
The software life-cycle model: An

alternative perspective

V.J.D. Sivess", M.C. Curtis^

^Depar^me^f o/Efec(romc 8 Comp^^er .Sczence,

of Southampton, Hampshire, UK

*ICL Associated Services Division, Eskdale Road,

Wokingham, Berkshire, UK

ABSTRACT

The quality of a software product depends on the proper management

of the technical process of software development. Often conflicts arise

because the technical structure of a project does not fit well with the

temporal structure that management desires. The Life-Cycle Model is

fundamental to both aspects of a project. This paper presents the outline

of a new Life-Cycle Model which emphasises the static nature of a project,

where all phases can coexist, while allowing for temporal progression.

Central to this philosophy is the concept of a project database with a

highly integrated toolset that can check for consistency and completeness

over the whole project and generate metrics that can measure progress.

I INTRODUCTION

The successful completion of a software development project involves the

timely delivery of a high-quality product, that meets the client's needs,

in terms of correctness, availability and pleasantness to use, within the

specified budget. These attributes form part of the quality of the product,

in terms of the ISO 8402 definition of quality as

the totality of features and characteristics of a product,

process or service that bear on its ability to satisfy stated or

implied needs [8].

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

346 Software Quality Management

To achieve this, Ould [9] shows the need for technical planning. This

involves assessment of risk, leading to a choice of process model, and

characterisation of the problem, leading to the choice of appropriate

methods and tools.

In contrast to this desireable outcome, the shortcomings of much

software are well documented. Costs and timescales are not kept to, and

quality is below standard. Cave and Maymon [3] say that the difficulties

in assessing the risks involved in developing a piece of software are a

result of the complexity and intangible nature of the final product. It is

not always easy to distingish between requirements that will take a day

to implement and those that will take a week, with the result that many

projects are skimped at crucial stages and thus run late or are brittle and

hard to maintain. It is clear that many software developers are vague

about which methods and tools are appropriate for any one stage of a

project.

The life-cycle model (LCM), or process model, plays a central role in

the management of medium and large-scale projects. Ould says that it

"determines the overall shape of the project" [9]. It offers a framework

for organising and assessing the progress of the work by providing

checkpoints in terms of deliverables, and thus allows the project to be

controlled and timetabled. This paper aims to explore ways in which

such a model may be made more effective. It shows that the overlaying

of multiple semantics is a possible source of confusion and suggests an

alternative model based on constraints.

A major problem is the complexity of a large project. The sheer number

of interrelationships between objects can make it almost impossible to

check for consistency and monitor progress. This paper shows that with

all information concerning a project being held in a fine-grained database,

managed by an integrated set of tools it is possible to maintain consistency

and determine progress.

This work is at an early stage and this paper presents a broad set of

ideas pertaining to the software development process. Early results are

encouraging and it is hoped that a full development environment based

on these principles will become available within the next five years.

2 LIFE-CYCLE MODELS

Figure 1 shows an early process model of software development. This is

known as the stagewise model of software development [I]. It emphasises

the chronological unfolding of events in sequence as development pro-

ceeds. Coding is the last event in creating a deliverable piece of software

which then needs to be tested and thereafter maintained. Although

an advance at the time, using this model is misleading. In particular,

verification needs to be carried out at each stage of the process, and not

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 347

Figure 1: The Stage wise Process Model

just at one separate stage called "testing", and this provides feedback

between the stages with a consequent reiteration of some of the activities.

In reality, the last two stages were often unaccounted for in the planning

of a project which would then run over schedule. The model fails to

capture something that is well known by those involved in designing

and writing software: the sooner an error is discovered, the easier and

cheaper it is to put right. A design error that is not discovered until the

coding is tested may have devastating effects on the resulting quality of

the finished product. The stagewise model completely hides this.

2.1 The Waterfall Model

The Waterfall model, introduced by Royce in 1970 [11] improved on these

shortcomings by adding backward arrows between nodes to represent a

verification and acceptance process between one phase and the next. The

nodes represent documents or deliverables and the arcs are phases in which

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

348 Software Quality Management

Figure 2: The Waterfall Model

the deliverables are created. A change at one level affects the level above

and this may have a ripple effect. The model makes explicit the need to

allow time for validation and indicates that there may be a need to redo

some of the activities of a previous stage.

2.2 The EWICS Model

The EWICS model, presented by Mitchell [7], further explicates the veri-

fication procedures, showing, for example, an interpretation and agreement

relationship between the requirements specification and the description of

the problem domain in the real world, and arcs representing consistency

checking. Maintenance is not a separate phase, but another dimension to

the model into which modifications feed via a modification specification.

The requirements specification covers not only the functional require-

ments, but also requirements related to performance and resources, and so

on. In a refinement to the model, instead of carrying the non-functional

details of the requirements specification down to the implementation

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Design

requirements

Implementation

requirements

Integration
and installation
requirements

Software Quality Management 349

Problem domain

in real world

Problem analysis

Abstract views

of problem

Construction of requirements
specification

Top level

requirements

Design

Design

specification

Implementation

Executable

components

Integration

and installation

Operational

system

Figure 3: The Refined EWICS Model

phases, the requirements specification is itself divided into a number

of levels as shown in figure 3, which, for simplicity, excludes the arcs

representing verification.

This version gives more information to managers and developers

by making clear the fact that users often have very specific low-level

requirements, such as the type of screen required. These requirements

must be passed to the appropriate phase of development. If these

requirements are not met, this again affects the quality of the product

in that the user will be less satisfied.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

350 Software Quality Management

Module
Design

Module

Verification

Y 7

Figure 4: The V-Diagram

2.3 The V-Diagram

The V-diagram emphasises the build and test activities of software devel-

opment by showing them explicitly along the right hand side of a V, as

shown in figure 4.

Again, each document is verified against the level above and checked

for internal consistency. Development proceeds down the left-hand arm

of the V and up the right-hand one. Associated with each document on

the left-hand side is a verified document on the right-hand side. The

information for test cases and test data is derived from the document at

the same level and the one below.

2.4 Boehm's Spiral Model

Boehm directly tackles the control of risk in his model [2]. As the arc of the

spiral travels in a clockwise direction it passes through the four quadrants

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 351

representing statement of requirements, assessment and resolution of

risk, development and planning. As the model spirals outward, the

cumulative cost is represented by distance along the radial dimension.

3 SOME POSSIBLE SEMANTICS

3.1 The Transformation Model

Early software process models were concerned with chronological stages

of development. Another way of viewing the LCM is to see the arcs as

representing transformations between the documents or descriptions at the

different levels. Where formal methods are being used, each document

may be seen as a syntactic object, with an interpretation in the real world,

which by successive transformations becomes the required executable

program. These models overlay the original time based semantics with

a transformation semantics which views the model as a static description

of a system in terms of levels. By definition, the boundaries correspond to

the documents which are being transformed.

3.2 Phases, Stages and Activities

The EWICS model is defined in terms of documents and activities, and

Mitchell says

... words such as "design" and "verification" used to label

arcs on the life-cycle diagram are intended to denote activities

or processes which can be performed a number of times during

the life of a system rather than phases in the life of a system or

steps in the development of a system. [7]

McDermid [6] distinguishes between stages, found in what he terms

technically oriented models and phases, found in management oriented ones.

Stages are "technically related collections of activities", each at a different

level of abstraction, and are thus clearly compatible with a transformation

semantics. Phases are "temporally related groups of activities", which

"terminate with a review of some products". There is not necessarily a

one-to-one mapping between the two concepts. The EWICS model is a

technical one, according to this definition, and it is possible to view it as

a transformation model. The Waterfall model and V-Diagram are classed

by McDermid as management models.

4 LEVELS AND ABSTRACTION

In hierarchy theory and systems theory, simple systems form simple

hierarchies where levels are based on grain size and elements of one

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

352 Software Quality Management

level compose simply to form elements in the next level up [5] [10]. More

complex systems form only partially decomposable hierarchies where

the relationship between two adjacent levels is stronger and one level can

provide a context for emergent properties to appear from the level below

it. Such systems include biochemical systems. For instance, Grobstein

[10] cites the emergence of enzymes from amino acid chains. Such systems

are often associated with different levels of description.

Life-cycle models exhibit both kinds of level: levels based on gran-

ularity and context-shifting levels. For instance, Quid says that in the

V-diagram "there is an implied decomposition from system, through

subsystems, to modules" [9] and indeed it is sometimes drawn with the

system design node fanning out to several nodes representing the design

of the modules at the level below. On the other hand, quality factors

such as maintainability and reliability emerge from the way in which

the code is structured and written, and the higher level descriptions of

functionality exhibit a selective loss of detail that is characteristic of more

complex hierarchies. McClamrock [5] claims that there is a confusion

between the use of both types of level in Marr's three proposed levels of

cognition and that it is helpful to be aware that both types are present.

We make the same claim for their use in the software process model.

To confuse matters further, documents at a more abstract level in

a transformation model contain information that is only relevant to a

much later phase of the time-based models. Mitchell speaks of low-

level requirements being passed down through the different levels and

McDermid speaks of quality requirements "migrating" down the various

levels, a process referred to by Ould as "quality factoring".

The requirements specification can be seen as giving a context to

the functional parts of the system. McClamrock says "The functional

properties of parts of complex systems are context-dependent properties -

ones which depend on occurring in the right con text, and not just on the

local and intrinsic properties of the particular event or object itself." [5]

We will interpret the information in the requirements specification in this

light and thus propose a new process model which we have termed the

Ferris-Wheel model

5 THE FERRIS-WHEEL MODEL

The functional information in the requirements specification is contextual

information for the system specification downwards. The non-functional

information is contextual information for the final product and is passed

up through the levels in the form of constraints. This gives the circular

structure shown in figure 5. The model as it stands is a simple trans-

formation model. The system specification is transformed into a design

specification. The transformation is constrained by the information com-

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 353

Is transformed
to

Figure 5: Circular Structure of Constraint Based Model

ing from the other direction. For simplicity, arcs showing a verification

relation are not shown.

5.1 Propagating Constraints

All non-functional constraints are passed straight to the implementation

level. Any constraints that are not applicable at this level are passed to the

design level. Any that are applicable are dealt with and any consequent

constraints are passed on along with appropriate unchanged constraints.

In this way, the constraints are passed around the model in an anti-

clockwise direction. Thus, activities are being carried out by members

of the implementation team while the top-level specifications are being

written. In this way, most of the risks associated with later parts of the

project can be assessed and taken account of at an early stage.

5.2 The Hub of the Wheel

We then add to the basic circular structure a hub, comprising a project

database, with arcs to each of the nodes. This will be explained below.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

354 Software Quality Management

Is transformed

to

Figure 6: The Ferris-Wheel Model

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 355

6 A Brief Example

An electronic diary system is to be produced for an organisation of five

thousand people. Each member must be able to add, delete, and view

entries. People are organised into non-disjoint groups and certain people

can book appointments for other individuals and groups. The final system

is to be implemented using the Ada language on a network of PCs.

The system specification defines the system boundaries. We may

choose to model an individual's diary as a set of mappings from date

to list of appointments, while the organisational diary may be a set of

non-disjoint sets of individual diaries. In order to define the operations

on an entry, a careful modelling of time will be needed. We may also

decide that we need to model concurrency explicitly.

Meanwhile, the non-functional constraints are passed in the other

direction; the system must be programmed in Ada, it must run on

a network of PCs and must cater for at least five thousand entries.

Management must make sure that enough Ada expertise is available

in the programming team. If not, training courses, or the cost of buying

in expertise, needs to be costed. They also need to check that suitable

development hardware and software is available and what version of the

compiler is to be used for the live system. When these constraints have

been fulfilled, then we can see if there are any consequent constraints that

need to be passed on.

We will propagate the requirement for Ada expertise to the level of

module design. The Ada compiler imposes further constraints: data

structures must not exceed 64K and there is a limit of three thousand

records for indexed-sequential files. These, along with the volume re-

quirement of at least five thousand entries, are passed as far as system

design where we decide on the main components of the system. An

indexed-sequential file organisation is a fairly natural one for this applic-

ation and since there is a limit of three thousand records, a file handling

package based on B-trees must be written or purchased. By the time

we actually code the system, we should not run into problems with the

compiler, because any limitations have been taken care of as far back as

the system design stage.

7 TOOLS

A life cycle model should not be prescriptive about methods or method-

ologies that may be used to accomplish any of the phases of the develop-

ment process. We assume that each phase will be accomplished by the

use of one or more tools. Normally each tool will have its own internal

descriptions of the objects that it processes and any relationships that

exist between objects residing in different tools can be difficult to indicate

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

356 Software Quality Management

METHOD SPECIFIC TOOLS

REUSE LIBRARY MANAGEMENT

LIFECYCLE MANAGEMENT TOOL

CONFIGURATION MANAGEMENT TOOL

PROJECT DATABASE

Figure 7: Tool Architecture

and maintain. It is however essential that relationships indicating the

constraints that exist between such objects be maintained so that it is

possible to determine the impact of changes and so that progress can

be measured. This assumes a degree of integration between possibly

heterogeneous tools that is difficult to achieve except by the use of PTI

(Public Tool Interface) such as that offered by PCTE (Portable Common

Tool Environment). A PCTE tool manages all its objects and the relation-

ships between them as items within a common database, accessing them

by means of the OMS (Object Management System). The tool supplies

a PII (Public Integration Interface) which allows other tools access to its

objects in a managed and secure way. In particular it may allow additional

attributes to be applied to its objects and relationships to be defined with

external objects.

For example a Requirements Analysis Tool may produce a set of

requirements, each of which is an object. A Design Tool may produce

a set of modules. A requirement may constrain one or more modules, or

a module may represent a transformation of a requirement into a form

that imposes further constraints on other elements of the system. Each of

these relationships can be represented by links within the database.

The method specific tools access the database through other tools

which have a universal role. Three specific examples of these are:

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 357

• A Reuse Library Manager, which classifies each object, adding

classification attributes and links into a reuse library.

• A Lifecycle Management Tool which attaches project description

attributes and relationships. This would incorporate a project

planning tool which can navigate the database and produce metrics

of progress, estimates of the impact of changes and generate reports

from the information contained in the attributes.

• A Configuration Management Tool which manages the versions of

individual objects and informs each tool when one of its objects has

been made obsolete.

8 THE PROJECT DATABASE

It is fundamental to the nature of software projects that it must be possible

to describe the project both as a whole and various aspects of it. Every

document within the project, including the source code, can be thought

of as a part of the overall description of a project. It is important that this

description be thought of as a single entity. If it is not then the all too

common results are:

• Some parts of the project, or some views of parts of the project, are

not described at all.

• Some parts are described in the same way in a number of different

places.

• Contradictory descriptions may occur.

• A wide variety of different description languages are used.

• It is not always easy to see relationships between different descrip-

tions.

The totality of information generated and maintained by the various

tools forms a project database. The existence of relationships between

the items produced by the tools enables this database to be regarded as a

complete and consistent description of the project.

This description, or parts of it, must be accessible in a textual form.

Each individual item within the database should be accompanied by a

textual description, preferably in a standard format. Report generators

can directly access these descriptions to produce documents in a standard

format. The converse may also be true in that documents that describe

parts of the system in a form of structured English can be parsed and

used to construct parts of the database. Details of the format need not

be fixed but may be held in some appropriate form as an item within

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

358 Software Quality Management

the database. Many tools incorporate their own methods of recording

textual descriptions of their elements. The Lifecycle Management Tool

can maintain links both to these text items and to any other tools necessary

to translate internal formats into an acceptable form.

For example one tool may generate T̂ X* format while another may

generate troff format. It is relatively straightforward to manipulate both

formats so that the appearance of a printed document is consistent. It is

therefore possible to maintain a single document that actually consists of

a number of elements in different formats yet which appears in print as

a single document in a consistent style. Of course the use of standard

formats such as SGML (Standard Generalised Markup Language) is to be

encouraged.

One important aspect of software project management is that of

encouraging and enabling reuse, both internally within a project and

externally between projects. The existence of a complete project database

allows individual items and groups of items at any level to be reused

within a project, simply by the construction of a new set of relationships,

and externally by allowing the extraction of composite objects complete

with the constraints that they apply to the rest of the system.

The project database is represented by the hub of the ferris wheel, the

spokes of the wheel show the connections between the hub and the tools

that implement the various phases. They also show that the strength of

the entire structure is determined by the strength of these connections.

9 Incremental Development

The turning of the wheel indicates the temporal progress of the project.

The model shows that all phases can be active at all times and that inter-

communication between phases can occur to some extent independently

of the temporal stage. The wheel does not have to turn just once, indeed

were it to do so it would simply represent a slightly different view of a

stagewise model. The wheel may turn a number of times. The first turn

of the wheel is used to build the basic structure of the database and it is

to be hoped that this structure would remain essentially fixed thereafter.

Subsequent turns build on to this structure producing prototypes that

allow parts of the database to be made complete and their consistency

checked. Once a product has been issued maintenance and development

are represented by further turns of the wheel, which emphasises the point

that these are not separate activities but all part of one lifecycle. Gilb

[4] shows that an evolutionary approach to system development gives

greater control over risk elements. This model encourages the evolution-

ary approach and provides a mechanism by which its advantages can be

is a trademark of the American Mathematical Society

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 359

realised.

10 CONCLUSIONS

The life-cycle model proposed here presents an alternative view of the

system development process that treats all aspects of a project as part of

a single entity. Functional and non-functional requirements are treated

as contextual constraints which are passed through the various phases

of a project in both directions to reach the point at which they may be

applied. This gives the model a circular structure. Temporal progression

is modelled by the turning of the wheel. The constraints are treated as

relationships within a central project database.

Managers would like to partition a project into risk increments and

commit resources on an incremental basis [3]. Incremental and evolu-

tionary approaches to project development are becoming more popular.

Our model is compatible with and indeed encourages these development

methods.

The motivation for this work has been the desire to increase the quality

and reduce the risk of software projects. It is our contention that the best

way to do this is to achieve a high degree of integration between all the

elements that make up the project and to be able to view and manage the

project as a single entity. The lifecycle model described here allows this

to be done and provides a suitable framework for reasoning about the

nature and structure of a project.

There is much work still to be done. A language for expressing

constraints is under development. It takes the form of a structured English

framework in which textual or mathematical descriptions of objects can

be embedded. This language will be supported by tools which treat the

constraints as relationships between objects in a PCTE database and can

use the descriptions to check for consistency and completeness of the

structure and provide metrics.

A generic project database has been specified and will soon be used

to support small scale projects. This will provide the opportunity to de-

termine the most appropriate metrics that provide sufficient information

for management to construct a temporal plan and analyse risk.

Work is progressing on the integration of tools and the definition of

standards for Public Integration Interfaces on PCTE as part of a EUREKA

project.

References

[1] H. D. Benington. Production of large computer programs. In

Proceedings of Symposium on Advanced Programming Methods for Digital

Computers, 1956.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

360 Software Quality Management

[2] B. W. Boehm. A spiral model of software development and enhance-

ment. IEEE Computer, pages 61-72,1988.

[3] William C. Cave and Gilbert W. Maymon. Software Lifecycle Manage-

ment: The Incremental Method. Macmillan, 1984.

[4] Tom Gilb. Principles of Software Engineering Management. Addison-

Wesley, 1988.

[5] Ron McClamrock. Marr's three levels: A re-evaluation. Minds and

Machines, 1,1991.

[6] John McDermid, editor. Software Engineer's Reference Book.

Butterworth-Heinemann, 1991.

[7] Richard Mitchell. European workshop on industrial computer sys-

tems - life-cycle model. Technical report, The Hatfield Polytechnic,

1983.

[8] International Standards Organisation. ISO 8402: Quality Assurance -

Vocabulary.

[9] Martyn A. Ould. Strategies for Software Engineering. Wiley, 1990.

[10] Howard Pattee, editor. Hierarchy Theory - The Challenge of Complex

Systems. George Braziller, New York, 1974.

[11] W. W. Royce. Managing the development of large software systems:

Concepts and techniques. In Proceedings of WESCON, 1970.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

