

Then we can write abstractly:

Uhf1−h,m = uh,mfh,m, Whf1−h,m =Wh,m. (5.5)
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BecauseWh is an intertwiner from F0
1−h, the functionsWh,m transform as the basis elements

of that space. In particular, the generators L−1, L0, L1 of sl2 (i.e. the complexified Lie

algebra of G) act on the functions Wh,m as follows (cf. equation (15) in [38]):

L0Wh,m = −mWh,m, L±1Wh,m = −
(
m± (1− h)

)
Wh,m±1. (5.6)

The calculation of the coefficients uh,m is quite straightforward:

uh,m =

∫ 2π

0

(
2 sin ϕ

2

)−2h
eimϕ dϕ

2π
= eiπm

Γ(1− 2h)

Γ(1− h+m) Γ(1− h−m)

=
1

2 cos(πh) Γ(2h)

Γ(h±m)

Γ(1− h±m)
since m is an integer.

(5.7)

Similarly, for the 3-point function,

Wh,m(ϕ1, ϕ2) = ϕ−1
12

∫ ∣∣∣∣
ϕ10ϕ20

ϕ12

∣∣∣∣
−h

eimϕ0
dϕ0

2π
= ϕ−1

12 e
im(ϕ1+ϕ2)/2wh,m(ϕ1 − ϕ2), (5.8)

where6

wh,m(ϕ) =
1

2 cos πh
2

Γ(h±m)

Γ(h)
Ch,±m(eiϕ), 0 < ϕ < 2π, (5.9)

Ch,m(u) = A+
h,m(u) +A−

h,m(u−1), Ah,m(u) = um/2(1− u)hF
(
h, h+m, 1 +m; u

)
.

(5.10)

The superscript “±” in A±
h,±m(z) indicates the function is analytically continued to the

domain C − [0,+∞) from the interval 0 < z < 1, where it is unambiguously defined,

through the upper or lower half-plane for + and −, respectively. The sign in front of

m does not matter because Γ(h + m)Ah,m(u) = Γ(h − m)Ah,−m(u). Another identity,

Ah,m(u) = A1−h,m(u) implies that

wh,m(ϕ) =
π

2 cos2 πh
2 Γ(h)2

Γ(h±m)

Γ(1− h±m)
w1−h,m(ϕ). (5.11)

This relation is just the second equation in (5.4) written in terms of Fourier coefficients.

Let us give another expression for wh,m under the same restriction on the variable,

0 < ϕ < 2π:

wh,m(ϕ) =
1

2 cos(πh)

(
Γ(h+m)

Γ(1−h+m)
ei

π
2
hB+

h,m(eiϕ)− Γ(1−h) tan πh
2

Γ(h)
ei

π
2
(1−h)B+

1−h,m(eiϕ)

)
.

(5.12)

Here, B+
h,m(u) is the analytic continuation of Bh,m(u) = um/2(1−u)hF(h, h+m, 2h; 1−u)

from the interval 0 < u < 1 to the domain C− [0,+∞) through the upper half-plane.

6Since Wh,m(ϕ1, ϕ2) is antiperiodic in each variable, the function wh,m satisfies the condition wh,m(ϕ+

2π) = (−1)mwh,m(ϕ). Therefore, it is sufficient to determine it in the fundamental domain 0 < ϕ < 2π.

– 29 –



J
H
E
P
0
5
(
2
0
1
8
)
1
8
3

The following special cases will be used frequently. (In (5.15), we assume that

0<ϕ<2π.)

w2,m(ϕ) =
sin
(
|m|ϕ/2

)

tan(ϕ/2)
− |m| cos(mϕ/2) (5.13)

w−1,m(ϕ) =





2
π w[0](ϕ) if m = 0,

− 1
π w[1](ϕ) if m = ±1,

2
π

w2,m(ϕ)
|m|(m2−1)

if |m| > 2

(5.14)

w[0](ϕ) =
[
∂hwh,0(ϕ)

]
h=2

=
π − ϕ

2 tan ϕ
2

+ 1, w[1](ϕ) =
[
∂hwh,1(ϕ)

]
h=2

=
π − ϕ

2 sin ϕ
2

+ cos
ϕ

2

(5.15)

5.1.3 Linearized IR perturbations

The soft mode generates perturbations δG̃IR(θ1, θ2) = Rc(θ1, θ2)
−1δgIR(θ1, θ2) to the con-

formal Green function. Note that δgIR ∈ D+
2 ⊕D−

2 . Indeed, suppose that G̃ = G̃IR is equal

to the conformal Green function G̃c in some frame ϕ that is very close to the physical frame

θ = 2πτ/β. In the linear order, the difference between the frames,

δϕ(θ) = ϕ(θ)− θ (5.16)

is a vector field. Vector fields are −1-forms, i.e. elements of the representation F0
1−h with

h = 2. However, the Fourier harmonics of δϕ with m = −1, 0, 1 are symmetry generators;

they do not produce any change in G̃IR. The quotient of F0
−1 by those null modes splits

into the representations D+
2 and D−

2 , which correspond to m > 2 and m 6 −2, respectively.

Let us actually calculate δG̃IR for a given δϕ. The function G̃IR transforms as a ∆-

form (with ∆ = q−1) in each variable. Infinitesimal transformations of ∆-forms involve a

particular type of Lie derivative:

δG̃IR(θ1, θ2) =
(
L(1)
δϕ +L(2)

δϕ

)
G̃c(θ1, θ2), L(j)

v = v(θj) ∂θj +∆ v′(θj) for j = 1, 2. (5.17)

Evaluating the Lie derivatives at the conformal point, G̃c(θ1, θ2) ∝ θ−2∆
12 , we get

δG̃IR(θ1, θ2)

G̃c(θ1, θ2)
= −q−1

(
δϕ(θ1)− δϕ(θ2)

tan((θ1 − θ2)/2)
− δϕ′(θ1)− δϕ′(θ2)

)
(5.18)

= −2iq−1(sgnm) eim(θ1+θ2)/2w2,m(θ1 − θ2) if δϕ(θ) = eimθ, (5.19)

where the function w2,m is given by (5.13); note that w2,m = 0 form = −1, 0, 1. Translating

δG̃IR(θ1, θ2) to

δgIR(θ1, θ2) = −
√
(q − 1)b θ−1

12

δG̃IR(θ1, θ2)

G̃c(θ1, θ2)
= 2i

√
(q − 1)b

q
(sgnm)W2,m(θ1, θ2), (5.20)

we see that the vector field δϕ(θ) = eimθ produces the perturbation δgIR(θ1, θ2) that is

proportional to (sgnm)W2,m(θ1, θ2). The map δϕ 7→ gIR is an intertwiner from the space
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F0
−1 to antisymmetric (1/2, 1/2)-forms; it differs from the intertwiner W2 by the (sgnm)

factor. For completeness, we also give the normalized antisymmetric (1/2, 1/2)-forms that

transform as the basis vectors |m〉 of D+
2 (if m > 2) or D−

2 (if m 6 −2):

W normalized
2,m = γm π

−1

√
3

|m|(m2 − 1)
W2,m, γm =

{
1 if m > 2,

(−1)m if m 6 −2.
(5.21)

Finally, let us express δG̃IR(θ1, θ2) in terms of δO(θ) = Sch(eiϕ, θ)− 1
2 . Recall that in

the linear order, δO(θ) = (∂θ+∂
3
θ )δϕ(θ). If δϕ(θ) = eimθ, then δO(θ) = −im(m2−1)eimθ.

Using (5.20) and the last case of (5.14), we get:

δgIR = −π
√
b(q − 1)

q
W−1 δO (5.22)

Since the result is independent of m, it holds for all functions δϕ.

5.1.4 General form of UV perturbations

As discussed in section 2.2.3, any linear perturbation of the form gUV(θ1, θ2) =

(Whf)(θ1, θ2) is allowed by conformal symmetry. It may be thought of as coming from

the term
∫
f(θ)O(θ) dθ in a suitable effective theory, where O is some field of dimension

h. On the other hand, the physical perturbations have a discrete dimension spectrum, and

their asymptotic form at |θ1 − θ2| ≪ 1 is given by (3.12). We now combine these results

and derive a more general expression for physical perturbations. The obvious thing to do

is to find Whf for a constant function f , i.e. f ∝ f1−h,0, and match the asymptotics. The

case h = 2 is special and involves [∂hWh]h=2 instead of W2.

Let ℜh > 1/2 and let us also assume that h is not an integer. The relevant asymptotic

expression is obtained from the second term in (5.12):

wh,m(ϕ) ≈ Γ(2h− 1) tan(πh/2)

Γ(h)2
ϕ1−h for ϕ→ 0. (5.23)

(We are using the convention 0 < ϕ < 2π.) Passing to (Whf1−h,0)(θ1, θ2) =Wh,0(θ1, θ2) =

θ−1
12 wh,0(θ1 − θ2) and matching the corresponding asymptotics with (3.12), we get:

gUV,I(θ1, θ2) ≈
aI

−k′c(hI)
εhI−1

[
Γ(h)2Wh,0(θ1, θ2)

Γ(2h− 1) tan(πh/2)

]

h=hI

for |θ12| ≫ ε. (5.24)

In the special case of I = 0, both Wh,0 and tan(πh/2) vanish at h→ hI = 2, but the whole

expression has a finite limit. The result below is equivalent to equation (3.121) in [20]:

gUV,0(θ1, θ2) ≈
a0

(−k′c(2))π
ε θ−1

12 w[0](θ1 − θ2) for |θ12| ≫ ε (5.25)

where the function w[0] is defined in (5.15).
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Formally, one may also consider perturbations by time-dependent sources. They have

the form gUV,I =WhI
f for an arbitrary function f , which plays the role of aIε

hI−1. In the

I = 0 case, one may use the explicit source

s(θ1, θ2) = −a0ε(θ+) θ−2
12 sgn(θ1 − θ2)u

(
ln

θ12
ε(θ+)

)
, θ+ =

θ1 + θ2
2

. (5.26)

Assuming a local relation between ε(θ) and the singular part of the response, the pertur-

bation to the Green function is given by

g =W2f
(0) + [∂hWh]h=2f

(1), f (1)(θ) =
a0

(−k′c(2))π
ε(θ). (5.27)

The first term is some linear combination of the nonsingular functions W2,m and may be

understood as an IR perturbation. In the conformal setting, it is completely arbitrary;

its calculation requires minimizing the action of the soft mode. This problem is solved by

passing to a suitable frame such that f (1) is constant and then appying equation (5.25)

(see section 6.1 for more detail). It is interesting to note that [∂hWh,m]h=2 is a generalized

eigenfunction of the conformal kernel because

Kc [∂hWh,m]h=2 = kc(2) [∂hWh,m]h=2 + k′c(2)W2,m. (5.28)

(For m = −1, 0, 1, the second terms vanishes, so [∂hWh,m]h=2 is an ordinary eigenfunction.)

5.1.5 The functions f⊥ and f‖

The conformal four-point function F̃c of the SYK model is formally defined by equa-

tion (2.25). It involves an antisymmetrized variant of the operator Lc = Kc(1 − Kc)
−1,

which can be expressed by multiplying each term in the decomposition of identity (2.29)

by 2 kc(h)
1−kc(h)

. As already mentioned, the result is divergent because kc(2) = 1. Excluding

the h = 2 term, we obtain the function

F̃⊥
c (ϕ1, ϕ2;ϕ3, ϕ4) = Rc(ϕ1, ϕ2)

−1f⊥(ϕ1, ϕ2;ϕ3, ϕ4)Rc(ϕ3, ϕ4)
−1, (5.29)

where

f⊥ =

[ ∞∑

n=2

Resh=2n+

∫ 1/2+i∞

1/2−i∞

dh

2πi

](
h− 1/2

π tan(πh/2)

kc(h)

1− kc(h)
Πh

)
. (5.30)

(For convenience, we put the kc(h)
1−kc(h)

factor under the residue sign.) Maldacena and Stan-

ford [20] found alternative expressions for f⊥ that are useful for extracting physically

relevant asymptotics. In particular, if 0 < χ < 1, then

f⊥(ϕ1, ϕ2;ϕ3, ϕ4) = −ϕ−1
12 ϕ

−1
34

∞∑

I=0

Resh=hI

(
h− 1/2

π tan(πh/2)

kc(h)

1− kc(h)
Γ(h)2χhF(h, h, 2h;χ)

)
,

(5.31)

where h0, h1, . . . are solutions of the equation kc(h) = 1. This formula is, essentially, an

operator product expansion. At small χ, the leading contribution comes from the residue
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at the double pole, h0 = 2:

Resh=2

(
h− 1/2

π tan(πh/2)

kc(h)

1− kc(h)
Γ(h)2χhF(h, h, 2h;χ)

)
≈ χ2(lnχ− c1)

2π2(−k′c(2))
, (5.32)

where c1 = 1− k′c(2) +
k′′c (2)
2k′c(2)

. (5.33)

Thus,

f⊥(ϕ1, ϕ2;ϕ3, ϕ4) ≈
ϕ−1
12 ϕ

−1
34

2π2(−k′c(2))
χ2

(
ln

1

|χ| + c1

)
for χ→ 0. (5.34)

Let us now consider the missing h = 2 term in equation (5.30):

f‖ = Resh=2

(
h− 1/2

π tan(πh/2)

kc(h)

1− kc(h)
Πh

)
(5.35)

It does not have any obvious physical meaning; in any case, the soft mode should be treated

separately. However, it so happens that f‖ appears in the soft mode contribution to the

four-point function (along with terms that lack conformal symmetry, see section 6.3). In the

OPE region 0 < χ < 1, the addition of f‖ almost cancels the double pole term from (5.31).

(This cancellation was noted by Maldacena and Stanford [20] in the q → ∞ limit, and

they argued that it occurs in general.) Actually, the sum of f‖ and the double pole term

is equal to ϕ−1
12 ϕ

−1
34 multiplied by

Resh=2

(
h− 1/2

π tan(πh/2)

kc(h)

1− kc(h)

(
Ψh(χ)− Γ(h)2χhF(h, h, 2h;χ)

))
=

3

−k′c(2)

(
χ−1 − 1

2

)
.

(5.36)

The strong singularity at χ = 0 cancels with some other terms.

In the soft mode calculation, f‖ comes in three pieces. At this point, we can write

them formally by representing Πh in (5.35) using equations (5.4):

f‖ =
3

π(−k′c(2))
([
∂hWh

]
h=2

WT
−1+W−1

[
∂hW

T
h

]
h=2

−6πW−1

[
(∂h+c1)Uh

]
h=2

WT
−1

)
(5.37)

5.2 General treatment of the soft mode

Separation of the soft mode and other degrees of freedom. The dynamical degrees

of freedom of the replica-diagonal action (2.8) split into the h = 2 part and its orthogonal

complement, G̃ = G̃‖ + G̃⊥ (and similarly for Σ̃). This decomposition depends on the

choice of frame. Eventually, we want to write all results in the physical frame, θ = 2πτ/β.

However, there is another special frame ϕ, called the “conformal frame”, such that G̃
‖
ϕ = 0.

Some calculations are simpler in that frame because we can use the conformal four-point

function F⊥
c . So, let us represent the set of variables G̃θ by the the diffeomorphism ϕ of

the unit circle and the function G̃⊥
ϕ , and also replace Σ̃θ with Σ̃ϕ. (This approach was

proposed but not pursued in [24].) Thus, the action depends on the dynamical variables

ϕ, G̃⊥
ϕ , Σ̃ϕ, as well as the physical perturbation source σ̃θ. The action can be expressed

in any frame; for example, we can use G̃ϕ = G̃⊥
ϕ and Σ̃ϕ directly, and transform σ̃θ to the

conformal frame. However, in any case, the partition function Z depends on σ̃θ:

Z[σ̃θ] =

∫
DϕDG̃⊥

ϕ DΣ̃ϕ exp
(
−Ĩ[Σ̃ϕ, G̃

⊥
ϕ , ϕ; σ̃θ]

)
. (5.38)
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It is interesting to note that the Jacobian

J =
DG̃θ DΣ̃θ

DϕDG̃⊥
ϕ DΣ̃ϕ

(5.39)

is constant if Dϕ is understood as a right-invariant measure on Diff+(S1). To see this, let

ϕ, G̃⊥
ϕ , Σ̃ϕ be independent variables and V some fixed diffeomorphism. Both the numerator

and denominator in the above equation remain the same if we change ϕ to ϕ ◦ V −1 and θ

to V (θ) (which means transforming G̃θ, Σ̃θ with V ). Thus, we may assume without loss

of generality that ϕ is infinitesimally close to the identity, ϕ(θ) = θ + δϕ(θ). In this case,

δG̃
‖
θ depends on δϕ but not on δG̃⊥

ϕ or δΣ̃ϕ. Therefore, the Jacobian is the product of two

factors, the first being a constant and the second equal to 1:

J =

[DG̃‖
θ

Dϕ

]

ϕ=θ

[DG̃⊥
θ DΣ̃θ

DG̃⊥
ϕ DΣ̃ϕ

]

ϕ=θ

= const. (5.40)

However, the Jacobian is not important for subsequent calculations, which only include the

leading terms in 1/N . Indeed, the Jacobian makes an O(1) contribution to the logarithm

of the integrand in the functional integral, whereas Ĩ is proportional to N .

Effective action to quadratic order in σ̃θ. To simplify the action, we eliminate Σ̃ϕ

and G̃⊥
ϕ as described in section 2.2.1. In particular, we may use (2.24), adapting it to our

present notation and replacing Fc with F⊥
c :

Ĩeff[ϕ; σ̃θ]

N
≈ −1

2

〈
G̃c

∣∣σ̃ϕ
〉
− 1

8

〈
σ̃ϕ
∣∣F̃⊥

c

∣∣σ̃ϕ
〉

(5.41)

where

σ̃ϕ(ϕ1, ϕ2) = ϕ′(θ1)
∆−1ϕ′(θ2)

∆−1σ̃θ(θ1, θ2). (5.42)

The first term in (5.41) has already been considered in the physical frame, where it has the

form −1
2〈G̃IR|σ̃θ〉, and found to generate the Schwarzian. In the next section, we will show

that the second term gives rise to the non-local correction (1.24) to the effective action.

Covariance properties of O and ε. The observable Oθ(θ) = Sch(eiϕ, ϑ) can be repre-

sented in any frame. Its transformation law is similar to that of the holomorphic energy-

momentum tensor in two-dimensional CFT:

Oy(y) =

(
dy

dx

)−2(
Ox(x)− Sch(y, x)

)
. (5.43)

The pair of fields (1,O) forms a representation of Diff(S1). In the conformal frame, O is

constant and equal to 1
2 . The field εx = 2π

βJ (∂xθ)
−1 is the source coupling to Ox. Indeed,

the Schwarzian effective action can be written in a covariant form in any frame:

Ĩlocal
N

= −αS

∫
(εxOx − ρx) dx, ρx =

(∂xεx)
2

2εx
− ∂2xεx (5.44)
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We will see that εx and ρx represent, respectively, an approximate perturbation source

in frame x and the correction to the soft mode action resulting from that approximation.

This pair of fields transforms as follows:

εy(y) =
dy

dx
εx(x), ρy(y) =

(
dy

dx

)−1(
ρx(x)− Sch(y, x) εx(x)

)
. (5.45)

6 Next order corrections

In this section, we derive the order ε2 non-local correction to the Schwarzian action as well

as calculating the order ε0 term in the four-point function. (As is usual, ε = 2π
βJ .)

6.1 The calculation scheme and physical considerations

Perturbation source. The required accuracy can still be achieved using the leading

perturbation source σ̃0 that corresponds to the h0 = 2 pole of the conformal kernel. In the

physical frame, the source is given by σ̃0,θ(θ1, θ2) = Rc(θ1, θ2) s0,θ(θ1, θ2) with

s0,θ(θ1, θ2) = −a0εθ−2
12 sgn(θ1 − θ2)u(ξ), where ξ = ln

|θ12|
ε
,

∫ ∞

−∞
u(ξ) dξ = 1.

(6.1)

The function s0 transforms to the conformal frame as a (1/2, 1/2)-form:

s0,ϕ(ϕ1, ϕ2) = ϕ′(θ1)
−1/2ϕ′(θ2)

−1/2s0,θ(θ1, θ2)

≈ −a0
√
εϕ(ϕ1)εϕ(ϕ2)ϕ

−2
12 sgn(ϕ1 − ϕ2)u

(
ln

|ϕ12|√
εϕ(ϕ1)εϕ(ϕ2)

)
(6.2)

≈ −a0εϕ(ϕ+)ϕ
−2
12 sgn(ϕ1 − ϕ2)u

(
ln

|ϕ12|
εϕ(ϕ+)

)
, ϕ+ =

ϕ1 + ϕ2

2
. (6.3)

Both approximations are equivalent for our purposes, though the first one has the advantage

of being SL(2,R)-invariant. Note that these expressions lead to an incorrect result if one

plugs them in the first term of (5.41) and follows the derivation of the Schwarzian action

in section 3.2. The error comes from the inaccuracy of the source function as well as from

neglecting the integral of σ̃0 with G̃β=∞. The problem and its solution are more evident

if we replace the conformal frame ϕ with an arbitrary frame x. Then the approximation

results in the local action −NαS

∫
εxOx dx; the error is accounted for by the field ρx

in (5.44).

Correction to the soft mode action. The non-local correction arises from the second

term in (5.41):

Inon-local = −1

8

∫
dϕ1 dϕ2 dϕ3 dϕ4 f

⊥
c (ϕ1, ϕ2;ϕ3, ϕ4) s0,ϕ(ϕ1, ϕ2) s0,ϕ(ϕ3, ϕ4). (6.4)

In this case, both approximate expressions for s0,ϕ are good enough. (The actual calculation

will be done in a third way, directly in the physical frame.) The relevant contribution to

the integral comes from the region where the pairs (ϕ1, ϕ2) and (ϕ3, ϕ4) are much farther
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apart than the points within each pair.7 Therefore, f⊥c (ϕ1, ϕ2;ϕ3, ϕ4) ∝ ϕ−1
12 ϕ

−1
34 χ

2 ln 1
|χ| ;

see (5.34) for a more accurate expression. We will first integrate over ϕ3 and ϕ4; this

intermediate result may be interpreted as a UV correction to the Green function:

gUV,ϕ =
1

2

∫
dϕ3 dϕ4 f

⊥
c (ϕ1, ϕ2;ϕ3, ϕ4) s0,ϕ(ϕ3, ϕ4). (6.5)

Correction to the four-point function. The four-point function is obtained by taking

a variational derivative with respect to the perturbation source:

F̃θ(θ1, θ2, θ3, θ4) =
4

N

δ2 lnZ[σ̃θ]

δσ̃θ(θ1, θ2) δσ̃θ(θ3, θ4)

∣∣∣∣
σ̃θ=σ̃0,θ

, Z[σ̃θ] =

∫
Dϕ exp

(
−Ĩeff[ϕ; σ̃θ]

)
.

(6.6)

We proceed by introducing the fluctuating quantity G̃θ = G̃IR,θ + G̃UV,θ. More explicitly,

G̃θ[ϕ; σ̃θ](θ1, θ2) = −2
δĨ[ϕ; σ̃θ]

δσ̃θ(θ1, θ2)
= G̃IR,θ[ϕ](θ1, θ2) + G̃UV,θ[ϕ; σ̃θ](θ1, θ2), (6.7)

where (omitting the parameters ϕ, σ̃θ in square brackets)

G̃IR,θ(θ1, θ2) = G̃c

(
ϕ(θ1), ϕ(θ2)

)
ϕ′(θ1)

∆ϕ′(θ2)
∆, (6.8)

G̃UV,θ(θ1, θ2) =
1

2

∫
F̃⊥
θ (θ1, θ2, θ3, θ4) σ̃θ(θ3, θ4) dθ3 dθ4, (6.9)

F̃⊥
θ (θ1, θ2, θ3, θ4) = F̃⊥

c (ϕ1, ϕ2, ϕ3, ϕ4)ϕ
′(θ1)

∆ϕ′(θ2)
∆ϕ′(θ3)

∆ϕ′(θ4)
∆. (6.10)

Now, the four-point function is expressed in terms of average values over the fluctuating

field ϕ:

F̃θ(θ1, θ2, θ3, θ4) =
〈
F̃⊥
θ (θ1, θ2, θ3, θ4)

〉
+N

〈〈
G̃θ(θ1, θ2) G̃θ(θ3, θ4)

〉〉
(6.11)

The double brackets in the second term denote the connected correlator. The perturbation

source σ̃θ is implicit and may be set to σ̃0,θ. In the first term of (6.11), the average value

of F̃⊥ may be replaced with its value at ϕ equal to the identity function because the

fluctuation corrections are small:

F̃⊥
θ (θ1, θ2, θ3, θ4) = F̃⊥

c (θ1, θ2, θ3, θ4) +O(N−1). (6.12)

Asymptotics of the four-point function in the OPE region. Following the outlined

scheme, we will obtain a quite complicated expression, which hides some interesting physics.

One salient feature, first noted by Maldacena and Stanford [20], is the cancellation of the

χ2 ln(1/|χ|) term in the OPE region. We argue that this phenomenon is similar to the

Debye screening of electric charges in plasma. In our case, the χ2 ln(1/|χ|) term in the

conformal four-point function plays the role of bare Coulomb interaction. It is screened by

the soft mode, which is analogous to the charge density.

7The other part of the integral is strongly dependent on the window function u, and therefore, cannot

be treated consistently within our renormalization scheme. However, it can be excluded to produce an

unambiguously defined regularized integral.
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To be more concrete, let us examine the asymptotics of

F̃θ(θ1, θ2; θ3, θ4)

G̃c(θ1, θ2) G̃c(θ3, θ4)
=

1

(q − 1)b
θ12θ34f(θ1, θ2; θ3, θ4) (6.13)

at θ, θ′ → 0, where θ = θ1 − θ2 and θ′ = θ3 − θ4. We are looking for a term that is equal to

θ2θ′2 times an arbitrary function of ∆θ+ = (θ1+θ2−θ3−θ4)/2. As it turns out, the leading
(at θ, θ′ → 0) part of the function (6.13) is proportional to |θ|θ′2+ |θ′|θ2, but the θ2θ′2 term
is more pertinent to the discussion because χ2 ln(1/|χ|) ≈ θ2θ′2 ln(∆θ2+/ε

2) for θ, θ′ ∼ ε.

To find this term, we may probe the system with an additional perturbation source δσ̃θ
that has the same dependence on θ1 − θ2 as σ̃0,θ but also depends on θ+ = (θ1 + θ2)/2.

Thus, the full source σ̃θ = σ̃0,θ + δσ̃θ has the form (6.3), but in the physical rather than

conformal frame. The local perturbation strength is given by some function εθ(θ), and

we have

F̃θ(θ1, θ2; θ3, θ4)

G̃c(θ1, θ2) G̃c(θ3, θ4)
=

1

a20(q − 1)b

δ2(N−1 lnZ)

δεθ(θ+) δεθ(θ
′
+)

∣∣∣∣
εθ=ε

θ2θ′2 + other terms, (6.14)

where θ+ = (θ1 + θ2)/2 and θ′+ = (θ3 + θ4)/2. Up to 1/N corrections and trivial terms

(which correspond to the ground state energy and zero-temperature entropy), − lnZ is

equal to Ĩ∗[σ̃θ] = minϕ Ĩeff[ϕ, σ̃θ]. It is clear that the minimum (or at least an extremum)

is achieved when εϕ is a constant function. Thus, the equilibrium with the modified source

is equivalent to the thermal equilibrium at a slightly different temperature,

β̃J

2π
= ε−1

ϕ =

∫
dθ

2π
ε−1
θ . (6.15)

Furthermore, − lnZ[σ̃θ] = βF , where F is the free energy at the indicated temperature. It

follows that for small values of θ1 − θ2 and θ3 − θ4,

F̃θ(θ1, θ2; θ3, θ4)

G̃c(θ1, θ2) G̃c(θ3, θ4)
=

1

36q2α2
S

(
βJ

2π

)4 ∂2(−N−1βF )

∂(βJ)2
(θ1 − θ2)

2(θ3 − θ4)
2 + other terms

(6.16)

6.2 Non-local action and the soft correlator

To extract the leading term at small ε in the second term of the effective action (5.41), we

can use the leading UV perturbation σ̃ = σ̃0. As an intermediate step, let us first obtain

the Green function response to the perturbation in the conformal frame, for general ϕ(θ)

(see (6.9)):

gUV,ϕ(ϕ1, ϕ2) =
1

2

∫
dϕ3dϕ4 f

⊥(ϕ1, ϕ2;ϕ3, ϕ4)sϕ(ϕ3, ϕ4)

=
1

2

∫
dθ3dθ4 ϕ

′(θ3)
1/2ϕ′(θ4)

1/2f⊥(ϕ1, ϕ2;ϕ3(θ3), ϕ4(θ4))sθ(θ3, θ4).(6.17)

In the second line we switched to the physical frame to use sθ as given in (3.4) with

constant ε. We are only interested in the portion of the integral where the source sθ
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is not too close to θ1, θ2, farther than the cutoff ε, and also in the leading, order ε

contribution to ϕ12gUV,ϕ ∼ G̃UV,ϕ/G̃c. Thus we can use the χ → 0 asymptotics of

f⊥ given in (5.34). It is convenient to denote the transform of ϕ12 to the physical

frame d12(θ1, θ2) = ϕ′(θ1)−1/2ϕ′(θ2)−1/22 sin ((ϕ(θ1)− ϕ(θ2)/2) with leading UV behavior

d12 ≈ θ1 − θ2, using which

ϕ′(θ3)
1/2ϕ′(θ4)

1/2
(
ϕ−1
12 ϕ

−1
34 χ

2
(
ln |χ|−1 + c1

))
|θ3 − θ4|−2 sgn(θ3 − θ4)u (ln |θ34|/ε)

≈ ϕ−1
12

(
d12

d13d24

)2(
ln |d13d24

d12
|+ c1 − ln |θ3 − θ4|

)
|θ3 − θ4|−1u

(
ln

|θ34|
ε

)
, (6.18)

and so

gUV,ϕ(ϕ1, ϕ2) ≈ − a0ε

π(−k′c(2))
ϕ−1
12

∫
dθ0
2π

(
d12

d10d20

)2(
ln |d10d20

d12ε
|+ c1 − c2

)
(6.19)

where we have introduced the constant

c2 =

∫ ∞

−∞
dξ ξu(ξ). (6.20)

We can also write the integral (6.19) in the conformal frame in which ε(ϕ) is varying,

gUV,ϕ(ϕ1, ϕ2) ≈ − a0
π(−k′c(2))

ϕ−1
12

∫
dϕ0

2π

∣∣∣∣
ϕ10ϕ20

ϕ12

∣∣∣∣
−2(

ln

∣∣∣∣
ϕ10ϕ20

ε(ϕ0)

∣∣∣∣+ c1 − c2

)
ε(ϕ0) (6.21)

This form will be used in our calculation of the four-point function.

Now we can use the response (6.19) in the second term of (5.41), and from a similar

calculation as in (6.18) easily obtain

−1

8

〈
σ̃θ

∣∣∣F̃⊥
θ [ϕ]

∣∣∣σ̃θ
〉
= −1

4

∫
dθ1dθ2 sθ(θ1, θ2)ϕ

′(θ1)
1/2ϕ′(θ2)

1/2gUV,ϕ(ϕ3, ϕ4)

≈ −γ
2

∫
dϕ1

2π

dϕ2

2π

ε(ϕ1)ε(ϕ2)

ϕ4
12

(
ln

(
ϕ2
12

ε(ϕ1)ε(ϕ2)

)
+ c

)
(6.22)

where

c = c1 − 2c2, γ =
2a20

−k′c(2)
. (6.23)

The integral diverges near ϕ12 ≈ 0 and needs to be regulated. Using some PSL(2,R)-

invariant cutoff - for example ϕ2
12 > ε(ϕ1)ε(ϕ2) — one will obtain the Schwarzian along

with other local terms which have cutoff-dependent coefficients. Thus it seems natural to

view the Schwarzian action as a UV completion of the non-local action, which we may

identify as the order ε2 cutoff-independent portion of the integral,8

Inon-local
N

= −γ
2

[∫
dϕ1

2π

dϕ2

2π

ε(ϕ1)ε(ϕ2)

ϕ4
12

(
ln

(
ϕ2
12

ε(ϕ1)ε(ϕ2)

)
+ c

)]

fin.

(6.24)

8We can see this finite part of the integral is well-defined, as follows. Two cutoff schemes for the integral

will result in finite parts that differ at most by a local integral that is order ε2. The integrand of such an

integral must be a 1-form, and can have at most a singularity going as ε−3 as ε → 0 — i.e. take the form

p(ε, ε′, ε′′, . . . )/ε3 where p is some polynomial — given that in the original integral the ϕ−4
12 singularity in

the integrand is integrated with a cutoff going as ε ∼ (βJ)−1. Thus the integrand of the local integral

must be ε(3)ε or ε′′ε′, but both integrands give integrals odd under reflection ϕ → −ϕ whereas the original

integral is even.
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However, not having a method to choose one particular cutoff, we have implicitly discarded

all cutoff-dependent local terms arising from (6.22) in fixing the relation between coefficients

of the Schwarzian and non-local action as in (6.23).

Finally, let us expand Inon-local to quadratic order in the soft fluctuation δε(ϕ) =

ε(ϕ)− ε:

Inon-local
N

≈ γ

(
ε2

24
+

ε

12

∫
dϕ

2π
δε(ϕ)− 1

2

[∫
dϕ1

2π

dϕ2

2π

δε(ϕ1)δε(ϕ2)

ϕ4
12

(
ln
ϕ2
12

ε2
− 2 + c

)]

fin.

)
.

(6.25)

Here we have used the integrals
[∫ dϕ

2π

(
2 sin ϕ

2

)−4
]
fin.

=u2,0=0and
[∫ dϕ

2π

(
2 sin ϕ

2

)−4|2 sin ϕ
2 |
]
fin.

= −1
2 [∂huh,0]h=2 = − 1

24 (see (5.1), (5.5), and (5.7)). The first term gives a contribution

proportional to γ to the free energy at finite temperature,

β(F − E0) = N

(
−s0 − 2π2αS(βJ)

−1 +
π2

6
γ(βJ)−2 + . . .

)
+ . . . (6.26)

The second term is in fact equal to a quadratic contact term up to higher order terms,

∫
dϕ

2π
δε(ϕ) ≈

∫
dϕ

2π
ε−1(δε(ϕ))2 (6.27)

as δ
(∫ dϕ

2π ε(ϕ)
−1
)
= δ

(
βJ
2π

)
= 0 and expanding ε(ϕ) = ε+ δε(ϕ),

δ

(∫
dϕ

2π
ε(ϕ)−1

)
=

∫
dϕ

2π
ε−2

(
−δε+ ε−1δε2 +O

(
δε3
))
. (6.28)

Then we can write the kernel of the quadratic action for δε(ϕ) in terms of the conformal two-

point function Uh introduced in (5.1), and the contact two-point function
∑

m e
im(ϕ1−ϕ2) =

2πδ(ϕ1 − ϕ2) (for ϕ1 − ϕ2 considered modulo 2π) which we will denote as the identity

1 in operator form. The quadratic action remains the same after transforming to the

physical frame as δε(θ) ≈ δε(ϕ) to lowest approximation, and the resulting correction to

the correlator P (θ1, θ2), of order 1, is given by

P (0)(θ1, θ2) = N〈δO(θ1)δO(θ2)〉non-local = N
(
〈δO(θ1)δO(θ2)〉 − 〈δO(θ1)δO(θ2)〉local

)

= −
∫
dθ3dθ4 〈δO(θ1)δε(θ2)〉local

δ2Inon-local
δε(θ3)δε(θ4)

〈δε(θ4)δO(θ2)〉local (6.29)

= − 18q2

π2(−k′c(2))(q − 1)b

(
[∂hUh(θ1, θ2)]h=2 + (2 ln ε+ 2− c)U2(θ1, θ2) +

1

6
1(θ1, θ2)−

1

4

)
.

where we have used

N〉δO(θ1)δε(θ2)〉local = − 1

2παS

∑

m 6=−1,0,1

eim(θ1−θ2) (6.30)

derived from (3.29). Note m = −1, 0, 1 Fourier harmonics cancel between terms in (6.29)

as they are not present in δO(θ).
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6.3 Subleading four-point function

We now calculate the four-point function subleading in βJ , using (6.11). Recall that

expectation values in (6.11) are taken with respect to the path integral over the soft mode

ϕ, with effective action Ĩeff[ϕ, σ̃θ] obtained from integrating out G̃⊥
ϕ and Σ̃ϕ in (5.38). In

the following all quantities are to be understood as written in the physical frame unless

denoted otherwise.

Since we work in the large N limit, the first term in (6.11) is just the conformal four-

point function F̃⊥
c (θ1, θ2, θ3, θ4) given in (5.29), of order ε0. Meanwhile, the second term is

reduced to

N〈δG̃(θ1, θ2)δG̃(θ3, θ4)〉 (6.31)

where δG̃ = G̃− G̃∗ is the linearized change in the Green function in small δϕ = ϕ(θ)− θ.

Here we are using G̃∗ to denote the Green function at the saddle-point ϕ(θ) = θ with

respect to the physical UV perturbation σ̃ = σ̃0.

Now, to subleading accuracy in ε, δG̃ = δG̃IR + δG̃UV with

δG̃IR = G̃IR − G̃c, δG̃UV = G̃UV −
(
G̃∗
)
UV

(6.32)

of order ε0 and ε1, respectively. As the leading soft two-point function (3.27) is order ε−1,

to evaluate (6.31) to order ε0, we should i) include the fluctuation of the UV response δG̃UV

in δG̃ and ii) include in the effective action Ĩeff the non-local action derived in the previous

section, or in other words use the two-point function of the soft mode with the correction

calculated in (6.29). The subleading, order ε0 four-point function can be organized as

F̃ (0)(θ1, θ2; θ3, θ4) = F̃⊥
c (θ1, θ2; θ3, θ4) +N〈δG̃IR(θ1, θ2)δG̃IR(θ3, θ4)〉non-local

+N〈δG̃IR(θ1, θ2)δG̃UV(θ3, θ4)〉local +N〈δG̃UV(θ1, θ2)δG̃IR(θ3, θ4)〉local.
(6.33)

Let us work with δg normalized relative to δG̃ as in (2.18). To calculate the expectation

values in (6.33), we may express various terms in δg as three-points functions Wh=−1,2 or

[∂hWh]h=2 (defined in (5.1)) acting on δO or δε, then use local and non-local parts of

two-point functions 〈δOδO〉 and 〈δOδε〉 as appropriate. The variation δgIR was already

expressed in the desired form in (5.22),

δgIR = −π
√
b(q − 1)

q
W−1 · δO. (6.34)

Meanwhile, δgUV can be divided into two pieces. The first is the variation of the response

in the conformal frame

δgUV,ϕ = gUV,ϕ − (g∗)UV,ϕ (6.35)

due to the dependence of the perturbation σ̃ϕ on ε(ϕ), see (6.21). Expanding ε(ϕ) =

ε+ δε(ϕ), we find

δgUV,ϕ =
a0

π(−k′c(2))

(
[∂hWh]h=2 +

(
ln ε+ 1− c1 + c

2

)
W2

)
· δε. (6.36)
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The second is the variation due to the transformation of the response from the conformal to

the physical frame (below we are using Lie derivatives acting on ∆-forms defined in (5.17)),

δG̃
(diff)
UV =

(
L(1)
δϕ +L(2)

δϕ

) (
G̃∗
)
UV
. (6.37)

Factoring
(
G̃∗
)
UV

=
((
G̃∗
)
UV
/G̃c

)
G̃c,

δG̃
(diff)
UV (θ1, θ2) =

(
G̃∗
)
UV

(θ1, θ2)

G̃c(θ1, θ2)
δG̃IR(θ1, θ2)

︸ ︷︷ ︸
δG̃

(diff,c)
UV (θ1,θ2)

+ G̃c(θ1, θ2) (δϕ(θ1)∂θ1 + δϕ(θ2)∂θ2)

(
G̃∗
)
UV

(θ1, θ2)

G̃c(θ1, θ2)︸ ︷︷ ︸
δG̃

(diff,c̄)
UV (θ1,θ2)

(6.38)

where we have denoted the Lie derivative of the G̃c factor δG̃
(diff,c)
UV and the variation of the

complementary factor δG̃
(diff,c̄)
UV . We find using (5.22)

δg
(diff,c)
UV (θ1, θ2) =

a0ε

(−k′c(2))q
w[0](θ1 − θ2) (W−1 · δO) (θ1, θ2), (6.39)

and using (g∗)UV which was given in (5.25),

δg
(diff,c̄)
UV (θ1, θ2) = − a0

(−k′c(2))
θ−1
12 w[1](θ1 − θ2)

(
∂θ1 − ∂θ2 +

2

tan θ1−θ2
2

)
(W−1 · δε) (θ1, θ2).

(6.40)

Note the total expression for δgUV is SL(2,R) invariant, as δO does not have m = −1, 0, 1

modes and δε no m = 0 modes, and m = ±1 harmonics with respect to (θ1 + θ2)/2 cancel

between δgUV,ϕ and δg
(diff,c̄)
UV .

Now using expressions for δgIR, δgUV,ϕ, δg
(diff, c)
UV , and δg

(diff,c̄)
UV we have obtained so far

together with correlators 〈δOδO〉non-local and 〈δOδε〉local given in (6.29) and (6.30), the last

three terms in (6.33) are expressed as forms bilinear in W−1 and [∂hWh]h=2 (recall W2 can

be related to W−1 as in (5.4)). In particular, we find that in their sum the h = 2 residue

f‖ (5.34) that was missing in f⊥ (5.30) appears in the form given in (5.37). The total

subleading four-point function including the first term in (6.33) is given by

[
F̃(θ1, θ2; θ3, θ4)

G̃∗(θ1, θ2)G̃∗(θ3, θ4)

](0)
=

1

(q − 1)b

[
θ12θ34

(
f⊥(θ1, θ2; θ3, θ4) + f‖(θ1, θ2; θ3, θ4)

)

− 6

π2(−kc(2))
w[0](θ1 − θ2)w[0](θ3 − θ4)

− 3|θ12|−1|θ34|−1

(−k′c(2))
(
1 + w[1](θ1 − θ2) θ

−1
12 (∂θ1 − ∂θ2)

+ w[1](θ3 − θ4) θ
−1
34 (∂θ3 − ∂θ4)

)
Q̌(θ1, θ2; θ3, θ4)

]

(6.41)
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where

Q̌(θ1, θ2; θ3, θ4) = θ12|θ12|θ34|θ34|
∑

m 6=0

W−1,m(θ1, θ2)W−1,−m(θ3, θ4). (6.42)

was calculated previously in (3.34) in the section on the leading four-point function.

We again give explicit expressions in the cases (3.31) representative of OPE and OTO

regions. In the OPE region with 2π > θ1 > θ2 > θ3 > θ4 > 0,
[

F̃(θ1, θ2; θ3, θ4)

G̃∗(θ1, θ2)G̃∗(θ3, θ4)

](0)
=

1

(q − 1)b

[
θ12θ34

(
f⊥(θ1, θ2; θ3, θ4) + f‖(θ1, θ2; θ3, θ4)

)

− 3

(−k′c(2))

(
cos θ

2 cos
θ′

2 − cos∆θ+

2 sin θ
2 sin

θ′

2︸ ︷︷ ︸
χ−1− 1

2

+
sin θ−θ
2π sin2 θ

2

(
1− θ′

2 tan θ′

2

)
+

sin θ′ − θ′

2π sin2 θ′

2

(
1− θ

2 tan θ
2

)

+
1

π2

(
−2 +

θθ′

2 tan θ
.2 tan

θ′

2

+
θ2

2 sin2 θ
2

(
1− θ′

2 tan θ′

2

)
+

θ′2

2 sin2 θ′

2

(
1− θ

2 tan θ
2

)))]

(6.43)

where the marked conformal term cancels (5.36), which is the sum of the double pole term

in the OPE expansion of f⊥ (see (5.31)) and f‖, multiplied by θ12θ34. The θ, θ′ → 0

asymptotics of the full four-point function (including F̃ (−1) given in (3.35)) is as follows:

F̃(θ1, θ2; θ3, θ4)

G̃∗(θ1, θ2)G̃∗(θ3, θ4)
≈ θθ′2 + θ2θ′

12π(q − 1)b
+

(
βJ

144π2q2αS
− 1

8π2(q − 1)b (−k′c(2))

)
θ2θ′2. (6.44)

This is in agreement with equation (6.16).

In the OTO region with 2π > θ1 > θ3 > θ2 > θ4 > 0,
[

F̃(θ1, θ2; θ3, θ4)

G̃∗(θ1, θ2)G̃∗(θ3, θ4)

](0)
≈ 1

(q − 1)b

[
θ12θ34

(
f⊥(θ1, θ2; θ3, θ4) + f‖(θ1, θ2; θ3, θ4)

)

− 3

(−k′c(2))
1

2π sin θ
2 sin

θ′

2

(
(π − 2∆θ+) cos∆θ+ +

(
2− π − θ

tan θ
2

− π − θ′

tan θ′

2

)
sin∆θ+

)]

(6.45)

where we have only shown the terms that grow exponentially in real time for ∆θ+ =

it+O(1). Fitting the large t asymptotics as C−1(eiκ̃(π/2−∆θ+) − ei(π/2−∆θ+)) ≈ −C−1(1−
κ̃)∆θ+e

−i∆θ+ allows for the extraction of the correction to the Lyapunov exponent, 1−κ̃ ∼
(βJ)−1. In the above the contribution to such large t asymptotics from the term f‖ and the

term ∼ ∆θ+ cos∆θ+ cancel. Thus only the conformal four-point function f⊥ contributes

to the subleading exponent. The exponent was extracted in [20]; we do not know of an

intuitive way to obtain this quantity.

7 Dilaton gravity with conformal fields

The goal of this section is to construct a gravity dual of the reparametrization mode in the

SYK model. We will guess the 2D theory from qualitative arguments, study its general

properties, and find the effective action in terms of boundary degrees of freedom.
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7.1 The choice of the model

The authors in [21–23] obtained the Schwarzian action from a two-dimensional dilaton

gravity with suitable boundary conditions. We will use a slightly different model, which

includes the metric tensor g, the dilaton Φ, and certain matter fields. The Euclidean

action is

I[g,Φ, . . .] =
1

4π

∫

D

(
−ΦR+ U(Φ)

)√
g d2x− 1

2π

∫

∂D
ΦK

√
gϕϕ dϕ+ IM[g, . . .] (7.1)

where D is the unit disk, ∂D its boundary, ϕ the angular coordinate, and K the extrinsic

curvature. The boundary term is needed for consistency, see appendix B. The normalization

is such that Φ has the meaning of entropy (particularly, when evaluated at a black hole

horizon.)

Note that adding a constant to Φ changes the action by a constant; rescaling the metric

is equivalent to rescaling the dilaton potential U . Thus, we may assume without loss of

generality that U has the following expansion near Φ = 0:

U(Φ) = −2Φ− αΦ2 + · · · . (7.2)

Let us also suppose that Φ ≫ 1 so that the bulk can be treated classically, yet Φ is

sufficiently small to allow the use of the above expansion. When comparing with the SYK

model, Φ is proportional to N , whereas α ∼ N−1. In the most natural setting, the dilaton

diverges at the boundary, but we avoid that by introducing a cutoff, Φ|∂D = Φ∗. This

procedure is similar to putting a UV cutoff at τ ∼ J−1. Essentially, Φ∗ is the dilaton value

at which the potential U(Φ) becomes strongly nonlinear, that is, αΦ∗ ∼ 1. To make the

problem more tractable, we will sometimes assume that αΦ∗ ≪ 1; this should not affect

the general form of the result but only some coefficients.

The previously mentioned papers [21–23] used a linear dilaton potential, U(Φ) = −2Φ

and did not include matter fields (for the most part). This special case is known as

the Jackiw-Teitelboim gravity [46, 47] and has been studied in detail (in the Lorentzian

signature) by Almheiri and Polchinski [48]. In the Euclidean case, the classical solution is

the hyperbolic plane with R = −2, and the dilaton satisfies the equation ∇2Φ− 2Φ = 0 as

well as some other equations.

We would like to reproduce the effective action on ∂D by integrating out bulk degrees

of freedom. In particular, we are interested in the non-local term, which is related to

the h = 2 pole in the conformal 4-point function. In the gravity dual, this term might

correspond to a massive scalar field. Using the relation between the scaling dimension on

the boundary and mass in the bulk [49, 50], h = 1/2 ±
√
1/4 +m2, we find that m2 = 2.

In fact, the field in question can be the dilaton because the latter has a similar equation

of motion. However, pure dilaton gravity with an arbitrary potential U obeys Birkhoff’s

theorem [36], which says that any classical solution is equivalent to a rotationally symmetric

one up to a coordinate change. In effect, the bulk solutions are rigid, and all dynamics

happen at the boundary. Thus, the desired non-local term is unlikely to appear unless the

problem is modified, e.g. by adding some matter fields.
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The type of matter that will be used represents certain geometric observables. In

fact, no new fields are necessary if we give up diffeomorphism covariance. Recall that the

effective action in the SYK model involves the conformal time ϕ as well as the physical

time τ ∝
∫ √

gϕϕ dϕ. The bulk analogue of ϕ is a complex coordinate z with respect to

which the metric is conformal:

dℓ2 = e2ρ dz dz̄, |z| 6 1. (7.3)

It is a well-known fact that any Riemannian metric on the unit disk can be represented in

this form and that such a representation is unique up to linear fractional maps z 7→ az+b
cz+d .

Now, we can define ϕ in terms of the boundary value of z, i.e. z|∂D = eiϕ. Thus, ϕ(τ) is a

non-local observable that depends on the metric in the whole disk.

The simplest approach is to consider the variational problem in the class of met-

rics (7.3). It has fewer equations of motion and more solutions than the usual, generally

covariant problem with the fields g and Φ. Specifically, the energy-momentum tensor of

the dilaton field need not vanish; only its trace has to be zero. This result may seem para-

doxical because any metric is conformal in suitable coordinates, and an arbitrary variation

δg is equivalent to a conformal variation up to an infinitesimal coordinate change. How-

ever, such a coordinate change also acts on the boundary. If the boundary metric is not

constrained, then indeed, the conformal problem is equivalent to the generally covariant

one. But if gϕϕ|∂D as a function of ϕ is fixed, then only a subset of general variations is

allowed in the conformal case, and threfore, more stationary configurations exist.

To restore the diffeomorphism covariance, we define the model not using the conformal

coordinates (z, z̄), but rather, a pair of complex conjugate scalar field (w, w̄) such that

w = z (and hence w̄ = z̄) on-shell. The corresponding term IM is designed to constrain

w, w̄ by means of Lagrange multiplier fields, Q+ (with spin +1) and Q− (with spin −1).

Specifically,

IM[g, w, w̄,Q+, Q−] = − 1

π

∫

D

(
Q+∇−w +Q−∇+w̄

)√
g d2x, (7.4)

where ∇+, ∇− are proportional to the partial derivatives with respect to z and z̄, see

below. The equation of motion ∇−w = 0 implies that w is a holomorphic function of z. If

we also require that w|∂D = eiϕ, then w = z in the whole disk.

Let us summarize the problem. We consider Euclidean action (7.1) with matter

term (7.4), where (w, w̄) and (Q+, Q−) are complex conjugate pairs. The boundary condi-

tions are

Φ|∂D = Φ∗, w|∂D = eiϕ, (7.5)

whereas gϕϕ|∂D is set to an arbitrary function of ϕ. The goal is to find the effective action,

i.e. the stationary value of I with respect to bulk degrees of freedom.

7.2 The operators ∇+, ∇− and other geometric objects

Let (v1(x), v2(x)) be an orthonormal frame (“tetrad”) that smoothly depends on the point

x, and let z = x1+ ix2 and z̄ = x1− ix2. We also define the vectors v+, v− that are related
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to v1, v2 as (∂z, ∂z̄) to (∂x1 , ∂x2):

v+ =
1

2
(v1 − iv2), v− =

1

2
(v1 + iv2). (7.6)

The dual frame is denoted by (θ+, θ−). Thus,

gαβv
α
a v

β
b = ηab, gαβ = ηabθ

a
αθ

b
β , where

(
η++ η+−
η−+ η−−

)
=

1

2

(
0 1

1 0

)
. (7.7)

In particular, if the metric is conformal, i.e. dℓ2 = e2ρ
(
(dx1)2 + (dx2)2

)
= e2ρdz dz̄, then

the frames (v1, v2) and (v+, v−) can be chosen as follows:

(
v11 v

1
2

v21 v
2
2

)
=

(
vz+ vz−
vz̄+ vz̄−

)
= e−ρ

(
1 0

0 1

)
. (7.8)

In two Euclidean dimensions, spin corresponds to irreducible representations of SO(2)

or its universal cover. Such representations are one-dimensional and characterized by a

number ν. By definition, the infinitesimal counterclockwise rotation Λ acts on the spin

as the multiplication by −iν. A ν-spinor on D is represented relative to (v+, v−) by

a complex-valued function ψ. A general gauge transformation, i.e. the counterclockwise

rotatation of the local frame by angle ξ = ξ(x),

(v+, v−) →
(
eiξv+, e

−iξv−
)

(7.9)

takes ψ to eiνξψ. A spin connection is described by the set of coefficients

ω a
α b = ωαΛ

a
b, where

(
Λ+

+ Λ+
−

Λ−
+ Λ−

−

)
=

(
i 0

0 −i

)
. (7.10)

The gauge transformation (7.9) changes ωα to ωα + ∂αξ. The covariant derivative of a

ν-spinor is given by the equation

Dαψ = (∂α − iνωα)ψ. (7.11)

Finally, we define the operators that increase or decrease the spin by 1:

∇± : ν-spinors → (ν ± 1)-spinors, ∇±ψ = vα±Dαψ. (7.12)

Note that ∇+ and ∇− are gauge-invariant, i.e. they commute with gauge transformations.

The commutator between these operators is given by the curvature:

(∇+∇− −∇−∇+)ψ = −ν
4
Rψ, where ψ is a ν-spinor. (7.13)

For convenience, we give some explicit formulas in conformal coordinates:

(ωz, ωz̄) =
(
−i∂zρ, i∂z̄ρ

)
, (7.14)

R = −2∇2ρ = −8e−2ρ∂z∂z̄ρ, (7.15)

∇+ψ = e(−1+ν)ρ ∂z(e
−νρψ), ∇−ψ = e(−1−ν)ρ ∂z̄(e

νρψ) (ψ is a ν-spinor). (7.16)
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The metric and extrinsic curvature on the boundary of the unit disk are given by these

expressions:

gϕϕ = e2ρ, K = g−1/2
ϕϕ (1 + ωϕ) = e−ρ + nγ∇γρ, (7.17)

where n is the unit normal vector.

7.3 Variation of the action

Recall that the Euclidean action I = I[g,Φ, w, w̄, Q+, Q−] is as follows:

I=
1

4π

∫

D

(
−ΦR+U(Φ)

)√
g d2x− 1

2π

∫

∂D
ΦK

√
gϕϕ dϕ−

1

π

∫

D

(
Q+∇−w+Q−∇+w̄

)√
g d2x.

(7.18)

In this subsection, we consider the boundary values of gϕϕ, Φ, and w as arbitrary functions

of ϕ, with the technical assumption that w|∂D maps the unit circle to the boundary of

some complex domain while preserving orientation. The more specific conditions (7.5) will

be imposed later.

Taking the variational derivative of the action with respect to Φ, (w, w̄), and (Q+, Q−)
gives the following equations of motion:

R = U ′(Φ) (7.19)

∇−w = 0, ∇+w̄ = 0, (7.20)

∇−Q+ = 0, ∇+Q− = 0. (7.21)

Equation (7.20) implies that z 7→ w(z) is a conformal map from disk D to the previously

mentioned domain. The last pair of equations is, actually, subsumed by those for the

energy-momentum tensor,

(TG + TM)µν = 0, (7.22)

where TG and TM are the gravitational part (due to the dilaton) and the matter contribu-

tion, respectively.

The energy-momentum tensor for the pure dilaton gravity with U(Φ) = 0 is given

by (B.10) in appendix B. In two dimensions, the Einstein tensor Rαβ − 1
2Rgαβ vanishes.

Adding the contribution from U(Φ), we get this result:

(TG)µν =
1

2π

((
∇µ∇ν − gµν∇2

)
Φ− 1

2
gµνU(Φ)

)
, (7.23)

that is,

(TG)+− = (TG)−+ =
1

4
(TG)

µ
µ, (TG)

µ
µ = − 1

2π

(
∇2Φ+ U(Φ)

)
, (7.24)

(TG)++ = e−2ρ(TG)zz =
1

2π
∂z(e

−2ρ∂zΦ) =
1

2π
∇+∇+Φ,

(TG)−− = e−2ρ(TG)z̄z̄ =
1

2π
∂z̄(e

−2ρ∂z̄Φ) =
1

2π
∇−∇−Φ.

(7.25)
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The energy-momentum tensor of matter has two nonzero components, (TM)++ =

− 1
2πQ+(∇+w) and (TM)−− = − 1

2πQ−(∇−w̄). Thus, the condition TG + TM = 0 can

be written as follows:

∇2Φ+ U(Φ) = 0 (7.26)

Q+ = 2π(∇+w)
−1(TG)++, Q− = 2π(∇−w̄)

−1(TG)−−. (7.27)

Note that equations (7.25), (7.26) and (7.19) (where R = −2∇2ρ) imply that

∇−(TG)++ = e−3ρ∂z̄(TG)zz = 0, ∇+(TG)−− = e−3ρ∂z(TG)z̄z̄ = 0, (7.28)

hence (TG)zz and (TG)z̄z̄ are holomorphic function of z and z̄, respectively. It is now easy

to see that (7.21) follows from the other equations of motion.

Let us also calculate the total variation of the action when that the bulk equations are

satisfied but the boundary values of gϕϕ, Φ, and (w, w̄) change:

δI =

∫

∂D

(
E(δρ)− K

2π
(δΦ)− T⊥w(δw)− T⊥w̄(δw̄)

)
√
gϕϕ dϕ (7.29)

where

E = − 1

2π
nγ∇γΦ (7.30)

may be called the “surface energy” and

T⊥w = nγ(∇+w)
−1(TG)γ+, T⊥w̄ = nγ(∇−w̄)

−1(TG)γ− (7.31)

are components of the gravitational energy-momentum tensor just near the boundary. The

latter are linear combinations of

T⊥⊥ = e2iϕ(TG)++ + e−2iϕ(TG)−−, T⊥‖ = ie2iϕ(TG)++ − ie−2iϕ(TG)−−, (7.32)

which generate normal deformations and diffeomorphisms of the circle, respectively. These

are explicit formulas for T⊥⊥ and T⊥‖:

T⊥⊥ = KE− 1

4π
U(Φ)− 1

2π
∂2ℓΦ, T⊥‖ = −∂ℓE−K

2π
∂ℓΦ, where dℓ =

√
gϕϕ dϕ. (7.33)

Note that TG in the whole disk can be expressed in terms of T⊥‖ on its boundary.

For a motivating idea, we recall that any variation of the bulk metric is equivalent to a

conformal variation up to a coordinate change. Let us consider an infinitesimal coordinate

transformation that is conformal except at point z:

δz′ = a

(
ǫ
(1− z̄z′)3

z′ − z
− ǭ

(z′ − z)3

1− z̄z′

)
, δz̄′ = a

(
−ǫ (z̄

′ − z̄)3

1− zz̄′
+ ǭ

(1− zz̄′)3

z̄′ − z̄

)
, (7.34)

where ǫ and ǭ are infinitely small parameters and a = 1
2π (1 − zz̄)−3. These equations are

obtained from the condition that ∂z̄′(δz
′) and ∂z′(δz̄′) are proportional to the delta-function

at point z and that the vertor field (δz′, δz̄′) is tangent to the unit circle. On the one hand,
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the variation of the action under this transformation is equal to ǫ Tzz(z) + ǭ Tz̄z̄(z̄). But

it can also be expressed in terms of the vector field on the boundary, which should be

integrated against T⊥‖. From these considerations, we find that

(TG)zz(z) =
1

2πi(1− zz̄)3

∫

∂D

(1− z̄eiϕ)3

eiϕ(eiϕ − z)
gϕϕT⊥‖ dϕ, (7.35)

and similarly for (TG)z̄z̄(z̄). This equation can be verified by using the fact that gϕϕT⊥‖ is

equal to ie2iϕ(TG)zz − ie−2iϕ(TG)z̄z̄, where (TG)zz is holomorphic and (TG)z̄z̄ is antiholo-

morphic.

7.4 Static solutions and thermodynamics

This section is largely based on the work by other authors. Static solutions (in the

Lorentzian signature) were studied in [36], and the connection to thermodynamics was

made in unpublished notes by Maldacena [51].

We now use the boundary condition Φ|∂D = Φ∗, whereas the fields w, w̄, Q+, Q− will

not play any role. There is no constraint on the metric, except that the total boundary

length is fixed: ∫

∂D
dℓ =

∫

∂D

√
gϕϕ dϕ = L. (7.36)

This setting corresponds to thermal equilibrium, where L is the inverse temperature. The

corresponding solutions will be called “static”. Since the first variation of the action is zero

whenever
∫
∂D(δρ)

√
gϕϕ dϕ = 0, the surface energy E is constant. It follows that T⊥‖ and

TG are zero.

The vanishing of TG has two important consequences. First, ξµ = ǫµν∇νΦ is a Killing

vector [52]. Second, the following quantity is constant [36]:

C = −gµν(∇µΦ)(∇νΦ) +W (Φ), (7.37)

where

W (Φ) = −
∫ Φ

0
U(φ) dφ (7.38)

Both statements are verified by direct calculation:

Lξ Φ = 0, (Lξ g)αβ = 2πǫµν
(
(TG)ανgβµ + (TG)βνgαµ

)
, (7.39)

∇µC = −4π
(
(TG)µα − gµα(TG)

γ
γ

)
gαβ(∇βΦ), (7.40)

where we have used (7.23).

When written in conformal coordinates (z, z̄), the Killing vector ξ represents an in-

finitesimal conformal map, i.e. ξz is a holomorphic function of z. Furthermore, ξ is tangent

to the unit circle because Φ|∂D is constant. Hence, ξz = −i(c−1 + c0z + c1z
2), where

c∗m = c−m. There are four cases: (1) the quadratic function ξz has one zero inside and the

other outside the unit circle; (2) both zeros lie on the unit circle; (3) there is one double

zero on the unit circle; (4) ξ is identically zero. In the last case, Φ = Φ∗ in the whole disk,
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which is only possible if U(Φ∗) = 0. Cases 2 and 3 are excluded because such ξ cannot

preserve a nonsingular metric on the circle. Hence, ξ is nontrivial but vanishes at some

point z0 inside the unit disk. By applying a linear fractional map z 7→ az+b
cz+d , we can arrange

that z0 = 0. Thus, ξ is an infinitesimal rotation about the origin.

We will now work in the polar coordinates (r, ϕ) such that z = reiϕ. Due to the

rotational symmetry, Φ and ρ depend only on r. Thus,

ξr = 0, ξϕ = −e−2ρ ∂rΦ = −cr, (7.41)

C = −e−2ρ(∂rΦ)
2 +W (Φ) =W (Φ0), (7.42)

where c is some constant and Φ0 = Φ|r=0. The value of c can be determined from the

condition that Φ is smooth at the center of the disk, or more exacly, that Φ− Φ0 ∼ r2 for

small r. In this way, we obtain the following equations:

∂rΦ =
W (Φ)−W (Φ0)

cr
, e2ρ =

W (Φ)−W (Φ0)

c2r2
, where c =

−U(Φ0)

2
. (7.43)

Note that the dilaton equation of motion R = U ′(Φ) (where R = −2e−2ρ(∂2r + r−1∂r)ρ)

follows automatically.

Now, let us express some quantities that are relevant to thermodynamics, namely, the

boundary length, energy, extrinsic curvature, and total action:

L = 2πeρ|r=1 = 4π

√
W (Φ∗)−W (Φ0)

−U(Φ0)
, (7.44)

E = − 1

2π
(e−ρ∂rΦ)|r=1 = − 1

2π

√
W (Φ∗)−W (Φ0), (7.45)

K = (e−ρ
(
1 + r∂rρ)

)∣∣
r=1

=
−U(Φ∗)

2
√
W (Φ∗)−W (Φ0)

, (7.46)

I =
1

2

∫ (
−ΦU ′(Φ) + U(Φ)

)
e2ρr dr − L

2π
Φ∗K =

2(W (Φ∗)−W (Φ0))

U(Φ0)
− Φ0. (7.47)

The minimum dilaton value Φ0 is interpreted as entropy, L as the inverse temperature, and

we may write I = LF , where F is the free energy. As expected, these relations hold:

I = LE − Φ0, δI = E δL− LK

2π
δΦ∗. (7.48)

The last equation is a special case of (7.29).

It is desirable to eliminate the dependence on the cutoff Φ∗ as much as possible and to

compare the results with the SYK model. For these purposes let us define the renormalized

quantities

β̃ = b−1
1 L, Ẽ = b1(E + b2), Ĩ = I + b2L, (7.49)

where

b1 = 4π
√
W (Φ∗), b2 =

√
W (Φ∗)

2π
. (7.50)
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We have fixed the normalization of b2 by requiring that b2L subtracts the leading diver-

gence as Φ∗ → ∞ in I. The normalization of b1 is not significant and has been chosen

arbitrarily. Then

β̃ =
1

−U(Φ0)

√
1− W (Φ0)

W (Φ∗)
, Ẽ = 2W (Φ∗)

(
1−

√
1− W (Φ0)

W (Φ∗)

)
, Ĩ = β̃Ẽ − Φ0. (7.51)

The interesting limit is when W (Φ∗) ≫W (Φ0), which is roughly the same as Φ∗ ≫ Φ0. In

this case,

β̃ ≈ 1

−U(Φ0)
, Ẽ ≈W (Φ0), Ĩ ≈ W (Φ0)

−U(Φ0)
− Φ0 (7.52)

To summarize, the energy is a function of entropy, Ẽ =W (Φ0). The other equations follow

from that and thermodynamic identities.

We are primarily interested in the case U(Φ) = −2Φ−αΦ2, W (Φ) = Φ2+ α
3Φ

3, where

α is small and Φ∗ is large. In the crudest approximation, β̃ ≈ 1/(2Φ0). These numbers

will be used as small parameters:

α/β̃ ∼ αΦ0 ≪ 1, (β̃Φ∗)
−1 ∼ Φ0/Φ∗ ≪ 1, β̃ ∼ 1/Φ0 ≪ 1. (7.53)

The first two of them quantify nonlinearity at the center of the disk due to the −αΦ2

term in the dilaton potential and the proximity of the cutoff. (Note that their ratio αΦ∗ is

arbitrary.) The last condition is needed to make sure that quantum fluctuations are small.

In terms of the SYK model, the parameters α/β̃ and β̃ are analogous to (βJ)−1 and βJ/N ,

respectively. Under the stated assumptions, we obtain the following expression:

Ĩ(β̃) = − 1

4β̃

(
1− α

6β̃
+O

(
(α/β̃)2 + (β̃Φ∗)

−2
))

. (7.54)

7.5 Effective boundary action

We now find the effective boundary action resulting from evaluating on-shell the bulk

action (7.1) with the matter term (7.4). After integrating out the Lagrange multiplier

fields Q±, the action can be regarded as a functional of g and Φ, where the metric g is

conformal in coordinates (z, z̄) such that z|∂D = eiϕ. Thus

I =
1

4π

∫

D

(
−ΦR+ U(Φ)

)√
g d2x− 1

2π

∫

∂D
ΦK

√
gϕϕ dϕ, (7.55)

where U(Φ) = −2Φ− αΦ2 and boundary conditions are

gϕϕ = ε(ϕ)−2, Φ|∂D = Φ∗. (7.56)

Note that ε(ϕ) is not the same as in the SYK model. The comparison should be in terms

of renormalized quantities, which we define by analogy with equation (7.49):

ε̃(ϕ) = 4π
√
W (Φ∗) ε(ϕ), Ĩ = I +

√
W (Φ∗)

2π
L. (7.57)
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Thus β̃ =
∫
ε̃−1dϕ while L =

∫
ε−1dϕ. We will derive the following expression for the

effective action, assuming αΦ∗ ≪ 1:

Ĩ =− 1

4π

∫
dϕ

2π
ε̃−1

(
ε̃2

2
− ε̃′2

2
+ ε̃ε̃′′

)

− α

8π2

[∫
dϕ1

2π

dϕ2

2π

ε̃(ϕ1)ε̃(ϕ2)

ϕ4
12

(
ln

(
ϕ2
12

α2ε̃(ϕ1)ε̃(ϕ2)

)
+ c̃

)]

fin.

+O
(
Φ−2
∗ ε̃3

) (7.58)

where ϕ12 = 2 sin
(
(ϕ1 − ϕ2)/2

)
, the subscript fin. was defined in (6.24), and

c̃ =
6

αΦ∗
+ 2 ln(4παΦ∗)−

2

3
. (7.59)

The first integral in the expression for the action and the first term in c̃ are found by solving

the α = 0 problem. (Note that the α contained in the second term of c̃ cancels with that

in the logarithm.) The non-local action and the other terms in c̃ follow from the αΦ2 term

in the dilaton potential U .

When the value of α is nonzero but small, we use perturbation theory. It would be

more natural to assume that αΦ∗ ∼ 1 or even take the limit Φ∗ → ∞. In this regime,

strong nonlinearity at Φ & α−1 is expected to provide an effective cutoff, whereas Φ∗
would become irrelevant. Thus, the error bound should be O(α2ε̃3) and c̃ replaced with

a constant. However, we have no means of calculating it. Up to this unknown constant,

the matching of the action (7.58) in this non-linear regime with the SYK action in (1.23)

and (1.24) is self-evident, with N−1ε̃ ∼ αSεSYK and Nα ∼ γ/α2
S . In the language of

AdS/CFT, the dilaton Φ is dual to the Schwarzian operator O (3.21): the on-shell solution

for Φ takes the form of the source εSYK integrated against the bulk-boundary propagator

for a bulk scalar field with mass m2 = 2 (see (7.77), (7.81)), and εSYK sources O in the

Schwarzian action (5.44).

Before proceeding with the derivation of (7.58), let us check it in the static case

where ε̃ = 2π/β̃ does not depend on ϕ. The first term gives − 1
4π

(
ε̃
2

)
= − 1

4β̃

and the second − α
8π2 (2ε̃

2)
(
− 1

24

)
= α

24β̃2
, where the coefficient − 1

24 corresponds to
[∫ dϕ

2π

(
2 sin ϕ

2

)−4 |2 sin ϕ
2 |
]
fin.

, see below (6.25). This result is in agreement with (7.54).

7.5.1 The α = 0 case

If α = 0, the equations of motion and the on-shell action become

R = −2, ∇2Φ = 2Φ, Ion-shell, α=0 = −Φ∗
2π

∫

∂D
K dℓ, (7.60)

where dℓ =
√
gϕϕ dϕ is the boundary length element. The equation R = −2 implies the

hyperbolic plane geometry; thus, this action describes the deformation energy of a curve

(“1D membrane”) in the hyperbolic plane.9 The metric is given by the Poincare disk model

9By the Gauss-Bonnet theorem,
∫

Kdl equals the encolsed area plus 2π. Maximazing the area over

curves of a given length is equivalent to minimizing the length while keeping the area fixed. The latter

setting may be described as a “droplet” with a surface tension.
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Figure 4. Map of the physical space (disk D) to the region D′ of the Poincare disk.

in suitable coordinates:10

dℓ2 =
4

(1− ww)2
dw dw, |w| < 1. (7.61)

The physical space (represented by the unit disk D) is mapped to a subregion D′ of the
Poincare disk by some conformal map ψ, see figure 4. We will use modified polar coordinates

(y, ϑ) such that

w =
√
y eiϑ, w =

√
y e−iϑ, dℓ2 = (1− y)−2

(
y−1dy2 + 4y dϑ2

)
. (7.62)

The boundary of D′ is described by the equation y = y∗(ϑ) with some function y∗. We

also define analogously to ε(ϕ) = dϕ/dl on D (cf. (7.56))

δ(ϑ) =
dϑ

dℓ
(7.63)

so that
∫
Kdℓ =

∫
δ−1Kdϑ. In this notation,

δ−1 =
2
√
y∗

1− y∗

√
1 + γ2, δ−1K =

1 + y∗
1− y∗

+
d

dϑ
arctan γ, where γ = − 1

2y∗

dy∗
dϑ

. (7.64)

We assume that the boundary is close to the unit circle, and therefore, δ ≪ 1, ϑ ≈ ϕ. So

both y∗ and K can be expressed in powers of δ and its derivatives with respect to ϑ:

y∗ = 1−2δ+2δ2+O
(
δ3
)
, δ−1K = δ−1

(
1 +

δ2

2
− δ′2

2
+O

(
δ4
))

+full derivative. (7.65)

Integrating δ−1K against dϑ gives

Ion-shell, α=0 = −Φ∗
2π
L− Φ∗

∫
dϑ

2π
δ−1

(
δ2

2
− δ′2

2
+ δδ′′

)
+O(Φ∗δ

3). (7.66)

The expression in parentheses is equal to Sch(eiϑ, ℓ), which is in agreement with the result

in [21–23].

10The coordinates (w,w) should not be confused with the matter fields that were denoted by the same

letters but are currently equal to (z, z̄).
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However, the action needs to be represented in terms of ϕ rather than ϑ. These

variables are related by a conformal map ψ, which is uniquely defined if we require that

ψ(0) = 0 and ψ′(0) is real. Under these conditions,

ψ(z) = zef(z), f(z) =
∞∑

k=0

ckz
k, c0 ∈ R, (7.67)

y∗ = |ψ(eiϕ)|2 = e2u(ϕ), u(ϕ) = ℜf(eiϕ), (7.68)

ϑ = ℑ(lnψ(eiϕ)) = ϕ+ v(ϕ), v(ϕ) = ℑf(eiϕ). (7.69)

For our purposes, it is sufficient to know that

δ ≈ ε ≈ −u(ϕ), ϑ− ϕ = v(ϕ), (7.70)

where the approximate equality holds in the leading order in ε and the functions u, v are

related by the Hilbert transform:

v(ϕ) = p.v.

∫
dϕ1

2π
cot

(
ϕ− ϕ1

2

)
u(ϕ1). (7.71)

Now, we use the transformation law of the Schwarzian

Sch(p, s) = Sch(p, r)

(
dr

ds

)2

+ Sch(r, s) (7.72)

to find the difference between Sch(eiϑ, ℓ) = δ2

2 − δ′2

2 + δδ′′ and the analogous function

Sch(eiϕ, ℓ) in terms of ε:

Sch(eiϑ, ℓ)− Sch(eiϕ, ℓ) =
1

2

(
dϑ

dℓ

)2

− 1

2

(
dϕ

dℓ

)2

+ Sch(ϑ, ϕ)

(
dϕ

dℓ

)2

≈
(
v′(ϕ) + v′′′(ϕ)

)(dϕ
dℓ

)2

≈ 12

[∫
dϕ1

2π

(
2 sin

(
ϕ− ϕ1

2

))−4

ε(ϕ1)

]

fin.

(
dϕ

dℓ

)2

.

(7.73)

Thus,

Ion-shell, α=0 =− Φ∗
2π
L− Φ∗

∫
dϕ

2π
ε−1

(
ε2

2
− ε′2

2
+ εε′′

)

− 12Φ∗

[∫
dϕ1

2π

dϕ2

2π

ε(ϕ1)ε(ϕ2)

ϕ4
12

]

fin.

+O(Φ∗ε
3).

(7.74)

Applying the renormalization ε̃ = 4πΦ∗ε, Ĩ = I + Φ∗L/(2π), we obtain the first term in

equation (7.58) and the first term in (7.59).

7.5.2 Terms proportional to α

The variation of the on-shell action with respect to α with fixed boundary data satisfies

the equation δIon-shell =
(
∂I
∂α

)
δα. Hence, in the linear order in α, we have

Ion-shell − Ion-shell, α=0 ≈ − α

4π

(∫

D′

d2x
√
gΦ2

)∣∣∣∣
α=0

. (7.75)
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To calculate the integral, we will use the Poincare metric in the (w,w) or (y, ϑ) coordinates

and solve the equation of motion for the dilaton, ∇2Φ = 2Φ. The general solution can be

written in terms of Fourier modes,

Φ(y, ϑ) = Φ∗
∑

n

fn bn(y)e
inϑ, bn(y) = y|n|/2(1− y)−1

(
1 + y + |n|(1− y)

)
, (7.76)

where the coefficients fn are arbitrary, or using the boundary-to-bulk propagator:

Φ(w,w) = Φ∗

∫
dϑ1
2π

(1− ww)2

(1− we−iϑ1)2(1− weiϑ1)2
f(ϑ1), where f(ϑ) =

∑

n

fne
inϑ. (7.77)

The main technical difficulty is that the integral of Φ2 diverges near the boundary of the

unit disk, and thus has to be restricted to the region D′. To isolate the divergent terms

and to locate the boundary of D′ (i.e. the line where Φ(y, ϑ) = Φ∗), we expand Φ in powers

of 1− y. This is the expansion of the n-th Fourier mode:

bn(y) =
2

1− y

(
1− 1

2
(1− y)− n2

8
(1− y)2 +

|n|(|n| − 2)(2|n|+ 1)

48
(1− y)3 + · · ·

)
. (7.78)

Summing over n yields this expression:

Φ(y, ϑ) =
2Φ∗
1− y

(
f − f

2
(1− y) +

f ′′

8
(1− y)2 +

(
f ′′

16
+
h

2

)
(1− y)3 + · · ·

)
, (7.79)

where

h(ϑ) =

[∫
dϑ1
2π

(
2 sin

(
ϑ− ϑ1

2

))−4

f(ϑ1)

]

fin.

=
∑

n

|n|(n2 − 1)

12
fne

inϑ. (7.80)

Let us outline the subsequent strategy. In the first approximation,

f(ϑ) ≈ 1− y∗(ϑ)
2

≈ δ(ϑ) ≈ ε(ϕ), ϑ ≈ ϕ; (7.81)

the necessary corrections will be determined later. We focus on two types of terms in the

effective action: all leading terms defined with O(ε2) precision and the non-local terms

proportional to ε2. The former arise from the divergent part of the integral of Φ2 over

the unit disk that is truncated at y = y∗(ϑ). Such terms are expressed as boundary

integrals of some local quantities. They will cancel upon the renormalization, leaving only

the local term from the α = 0 action, but we want to get them correctly as a consistency

check. Nonlocal contributions to the integral generally come from the central part of the

disk. There is also a mixed contribution, wherein the non-local correction to the relelation

between f(ϑ) and y∗(ϑ) due to the function h in (7.79) slightly changes the magnitude of

the most significant local term. All calculations are done up to local order O(ε2) terms.

However, the non-local contribution coming from the central part of the disk will turn out

to have the same form as the non-local action we found in (6.24), and there can be no

local terms of order ε2 coming from the UV completion of such an action, as we argued in

footnote 8 on page 38. Thus the final expression we obtain will be O(ε3) accurate.
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Local terms. These are obtained by writing ∆I = Ion-shell − Ion-shell, α=0 as an integral

in the (y, ϑ) coordinates and expanding the integrand in powers of 1 − y∗. We keep all

negative powers up to and including (1− y∗)−2, which can be obtained from the first three

terms in (7.79). Thus,

∆I = −α
∫
dϑ

2π

∫ y∗(ϑ)

0
dy

Φ2

(1− y)2

≈ −αΦ2
∗

∫
dϑ

2π

(
f2

6

(
1− y∗

2

)−3

− f2

2

(
1− y∗

2

)−2

+
f2 + ff ′′

2

(
1− y∗

2

)−1
)
,

(7.82)

where y∗ satisfies the equation Φ(y∗(ϑ), ϑ) = Φ∗. On the other hand, y∗ can be expressed in

terms of δ = dϑ/dℓ using the Poincare metric. (Such an expression was previously obtained

in (7.65) but here we need more accuracy.) We proceed with the calculation:

1− y∗
2

= δ

(
1− δ +

1

2

(
δ2 + δ′2

)
+O(δ3)

)
, (7.83)

f = δ

(
1− 1

2

(
δ2 − δ′2 + δδ′′

)
+O

(
δ3
))

, (7.84)

(∆I)local = −αΦ
2
∗

6

∫
dϑ

2π
δ−1

(
1 +

δ2

2
− δ′2

2
+ 2δδ′′ +O(δ3)

)
=
αΦ∗
6

Ion-shell, α=0. (7.85)

(The coefficient 2 in front of δδ′′ is not important because this expression is multiplied by

δ−1 and becomes a full derivative.)

Nonlocal contribution to the integral. Let us express Φ(w,w) using the boundary-

to-bulk propagator from (7.77) and perform the integral over the region D′:

∆I = − α

4π

∫

D′

d2x
√
gΦ2 = −αΦ2

∗

∫
dϑ1
2π

∫
dϑ2
2π

ker(ϑ1, ϑ2) f(ϑ1)f(ϑ2), (7.86)

where

ker(ϑ1, ϑ2) =
1

π

∫

D′

(dℑw)(dℜw)
(

1− ww

(1− we−iϑ1)(1− weiϑ1)(1− we−iϑ2)(1− weiϑ2)

)2

.

(7.87)

We only consider the contributions from pairs of point ϑ1, ϑ2 that are sufficiently far apart.

In this case, the integral diverges logarithmically as w approaches eiϑ1 or eiϑ2 , with the

cutoff determined by y∗(ϑ1) or y∗(ϑ2), respectively. The integral can be evaluated using a

conformal map W from the upper half-plane {ζ : ℑζ ≥ 0} to the unit disk {w : |w| ≤ 1}
such that W (0) = eiϑ1 and W (∞) = eiϑ2 , see figure 5. Specifically,

w =W (ζ) =
eiϑ2/2ζ − eiϑ1/2

e−iϑ2/2ζ − e−iϑ1/2
, (7.88)

This leads to

ker(ϑ1, ϑ2) =
1

π
ϑ−4
12

∫

W−1(D′)
(dℜζ)(dℑζ)

(
i(ζ − ζ̄)

ζζ̄

)2

≈ 2ϑ−4
12

∫ Ymax

Ymin

Y −1dY, (7.89)
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Figure 5. To evaluate the non-local part of the action, we identify the domain of the Poincare disk

with the upper half-plane and approximate D′ as shown on the right-hand-side.

where

ϑ12 = 2 sin
ϑ1 − ϑ2

2
, Y = ℑζ, Ymin =

1− y∗(ϑ1)
2|ϑ12|

, Ymax =
2|ϑ12|

1− y∗(ϑ2)
. (7.90)

Thus, we find that the on-shell action contains the non-local term

(∆I)non-local = −2αΦ2
∗

[∫
dϑ1
2π

dϑ2
2π

δ(ϑ1)δ(ϑ2)

ϑ412
ln

ϑ212
δ(ϕ1)δ(ϕ2)

]

fin.

. (7.91)

Mixed contribution. Let us revisit the 1 − y expansion of Φ near the boundary,

see (7.79). This time we are interested in the effect of the non-local term containing

h, which was previously ignored. If the boundary y = y∗(ϑ) is fixed, then the addition of

the h term changes the value of f by

fh = −h
2
(1− y∗)

3 ≈ −4hδ3. (7.92)

Replacing f by f + fh in (7.82) modifies the result by this amount:

(∆I)mixed = −αΦ
2
∗

6

∫
dϑ

2π
2f fh δ

−3 =
4

3
αΦ2

∗

[∫
dϑ1
2π

dϑ2
2π

δ(ϑ1)δ(ϑ2)

ϑ412

]

fin.

. (7.93)

Putting everything together. First, we add the local term (7.85) to the expres-

sion (7.66) or (7.74) for the α = 0 effective action. Then we take into account the non-local

and mixed contributions. Because they are higher order, it is safe to replace in them δ

with ε and ϑ with ϕ. The result is as follows:

Ion-shell =−
(
1 +

αΦ∗
6

)
Φ∗

(∫
dϕ

2π
ε−1

(
1 +

ε2

2
− ε′2

2
+ εε′′

)

+ 12

[∫
dϕ1

2π

dϕ2

2π

ε(ϕ1)ε(ϕ2)

ϕ4
12

]

fin.

)

− 2αΦ2
∗

[∫
dϕ1

2π

dϕ2

2π

ε(ϕ1)ε(ϕ2)

ϕ4
12

(
ln

(
ϕ2
12

ε(ϑ1)ε(ϑ2)

)
− 2

3

)]

fin.

+O(Φ∗ε
3). (7.94)

Here we assume that αΦ∗ ≪ 1 so that any term proportional to αΦ2
∗ε

3 is within the

error bound. As already mentioned, local terms of O(αΦ2
∗ε

2), which would be part of
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the UV completion of the non-local integral above, are forbidden. The renormalization

ε̃ = 4π
√
W (Φ∗) ε, Ĩ = I +

√
W (Φ∗)L/(2π) where

√
W (Φ∗) ≈

(
1 + αΦ∗

6

)
Φ∗ yields the

expression (7.58).

8 Open questions

1. We have divided the degrees of freedom of the SYK model, described by the function

G̃, into the soft mode ϕ and h 6= 2 discrete and continuous series representations of

PSL(2,R) (see section 5.2). While the soft mode is responsible for the leading four-

point function, the next order terms are mixed. Is there a better way to separate

the variables? The more specific problem is that the definition of ϕ or the related

physical observable O(θ) = Sch(eiϕ, θ) is non-local. Perhaps one could define O(θ)

as the coefficient in front of the (θ1 − θ2)
2 term in the expansion of G̃(θ1, θ2), but we

found it difficult to implement this idea.

2. Is it possible to understand the correction to the Lyapunov exponent as some sort

of friction coefficient in an effective model? What does it correspond to in the bulk

picture?

3. As Witten noticed [32], “the average of a quantum system over quenched disorder is

not really a quantum system”. However, the replica-diagonal effective action works

pretty well. When does it start producing nonsensical results such as violation of

a unitarity bound? (We do not mean the non-unitarity of the S-matrix discussed

in section 4, which is a failure of a much cruder model.) How bad are the resulting

problems? If they are mild, should we consider violation of unitarity in the real world?

4. Assuming that the replica-diagonal action is consistent under given circumstances,

how do we construct an effective Hilbert space not using quenched disorder?
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A Derivation of the effective action I[Σ, G]

Let us consider the q = 4 case of the SYK Hamiltonian:

Ĥ = − 1

4!

∑

j,k,l,m

Jjklmχ̂jχ̂kχ̂lχ̂m, J2
jklm =

3!J2

N3
. (A.1)
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The exact form of probability distribution is not very important when N is large, but we

will assume that it is Gaussian. The averaging of an arbitrary function f over J = (Jjklm)

can be performed as follows:

f(J) =

∫
DB f

(√
3!J2

N3 B

)
, (A.2)

where DB = exp

(
− 1

2

∑

j<k<l<m

B2
jklm

)
∏

j<k<l<m

dBjklm√
2π

. (A.3)

The average value of the free energy is given by the formula

βF = −lnZ = − lim
M→0

lnZM

M
. (A.4)

The standard prescription is to find ZM for integer M in an analytic form and then take

M to 0. For each realization J of the disorder, Z(J)M is equal to the partition function

of M replicas of the model. Thus, we consider an extended set of variables:

χ =
(
χα
j : j = 1, . . . , N, α = 1, . . . ,M

)
. (A.5)

In the functional integral formalism, one should actually use the Grassmann variables χα
j (τ)

parametrized by τ ∈ [0, β] with the antiperiodic boundary conditions, χα
j (β) = −χα

j (0).

We proceed with the calculation.

ZM =

∫
DB

∫
Dχ exp


∑

α

∫ β

0
dτ

(
− 1

2

∑

j

χα
j ∂τχ

α
j +

∑

j<k<l<m

√
3!J2

N3 Bjklm χ
α
j χ

α
kχ

α
l χ

α
m

)


=

∫
Dχexp


−1

2

∑

α,j

∫
dτ χα

j ∂τχ
α
j +

3!J2

2N3

∑

j<k<l<m

(∑

α

∫
dτχα

j (τ)χ
α
k (τ)χ

α
l (τ)χ

α
m(τ)

)2



=

∫
Dχexp

(
− 1

2

∑

α,j

∫
dτ χα

j ∂τχ
α
j +

NJ2

8

∑

α,β

∫∫
dτ dτ ′

(
1

N

∑

j

χα
j (τ)χ

β
j (τ

′)

)

︸ ︷︷ ︸
Ξαβ(τ,τ ′)

4
)
.

(A.6)

Here, we are presented with the problem of decoupling the nonlinear term Ξ4, where

Ξ = Ξαβ(τ, τ
′) = 1

N

∑
j χ

α
j (τ)χ

β
j (τ

′). It can be solved using this identity:

f(Ξ) =

∫ +∞

−∞
dx f(x) δ(x− Ξ) =

N

2π

∫ +∞

−∞
dx

∫ +∞

−∞
dy f(x) eiNy(x−Ξ). (A.7)

The last expression may be interpreted as an integral over a particular real plane in the

two-dimensional complex space. The integration surface can be rotated to ensure fast

decay at infinity. For example, one may use the substitution x = u + iv, y = i(u − iv),

where (u, v) runs over R
2. This improves the convergence as the leading term in the
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exponent, iNyx = −N(u2 + v2) is strongly negative. Applying this method to functions

like f(Ξ) = eΞ
4
is still risky, but we will proceed anyway. The integral (A.7) should be

incorporated into the larger expression (A.6) and evaluated in the large N limit using the

saddle point approximation.

There is, actually, a separate instance of Ξ for each degree of freedom, i.e. a combination

of α, β, and τ > τ ′. (The case τ < τ ′ is redundant because Ξαβ(τ, τ
′) = −Ξβα(τ

′, τ).)
The corresponding instances of x and y will be denoted by −Gαβ(τ, τ

′) and −iΣαβ(τ, τ
′),

respectively. We now apply (A.7) to f(Ξ) = exp
(
NJ2

4 Ξ4
)
:

exp

(
NJ2

4

∑

α,β

∫

τ>τ ′

dτ dτ ′ Ξαβ(τ, τ
′)4
)

(A.8)

=

∫
DΣDG exp

(
N
∑

α,β

∫

τ>τ ′

dτ dτ ′
(
J2

4
Gαβ(τ, τ

′)4− Σαβ(τ, τ
′)
(
Gαβ(τ, τ

′) + Ξαβ(τ, τ
′)
)))

,

where the integration measure DΣDG includes the factor iN/(2π) for each degree of free-

dom, so that
∫

DΣDG exp

(
−N

2

∑

α,β

∫
dτ dτ ′Σαβ(τ, τ

′)Gαβ(τ, τ
′)

)
= 1 (A.9)

It remains to combine (A.6) and (A.8), and substitute 1
N

∑
j χ

α
j (τ)χ

β
j (τ

′) for Ξαβ(τ, τ
′).

In the resulting expression, the integral over χ factors into N identical integrals, each

corresponding to a particular value of j. Thus, the result can be written in terms of a

smaller set of Grassmann variables, χ = (χα : α = 1, . . . ,M):

ZM =

∫
DΣDG

(∫
Dχ exp

(
−1

2

∑

α

∫
dτ χα ∂τχ

α − 1

2

∑

α,β

∫
dτ dτ ′Σαβ(τ, τ

′)χα(τ)χβ(τ ′)

+
1

2

∑

α,β

∫
dτ dτ ′

(
J2

4
Gαβ(τ, τ

′)4 − Σαβ(τ, τ
′)Gαβ(τ, τ

′)

)))N
.

The integral over the Grassmann variables χα(τ) is equal to the Pfaffian of the operator

−∂τ − Σ̂. It is, strictly speaking, UV-divergent, but we may use this regularization:

Pf
(
−∂τ − Σ̂

)
= 2M/2 Pf(−∂τ − Σ̂)/Pf(−∂τ ), (A.10)

where the ratio of the two Pfaffians is defined unambigously. In the large N limit, the outer

integrals DΣDG can be performed by finding a saddle point. The result is as follows:

− lnZM = − ln

(∫
DΣDG exp

(
−I(M)[Σ, G]

))
≈ min

Σ
max
G

I(M)[Σ, G], (A.11)

where

I(M)[Σ, G] = N

(
− ln Pf(−∂τ−Σ̂)+

1

2

∑

α,β

∫
dτ dτ ′

(
Σαβ(τ, τ

′)Gαβ(τ, τ
′)−J2

4
Gαβ(τ, τ

′)4
))

(A.12)
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The maximum is attained at the G that satisfies the equation Σ(τ, τ ′) = J2G(τ, τ ′)3, and
the minimization over Σ yields the equation (−∂τ − Σ̂)−1 = Ĝ. Thus, the saddle point

values of G and Σ are exactly the Green function and the self-energy in the mean field

approximation.

Note that the functional integral in (A.11) gives all perturbative 1/N corrections to the

saddle point. However, it might not capture nonperturbative effects because its derivation

involved manipulation of formally divergent integrals. Perhaps one can get the correct

result by carefully choosing the integration surface; this question requires additional study.

The most natural solution for the minimum over Σ is diagonal in replicas:

Σαβ(τ, τ
′) = Σ(τ, τ ′) δαβ . (A.13)

With this ansatz, taking the M → 0 limit is trivial, and (A.11), (A.12) are simplified as

follows:

−lnZ ≈ − lnZ = − ln

(∫
DΣDG exp

(
−I[Σ, G]

))
≈ min

Σ
max
G

I[Σ, G], (A.14)

I[Σ, G] = N

(
− ln Pf(−∂τ − Σ̂) +

1

2

∫
dτ dτ ′

(
Σ(τ, τ ′)G(τ, τ ′)− J2

4
G(τ, τ ′)4

))
. (A.15)

In the mean field approximation, the action (A.15) is equivalent to the full action I(M)

(with M → 0 replicas), provided T > Tglass.

Let us briefly discuss the use of the replica-diagonal approximation beyond mean field.

The functional integral in (A.14) gives the disorder-averaged partition function Z. The high

temperature expansion of − lnZ includes all connected diagrams, whereas the expansion

of βF = −lnZ consists of those diagrams that are connected along fermionic lines. The

leading diagram that belongs to the first but not the second class is this one:

∝ N−2. (A.16)

It is, actually, an infinite sum of diagrams because each thick solid line represents G∗
(denoted by G in (1.6)). Thus, the replica-diagonal approximation gives the free energy

with O(N−2) accuracy.

It is interesting to derive the high temperature expansion of − lnZ from action (A.15)

rather than the original Hamiltonian. This way, one gets the same set of diagrams, but

with a different interpretation. Instead of carrying site indices j, k, etc., the fermionic

lines are grouped (essentially, by that index) and organized into 2n-gons. We begin with

breaking the exponent −I[Σ, G] in the functional integral into the main part,

− I0[Σ, G] = −N
2

∫
dτ dτ ′Σ(τ, τ ′)G(τ, τ ′) (A.17)

and two perturbation terms, containing the Pfaffian and G4. The expectation value of any

polynomial in Σ and G with weight exp(−I0[Σ, G]) is easily calculated. For example,

〈
Σ(τ1, τ2)G(τ3, τ4)

〉
0
= N−1

(
δ(τ1 − τ3) δ(τ2 − τ4)− δ(τ1 − τ4) δ(τ2 − τ3)

)
. (A.18)
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Now, let us Taylor-expand the perturbation terms, in particular,

N ln
Pf(−∂τ − Σ̂)

Pf(−∂τ )
= −N

(
1

2
Tr(ĜbΣ̂)︸ ︷︷ ︸+

1

4
Tr(ĜbΣ̂)

2

︸ ︷︷ ︸+
1

6
Tr(ĜbΣ̂)

3

︸ ︷︷ ︸+ · · ·
)
, (A.19)

In these diagrams, the solid lines represent Ĝb = (−∂τ )−1, and a copy of Σ̂ is attached

to each open end (i.e. a side without a solid line). As is usual, the number of symmetries

(2, 4, 6, . . .) appears in the denominator. The elementary diagrams in the above expression

(without the Σ’s or the symmetry coefficients) will be called “sheets”. The factor of −N
is still included. Such sheets can be connected at the open ends by four-fold “seams”,

depicted as dotted lines. The seams arise from the perturbation term N(J2/4)G4. For the

use in the diagrammatic calculus, the coefficient in that expression should be multiplied

by the combinatorial factor 4! and also by N−4; the last factor comes from (A.18). Thus,

each seam carries the weight 3!J2/N3, of which we associate J2 with the dotted line itself

and keep 3!/N3 separate.

A closed, connected diagram represents a contribution to lnZ. A diagram with n open

ends corresponds to the correlation function

G(τ1, τ
′
1, . . . , τn, τ

′
n) = (−1)n

∑

j1,...,jn

〈
Tχj1(τ1)χj1(τ

′
1) . . . χjn(τn)χjn(τ

′
n)
〉
. (A.20)

The overall sign of a diagram is obtained using the following recipe:

1. Orient all sides of each sheet clockwise or counterclockwise; orient each seam.

2. A solid line from l to k represents Gb(τk, τl).

3. Each open end should be oriented from τ ′s to τs, or else a minus sign is introduced.

Each orientation conflict between a sheet and an adjacent seam gives a minus sign.

To illustrate these rules, we apply them to one diagram that contributes to G(τ, τ ′) =

NG(τ, τ ′):

1

3!
=

1

3!
(−1)4 (−N)4

3!

N3
= N .

(A.21)

Finally, let us describe the mapping of Feynman diagrams to three-dimensional

handlebodies whose genus counts the powers of N in the diagram. We can work

with diagrams with respect to the full disorder-averaged partition function, i.e. which

are connected along fermionic lines. For diagrams with external fermions we count

the powers of N as in (A.20). Then the power of N in a diagram is given
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Figure 6. Left: a Feynman diagram in the free energy of the disorder-averaged q = 4 SYK model,

given by −β−1lnZ = −β−1 limM→0M
−1ZM with ZM as in (A.6). Site indices for fermions have

been distinguished with color. Right: corresponding three-dimensional handlebody.

by (1− q)(number of disorder-averaged interactions) + (number of fermion indices). An

Euler-like interpretation of this counting is

(# of interactions)︸ ︷︷ ︸
V/2

− (# of times a fermion threads an interaction)︸ ︷︷ ︸
=q(# of interactions)=E/2

+(# of fermion indices)︸ ︷︷ ︸
F/2

= (# of factors of N)︸ ︷︷ ︸
1−g

.

(A.22)

That V and E are not independent implies we do not have the most general tiling of

surfaces. In fact, each diagram naturally maps to a three-dimensional handlebody with

corresponding genus g as follows: we map each disorder-averaged interaction and fermion

site index to a 3-ball. If a fermion line threads an interaction, we connect corresponding

3-balls with a 1-handle; see figure 6. For the two-dimensional diagrams constructed above

with sheets and seams, a handlebody corresponding to a diagram can be visualized as the

tubular neighborhood of an embedding of it in R
3.

B Energy-momentum tensor for pure dilaton gravity

The pure dilaton gravity on a manifold X of arbitrary dimensionality is described by this

Euclidean action:

I = − 1

4π

∫

X
ΦR

√
g dx− 1

2π

∫

∂X
ΦK

√
ḡ dx̄. (B.1)

The extrinsic curvature is defined as K = ∇ν̄n
ν̄ , where n is the unit normal vector and

the bar indicates boundary variables. The second term in (B.1) is necessary to set up

the variational problem with the Dirichlet boundary conditions. For this problem to be

well-defined, it is necessary that the variation of the action with fixed Φ|∂X and gαβ |∂X be

an integral over the bulk without any boundary term.

We will use the tetrad formalism. Let v(x) be an orthonormal local frame at point

x and θ(x) the dual frame, so that gαβ = ηab θ
a
αθ

b
β , where η is the unit matrix. The

covariant derivative acts on Greek (tangent space) indices but not Latin (fixed frame)

indices. That is, one should distinguish between ∇µu
c = ∂µu

c and (∇µu)
c = ∂µu

c+ω c
µ bu

b,

but ∇µu
ν = (∇µu)

ν = vνc (∇µu)
c.
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Let us consider a variation of vαa (x) that vanishes at the boundary. The spin connection

coeffitients ω a
ν b are initially regarded as independent variables, and then expressed in terms

of the metric:

ωγαβ =
1

2

(
Cγαβ − Cαβγ + Cβγα

)
, where C l

αβ = ∂αθ
l
β − ∂βθ

l
α. (B.2)

In general, this procedure gives the following result:

δI =

∫

X
T̃µ

ν θ
c
µ(δe

ν
c )
√
g dx− 1

2

∫
Jνab(δωνab)

√
g dx (B.3)

=

∫

X
Tµ

ν θ
c
µ(δe

ν
c )
√
g dx, (B.4)

where T̃ is the canonical energy-momentum tensor, J the spin current, and T the full

(Belinfante-Rosenfeld) energy-momentum tensor:

Tαβ = T̃αβ − 1

2
∇γ

(
Jαβγ − Jβγα + Jγαβ

)
. (B.5)

We now carry out the calculations for the concrete action (B.1). These are the expres-

sions for the variation of local quantities:

δR a
µν b = (∇µ(δων))

a
b − (∇ν(δωµ))

a
b, δR = 2Rb

ν(δv
ν
b ) + 2∇µ(v

µ
av

ν
b (δω

ab
ν )), (B.6)

δ
√
g = −θbν(δvνb ), (B.7)

δK = vνa(δω
a

ν b)n
b (if δvνa |∂X = 0). (B.8)

When calculating the variation of action, the boundary term that comes from the integra-

tion of Φ∇µ(v
µ
avνb (δω

ab
ν )) by parts cancels the one from the extrinsic curvature. The result

has the form (B.3), where

T̃αβ = − 1

2π
Φ

(
Rαβ − 1

2
Rgαβ

)
, Jαβγ =

1

2π

(
(∇γΦ)gαβ − (∇βΦ)gαγ

)
. (B.9)

Thus,

Tαβ =
1

2π

(
−Φ

(
Rαβ − 1

2
Rgαβ

)
+
(
∇α∇β − gαβ∇2

)
Φ

)
(B.10)
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