
The software process - what it is, and how

to improve it

S. Zahran

Digital Consulting, Digital Equipment

Corporation, The Crescent, Jays Close,

ABSTRACT

The work of W. Edwards Deming has convinced industry that it must first
measure quality and then emphasise process to improve quality. In response to
Deming's arguments and in light of the perception that the software industry is
unable to produce quality products on schedule, and within budget, more
software development organisations are now emphasising process measurement,
monitoring, and assessment. This paper describes what is meant by the software
process and discusses an approach for its measurement and improvement.

INTRODUCTION

Unreliable software makes big news, from emergency services disasters to social
security payment blunders. Improved software quality is essential to ensure
reliable products and services, and gain customer satisfaction. While software
development has existed for more than four decades, we failed so far to make it
as an industry and as an engineering discipline rather than a craft.

Developing reliable and usable software that is delivered on time and within
budget still represents a difficult endeavour for many organisations. As the role
of software becomes increasingly critical for businesses as well as for human
lives, the problems caused by software products that are late, over budget, or
that do not work, become magnified. If lives are lost or people inconvenienced
due to incapable computer software, the news media is there to make big
stories. Organisations are realising that their fundamental problems is the
immaturity of their software process.

Robert Lai (1993) proposes that the process improvement is the second
maturity wave of the software industry. He states that "the first wave of
software was developed using the waterfall model in the 1970's. Today we are

 Transactions on Information and Communications Technologies vol 8, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

216 Software Quality Management

in the midst of a second wave - a maturity movement - as we attempt to
formally define the development process and the best ways to continuously
improve it" (Lai 1993).

Taking the lead in this area has been Watts Humphrey (Humphrey 1989,
1990, 1991), and the Software Engineering Institute (SEI) at Carnegie Mellon
University. The SEI started in 1986 to develop a process maturity framework to
help organisations appraise the maturity of their software process, and to
provide a guidance for organisations to improve their software process
capability. A brief description of the framework was released in September
1987, including a maturity questionnaire. The SEI evolved the model and
questionnaire into the 5 -Level Capability Maturity Model (CMM) in 1991. In
February 1993, it released the CMM version 1.1 (Paulk et al 1993).

This paper discusses the software process and describes the capability
maturity model (CMM). It also shows how the CMM can be used as a basis to
measure maturity of the software process of an organisation and plan its
improvement.

SOFTWARE QUALITY AND PROCESS IMPROVEMENT

In his book "Quality is Free" Phil Crosby states that: "Quality is free. It is not a
gift, it is free. What cost money are the unqualify of things - all the actions that
involve not doing the jobs right the first time" (Crosby 1980). If such statement
is true for many disciplines, it is particularly true for software. The evidence is
abundant in the number of software products which exceeded their budget, were
produced late, failed to satisfy the user requirements, and are full of bugs. The
demand for improved software quality is increasing to ensure reliable products
and services.

The benefits of improved quality comes in the form of reduction in failure
costs. For software projects failure costs include (DTI 1992):

• costs of correcting defects, both before and after delivery
• overruns against time and budget
• unnecessary high maintenance costs
• indirect costs which users incur due to poor quality software

The link between process maturity and software quality is expressed in the
premise that "The quality of the software system is governed by the quality of
the process used to develop and maintain it". One stumbling block to improving
software quality seems to be that not enough attention is paid to the overall
development process itself. While software professionals typically devote their
time to developing, testing or documenting software products, no one has prime
responsibility for improving the software process. Experience has shown that if

 Transactions on Information and Communications Technologies vol 8, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Managing Quality Systems 217

no one is working on the software process, orderly improvement is unlikely.
The process certainly won't improve itself, rather, most likely, it will deteriorate
over time. Continuous improvement can occur only if a process infrastructure
is in place.

Watts Humphrey argues in an early article published in Datamation, April
1989 that: "Without work on the process, there will be little or no progress in
improving software".

THE SOFTWARE PROCESS

Adopting a process view of software development represents a revolutionary
change in perspective. A process orientation to software development involves
elements of structure, focus, measurement, ownership, skills, and supporting
technology.

In this section we investigate what is meant by the software process.

What Is The Software Process

According to Webster's dictionary, a process is "a system of operations in
producing something .. a series of actions, changes, or functions that achieve
an end result". Chambers Concise Dictionary defines a process as "a series of
actions or events .. a sequence of operations or changes undergone". The IEEE
defines a process as "a sequence of steps performed for a given purpose". In
the general business context, a process is defined as "a structured, measured set
of activities designed to produce a specified output for a particular customer
or market" (Davenport 1993).

These definitions put a strong emphasis on "HOW" work is done, in contrast
to a product focus's emphasis on "WHAT". Accordingly, a process can be
considered as "a specific ordering of work activities across time and place,
with a beginning, an end, and clearly identified inputs and outputs: a structure
for action".

In this paper we will adopt the following definitions quoted in (Humphrey
1990, Paulk et al 1993) are intended to encompass software throughout its life,
which covers new development, enhancement, and repair.

The software process is "The set of activities, methods, and practices used in
the production and evolution of software".

The software engineering process is "The total set of software engineering
activities needed to transform a user's requirements into software".

 Transactions on Information and Communications Technologies vol 8, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

218 Software Quality Management

People and the Software Process

Software development is still a people-intensive activity. Talented people are
the most important element in any software organisation. Even if you get the
best people available, if they do not follow a common process, if everyone
wrote in different programming languages, used different conventions, or didn't
co-ordinate their design and code changes with their peers, the results will be
chaos. Successful software organisations have learned that even the best
professionals need a structured and disciplined environment in which to do
cooperative work. Software organisations that do not establish such disciplines
condemn their people to endless hours of repetitively solving technically trivial
problems. The obvious fact is that attracting the best people is vital, but it is
also essential to support them with an effectively managed software process.

Technology and the Software Process

Another myth is the widespread belief that some technologically advanced tool
or method will provide a magic answer to the software crisis. This is not only
wrong, but it is dangerous. Organisations which jumped on the bandwagon of
CASE tools, and ended up in failure and wasted time and effort have learned
their lesson the hard way. Just ask yourself before introducing technology:
What do I want to automate? In the absence of a defined, practised, and
managed process, introducing automation can lead to increased chaos. There
are several factors which limit the effective use of software technology: an ill-
defined process, inconsistent process implementation, and poor process
management. Software technology cannot be fully effective until these problems
have been properly addressed.

The Need for a Defined Process

If no effort is made to define and enhance the software development process
across the whole organisation, each software development project latches on to
its own tools, methods, and practices with little guidance available on how to
use them. This ad hoc approach will not be sufficient to tackle the task of
developing complex software systems. The goal of software process
management is to enable organisations to produce software that meets cost,
schedules, and quality objectives. The principles are the same that underpins
statistical process control-principles that have been successfully used in
controlling scientific experiments and in high -volume manufacturing operations.
Statistical concepts have been found to be just as applicable to the software
development as they are to the production of manufactured goods such as
motor cars. Applying such concepts will only be possible if there is a defined
and managed process.

Software Process Models

 Transactions on Information and Communications Technologies vol 8, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Managing Quality Systems 219

A software process model is defined as "One specific embodiment of a software
process architecture". Most organisations have at least some policies,
procedures, and standards. They generally follow some intuitive process
models both prescriptively and descriptively. To be fully effective, these process
models should be explicit and should relate to each other. These factors define
the level of process maturity of the organisation.

A complete process model needs to contain functional, behavioural,
structural, and conceptual views (Kellner et al 1988). However, for process
management purposes, a simpler process model is appropriate as long as it does
not artificially constrain process execution. Most of the process-improvement
approaches available today are organised either as models or as questionnaires
based on models. Well known approaches to process modelling include:

i) The Software Engineering Institute's Capability Maturity Model
(CMM), defined in (Paulk et al 1993) and discussed in this paper.

ii) Capers-Jones software measurement model, described in (Jones 1991).
iii) Model-based Process Assessment described in (McGowan et al 1993).
vi) IEEE standard for software life cycle processes, described in

(IEEE 1988).

These models reflect the fact that process improvement is cyclic and
continuous. They are suitable for use to support decision making for training
and technology insertion, and to identify the current state for a software
development organisation. The CMM is the most popular model to date.

Variations of the software process

Software engineering is not a routine activity that can be structured and
regimented like a repetitive manufacturing or clerical procedure. Rather it is an
intellectual activity that must dynamically adjust to the creative needs of the
professionals and their tasks. A trade-off is thus required between the individual
need for flexibility and the organisational need for standards and consistency.
Some factors to be considered are:

i) The specific nature of the project Software projects have
differences, so their software engineering processes must have
differences as well.

ii) Different organisations have different needs Organisations and
projects must define processes that meet their own unique needs.

iii) Project-specific characteristics The process used for a given
project must consider the experience level of the members,
current product status and the available tools and facilities.

 Transactions on Information and Communications Technologies vol 8, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

220 Software Quality Management

SOFTWARE PROCESS MATURITY

Setting sensible goals for process improvement requires an understanding of the
difference between immature and mature software organisation. Let us contrast
the characteristics and symptoms of an immature versus mature software
organisations

Immature Organisations

A genius description of an immature organisation is provided by Deming in his
book Out of the Crisis (Deming 1986) as follows:

"One gets a good rating for fighting a fire. The result is visible; can be
quantified. If you do it right the first time, you are invisible. You satisfied the
requirements. That is your job. Mess it up, and correct it later, you become a
hero."

This sums up the culture and behaviour in an immature organisation. A
closer look at an immature software development organisation will reveal the
following behaviours and symptoms:

• Software processes are generally improvised by practitioners and their
management during the course of the project. Even if a software process
has been specified it is not rigorously followed or enforced.

• Managers are usually focused on solving immediate crisis (fire fighting).
• Product functionality and quality are often compromised to meet

schedules.
• There is no objective basis for judging product quality, therefore

product quality is difficult to predict.
• Activities intended to enhance quality such as reviews and testing are

often curtailed or eliminated when projects fall behind schedule.

Mature software organisations

On the other hand mature organisations display most of the following
characteristics:

• An organization-wide ability for managing software development and
maintenance processes.

• Work activities are carried out according to the defined and planned
process.

• Roles and responsibilities within the defined process are clear
throughout the project and across the organisation, and the software
process is accurately communicated to both existing staff and new
employees.

 Transactions on Information and Communications Technologies vol 8, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Managing Quality Systems 221

• Managers monitor the quality of products and the processes that
produced them, there is an objective, quantitative basis of judging
product quality and analysing problems with the product and the
process.

• Schedules and budgets are based on historical performance and are
realistic; the expected results for cost, schedule, functionality, and
quality of the procedures are actually achieved.

In general, a disciplined process is consistently followed because all of the
participants understand the value of doing so, and the necessary support
infrastructure exists to support the process.

Software process maturity framework

Capitalising on the observations about immature and mature software
organisations requires a construction of a software process maturity framework.
This framework describes an evolutionary path from ad hoc, immature
processes to mature disciplined software processes. Such framework is essential
for process improvement programs to become effective. A maturity framework
provides the necessary foundation for supporting successive improvements. The
software process maturity framework presented in the SEI Capability maturity
model (CMM) emerges from integrating the concepts of software process,
software process capability, software process performance, and software
process maturity. A definition of the software process maturity and some of
related concepts is given in (Paulk et al 1993a) as follows:

Software process maturity "is the extent to which a specific process is explicitly
defined, managed, measured and effective". Maturity implies the potential for
growth in capability and indicates both the richness and consistency with which
software processes are applied across the organisation. As an organisation
matures, the software process becomes better defined and more consistently
implemented throughout the organisation.

Software process capability "describes the range of expected results that can be
achieved by following a software process". The software process capability of
an organisation provides one means of predicting the most likely outcomes to be
expected from the next software project the organisation undertakes.

Software process performance "represents the actual results achieved by
following a software process". Thus, software process performance focuses on
the results achieved, while software process capability focuses on results
expected.

The Capability Maturity Model (CMM) developed by the SEI provides an
evolutionary path which defines the process improvement stages necessary for

 Transactions on Information and Communications Technologies vol 8, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

222 Software Quality Management

an organisation to follow in order to increase the maturity of its software
process. The CMM framework is also useful for assessing the degree of
repeatability and measurability that an organisation has put into its development
process. But it makes no attempt to assess the quality of the resulting product,
or the appropriateness of any specific process model for the task.

Process Maturity Levels

The staged structure of the CMM is based on principles of product quality that
have existed for the last sixty years including the work by W. Edwards Deming
(Deming 1986) and Juran (Juran 1984). The maturity framework into which
these quality principles have been adapted was first inspired by Phil Crosby in
his book Quality is Free (Crosby 1984). Crosby's quality management maturity
grid describes five evolutionary stages in adopting quality practices. This
maturity framework was adapted to the software process and brought to the
Software Engineering Institute (SEI) by Watts Humphrey in 1986.

Humphrey added the concept of maturity levels, and developed the
foundation for its current use throughout the software industry. The outcome
took the form of the capability maturity model (CMM). The CMM provides a
conceptual structure for improving the management and development of
software products in a disciplined and consistent way. It also provides a
framework for organising these evolutionary steps into five maturity levels that
'build' successive foundations for continuous process improvement. The basis
for choosing the CMM's five maturity models have been chosen because they:

• Reasonably represent the actual historical phases of evolutionary
improvement of real software organisations.

• Represent a measure of improvement that is reasonable to achieve from
the prior level.

• Make obvious a set of immediate improvement priorities, once an
organisation's status in this framework is known.

This section describes the CMM and shows how it delineates the
characteristics of a mature, capable software process. The progression from an
immature, unrepeatable software process to a mature, well-managed software
process is also described in terms of the maturity levels in the model.

Software Capability Maturity Model (CMM)

The capability maturity model (CMM) is an:

• Application of process management and quality improvement concepts
to software development and maintenance.

• Guide for evolving toward a culture of engineering excellence.

 Transactions on Information and Communications Technologies vol 8, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Managing Quality Systems 223

• Underlying structure for reliable and consistent assessments.
• Framework for continuous process improvement.

The CMM represents a common-sense engineering approach to software
process improvement. The CMM concepts and structure have been extensively
discussed and reviewed within the software community. While the CMM is not
perfect, it does represent a broad consensus of the software community and a
useful tool for guiding software process improvement efforts.

The CMM organises the process improvement steps into five maturity levels
as shown in figure 1. These five maturity levels define an ordinal scale for
measuring the maturity of an organisation's software process and for evaluating
its software capability. The levels also help an organisation prioritise its
improvement efforts.

Continuously _ Optimizingimprovingprocess

'redictablê f- '?.irocess X^ ['

Standard, x̂̂ *consistent fprocess (

Disciplinedproce

Initial
(1)

Figure 1. The Ftve Level* o(Software Process Maturity

A maturity level is a well-defined evolutionary plateau toward achieving a
mature software process. Each level comprises a set of process goals that,
when satisfied, stabilise an important component of the software process. This
in turn results in an increase in the process capability of the organisation.
Organising the CMM into the five levels shown, prioritises improvement actions
for increasing software process maturity. The 5 levels are defined as follows:

Level-1 Initial : At the Initial Level, the software process is characterised as ad
hoc, and occasionally even chaotic. Few processes are defined, and success
depends on individual effort. Until the process is under statistical control,
orderly progress in process improvement is not possible. While there are many
degrees of statistical control, the first step is to achieve rudimentary
predictability of schedules.

Level-2 Repeatable : At the Repeatable Level, basic project management
processes are established to track cost, schedule, and functionality. The
necessary process discipline is in place to repeat earlier successes on projects
with similar applications. The organisation has achieved a stable process with a

 Transactions on Information and Communications Technologies vol 8, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

224 Software Quality Management

repeatable level of statistical control by initiating rigorous project management
of commitments, cost, schedules, and changes.

Level-3 Defined : At the Defined Level, the software process for both
management and engineering activities is documented, standardised, and
integrated into a standard software process for the organisation. All projects
use an approved, tailored version of the organisation's software process for
developing and maintaining software. The organisation has defined the process
as a basis for consistent implementation and better understanding. At this point
advanced technology can be usefully introduced.

Level-4 Managed : At the Managed Level, detailed measures of the software
process and product quality are collected. Both the software process and
products are quantitatively understood and controlled. The organisation has
initiated comprehensive process measurements and analysis. This is when the
most significant quality improvements begin.

Level-5 Optimising : At the Optimising Level, continuous improvement is
enabled by quantitative feedback from the process and from piloting innovative
ideas and technologies. The organisation now has a foundation for continuing
improvement and optimisation of the process.

Internal structure of the CMM

There is more to the CMM than the maturity levels. Figure 2 illustrates the
CMM internal structure. As illustrated each maturity level decomposes into its
constituent parts, which range from abstract summaries of each level down to
the operational definition where each maturity level is composed of a number of
key process areas (KPA's).

Figure 2. The CMM Structure

 Transactions on Information and Communications Technologies vol 8, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Managing Quality Systems 225

A key process area is a cluster of related activities that, when performed
collectively, achieve a set of goals considered important for enhancing process
capability. Each key process area is organised into five sections called the
common features. The common features specify the key practices that, when
collectively addressed, accomplish the goals of the key process area. The key
process areas residing at the specific maturity levels are shown in figure 3. To
achieve a maturity level, the key process areas for that level must be satisfied.
To satisfy a key process area, each of the goals for the key process area must be
satisfied.

r
("initial (1)

r
RepeatSoSoftSoftwSoftwaSoftwareV Requlrem

r
Mana

Ĵ̂ - Softf ^ Quant
Doflned 3)Peer reviewsIntergroup cooiSoftware producIntegrated suftwarTraining program

^ Organization process
Jble (2)tware configuration manag
e project tracking and over

OptlmlzirProcessTechnologDefect prev

ged (4)
native process m

dmationon engineeringe management
focus

ement
nt

|

g (5)change rry changeenlion

agementnageme

J

anagementmanagement

1

1

|

Figure 3. The Key Process Areas by Maturity Level

Key process areas of the CMM represent one way of describing how
organisations mature. These key process areas were defined based on many
years of experience in software engineering and management over the SEI's five
years of experience with software process assessments and software capability
evaluations. Every key process area has goals associated with it.

The goals summarise the key practices of a key process area. They can be
used to determine whether an organisation or project has effectively
implemented the key process area. The goals signify the scope, boundaries, and
intent of each key process area. All the goals of a key process area must be
achieved for the organisation to satisfy that key rocess area. When the goals of
key process area are accomplished on a continuing basis across projects, the
organisation can be said to have institutionalised the process capability
characterised by the key process area.

Uses of the CMM

There are at least four possible uses of the CMM :

Assessment teams use of the CMM to identify the strengths and
weaknesses of the organisation.

 Transactions on Information and Communications Technologies vol 8, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

226 Software Quality Management

• Evaluation teams use of the CMM to identify the risks of selecting
among different contractors for awarding business and to monitor
contracts

• Managers and technical staff use of the CMM to understand the
activities necessary to plan and implement a software process
improvement program for their organisation

• Process improvement groups use of the CMM as a guide to help them
define and improve the software process in their organisation.

The CMM on its own does not guarantee that software products will be
successfully built, or that all problems in software engineering will be adequately
resolved. However, current reports from CMM-based process improvement
programmes indicate that it can improve the likelihood with which a software
organisation can achieve the cost, quality and productivity goals. Examples of
the results of such improvements can be found in (Dion 1992), (Humphrey et al
1991), (Lipke et al 1992), and (Kitson et al 1992).

SOFTWARE PROCESS ASSESSMENT (SPA)

The CMM and its process maturity structure is intended for use with an
assessment methodology along the lines described below.

Assessment objectives

Process assessment helps software organisations improve themselves by
identifying their critical problems and establishing improvement priorities. The
basic assessment objectives are:

• To learn how the organisation works,
• To identify its major problems,
• To enrol its opinion leaders in the change process.

Assessment helps organisations to focus first on the problems before
jumping to solutions. Without preliminary problem analysis, the "solutions" are
seldom effective. It helps identify an organisation's specific maturity status, and
the management actions for implementing the priority improvement once its
position in this maturity structure is defined. The organisation can concentrate
on those items that will help its advance to the next level. A definition of the
software process assessment is:

"Software process assessment is an appraisal by a trained team of software
professionals to determine the state of an organisations current software
process, to determine the highest priority software process-related issues

 Transactions on Information and Communications Technologies vol 8, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Managing Quality Systems 227

facing an organisation, and to obtain the organisational support for software
process improvement" (Paulk et at 1993).

Assessment phases

Assessments are typically conducted in three phases: preparation, assessment,
and recommendations. These three phases are:

Phase 1: Preparation The objective of the preparation phase is to gain senior
management commitment to the process, by agreeing to participate personally,
and commit to take action on the resulting recommendations. This phase
concludes with a brief two to three day training program for the assessment
team.

Phase 2: On-site Assessment This activity typically takes several days, although
it can take two to three weeks, depending on the size of the organisation and
the assessment technique used. This phase concludes with a preliminary report
of the findings to local management.

Phase 3: Recommendations In this phase, findings and action recommendations
are presented to the local managers. A local action team is then assembled to
plan and implement the recommendations.

The SEI has developed an assessment method along these lines and
developed an assessment questionnaire derived from the CMM model. Figure 4
illustrates a typical SEI Assessment schedule.

Typical Assessment Schedule

Month 1 - assessment team training
Month 2 - assessment team planning
Month 3 - on-slte assessment

Month 5 • final report delivery and recommendations briefing
Month 8 - action plan review

Month 24 • follow-up assessment

Figure 4. A Typical SEI Assessment Schedule

This schedule is for SEI-authorized assessment. For self assessments and
non-SEI authorised assessments, this schedule can be modified to match the
specific management objectives and the organisation requirements.

Assessment Principles

The basic requirements for a good assessment are a competent team, sound
leadership, and a cooperative organisation. However, because the software

 Transactions on Information and Communications Technologies vol 8, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

228 Software Quality Management

process is human-intensive, the following special considerations, when observed
should contribute to the success of the assessment:

• Start with a Process Model as a Basis for the Assessment

• Observe Strict Confidentiality

• Involve Senior Management

• Keep an Open mind and Respect People's Views

• Focus on Action

Finally, it should be noted that software process assessment is different from
software capability evaluation. The latter is defined as follows:

Software capability evaluation is "an appraisal by a trained team of
professionals to identify contractors who are qualified to perform the software
work or to monitor the state of the software process used on an existing effort"
(Paulk et at 1993).

SOFTWARE PROCESS IMPROVEMENT (SPI)

As a software organisation improves its maturity, it institutionalises its software
process via policies, standards, and organisational structures. Institutionalisation
entails building an infrastructure and a corporate culture that supports the
methods, and procedures of the business so that they endure after those who
originally defined them have gone.

Process Improvement Steps

Continuous process improvement is usually based on many small, evolutionary
steps rather than revolutionary innovations. The CMM provides a framework
for organising these evolutionary steps. To successfully improve software
capabilities, organisations must have a precise picture of their ultimate goal and
some way to gauge progress along the way. The following six steps are
suggested as landmarks on the road to improvement:

1. Understand the current status of the software development process. This
can be achieved through software process assessment (SPA).

2. Develop a vision of the desired process.
3. Establish a prioritised list of process improvement actions.
4. Produce a plan to accomplish these process improvement actions,

through a process improvement programme (PIP).
5. Commit the resources, execute the plan, and track progress against the

plan.

 Transactions on Information and Communications Technologies vol 8, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Managing Quality Systems 229

6. Assess the results, update the goal and start all over again.

These steps form iterative procedure where the process is continuously
improving. Every iteration should result in an increasing improvement building
on the previous iteration.

Return on Investment (ROD in Process Improvement

It is not easy to prove to senior management in terms of hard numbers the ROI
for process improvement effort. This is due to the following evident reasons:

• There is a need for sometime to pass before measurements are available
for general publication. Since the process maturity movement is
relatively recent, such historical data are not available.

• Many benefits that result from process improvement are qualitative
rather than quantitative. It is easy to challenge such improvements.

There are two well publicised cases in the literature discussing real life
experiences of practical process improvement initiatives at Hughes Aircraft
(Humphrey et al 1991), and Raytheon (Dion 1992, 1993). The industry still
needs a convincing business case for process improvement based on practical
results of real life cases. This should help us convince management of the value
of investing in process improvement. Developing such business cases will
require champions and pioneers who believe in process maturity and who are
dedicated enough to measure the improvements over a period of time and
publish the results to the whole industry. This should help in making the process
maturity movement take off, and the second wave of the software industry
becoming a reality.

REFERENCES

(Aguayo 1991) Rafael Aguayo,"Dr Deming",Fireside-Simon &
Schuster, 1991.

(Boehm 1988) Barry Boehm,"A Spiral Model for Software
Development and Enhancement", IEEE
Computer, 1988.

(Crosby 1980) Phil Crosby,"Quality Is Free",McGraw
Hill,USA,1980.

(Crosby 1984) Phil Crosby, "Quality Without Fears" ,McGraw
Hill,N.Y.,1984.

 Transactions on Information and Communications Technologies vol 8, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

230 Software Quality Management

(Davenport 1993)

(Deming 1986)

(Dion 1992)

(Dion 1993)

(DTI 1992)

(Gardner 1965)

(Humphrey 1989)

(Humphrey 1990)

(Humphrey et al 1991)

(IEEE 1988)

(Jones 1991)

(Juran 1984)

Thomas Davenport, "Process Innovation",
Harvard Business School Press, Boston,
Mass.,1993.

W.E. Deming,"Out of the Crisis", Cambridge
University Press, 1986.

R. Dion,"Elements of a Process Improvement
Programme",IEEE Software, July 1992,
pp.83-85.

R. Dion,"Process Improvement and the
Corporate Balance Sheet",IEEE Software, July
1993,pp.29-35.

Department of Trade & Industry, UK, "Ticklt, A
guide to Software QMS Construction using ISO
900I/EN 29001/BS 5750), Feb. 1992.

John Gardner,"Renewal of Organisations",20th
Annual Meeting of the Board of Trustees,
Midwest Research Institute,Kansas City,MO,May
3,1965.

Watts Humphrey,"Improving the Software
Process",DATAMATION, April 1,1989.

Watts Humphrey, "Managing the Software
Process", Addison-Wesley, 1990.

W.S. Humphrey, T.R. Snyder & R.R.
Willis,"Software Process Improvement at Hughes
Aircraft",IEEE Software,July 1991, pp. 11-23.

Institute of Electrical and Electronics Engineers,
Inc., "Standard for Software Life Cycle
Processes", P1074/D2.1, Dec. 1988.

T.Capers Jones,"Applied Software
Measurement", McGraw Hill, 1991.

J.M. Juran,"Juran on Planning for Quality",The
Free Press, N.Y., 1984.

 Transactions on Information and Communications Technologies vol 8, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Managing Quality Systems 231

(Kellneretal 1988)

(Kitson et al 1992)

(Lai 1993)

(Lipke et al 1992)

(McGowan et al 1993)

(Osterweil 1987)

(Paulk et al 1993a)

(Paulk et al 1993b)

(Royce 1970)

(Schultz 1988)

(Toffler 1981)

M. I. Kellner and G. A. Hansen,"Software
Process Modelling",Technical Report CMU/SEI-
88-TR-9,Software Engineering Institute,
Carnegie Mellon University,May 1988.

D.H. Kitson and S. Masters," An Analysis of SEI
Software Process Assessment Results: 1987-
1991",Tech. Report CMU/SEI-92-TR-24,
Software Eng. Institute,Pittsburgh,1992.

Robert Lai,"The Move to Mature Process",In
IEEE Software,Julyl993.

W.H. Lipke and K.L. Butler, "Software Process
Improvement: A Success Story",Crosstalk,Nov.
1992,pp. 29-31.

C.L. McGowan and S.A. Bohner,"Model Based
Process Assessments", Proc. Int'l Conf. Software
Eng.,IEEE CS Press, Los Alamitos,
Calif.,1993,pp.202-211.

Leon Osterweil/'Software Processes are Software
Too",Proc. Int'l Conf. Software Engineering,IEE
CSPress,1987,pp. 2-13.

M.C.Paulk, et al,"Capability Maturity Model for
Software,Version 1.1",Tech. Report CMU/SEI-
93-TR-24,Software Engineering
Institute,Pittsburgh,1993.

M.. Paulk, Bill Curtis, M.B. Chrissis & C.
Webber/Capability Maturity Model, Version
1.1",IEEE Softwarejuly 1993,pp. 18-27.

W. Royce,"Managing the Development of Large
Software Systems", Proc. WesconJEEE
Press,New York, 1970.

H.P. Schultz,"Software Management Metrics",
Tech. Report, Mitre Corp.,Mass.,1988.

A. Toffler,"The Third Wave",Bantam Books,New
York, 1981.

 Transactions on Information and Communications Technologies vol 8, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

