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SUMMARY

A major breakthrough in digital communications was the provisioning of “soft” outputs at each processing
stage, with appropriate capabilities to use this as soft inputs in the next processing stage. This allowed for
much more performant receivers especially in difficult mobile radio channel conditions, and set the stage
for iterative processing. This article will outline the development of soft output algorithms over the last
two decades along with associated state-of-the-art applications and conclude with an outlook towards novel
applications of the soft principle.

1 INTRODUCTION

Let us assume that the weather is a binary, uniformly
distributed random variable taking the events “sunny” and
“rainy”, respectively. Let us further assume two unbiased
and honest weather stations making observations to predict
the weather for the same location. Both weather stations
are assumed to use different measurement principles, and
hence their errors are statistically independent. For exam-
ple, the first weather station (WS 1) may observe the colour
of the sunsets and the second (WS 2) may use sophisti-
cated weather satellites. Suppose that WS 1 predicts a 60 %
chance for sunny weather, whereas WS 2 predicts a 70 %
chance for sunny weather. The ultimate question, called
weather problem[1], is: What is the probability for sunny
weather given both observations? Can you imagine that the
correct solution is 77.7 % (given that a-priori both possi-
ble outcomes are equally likely)? Has understanding the
weather problem any stimulating effect on modern commu-
nication and navigation systems? The principle behind the
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weather problem is the central element of information com-
bining, a concept which has significant impact on iterative
processing as, for example, applied in turbo decoding.

In soft-input decoding (traditionally called soft-decision
decoding), a channel decoder benefits by accepting real-
valued inputs (i.e., soft inputs). For example, the Viterbi
algorithm is capable of making benefit of soft inputs [2].
However, the Viterbi algorithm outputs integer values (i.e.,
hard outputs). No reliability information about the output
symbols is available. Hence, in the next processing stage
only hard inputs are available. Much work in the formula-
tion of softoutputalgorithms was, in fact, motivated by the
desire to provide softinputs to the next processing stage.
For instance, a channel equaliser should generate soft out-
puts so as to improve the efficiency of a subsequent soft-
input channel decoder.

The first step in the evolution was the invention of
soft-input soft-outputalgorithms (“don’t make hard deci-
sions”). Examples include the Bahl-Cocke-Jelinek-Raviv
(BCJR) algorithm [3], soft-input soft-output algorithms by
Battail [4] and Huber [5], and the Soft-Output Viterbi
Algorithm (SOVA) by J. Hagenauer and P. Hoeher [6],
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which has later been recognised as an approximation of
the BCJR algorithm [7]. This class of algorithms deliv-
ers symbol-by-symbol a-posteriori probabilities or approx-
imations thereof. An alternative are list-output algorithms,
providing an ordered list of theN most likely paths [8],
or generalisations thereof. In the sequel, we will focus on
symbol-by-symbol soft-output algorithms.

The second step of the evolution was thecombination
of soft outputsfrom different processors. Given the inter-
pretation that the SOVA is a nonlinear digital filter which
is able to improve the signal-to-noise ratio [6], reliability-
based iterative decoding of parallel concatenated codes [9]
and block/convolutional product codes [10] (which may be
seen as serially concatenated codes) was proposed at the
same time. The major contribution of these early turbo pro-
cessing papers was the step fromsoft to iteration. To suc-
cessfully reach that goal, the main operation isinformation
combining[11], i.e., the combination of several soft values
taking a-priori information into account. As we saw above,
proper information combining is the clue for solving the
weather problem. When applied to iterative decoding we
also need to include the concept ofextrinsic information
[9] to ensure that information should be used only once dur-
ing information combining. (The exchange of extrinsic soft
values is called “partial factor MAP filtering” in [10].)

The remainder of this article is as follows: In Section 2
basic operations of soft values in form of log-likelihood ra-
tios are presented. Sections 3 to 7 cover state-of-the-art ap-
plications, where log-likelihood values and soft processing
are used. Finally, we conclude with an outlook to novel
applications.

2 LOG-L IKELIHOOD ALGEBRA

Log-Likelihood Ratio The log-likelihood ratio of a bi-
nary random variableX with elementsx ∈ {+1,−1} given
an observationy is defined as

L(X|y) := log
P (X = +1|y)
P (X = −1|y)

. (1)

P (X = x|y) denotes the probability that the random vari-
ableX takes on the valuex given the observationy, and
+1 is the identity element under the⊕ addition. The log-
likelihood ratioL(X|y) will be denoted as theL-value of
the random variableX giveny. The sign ofL(X|y) is the
hard decision and the magnitude|L(X|y)| is the reliability
of this decision. Unless stated otherwise, the logarithm is

the natural logarithm. We immediately obtain that

L(X|y) = log
P (X = +1)
P (X = −1)

+ log
P (y|X = +1)
P (y|X = −1)

:= L(X) + L(y|X) (2)

L(X) andL(X|y) are called a-priori and a-posteriori log-
likelihood ratio, respectively. It can also be shown that

L(X|y1, y2) := log
P (X = +1|y1, y2)
P (X = −1|y1, y2)

= L(y1|X) + L(y2|X) + L(X)
= L(X|y1) + L(X|y2)− L(X). (3)

This generalisation of (2) is the main recipe for solving
the weather problem: Given the specific numbers stated
in the introduction, we obtain thatL(X|y1) = log 0.6

0.4 ,
L(X|y2) = log 0.7

0.3 , andL(X) = 0. Hence,L(X|y1, y2) =
log 0.6

0.4 + log 0.7
0.3 . Upon substitution into

P (X = +1|y1, y2) =
eL(X|y1,y2)

1 + eL(X|y1,y2)
, (4)

the perhaps surprising result of 77.7 % is obtained.
The remaining formulas of this section apply to a-priori

as well as a-posteriori log-likelihood ratios.

“Soft Bits” We now viewX simultaneously in GF(2) and
as real number. ThenX1⊕X2 corresponds toX1 ·X2. With

λ(X) := E{X} = (+1)
e+L(X)

1 + e+L(X)
+ (−1)

e−L(X)

1 + e−L(X)

= tanh(L(X)/2), (5)

we have the so-calledsoft bit [12], ranging from−1 to +1.

Addition of “Soft Bits” For the addition of two statisti-
cally independent random variablesX1 andX2 in GF(2),

X3 = X1 ⊕X2, (6)

for the corresponding “soft bits” we obtain

λ(X3) = λ(X1) · λ(X2), (7)

when using the real number operationE{X1 · X2} =
E{X1} · E{X2}. Here the multiplication has to be per-
formed over the real numbers. UsingL-values we obtain

L(X1 ⊕X2)

= log
1 + eL(X1)eL(X2)

eL(X1) + eL(X2)
(8)

= 2 atanh(tanh(L(X1)/2) · tanh(L(X2)/2)),
≈ sign(L(X1)) · sign(L(X2)) ·min(|L(X1)|, |L(X2)|)
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where the “box-plus” symbol¢ is defined as

L(X1) ¢ L(X2)
4
= L(X1 ⊕X2), (9)

for abbreviation [12]. The reliability of the sum¢ is there-
fore dominated by the smallest reliability of the terms.

If multiplication is inconvenient one can alternatively
operate in the log-domain:

Λ(X) := − log(|λ(X)|) = − log(| tanh(L(X)/2)|).
(10)

Inversely, one has

|λ(X)| = e−Λ(X). (11)

Hence, we get a simple addition of real positive numbers
for the relation of the magnitude

Λ(X3 = X1 ⊕X2) = Λ(X1) + Λ(X2), (12)

and we obtain the sign of the soft-output byX1 · X2. We
want to emphasise that for the transformation from|L| to Λ
and vice versa the same function

f(a) = log
1 + exp(−a)
1− exp(+a)

(13)

can be used. Figure 1 illustrates the binary modulo-2 ad-
dition with two inputs and the corresponding elements in
theλ, L andΛ domain, respectively. An extension to more
than two inputs is straightforward.

X1

X2

X3

L(X1)

L(X2)

L(X3)

λ(X1)

λ(X2)

λ(X3)

Λ(X1)

Λ(X3)

Λ(X2)

Figure 1:GF(2) addition and corresponding operations:λ (multi-
plication),L (box-plus) andΛ (addition).

3 THE TURBO PRINCIPLE IN DECODING ,
DETECTION AND EQUALISATION

The perhaps most prominent application of soft-output
processing is the so-calledturbo principle[13]. The turbo

principle has successfully been applied in decoding (partic-
ularly in iterative decoding of parallel and serially concate-
nated codes, and low-density parity-check (LDPC) codes),
detection, equalisation, interference suppression, combined
source and channel decoding, and related applications.

In Figure 2, the turbo principle is illustrated for paral-
lel concatenated codes (e.g., “Turbo codes” or block prod-
uct codes). According to the weather problem, the outputs
of the component decoders are combined so that only the
novel information (called extrinsic information) is passed
between the decoders. For the component decoders (DEC1
and DEC2), typically a-posteriori probability (APP) de-
coders (also called symbol-by-symbol MAP decoders) or
simplifications thereof are used [14].

π
DEC2

DEC1

S/P

π
−1

y

y1

y2

L(X|y2)

L(X|y1)

Figure 2: The turbo principle for parallel concatenated codes.

4 SOFT-SIMULATION AND RELIABILITY -
BASED ADAPTIVE M ODULATION

Let us consider the block diagram shown in Figure 3.
In conventional Monte Carlo simulations, the bit error rate
(BER) of a digital communication scheme is estimated by
comparing the decoded (or detected) bits with the transmit-
ted bits. If an APP decoder (or detector) is available, the
magnitude of the LLR values can be used alternatively ac-
cording to

Pb = lim
K→∞

1
K

K∑

k=1

1
1 + e|Lk| (14)

in order to obtain an improved estimate of the BER given
the same number of samplesK [15, 16]. This technique has
been dubbedsoft Monte Carlo simulation.

Besides providing a better statistical significance of
the simulation results, in soft Monte Carlo simulation the
knowledge of the transmitted bits is not needed. This struc-
tural advantage may be used for adaptive modulation and
channel coding schemes. The LLR values (or the corre-
sponding a-posteriori probabilities) can directly be used as
a performance measure of the quality of service (QoS). In
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xk
Channel

yk
ENC

Lk
MC simulation

soft MC simulation

sgn(uk)
?
= sgn(Lk)

(1 + e|Lk|)−1|Lk|

APP DEC
uk

Figure 3: Conventional Monte Carlo simulation (top) and soft Monte Carlo simulation (bottom).

on-going research, LLR values are used for cross-layer op-
timisation.

5 FRAME SYNCHRONISATION

During the time at which soft output algorithms were
becoming firmly established in the coding community, the
techniques were extended to other areas in communica-
tions in the hope of achieving similar performance improve-
ments. Synchronisation covers a wide area, from symbol
and frame timing to carrier phase and frequency offset esti-
mation. The derivation of the Maximum Likelihood (ML)
soft input frame synchronisation technique for data frames
transmitted over Gaussian channels had been published by
Massey in 1972 [17], and this approach showed an im-
provement over the naive solution that had been hitherto
employed. Later work extended this to various fading envi-
ronments, other modulation formats, carrier phase ambigui-
ties, and to the situation where a single packet is transmitted
within a time window [18]. In all cases the derivation of the
optimal likelihood function led to the inclusion ofall avail-
able information, such as the channel state or the presence
of trellis encoded data where the trellis is terminated, and
yielded further performance gains.

Frame synchronisation also lends itself to a form of soft
output that can dramatically improve synchronisation relia-
bility even further. Rather than selecting only the ML frame
synchronisation solution alist of frame or packet starting
positionscan be generated that is sorted according to their
likelihoods: The probability that the correct position is ac-
tually in this list increases dramatically as the length of the
list grows. Assuming that the data itself is coded, and that
errors can be reliably detected, a receiver can work though
the list until it correctly decodes a packet or frame, with
only a minimal increase in the average computation time.
This soft output in the form of a list of candidate positions
greatly reduces the computational burden of frame synchro-
nisation algorithms that employ the side information from
the starting and termination portions of trellis encoded data.

By producing a short list (typically fewer than ten) based on
the simple, random data case, the augmentation terms due
to the starting and termination parts of the trellis need only
be computed for these candidates. Such list-output syn-
chronisers can work in concatenation, with the list lengths
becoming shorter at each stage.

We conclude with an example of packet synchronisa-
tion where packets begin with a sync word of lengthL and
carry 60 bits (protected by an error detecting code) and
which are finally encoded by a rate 1/2, memory 5 con-
volutional code with trellis termination. The packets are
BPSK modulated and transmitted over an AWGN channel
with 10 log10(Es/N0) = 2 dB and have to be detected in
a window that is 31 symbols longer than the total packet.
The required sync word length (to obtain a frame detection
rate of10−3) can be reduced from 21 to 4 compared to the
simple correlation approaches by employing two list syn-
chronisers with list lengths of 7 and 3 respectively; the first
list being the soft input to the trellis-termination frame syn-
chroniser and the second as input to the data decoder.

6 SOFT-L OCATION

An area of signal processing that is also profiting from
advances in processing uncertain data is navigation, and in
particularsensor fusionin localisation. From a structural
point of view many data decoding problems and that of es-
timating the unknown location of a moving object are very
similar. Both are estimation problems of a hidden (Markov)
process: in the case of coding we want to estimate the state
of the encoder (or multipath channel) at the receiver, given
some noisy channel measurements. In navigation, our sub-
ject’s movement can also be modelled as a Markov process,
where the location and other variables such as speed and
heading form the unknown state. The measurements are a
noisy function of the state and come from one or more sen-
sors, such as a compass, inertial sensors, satellite navigation
receiver, etc.

Under certain assumptions, such as independently dis-
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turbed measurements and white measurement noise, such
problems can be solved by the application of Bayesian fil-
ters: A family of related algorithms like the (extended)
Kalman filter or particle filter. The ‘soft’ aspect covers
both the definition of the measurement error model (soft-
in) as well as the posterior distribution of the estimated lo-
cation (soft-out). Navigation applications that draw on the
soft output can more easily adapt their behaviour to the un-
certainty in the location, by modifying route planning, for
instance, or activating additional location sensors. When
soft location is applied on mobile devices, with a chang-
ing configuration of sensors, suitable system designs have
to be found that generalise the principle of a sensor to allow
dynamic loading of the relevant measurement model and
likelihood function (in software) [19].

7 TURBO-TCM

The decoding of Turbo Trellis Coded Modulation
(TTCM) is another important application area, whose per-
formance heavily depends on the use of soft outputs and the
iteration principle.

In this construction, two Ungerboeck type of codes
in combination with Trellis Coded Modulation (TCM) in
their recursive systematic form are employed as component
codes [20], similar to binary Turbo codes. Figure 4 shows
an example applying two rate 2/3 convolutional codes and
an 8-PSK signal mapper using Ungerboeck partitioning.
The incoming bit stream is fed pairwise to the first encoder,
where one additional parity bit is generated, and also af-
ter passing through an interleaver, working on bit pairs and
mapping odd to odd and even to even positions, to the sec-
ond encoder, where another parity bit is produced. In each
case, both encoders are followed by a signal mapper that
converts the two information and one parity bit into an 8-
PSK symbol. The output of the bottom encoder/mapper is
deinterleaved according to the inverse operation of the in-
terleaver, and the selector is switched such that a symbol is
chosen alternately from the upper and lower inputs. This
ensures that at the input of the selector, the two information
bits partly defining the symbol of both the upper and lower
input are identical.

In an alternative approach, it is proposed to quadrupli-
cate the signal set and transmit the parity bits from both
encoders, which would lead in our example to the use of a
16-ary modulation set instead of 8-PSK [21]. As a conse-
quence, an appropriate set partitioning has to be defined.

The decoding of each component code is typically done
by means of the nonbinary symbol-by-symbol MAP algo-
rithm. For that purpose the definition of log-likelihood val-
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Figure 4:TTCM encoder using two rate 2/3 encoders and 8-PSK
as an example.

ues can be extended appropriately. Compared to binary
Turbo codes two important differences have to be taken
into account: (1) Since the systematic and parity bits are
transmitted on the same symbol, the systematic and extrin-
sic information (e&s) can not be separated at the output
of the MAP decoder; only the a-priori informationa can
be isolated. (2) Each component decoder alternately sees a
symbol with a parity bit coming from its encoder and one
with a parity bit from the other encoder in the sequence of
received symbols. The appropriate iterative decoding prin-
ciple is shown in Figure 5, which shows the decoding of
one symbolyk.
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Ll = (el&s)+au
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Figure 5: TTCM decoder principle.

Here, it is assumed thatyk comprises a parity bit from
the lower encoder. Consequently, the lower decoder uses
the metric value(p&s) of yk and the a-priori information
au from the upper encoder, when the logarithms of the a-
posteriori probabilitiesLl = log Pr(dk = i|y), i = 1 . . . 4,
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are calculated by the MAP algorithmLl = (el&s) + au.
The information that is sent to the upper encoder as a-priori
informational is generated byal = Ll − au = (el&s). It
should be noted that the combination of extrinsic and sys-
tematic information is provided to the upper decoder. Since
it “sees” a symbol with a parity bit from the lower encoder,
a metric value(p&s) = 0 (= ignored) is inserted in the
MAP calculation at stepk; only al is used. The output is
Lu = (el&s)+eu. Removing the a-priori information, one
obtains as extrinsic informationLu − al = eu = au that is
provided to the lower decoder which ends one iteration.

8 CONCLUSIONS AND FURTHER APPLICA -
TIONS

In this paper we have sketched the development of soft-
in and soft-out algorithms in coding and communications
engineering. As receiver and system architectures became
more elaborate, using concatenated coding schemes, source
coding and channel equalisation to combat inter-symbol in-
terference, it became necessary to address the best possi-
ble interface between different components of the receiver
chain. The soft-in / soft-out principle is firmly routed in
probability theory and is the basis for such receiver chains
as well as iterative receivers. By adopting a logarithmic
representation of the likelihood ratio numerical problems
can be avoided and ‘soft’ operations at the bit level can
be implemented by simple structures. New work is taking
the soft output up to higher levels of the communications
reference model, allowing for more effective cross-layer-
optimisation: for example, routing metrics may be based
on LLR values.

Communications technology is not the only area of re-
search that has profited from these approaches. The com-
munications receiver must typically perform a number of
estimation tasks, and structurally similar problems exist in
many domains, from speech and pattern recognition, im-
age and sensor processing, to localisation. During the
last decade or so, researchers from these fields have been
drawing together and comparing their models and algo-
rithms. McEliece, MacKay, and Cheng recognised that iter-
ative Turbo decoding is ‘just’ loopy belief propagation in a
Bayesian network with undirected cycles [22]. Fortunately
for the coding community, application of this suboptimal al-
gorithm works well in their context but fails in many others
with differently structured networks or where the posterior
probabilities of the hidden variable must be determined ex-
actly. Another promising and related set of algorithms is
based on Sequential Monte Carlo techniques and has been

applied to communications problems such as channel esti-
mation (e.g. [23] as an application of particle filtering) as
well as in many other domains [24].

Manuscript received on 9.11.2006, reviewed on 6.12.2006,
revised and accepted on 19.1.2007

REFERENCES

1. J. Hagenauer, “The weather problem,” personal communication, DLR
Oberpfaffenhofen, Germany, 1993.

2. A. Viterbi, “Error bounds for convolutional codes and an asymptot-
ically optimum decoding algorithm,”IEEE Trans. Inform. Theory,
vol. 13, pp. 260-269, Apr. 1967.

3. L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,”IEEE Trans. Inform.
Theory, vol. 20, pp. 284-287, Mar. 1974.

4. G. Battail, “Pond́eration des symboles décod́es par l’algorithme de
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