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Abstract

In this review we will focus on a topic of fundamental importance for both astrophysics
and plasma physics, namely the occurrence of large-amplitude low-frequency fluctuations of
the fields that describe the plasma state. This subject will be treated within the context of the
expanding solar wind and the most meaningful advances in this research field will be reported
emphasizing the results obtained in the past decade or so. As a matter of fact, Helios inner
heliosphere and Ulysses’ high latitude observations, recent multi-spacecrafts measurements in
the solar wind (Cluster four satellites) and new numerical approaches to the problem, based
on the dynamics of complex systems, brought new important insights which helped to better
understand how turbulent fluctuations behave in the solar wind. In particular, numerical
simulations within the realm of magnetohydrodynamic (MHD) turbulence theory unraveled
what kind of physical mechanisms are at the basis of turbulence generation and energy transfer
across the spectral domain of the fluctuations. In other words, the advances reached in these
past years in the investigation of solar wind turbulence now offer a rather complete picture
of the phenomenological aspect of the problem to be tentatively presented in a rather organic
way.

Keywords: Solar wind, Turbulence, Interplanetary space, Dynamical systems, Magnetohy-
drodynamics (MHD), Nonlinear phenomena

This review is licensed under a Creative Commons
Attribution-Non-Commercial 3.0 Germany License.
http://creativecommons.org/licenses/by-nc/3.0/de/

http://www.livingreviews.org/lrsp-2013-2
http://www.iaps.inaf.it
http://fis.unical.it
http://www.livingreviews.org/lrsp-2005-4
http://creativecommons.org/licenses/by-nc/3.0/de/


Imprint / Terms of Use

Living Reviews in Solar Physics is a peer reviewed open access journal published by the Max Planck
Institute for Solar System Research, Max-Planck-Str. 2, 37191 Katlenburg-Lindau, Germany. ISSN
1614-4961.

This review is licensed under a Creative Commons Attribution-Non-Commercial 3.0 Germany
License: http://creativecommons.org/licenses/by-nc/3.0/de/. Figures that have been pre-
viously published elsewhere may not be reproduced without consent of the original copyright
holders.

Because a Living Reviews article can evolve over time, we recommend to cite the article as follows:

Roberto Bruno and Vincenzo Carbone,
“The Solar Wind as a Turbulence Laboratory”,

Living Rev. Solar Phys., 10, (2013), 2. URL (accessed <date>):
http://www.livingreviews.org/lrsp-2013-2

The date given as <date> then uniquely identifies the version of the article you are referring to.

http://creativecommons.org/licenses/by-nc/3.0/de/


Article Revisions

Living Reviews supports two ways of keeping its articles up-to-date:

Fast-track revision. A fast-track revision provides the author with the opportunity to add short
notices of current research results, trends and developments, or important publications to
the article. A fast-track revision is refereed by the responsible subject editor. If an article
has undergone a fast-track revision, a summary of changes will be listed here.

Major update. A major update will include substantial changes and additions and is subject to
full external refereeing. It is published with a new publication number.

For detailed documentation of an article’s evolution, please refer to the history document of the
article’s online version at http://www.livingreviews.org/lrsp-2013-2.

29 May 2013: Sections 2.11, 2.12, and 2.13 have been added and refer to Yaglom’s law. Sec-
tions 3.1.1 has been modified to include recent results on spectral index measurements for velocity
and magnetic field fluctuations. Section 3.1.2 “Experimental evaluation of Reynolds number in
the solar wind” is new. Section 3.1.3 has been slightly modified to describe the updated version
of Figure 29. Section 3.2.1 has been extended to include new results on magnetic structures. Sec-
tion 10.1 “On the statistics of magnetic field directional fluctuations” is new. Section 8 is new and
deals with “Observations of Yaglom’s Law in Solar Wind Turbulence”. Section 11, 12 and 13 have
been added and deal with small scale dissipative/dispersive range and turbulent heating The last
Section 14 “Conclusions and Remarks” has been slightly modified to comment on some of the new
results reported in this updated version. Appendix F has been slightly updated. 20 new figures
have been added. The number of references has increased from 296 to 439.

http://www.livingreviews.org/lrsp-2013-2


Contents

1 Introduction 7

1.1 What does turbulence stand for? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Dynamics vs. statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Equations and Phenomenology 16

2.1 The Navier–Stokes equation and the Reynolds number . . . . . . . . . . . . . . . . 16

2.2 The coupling between a charged fluid and the magnetic field . . . . . . . . . . . . . 17

2.3 Scaling features of the equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 The non-linear energy cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 The inhomogeneous case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Dynamical system approach to turbulence . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Shell models for turbulence cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 The phenomenology of fully developed turbulence: Fluid-like case . . . . . . . . . . 26

2.9 The phenomenology of fully developed turbulence: Magnetically-dominated case . 28

2.10 Some exact relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.11 Yaglom’s law for MHD turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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B.3.2 Spectral analysis using Elsässer variables . . . . . . . . . . . . . . . . . . . 167

C Wavelets as a Tool to Study Intermittency 168

D Reference Systems 170

D.1 Minimum variance reference system . . . . . . . . . . . . . . . . . . . . . . . . . . 170

D.2 The mean field reference system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



E On-board Plasma and Magnetic Field Instrumentation 174
E.1 Plasma instrument: The top-hat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
E.2 Measuring the velocity distribution function . . . . . . . . . . . . . . . . . . . . . . 175
E.3 Computing the moments of the velocity distribution function . . . . . . . . . . . . 176
E.4 Field instrument: The flux-gate magnetometer . . . . . . . . . . . . . . . . . . . . 177

F Spacecraft and Datasets 180

References 182

List of Tables

1 Scaling exponents for velocity ζp and magnetic ξp variables calculated through ESS. 107
2 Normalized scaling exponents ξp/ξ3 for radial magnetic fluctuations in a laboratory

plasma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3 Normalized scaling exponents ξp/ξ3 for Alfvénic, velocity, and magnetic fluctuations
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5 The values of the parameters σ0, µ, and γ, in the fit of λ2(τ) as a kernel for the

scaling behavior of PDFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6 Typical values of several solar wind parameters as measured by Helios 2 at 1 AU. . 160
7 Typical values of different speeds obtained at 1 AU. . . . . . . . . . . . . . . . . . 160
8 Typical values of different frequencies at 1 AU. . . . . . . . . . . . . . . . . . . . . 160
9 Typical values of different lengths at 1 AU plus the distance traveled by a proton

before colliding with another proton. . . . . . . . . . . . . . . . . . . . . . . . . . . 161
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The Solar Wind as a Turbulence Laboratory 7

1 Introduction

The whole heliosphere is permeated by the solar wind, a supersonic and super-Alfvénic plasma
flow of solar origin which continuously expands into the heliosphere. This medium offers the best
opportunity to study directly collisionless plasma phenomena, mainly at low frequencies where
high-amplitude fluctuations have been observed. During its expansion, the solar wind develops a
strong turbulent character, which evolves towards a state that resembles the well known hydro-
dynamic turbulence described by Kolmogorov (1941, 1991). Because of the presence of a strong
magnetic field carried by the wind, low-frequency fluctuations in the solar wind are usually de-
scribed within a magnetohydrodynamic (MHD, hereafter) benchmark (Kraichnan, 1965; Biskamp,
1993; Tu and Marsch, 1995a; Biskamp, 2003; Petrosyan et al., 2010). However, due to some pe-
culiar characteristics, the solar wind turbulence contains some features hardly classified within a
general theoretical framework.

Turbulence in the solar heliosphere plays a relevant role in several aspects of plasma behavior in
space, such as solar wind generation, high-energy particles acceleration, plasma heating, and cosmic
rays propagation. In the 1970s and 80s, impressive advances have been made in the knowledge
of turbulent phenomena in the solar wind. However, at that time, spacecraft observations were
limited by a small latitudinal excursion around the solar equator and, in practice, only a thin
slice above and below the equatorial plane was accessible, i.e., a sort of 2D heliosphere. A rather
exhaustive survey of the most important results based on in-situ observations in the ecliptic plane
has been provided in an excellent review by Tu and Marsch (1995a) and we invite the reader to
refer to that paper. This one, to our knowledge, has been the last large review we find in literature
related to turbulence observations in the ecliptic.

In the 1990s, with the launch of the Ulysses spacecraft, investigations have been extended to
the high-latitude regions of the heliosphere, allowing us to characterize and study how turbulence
evolves in the polar regions. An overview of Ulysses results about polar turbulence can also be found
in Horbury and Tsurutani (2001). With this new laboratory, relevant advances have been made.
One of the main goals of the present work will be that of reviewing observations and theoretical
efforts made to understand the near-equatorial and polar turbulence in order to provide the reader
with a rather complete view of the low-frequency turbulence phenomenon in the 3D heliosphere.

New interesting insights in the theory of turbulence derive from the point of view which consid-
ers a turbulent flow as a complex system, a sort of benchmark for the theory of dynamical systems.
The theory of chaos received the fundamental impulse just through the theory of turbulence devel-
oped by Ruelle and Takens (1971) who, criticizing the old theory of Landau and Lifshitz (1971),
were able to put the numerical investigation by Lorenz (1963) in a mathematical framework. Gol-
lub and Swinney (1975) set up accurate experiments on rotating fluids confirming the point of
view of Ruelle and Takens (1971) who showed that a strange attractor in the phase space of the
system is the best model for the birth of turbulence. This gave a strong impulse to the investi-
gation of the phenomenology of turbulence from the point of view of dynamical systems (Bohr
et al., 1998). For example, the criticism by Landau leading to the investigation of intermittency in
fully developed turbulence was worked out through some phenomenological models for the energy
cascade (cf. Frisch, 1995). Recently, turbulence in the solar wind has been used as a big wind
tunnel to investigate scaling laws of turbulent fluctuations, multifractals models, etc. The review
by Tu and Marsch (1995a) contains a brief introduction to this important argument, which was
being developed at that time relatively to the solar wind (Burlaga, 1993; Carbone, 1993; Biskamp,
1993, 2003; Burlaga, 1995). The reader can convince himself that, because of the wide range of
scales excited, space plasma can be seen as a very big laboratory where fully developed turbulence
can be investigated not only per se, rather as far as basic theoretical aspects are concerned.

Turbulence is perhaps the most beautiful unsolved problem of classical physics, the approaches
used so far in understanding, describing, and modeling turbulence are very interesting even from a

Living Reviews in Solar Physics

http://www.livingreviews.org/lrsp-2013-2

http://www.livingreviews.org/lrsp-2013-2


8 Roberto Bruno and Vincenzo Carbone

historic point of view, as it clearly appears when reading, for example, the book by Frisch (1995).
History of turbulence in interplanetary space is, perhaps, even more interesting since its knowledge
proceeds together with the human conquest of space. Thus, whenever appropriate, we will also
introduce some historical references to show the way particular problems related to turbulence
have been faced in time, both theoretically and technologically. Finally, since turbulence is a
phenomenon visible everywhere in nature, it will be interesting to compare some experimental
and theoretical aspects among different turbulent media in order to assess specific features which
might be universal, not limited only to turbulence in space plasmas. In particular, we will compare
results obtained in interplanetary space with results obtained from ordinary fluid flows on Earth,
and from experiments on magnetic turbulence in laboratory plasmas designed for thermonuclear
fusion.

1.1 What does turbulence stand for?

The word turbulent is used in the everyday experience to indicate something which is not regular.
In Latin the word turba means something confusing or something which does not follow an ordered
plan. A turbulent boy, in all Italian schools, is a young fellow who rebels against ordered schemes.
Following the same line, the behavior of a flow which rebels against the deterministic rules of
classical dynamics is called turbulent. Even the opposite, namely a laminar motion, derives from
the Latin word lámina, which means stream or sheet, and gives the idea of a regular streaming
motion. Anyhow, even without the aid of a laboratory experiment and a Latin dictionary, we
experience turbulence every day. It is relatively easy to observe turbulence and, in some sense,
we generally do not pay much attention to it (apart when, sitting in an airplane, a nice lady
asks us to fasten our seat belts during the flight because we are approaching some turbulence!).
Turbulence appears everywhere when the velocity of the flow is high enough1, for example, when a
flow encounters an obstacle (cf., e.g., Figure 1 ) in the atmospheric flow, or during the circulation of
blood, etc. Even charged fluids (plasma) can become turbulent. For example, laboratory plasmas
are often in a turbulent state, as well as natural plasmas like the outer regions of stars. Living
near a star, we have a big chance to directly investigate the turbulent motion inside the flow which
originates from the Sun, namely the solar wind. This will be the main topic of the present review.

Figure 1: Turbulence as observed in a river. Here we can see different turbulent wakes due to different
obstacles (simple stones) emerging naturally above the water level.

Turbulence that we observe in fluid flows appears as a very complicated state of motion, and at
a first sight it looks (apparently!) strongly irregular and chaotic, both in space and time. The only
dynamical rule seems to be the impossibility to predict any future state of the motion. However,
it is interesting to recognize the fact that, when we take a picture of a turbulent flow at a given
time, we see the presence of a lot of different turbulent structures of all sizes which are actively
present during the motion. The presence of these structures was well recognized long time ago,
as testified by the beautiful pictures of vortices observed and reproduced by the Italian genius

1 This concept will be explained better in the next sections.
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The Solar Wind as a Turbulence Laboratory 9

Leonardo da Vinci, as reported in the textbook by Frisch (1995). Figure 2 shows, as an example,
one picture from Leonardo which can be compared with Figure 3 taken from a typical experiment
on a turbulent jet.

Figure 2: Three examples of vortices taken from the pictures by Leonardo da Vinci (cf. Frisch, 1995).

Figure 3: Turbulence as observed in a turbulent water jet (Van Dyke, 1982) reported in the book by
Frisch (1995) (photograph by P. Dimotakis, R. Lye, and D. Papantoniu).

Turbulent features can be recognized even in natural turbulent systems like, for example, the
atmosphere of Jupiter (see Figure 4). A different example of turbulence in plasmas is reported in
Figure 5 where we show the result of a typical high resolution numerical simulations of 2D MHD
turbulence. In this case the turbulent field shown is the current density. These basic features
of mixing between order and chaos make the investigation of properties of turbulence terribly
complicated, although extraordinarily fascinating.

When we look at a flow at two different times, we can observe that the general aspect of the
flow has not changed appreciably, say vortices are present all the time but the flow in each single
point of the fluid looks different. We recognize that the gross features of the flow are reproducible
but details are not predictable. We have to use a statistical approach to turbulence, just as it is
done to describe stochastic processes, even if the problem is born within the strange dynamics of
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10 Roberto Bruno and Vincenzo Carbone

Figure 4: Turbulence in the atmosphere of Jupiter as observed by Voyager.

Figure 5: High resolution numerical simulations of 2D MHD turbulence at resolution 2048 Ö 2048
(courtesy by H. Politano). Here, the authors show the current density J(x, y), at a given time, on the
plane (x, y).

a deterministic system!

Turbulence increases the properties of transport in a flow. For example, the urban pollution,
without atmospheric turbulence, would not be spread (or eliminated) in a relatively short time.
Results from numerical simulations of the concentration of a passive scalar transported by a tur-
bulent flow is shown in Figure 6. On the other hand, in laboratory plasmas inside devices designed
to achieve thermo-nuclear controlled fusion, anomalous transport driven by turbulent fluctuations
is the main cause for the destruction of magnetic confinement. Actually, we are far from the
achievement of controlled thermo-nuclear fusion. Turbulence, then, acquires the strange feature of
something to be avoided in some cases, or to be invoked in some other cases.

Turbulence became an experimental science since Osborne Reynolds who, at the end of 19th
century, observed and investigated experimentally the transition from laminar to turbulent flow. He
noticed that the flow inside a pipe becomes turbulent every time a single parameter, a combination
of the viscosity coefficient η, a characteristic velocity U , and length L, would increase. This
parameter Re = ULρ/η (ρ is the mass density of the fluid) is now called the Reynolds number.
At lower Re, say Re ≤ 2300, the flow is regular (that is the motion is laminar), but when Re
increases beyond a certain threshold of the order of Re ≃ 4000, the flow becomes turbulent. As
Re increases, the transition from a laminar to a turbulent state occurs over a range of values of Re
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The Solar Wind as a Turbulence Laboratory 11

Figure 6: Concentration field c(x, y), at a given time, on the plane (x, y). The field has been obtained
by a numerical simulation at resolution 2048 Ö 2048. The concentration is treated as a passive scalar,
transported by a turbulent field. Low concentrations are reported in blue while high concentrations are
reported in yellow (courtesy by A. Noullez).

with different characteristics and depending on the details of the experiment. In the limit Re→ ∞
the turbulence is said to be in a fully developed turbulent state. The original pictures by Reynolds
are shown in Figure 7.

Figure 7: The original pictures by Reynolds which show the transition to a turbulent state of a flow in a
pipe, as the Reynolds number increases from top to bottom (see the website Reynolds, 1883).

1.2 Dynamics vs. statistics

In Figure 8 we report a typical sample of turbulence as observed in a fluid flow in the Earth’s
atmosphere. Time evolution of both the longitudinal velocity component and the temperature
is shown. Measurements in the solar wind show the same typical behavior. A typical sample of
turbulence as measured by Helios 2 spacecraft is shown in Figure 9. A further sample of turbulence,
namely the radial component of the magnetic field measured at the external wall of an experiment
in a plasma device realized for thermonuclear fusion, is shown in Figure 10.

As it is well documented in these figures, the main feature of fully developed turbulence is the
chaotic character of the time behavior. Said differently, this means that the behavior of the flow
is unpredictable. While the details of fully developed turbulent motions are extremely sensitive to
triggering disturbances, average properties are not. If this was not the case, there would be little

significance in the averaging process. Predictability in turbulence can be recast at a statistical
level. In other words, when we look at two different samples of turbulence, even collected within
the same medium, we can see that details look very different. What is actually common is a generic
stochastic behavior. This means that the global statistical behavior does not change going from
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12 Roberto Bruno and Vincenzo Carbone

Figure 8: Turbulence as measured in the atmospheric boundary layer. Time evolution of the longitudinal
velocity and temperature are shown in the upper and lower panels, respectively. The turbulent samples
have been collected above a grass-covered forest clearing at 5 m above the ground surface and at a sampling
rate of 56 Hz (Katul et al., 1997).

one sample to the other. The idea that fully developed turbulent flows are extremely sensitive to
small perturbations but have statistical properties that are insensitive to perturbations is of central
importance throughout this review. Fluctuations of a certain stochastic variable ψ are defined here
as the difference from the average value δψ = ψ−⟨ψ⟩, where brackets mean some averaging process.
Actually, the method of taking averages in a turbulent flow requires some care. We would like to
recall that there are, at least, three different kinds of averaging procedures that may be used
to obtain statistically-averaged properties of turbulence. The space averaging is limited to flows
that are statistically homogeneous or, at least, approximately homogeneous over scales larger than
those of fluctuations. The ensemble averages are the most versatile, where average is taken over an
ensemble of turbulent flows prepared under nearly identical external conditions. Of course, these
flows are not completely identical because of the large fluctuations present in turbulence. Each
member of the ensemble is called a realization. The third kind of averaging procedure is the time
average, which is useful only if the turbulence is statistically stationary over time scales much larger
than the time scale of fluctuations. In practice, because of the convenience offered by locating a
probe at a fixed point in space and integrating in time, experimental results are usually obtained
as time averages. The ergodic theorem (Halmos, 1956) assures that time averages coincide with
ensemble averages under some standard conditions (see Appendix B).

A different property of turbulence is that all dynamically interesting scales are excited, that is,
energy is spread over all scales. This can be seen in Figure 11 where we show the magnetic field
intensity within a typical solar wind stream (see top panel). In the middle and bottom panels we
show fluctuations at two different detailed scales. A kind of self-similarity (say a similarity at all
scales) is observed.

Since fully developed turbulence involves a hierarchy of scales, a large number of interacting
degrees of freedom are involved. Then, there should be an asymptotic statistical state of turbulence
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Figure 9: A sample of fast solar wind at distance 0.9 AU measured by the Helios 2 spacecraft. From top

to bottom: speed, number density, temperature, and magnetic field, as a function of time.
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Figure 10: Turbulence as measured at the external wall of a device designed for thermonuclear fusion,
namely the RFX in Padua (Italy). The radial component of the magnetic field as a function of time is
shown in the figure (courtesy by V. Antoni).
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Figure 11: Magnetic intensity fluctuations as observed by Helios 2 in the inner solar wind at 0.9 AU, for
different blow-ups. Some self-similarity is evident here.
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that is independent on the details of the flow. Hopefully, this asymptotic state depends, perhaps
in a critical way, only on simple statistical properties like energy spectra, as much as in statistical
mechanics equilibrium where the statistical state is determined by the energy spectrum (Huang,
1987). Of course, we cannot expect that the statistical state would determine the details of
individual realizations, because realizations need not to be given the same weight in different
ensembles with the same low-order statistical properties.

It should be emphasized that there are no firm mathematical arguments for the existence of
an asymptotic statistical state. As we have just seen, reproducible statistical results are obtained
from observations, that is, it is suggested experimentally and from physical plausibility. Apart
from physical plausibility, it is embarrassing that such an important feature of fully developed
turbulence, as the existence of a statistical stability, should remain unsolved. However, such is the
complex nature of turbulence.
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2 Equations and Phenomenology

In this section, we present the basic equations that are used to describe charged fluid flows, and
the basic phenomenology of low-frequency turbulence. Readers interested in examining closely
this subject can refer to the very wide literature on the subject of turbulence in fluid flows, as for
example the recent books by, e.g., Pope (2000); McComb (1990); Frisch (1995) or many others,
and the less known literature on MHD flows (Biskamp, 1993; Boyd and Sanderson, 2003; Biskamp,
2003). In order to describe a plasma as a continuous medium it will be assumed collisional and,
as a consequence, all quantities will be functions of space r and time t. Apart for the required
quasi-neutrality, the basic assumption of MHD is that fields fluctuate on the same time and length
scale as the plasma variables, say ωτH ≃ 1 and kLH ≃ 1 (k and ω are, respectively, the wave
number and the frequency of the fields, while τH and LH are the hydrodynamic time and length
scale, respectively). Since the plasma is treated as a single fluid, we have to take the slow rates of
ions. A simple analysis shows also that the electrostatic force and the displacement current can be
neglected in the non-relativistic approximation. Then, MHD equations can be derived as shown
in the following sections.

2.1 The Navier–Stokes equation and the Reynolds number

Equations which describe the dynamics of real incompressible fluid flows have been introduced by
Claude-Louis Navier in 1823 and improved by George G. Stokes. They are nothing but the mo-
mentum equation based on Newton’s second law, which relates the acceleration of a fluid particle2

to the resulting volume and body forces acting on it. These equations have been introduced by
Leonhard Euler, however, the main contribution by Navier was to add a friction forcing term due
to the interactions between fluid layers which move with different speed. This term results to be
proportional to the viscosity coefficients η and ξ and to the variation of speed. By defining the
velocity field u(r, t) the kinetic pressure p and the density ρ, the equations describing a fluid flow
are the continuity equation to describe the conservation of mass

∂ρ

∂t
+ (u · ∇) ρ = −ρ∇ · u, (1)

the equation for the conservation of momentum

ρ

[

∂u

∂t
+ (u · ∇)u

]

= −∇p+ η∇2u+
(

ξ +
η

3

)

∇ (∇ · u) , (2)

and an equation for the conservation of energy

ρT

[

∂s

∂t
+ (u · ∇)s

]

= ∇ · (χ∇T ) + η

2

(

∂ui
∂xk

+
∂uk
∂xi

− 2

3
δik∇ · u

)2

+ ξ(∇ · u)2, (3)

where s is the entropy per mass unit, T is the temperature, and χ is the coefficient of thermocon-
duction. An equation of state closes the system of fluid equations.

The above equations considerably simplify if we consider the incompressible fluid, where ρ =
const. so that we obtain the Navier–Stokes (NS) equation

∂u

∂t
+ (u · ∇)u = −

(∇p
ρ

)

+ ν∇2u, (4)

2 A fluid particle is defined as an infinitesimal portion of fluid which moves with the local velocity. As usual in
fluid dynamics, infinitesimal means small with respect to large scale, but large enough with respect to molecular
scales.
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where the coefficient ν = η/ρ is the kinematic viscosity. The incompressibility of the flow translates
in a condition on the velocity field, namely the field is divergence-free, i.e., ∇·u = 0. This condition
eliminates all high-frequency sound waves and is called the incompressible limit. The non-linear
term in equations represents the convective (or substantial) derivative. Of course, we can add on
the right hand side of this equation all external forces, which eventually act on the fluid parcel.

We use the velocity scale U and the length scale L to define dimensionless independent variables,
namely r = r′L (from which ∇ = ∇′/L) and t = t′(L/U), and dependent variables u = u′U and
p = p′U2ρ. Then, using these variables in Equation (4), we obtain

∂u′

∂t′
+ (u′ · ∇′)u′ = −∇′p′ +Re−1∇′2u′. (5)

The Reynolds number Re = UL/ν is evidently the only parameter of the fluid flow. This defines
a Reynolds number similarity for fluid flows, namely fluids with the same value of the Reynolds
number behaves in the same way. Looking at Equation (5) it can be realized that the Reynolds
number represents a measure of the relative strength between the non-linear convective term and
the viscous term in Equation (4). The higher Re, the more important the non-linear term is in
the dynamics of the flow. Turbulence is a genuine result of the non-linear dynamics of fluid flows.

2.2 The coupling between a charged fluid and the magnetic field

Magnetic fields are ubiquitous in the Universe and are dynamically important. At high frequencies,
kinetic effects are dominant, but at frequencies lower than the ion cyclotron frequency, the evolution
of plasma can be modeled using the MHD approximation. Furthermore, dissipative phenomena can
be neglected at large scales although their effects will be felt because of non-locality of non-linear
interactions. In the presence of a magnetic field, the Lorentz force j × B, where j is the electric
current density, must be added to the fluid equations, namely

ρ

[

∂u

∂t
+ (u · ∇)u

]

= −∇p+ η∇2u+
(

ξ +
η

3

)

∇ (∇ · u)− 1

4π
B× (∇×B), (6)

and the Joule heat must be added to the equation for energy

ρT

[

∂s

∂t
+ (u · ∇)s

]

= σik
∂ui
∂xk

+ χ∇2T +
c2

16π2σ
(∇×B)2, (7)

where σ is the conductivity of the medium, and we introduced the viscous stress tensor

σik = η

(

∂ui
∂xk

+
∂uk
∂xi

− 2

3
δik∇ · u

)

+ ξδik∇ · u. (8)

An equation for the magnetic field stems from the Maxwell equations in which the displacement
current is neglected under the assumption that the velocity of the fluid under consideration is much
smaller than the speed of light. Then, using

∇×B = µ0j

and the Ohm’s law for a conductor in motion with a speed u in a magnetic field

j = σ (E+ u×B) ,

we obtain the induction equation which describes the time evolution of the magnetic field

∂B

∂t
= ∇× (u×B) + (1/σµ0)∇2B, (9)
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together with the constraint ∇ ·B = 0 (no magnetic monopoles in the classical case).
In the incompressible case, where ∇ · u = 0, MHD equations can be reduced to

∂u

∂t
+ (u · ∇)u = −∇Ptot + ν∇2u+ (b · ∇)b (10)

and
∂b

∂t
+ (u · ∇)b = − (b · ∇)u+ η∇2b. (11)

Here Ptot is the total kinetic Pk = nkT plus magnetic pressure Pm = B2/8π, divided by the
constant mass density ρ. Moreover, we introduced the velocity variables b = B/

√
4πρ and the

magnetic diffusivity η.
Similar to the usual Reynolds number, a magnetic Reynolds number Rm can be defined, namely

Rm =
cAL0

η
,

where cA = B0/
√
4πρ is the Alfvén speed related to the large-scale L0 magnetic field B0. This

number in most circumstances in astrophysics is very large, but the ratio of the two Reynolds
numbers or, in other words, the magnetic Prandtl number Pm = ν/η can differ widely. In absence
of dissipative terms, for each volume V MHD equations conserve the total energy E(t)

E(t) =

∫

V

(v2 + b2) d3r , (12)

the cross-helicity Hc(t), which represents a measure of the degree of correlations between velocity
and magnetic fields

Hc(t) =

∫

V

v · b d3r , (13)

and the magnetic helicityH(t), which represents a measure of the degree of linkage among magnetic
flux tubes

H(t) =

∫

V

a · b d3r , (14)

where b = ∇× a.
The change of variable due to Elsässer (1950), say z± = u ± b′, where we explicitly use the

background uniform magnetic field b′ = b + cA (at variance with the bulk velocity, the largest
scale magnetic field cannot be eliminated through a Galilean transformation), leads to the more
symmetrical form of the MHD equations in the incompressible case

∂z±

∂t
∓ (cA · ∇) z± +

(

z∓ · ∇
)

z± = −∇Ptot + ν±∇2z± + ν∓∇2z∓ + F±, (15)

where 2ν± = ν±η are the dissipative coefficients, and F± are eventual external forcing terms. The
relations ∇ · z± = 0 complete the set of equations. On linearizing Equation (15) and neglecting
both the viscous and the external forcing terms, we have

∂z±

∂t
∓ (cA · ∇) z± ≃ 0,

which shows that z−(x− cAt) describes Alfvénic fluctuations propagating in the direction of B0,
and z+(x + cAt) describes Alfvénic fluctuations propagating opposite to B0. Note that MHD
Equations (15) have the same structure as the Navier–Stokes equation, the main difference stems
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from the fact that non-linear coupling happens only between fluctuations propagating in opposite
directions. As we will see, this has a deep influence on turbulence described by MHD equations.

It is worthwhile to remark that in the classical hydrodynamics, dissipative processes are defined
through three coefficients, namely two viscosities and one thermoconduction coefficient. In the
hydromagnetic case the number of coefficients increases considerably. Apart from few additional
electrical coefficients, we have a large-scale (background) magnetic field B0. This makes the
MHD equations intrinsically anisotropic. Furthermore, the stress tensor (8) is deeply modified
by the presence of a magnetic field B0, in that kinetic viscous coefficients must depend on the
magnitude and direction of the magnetic field (Braginskii, 1965). This has a strong influence on
the determination of the Reynolds number.

2.3 Scaling features of the equations

The scaled Euler equations are the same as Equations (4 and 5), but without the term proportional
to R−1. The scaled variables obtained from the Euler equations are, then, the same. Thus,
scaled variables exhibit scaling similarity, and the Euler equations are said to be invariant with
respect to scale transformations. Said differently, this means that NS Equations (4) show scaling
properties (Frisch, 1995), that is, there exists a class of solutions which are invariant under scaling
transformations. Introducing a length scale `, it is straightforward to verify that the scaling
transformations ` → λ`′ and u → λhu′ (λ is a scaling factor and h is a scaling index) leave
invariant the inviscid NS equation for any scaling exponent h, providing P → λ2hP ′. When the
dissipative term is taken into account, a characteristic length scale exists, say the dissipative scale
`D. From a phenomenological point of view, this is the length scale where dissipative effects start
to be experienced by the flow. Of course, since ν is in general very low, we expect that `D is very
small. Actually, there exists a simple relationship for the scaling of `D with the Reynolds number,
namely `D ∼ LRe−3/4. The larger the Reynolds number, the smaller the dissipative length scale.

As it is easily verified, ideal MHD equations display similar scaling features. Say the following
scaling transformations u → λhu′ and B → λβB′ (β here is a new scaling index different from
h), leave the inviscid MHD equations unchanged, providing P → λ2βP ′, T → λ2hT ′, and ρ →
λ2(β−h)ρ′. This means that velocity and magnetic variables have different scalings, say h ̸= β,
only when the scaling for the density is taken into account. In the incompressible case, we cannot
distinguish between scaling laws for velocity and magnetic variables.

2.4 The non-linear energy cascade

The basic properties of turbulence, as derived both from the Navier–Stokes equation and from phe-
nomenological considerations, is the legacy of A. N. Kolmogorov (Frisch, 1995).3 Phenomenology
is based on the old picture by Richardson who realized that turbulence is made by a collection of
eddies at all scales. Energy, injected at a length scale L, is transferred by non-linear interactions
to small scales where it is dissipated at a characteristic scale `D, the length scale where dissipation
takes place. The main idea is that at very large Reynolds numbers, the injection scale L and the
dissipative scale `D are completely separated. In a stationary situation, the energy injection rate
must be balanced by the energy dissipation rate and must also be the same as the energy transfer
rate ε measured at any scale ` within the inertial range `D ≪ ` ≪ L. From a phenomenological
point of view, the energy injection rate at the scale L is given by εL ∼ U2/τL, where τL is a
characteristic time for the injection energy process, which results to be τL ∼ L/U . At the same
scale L the energy dissipation rate is due to εD ∼ U2/τD, where τD is the characteristic dissipation

3 The translation (Kolmogorov, 1991) of the original paper by Kolmogorov (1941) can also be found in the book
by Hunt et al. (1991).
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time which, from Equation (4), can be estimated to be of the order of τD ∼ L2/ν. As a result, the
ratio between the energy injection rate and dissipation rate is

εL
εD

∼ τD
τL

∼ Re , (16)

that is, the energy injection rate at the largest scale L is Re-times the energy dissipation rate. In
other words, in the case of large Reynolds numbers, the fluid system is unable to dissipate the
whole energy injected at the scale L. The excess energy must be dissipated at small scales where
the dissipation process is much more efficient. This is the physical reason for the energy cascade.

Fully developed turbulence involves a hierarchical process, in which many scales of motion are
involved. To look at this phenomenon it is often useful to investigate the behavior of the Fourier
coefficients of the fields. Assuming periodic boundary conditions the α-th component of velocity
field can be Fourier decomposed as

uα(r, t) =
∑

k

uα(k, t) exp(ik · r),

where k = 2πn/L and n is a vector of integers. When used in the Navier–Stokes equation, it is a
simple matter to show that the non-linear term becomes the convolution sum

∂uα(k, t)

∂t
=Mαβγ(k)

∑

q

uγ(k− q, t)uβ(q, t), (17)

where Mαβγ(k) = −ikβ(δαγ −kαkβ/k2) (for the moment we disregard the linear dissipative term).
MHD equations can be written in the same way, say by introducing the Fourier decomposition

for Elsässer variables

z±α (r, t) =
∑

k

z±α (k, t) exp(ik · r),

and using this expression in the MHD equations we obtain an equation which describes the time
evolution of each Fourier mode. However, the divergence-less condition means that not all Fourier
modes are independent, rather k · z±(k, t) = 0 means that we can project the Fourier coefficients
on two directions which are mutually orthogonal and orthogonal to the direction of k, that is,

z±(k, t) =
2
∑

a=1

z±a (k, t)e(a)(k), (18)

with the constraint that k · e(a)(k) = 0. In presence of a background magnetic field we can use the
well defined direction B0, so that

e(1)(k) =
ik×B0

|k×B0|
; e(2)(k) =

ik

|k| × e(1)(k).

Note that in the linear approximation where the Elsässer variables represent the usual MHD modes,
z±1 (k, t) represent the amplitude of the Alfvén mode while z±2 (k, t) represent the amplitude of the
incompressible limit of the magnetosonic mode. From MHD Equations (15) we obtain the following
set of equations:

[

∂

∂t
∓ i (k · cA)

]

z±a (k, t) =

(

L

2π

)3 δ
∑

p+q=k

2
∑

b,c=1

Aabc(−k,p,q)z±b (p, t)z∓c (q, t). (19)
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The coupling coefficients, which satisfy the symmetry condition Aabc(k,p,q) = −Abac(p,k,q), are
defined as

Aabc(−k,p,q) =
[

(ik)? · e(c)(q)
] [

e(a)*(k) · e(b)(p)
]

,

and the sum in Equation (19) is defined as

δ
∑

p+q=k

≡
(

2π

L

)3
∑

p

∑

q

δk,p+q,

where δk,p+q is the Kronecher’s symbol. Quadratic non-linearities of the original equations corre-
spond to a convolution term involving wave vectors k, p and q related by the triangular relation
p = k−q. Fourier coefficients locally couple to generate an energy transfer from any pair of modes
p and q to a mode k = p+ q.

The pseudo-energies E±(t) are defined as

E±(t) =
1

2

1

L3

∫

L3

|z±(r, t)|2d3r =
1

2

∑

k

2
∑

a=1

|z±a (k, t)|2

and, after some algebra, it can be shown that the non-linear term of Equation (19) conserves
separately E±(t). This means that both the total energy E(t) = E+ + E− and the cross-helicity
Ec(t) = E+−E−, say the correlation between velocity and magnetic field, are conserved in absence
of dissipation and external forcing terms.

In the idealized homogeneous and isotropic situation we can define the pseudo-energy tensor,
which using the incompressibility condition can be written as

U±
ab(k, t) ≡

(

L

2π

)3
〈

z±a (k, t)z±b (k, t)
〉

=

(

δab −
kakb
k2

)

q±(k),

brackets being ensemble averages, where q±(k) is an arbitrary odd function of the wave vector k
and represents the pseudo-energies spectral density. When integrated over all wave vectors under
the assumption of isotropy

Tr

[∫

d3k U±
ab(k, t)

]

= 2

∫ ∞

0

E±(k, t)dk,

where we introduce the spectral pseudo-energy E±(k, t) = 4πk2q±(k, t). This last quantity can be
measured, and it is shown that it satisfies the equations

∂E±(k, t)

∂t
= T±(k, t)− 2νk2E±(k, t) + F±(k, t). (20)

We use ν = η in order not to worry about coupling between + and − modes in the dissipative
range. Since the non-linear term conserves total pseudo-energies we have

∫ ∞

0

dk T±(k, t) = 0,

so that, when integrated over all wave vectors, we obtain the energy balance equation for the total
pseudo-energies

dE±(t)

dt
=

∫ ∞

0

dk F±(k, t)− 2ν

∫ ∞

0

dk k2E±(k, t). (21)
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This last equation simply means that the time variations of pseudo-energies are due to the difference
between the injected power and the dissipated power, so that in a stationary state

∫ ∞

0

dk F±(k, t) = 2ν

∫ ∞

0

dk k2E±(k, t) = ε±.

Looking at Equation (20), we see that the role played by the non-linear term is that of a
redistribution of energy among the various wave vectors. This is the physical meaning of the
non-linear energy cascade of turbulence.

2.5 The inhomogeneous case

Equations (20) refer to the standard homogeneous and incompressible MHD. Of course, the solar
wind is inhomogeneous and compressible and the energy transfer equations can be as complicated
as we want by modeling all possible physical effects like, for example, the wind expansion or the
inhomogeneous large-scale magnetic field. Of course, simulations of all turbulent scales requires a
computational effort which is beyond the actual possibilities. A way to overcome this limitation
is to introduce some turbulence modeling of the various physical effects. For example, a set of
equations for the cross-correlation functions of both Elsässer fluctuations have been developed
independently by Marsch and Tu (1989), Zhou and Matthaeus (1990), Oughton and Matthaeus
(1992), and Tu and Marsch (1990a), following Marsch and Mangeney (1987) (see review by Tu
and Marsch, 1996), and are based on some rather strong assumptions: i) a two-scale separation,
and ii) small-scale fluctuations are represented as a kind of stochastic process (Tu and Marsch,
1996). These equations look quite complicated, and just a comparison based on order-of-magnitude
estimates can be made between them and solar wind observations (Tu and Marsch, 1996).

A different approach, introduced by Grappin et al. (1993), is based on the so-called “expanding-
box model” (Grappin and Velli, 1996; Liewer et al., 2001; Hellinger et al., 2005). The model
uses transformation of variables to the moving solar wind frame that expands together with the
size of the parcel of plasma as it propagates outward from the Sun. Despite the model requires
several simplifying assumptions, like for example lateral expansion only for the wave-packets and
constant solar wind speed, as well as a second-order approximation for coordinate transformation
Liewer et al. (2001) to remain tractable, it provides qualitatively good description of the solar
wind expansions, thus connecting the disparate scales of the plasma in the various parts of the
heliosphere.

2.6 Dynamical system approach to turbulence

In the limit of fully developed turbulence, when dissipation goes to zero, an infinite range of scales
are excited, that is, energy lies over all available wave vectors. Dissipation takes place at a typical
dissipation length scale which depends on the Reynolds number Re through `D ∼ LRe−3/4 (for a
Kolmogorov spectrum E(k) ∼ k−5/3). In 3D numerical simulations the minimum number of grid
points necessary to obtain information on the fields at these scales is given by N ∼ (L/`D)

3 ∼
Re9/4. This rough estimate shows that a considerable amount of memory is required when we want
to perform numerical simulations with high Re. At present, typical values of Reynolds numbers
reached in 2D and 3D numerical simulations are of the order of 104 and 103, respectively. At these
values the inertial range spans approximately one decade or a little more.

Given the situation described above, the question of the best description of dynamics which
results from original equations, using only a small amount of degree of freedom, becomes a very
important issue. This can be achieved by introducing turbulence models which are investigated
using tools of dynamical system theory (Bohr et al., 1998). Dynamical systems, then, are solutions
of minimal sets of ordinary differential equations that can mimic the gross features of energy cascade
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in turbulence. These studies are motivated by the famous Lorenz’s model (Lorenz, 1963) which,
containing only three degrees of freedom, simulates the complex chaotic behavior of turbulent
atmospheric flows, becoming a paradigm for the study of chaotic systems.

The Lorenz’s model has been used as a paradigm as far as the transition to turbulence is
concerned. Actually, since the solar wind is in a state of fully developed turbulence, the topic
of the transition to turbulence is not so close to the main goal of this review. However, since
their importance in the theory of dynamical systems, we spend few sentences abut this central
topic. Up to the Lorenz’s chaotic model, studies on the birth of turbulence dealt with linear and,
very rarely, with weak non-linear evolution of external disturbances. The first physical model of
laminar-turbulent transition is due to Landau and it is reported in the fourth volume of the course
on Theoretical Physics (Landau and Lifshitz, 1971). According to this model, as the Reynolds
number is increased, the transition is due to a infinite series of Hopf bifurcations at fixed values
of the Reynolds number. Each subsequent bifurcation adds a new incommensurate frequency to
the flow whose dynamics become rapidly quasi-periodic. Due to the infinite number of degree of
freedom involved, the quasi-periodic dynamics resembles that of a turbulent flow.

The Landau transition scenario is, however, untenable because incommensurate frequencies
cannot exist without coupling between them. Ruelle and Takens (1971) proposed a new math-
ematical model, according to which after few, usually three, Hopf bifurcations the flow becomes
suddenly chaotic. In the phase space this state is characterized by a very intricate attracting
subset, a strange attractor. The flow corresponding to this state is highly irregular and strongly
dependent on initial conditions. This characteristic feature is now known as the butterfly effect

and represents the true definition of deterministic chaos. These authors indicated as an example
for the occurrence of a strange attractor the old strange time behavior of the Lorenz’s model. The
model is a paradigm for the occurrence of turbulence in a deterministic system, it reads

dx

dt
= Pr(y − x) ,

dy

dt
= Rx− y − xz ,

dz

dt
= xy − bz , (22)

where x(t), y(t), and z(t) represent the first three modes of a Fourier expansion of fluid convective
equations in the Boussinesq approximation, Pr is the Prandtl number, b is a geometrical parameter,
and R is the ratio between the Rayleigh number and the critical Rayleigh number for convective
motion. The time evolution of the variables x(t), y(t), and z(t) is reported in Figure 12. A repro-
duction of the Lorenz butterfly attractor, namely the projection of the variables on the plane (x, z)
is shown in Figure 13. A few years later, Gollub and Swinney (1975) performed very sophisticated
experiments,4 concluding that the transition to turbulence in a flow between co-rotating cylinders
is described by the Ruelle and Takens (1971) model rather than by the Landau scenario.

After this discovery, the strange attractor model gained a lot of popularity, thus stimulating a
large number of further studies on the time evolution of non-linear dynamical systems. An enor-
mous number of papers on chaos rapidly appeared in literature, quite in all fields of physics, and
transition to chaos became a new topic. Of course, further studies on chaos rapidly lost touch with
turbulence studies and turbulence, as reported by Feynman et al. (1977), still remains . . . the last

great unsolved problem of the classical physics. Furthermore, we like to cite recent theoretical efforts
made by Chian and coworkers (Chian et al., 1998, 2003) related to the onset of Alfvénic turbulence.
These authors, numerically solved the derivative non-linear Schrödinger equation (Mjølhus, 1976;
Ghosh and Papadopoulos, 1987) which governs the spatio-temporal dynamics of non-linear Alfvén
waves, and found that Alfvénic intermittent turbulence is characterized by strange attractors.
Note that, the physics involved in the derivative non-linear Schrödinger equation, and in partic-
ular the spatio-temporal dynamics of non-linear Alfvén waves, cannot be described by the usual

4 These authors were the first ones to use physical technologies and methodologies to investigate turbulent flows
from an experimental point of view. Before them, experimental studies on turbulence were motivated mainly by
engineering aspects.
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Figure 12: Time evolution of the variables x(t), y(t), and z(t) in the Lorenz’s model (see Equation (22)).
This figure has been obtained by using the parameters Pr = 10, b = 8/3, and R = 28.

Figure 13: The Lorenz butterfly attractor, namely the time behavior of the variables z(t) vs. x(t) as ob-
tained from the Lorenz’s model (see Equation (22)). This figure has been obtained by using the parameters
Pr = 10, b = 8/3, and R = 28.
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incompressible MHD equations. Rather dispersive effects are required. At variance with the usual
MHD, this can be satisfied by requiring that the effect of ion inertia be taken into account. This
results in a generalized Ohm’s law by including a (j

¯
× B

¯
)-term, which represents the compressible

Hall correction to MHD, say the so-called compressible Hall-MHD model.

In this context turbulence can evolve via two distinct routes: Pomeau–Manneville intermittency
(Pomeau and Manneville, 1980) and crisis-induced intermittency (Ott and Sommerer, 1994). Both
types of chaotic transitions follow episodic switching between different temporal behaviors. In one
case (Pomeau–Manneville) the behavior of the magnetic fluctuations evolve from nearly periodic
to chaotic while, in the other case the behavior intermittently assumes weakly chaotic or strongly
chaotic features.

2.7 Shell models for turbulence cascade

Since numerical simulations, in some cases, cannot be used, simple dynamical systems can be intro-
duced to investigate, for example, statistical properties of turbulent flows which can be compared
with observations. These models, which try to mimic the gross features of the time evolution
of spectral Navier–Stokes or MHD equations, are often called “shell models” or “discrete cascade
models”. Starting from the old papers by Siggia (1977) different shell models have been introduced
in literature for 3D fluid turbulence (Biferale, 2003). MHD shell models have been introduced to
describe the MHD turbulent cascade (Plunian et al., 2012), starting from the paper by Gloaguen
et al. (1985).

The most used shell model is usually quoted in literature as the GOY model, and has been
introduced some time ago by Gledzer (1973) and by Ohkitani and Yamada (1989). Apart from
the first MHD shell model (Gloaguen et al., 1985), further models, like those by Frick and Sokoloff
(1998) and Giuliani and Carbone (1998) have been introduced and investigated in detail. In
particular, the latter ones represent the counterpart of the hydrodynamic GOY model, that is they
coincide with the usual GOY model when the magnetic variables are set to zero.

In the following, we will refer to the MHD shell model as the FSGC model. The shell model
can be built up through four different steps:

a) Introduce discrete wave vectors:
As a first step we divide the wave vector space in a discrete number of shells whose radii grow
according to a power kn = k0λ

n, where λ > 1 is the inter-shell ratio, k0 is the fundamental wave
vector related to the largest available length scale L, and n = 1, 2, . . . , N .

b) Assign to each shell discrete scalar variables:
Each shell is assigned two or more complex scalar variables un(t) and bn(t), or Elsässer variables
Z±
n (t) = un ± bn(t). These variables describe the chaotic dynamics of modes in the shell of wave

vectors between kn and kn+1. It is worth noting that the discrete variable, mimicking the average
behavior of Fourier modes within each shell, represents characteristic fluctuations across eddies
at the scale `n ∼ k−1

n . That is, the fields have the same scalings as field differences, for example
Z±
n ∼ |Z±(x + `n) − Z±(x)| ∼ `hn in fully developed turbulence. In this way, the possibility to

describe spatial behavior within the model is ruled out. We can only get, from a dynamical shell
model, time series for shell variables at a given kn, and we loose the fact that turbulence is a
typical temporal and spatial complex phenomenon.

c) Introduce a dynamical model which describes non-linear evolution:
Looking at Equation (19) a model must have quadratic non-linearities among opposite variables
Z±
n (t) and Z∓

n (t), and must couple different shells with free coupling coefficients.
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d) Fix as much as possible the coupling coefficients:
This last step is not standard. A numerical investigation of the model might require the scanning
of the properties of the system when all coefficients are varied. Coupling coefficients can be fixed
by imposing the conservation laws of the original equations, namely the total pseudo-energies

E±(t) =
1

2

∑

n

∣

∣Z±
n

∣

∣

2
,

that means the conservation of both the total energy and the cross-helicity:

E(t) =
1

2

∑

n

|un|2 + |bn|2 ; Hc(t) =
∑

n

2ℜe (unb*n) ,

where ℜe indicates the real part of the product unb
*
n. As we said before, shell models cannot

describe spatial geometry of non-linear interactions in turbulence, so that we loose the possibility of
distinguishing between two-dimensional and three-dimensional turbulent behavior. The distinction
is, however, of primary importance, for example as far as the dynamo effect is concerned in MHD.
However, there is a third invariant which we can impose, namely

H(t) =
∑

n

(−1)n
|bn|2
kαn

, (23)

which can be dimensionally identified as the magnetic helicity when α = 1, so that the shell model
so obtained is able to mimic a kind of 3D MHD turbulence (Giuliani and Carbone, 1998).

After some algebra, taking into account both the dissipative and forcing terms, FSGC model
can be written as

dZ±
n

dt
= iknΦ

±*
n +

ν ± µ

2
k2nZ

+
n +

ν ∓ µ

2
k2nZ

−
n + F±

n , (24)

where

Φ±
n =

(

2− a− c

2

)

Z±
n+2Z

∓
n+1 +

(

a+ c

2

)

Z±
n+1Z

∓
n+2 +

+

(

c− a

2λ

)

Z±
n−1Z

∓
n+1 −

(

a+ c

2λ

)

Z∓
n−1Z

±
n+1 +

−
(

c− a

2λ2

)

Z∓
n−2Z

±
n−1 −

(

2− a− c

2λ2

)

Z∓
n−1Z

±
n−2, (25)

where5 λ = 2, a = 1/2, and c = 1/3. In the following, we will consider only the case where the
dissipative coefficients are the same, i.e., ν = µ.

2.8 The phenomenology of fully developed turbulence: Fluid-like case

Here we present the phenomenology of fully developed turbulence, as far as the scaling properties
are concerned. In this way we are able to recover a universal form for the spectral pseudo-energy
in the stationary case. In real space a common tool to investigate statistical properties of turbu-
lence is represented by field increments ∆z±` (r) = [z±(r+ `)− z±(r)] · e, being e the longitudinal

5 We can use a different definition for the third invariant H(t), for example a quantity positive defined, without
the term (−1)n and with α = 2. This can be identified as the surrogate of the square of the vector potential, thus
investigating a kind of 2D MHD. In this case, we obtain a shell model with λ = 2, a = 5/4, and c = −1/3. However,
this model does not reproduce the inverse cascade of the square of magnetic potential observed in the true 2D MHD
equations.

Living Reviews in Solar Physics

http://www.livingreviews.org/lrsp-2013-2

http://www.livingreviews.org/lrsp-2013-2


The Solar Wind as a Turbulence Laboratory 27

direction. These stochastic quantities represent fluctuations6 across eddies at the scale `. The
scaling invariance of MHD equations (cf. Section 2.3), from a phenomenological point of view,
implies that we expect solutions where ∆z±` ∼ `h. All the statistical properties of the field depend
only on the scale `, on the mean pseudo-energy dissipation rates ε±, and on the viscosity ν. Also,
ε± is supposed to be the common value of the injection, transfer and dissipation rates. More-
over, the dependence on the viscosity only arises at small scales, near the bottom of the inertial
range. Under these assumptions the typical pseudo-energy dissipation rate per unit mass scales

as ε± ∼
(

∆z±`
)2
/t±` . The time t±` associated with the scale ` is the typical time needed for the

energy to be transferred on a smaller scale, say the eddy turnover time t±` ∼ `/∆z∓` , so that

ε± ∼
(

∆z±`
)2

∆z∓/`.

When we conjecture that both ∆z± fluctuations have the same scaling laws, namely ∆z± ∼ `h,
we recover the Kolmogorov scaling for the field increments

∆z±` ∼ (ε±)1/3`1/3. (26)

Usually, we refer to this scaling as the K41 model (Kolmogorov, 1941, 1991; Frisch, 1995). Note
that, since from dimensional considerations the scaling of the energy transfer rate should be ε± ∼
`1−3h, h = 1/3 is the choice to guarantee the absence of scaling for ε±.

In the real space turbulence properties can be described using either the probability distribution
functions (PDFs hereafter) of increments, or the longitudinal structure functions, which represents
nothing but the higher order moments of the field. Disregarding the magnetic field, in a purely

fully developed fluid turbulence, this is defined as S
(p)
` = ⟨∆up` ⟩. These quantities, in the inertial

range, behave as a power law S
(p)
` ∼ `ξp , so that it is interesting to compute the set of scaling

exponent ξp. Using, from a phenomenological point of view, the scaling for field increments (see

Equation (26)), it is straightforward to compute the scaling laws S
(p)
` ∼ `p/3. Then ξp = p/3

results to be a linear function of the order p.
When we assume the scaling law ∆z±` ∼ `h, we can compute the high-order moments of the

structure functions for increments of the Elsässer variables, namely
〈

(∆z±` )p
〉

∼ `ξp , thus obtaining
a linear scaling ξp = p/3, similar to usual fluid flows. For Gaussianly distributed fields, a particular

role is played by the second-order moment, because all moments can be computed from S
(2)
` . It

is straightforward to translate the dimensional analysis results to Fourier spectra. The spectral

property of the field can be recovered from S
(2)
` , say in the homogeneous and isotropic case

S
(2)
` = 4

∫ ∞

0

E(k)

(

1− sin k`

k`

)

dk,

where k ∼ 1/` is the wave vector, so that in the inertial range where Equation (42) is verified

E(k) ∼ ε2/3k−5/3. (27)

The Kolmogorov spectrum (see Equation (27)) is largely observed in all experimental investiga-
tions of turbulence, and is considered as the main result of the K41 phenomenology of turbulence
(Frisch, 1995). However, spectral analysis does not provide a complete description of the statistical
properties of the field, unless this has Gaussian properties. The same considerations can be made
for the spectral pseudo-energies E±(k), which are related to the 2nd order structure functions
〈

[

∆z±`
]2
〉

.

6 We have already defined fluctuations of a field as the difference between the field itself and its average value.
This quantity has been defined as δψ. Here, the differences ∆ψ` of the field separated by a distance ` represents
characteristic fluctuations at the scale `, say characteristic fluctuations of the field across specific structures (eddies)
that are present at that scale. The reader can realize the difference between both definitions.
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2.9 The phenomenology of fully developed turbulence: Magnetically-
dominated case

The phenomenology of the magnetically-dominated case has been investigated by Iroshnikov (1963)
and Kraichnan (1965), then developed by Dobrowolny et al. (1980b) to tentatively explain the
occurrence of the observed Alfvénic turbulence, and finally by Carbone (1993) and Biskamp (1993)
to get scaling laws for structure functions. It is based on the Alfvén effect, that is, the decorrelation
of interacting eddies, which can be explained phenomenologically as follows. Since non-linear
interactions happen only between opposite propagating fluctuations, they are slowed down (with
respect to the fluid-like case) by the sweeping of the fluctuations across each other. This means

that ε± ∼
(

∆z±`
)2
/T±

` but the characteristic time T±
` required to efficiently transfer energy from

an eddy to another eddy at smaller scales cannot be the eddy-turnover time, rather it is increased
by a factor t±` /tA (tA ∼ `/cA < t±` is the Alfvén time), so that T±

` ∼ (t±` )
2/tA. Then, immediately

ε± ∼ [∆z±` ]2[∆z∓` ]2

`cA
.

This means that both ±modes are transferred at the same rate to small scales, namely ε+ ∼ ε− ∼ ε,
and this is the conclusion drawn by Dobrowolny et al. (1980b). In reality, this is not fully correct,
namely the Alfvén effect yields to the fact that energy transfer rates have the same scaling laws for
± modes but, we cannot say anything about the amplitudes of ε+ and ε− (Carbone, 1993). Using
the usual scaling law for fluctuations, it can be shown that the scaling behavior holds ε→ λ1−4hε′.
Then, when the energy transfer rate is constant, we found a scaling law different from that of
Kolmogorov and, in particular,

∆z±` ∼ (εcA)
1/4`1/4. (28)

Using this phenomenology the high-order moments of fluctuations are given by S
(p)
` ∼ `p/4. Even

in this case, ξp = p/4 results to be a linear function of the order p. The pseudo-energy spectrum
can be easily found to be

E±(k) ∼ (εcA)
1/2k−3/2. (29)

This is the Iroshnikov–Kraichnan spectrum. However, in a situation in which there is a balance
between the linear Alfvén time scale or wave period, and the non-linear time scale needed to
transfer energy to smaller scales, the energy cascade is indicated as critically balanced (Goldreich
and Sridhar, 1995). In these conditions, it can be shown that the power spectrum P (k) would scale
as f−5/3 when the angle θB between the mean field direction and the flow direction is 90∘ while,
the same scaling would follow f−2 in case θB = 0∘ and the spectrum would also have a smaller
energy content than in the other case.

2.10 Some exact relationships

So far, we have been discussing about the inertial range of turbulence. What this means from a
heuristic point of view is somewhat clear, but when we try to identify the inertial range from the
spectral properties of turbulence, in general the best we can do is to identify the inertial range
with the intermediate range of scales where a Kolmogorov’s spectrum is observed. The often
used identity inertial range ≃ intermediate range, is somewhat arbitrary. In this regard, a very
important result on turbulence, due to Kolmogorov (1941, 1991), is the so-called “4/5-law” which,
being obtained from the Navier–Stokes equation, is “. . . one of the most important results in fully

developed turbulence because it is both exact and nontrivial” (cf. Frisch, 1995). As a matter of fact,
Kolmogorov analytically derived the following exact relation for the third order structure function
of velocity fluctuations:

〈

(∆v‖(r, `))
3
〉

= −4

5
ε` , (30)
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where r is the sampling direction, ` is the corresponding scale, and ε is the mean energy dissipation
per unit mass, assumed to be finite and nonvanishing.

This important relation can be obtained in a more general framework from MHD equations. A
Yaglom’s relation for MHD can be obtained using the analogy of MHD equations with a transport
equation, so that we can obtain a relation similar to the Yaglom’s equation for the transport of a
passive quantity (Monin and Yaglom, 1975). Using the above analogy, the Yaglom’s relation has
been extended some time ago to MHD turbulence by Chandrasekhar (1967), and recently it has
been revised by Politano et al. (1998) and Politano and Pouquet (1998) in the framework of solar
wind turbulence. In the following section we report an alternative and more general derivation of
the Yaglom’s law using structure functions (Sorriso-Valvo et al., 2007; Carbone et al., 2009c).

2.11 Yaglom’s law for MHD turbulence

To obtain a general law we start from the incompressible MHD equations. If we write twice the
MHD equations for two different and independent points xi and x′i = xi + `i, by substraction
we obtain an equation for the vector differences ∆z±i = (z±i )′ − z±i . Using the hypothesis of
independence of points x′i and xi with respect to derivatives, namely ∂i(z

±
j )′ = ∂′iz

±
j = 0 (where

∂′i represents derivative with respect to x′i), we get

∂t∆z
±
i +∆z∓α ∂

′
α∆z

±
i + z∓α (∂′α + ∂α)∆z

±
i = −(∂′i + ∂i)∆P +

+ (∂2′α + ∂2α)
[

ν±∆z+i + ν∓∆z−i
]

(31)

(∆P = P ′
tot − Ptot). We look for an equation for the second-order correlation tensor ⟨∆z±i ∆z±j ⟩

related to pseudo-energies. Actually the more general thing should be to look for a mixed tensor,
namely ⟨∆z±i ∆z∓j ⟩, taking into account not only both pseudo-energies but also the time evolution

of the mixed correlations ⟨z+i z−j ⟩ and ⟨z−i z+j ⟩. However, using the DIA closure by Kraichnan,
it is possible to show that these elements are in general poorly correlated (Veltri, 1980). Since
we are interested in the energy cascade, we limit ourselves to the most interesting equation that
describes correlations about Alfvénic fluctuations of the same sign. To obtain the equations for
pseudo-energies we multiply Equations (31) by ∆z±j , then by averaging we get

∂t⟨∆z±i ∆z±j ⟩ + ∂

∂`α
⟨∆Z∓

α (∆z±i ∆z±j )⟩ =

= −Λij −Πij + 2ν
∂2

∂`2α
⟨∆z±i ∆z±j ⟩ − 4

3

∂

∂`α
(ε±ij`α), (32)

where we used the hypothesis of local homogeneity and incompressibility. In Equation (32) we
defined the average dissipation tensor

ε±ij = ν⟨(∂αZ±
i )(∂αZ

±
j )⟩. (33)

The first and second term on the r.h.s. of the Equation (32) represent respectively a tensor related
to large-scales inhomogeneities

Λij = ⟨z∓α (∂′α + ∂α)(∆z
±
i ∆z±j )⟩ (34)

and the tensor related to the pressure term

Πij = ⟨∆z±j (∂′i + ∂i)∆P +∆z±i (∂′j + ∂j)∆P ⟩. (35)

Furthermore, In order not to worry about couplings between Elsässer variables in the dissipative
terms, we make the usual simplifying assumption that kinematic viscosity is equal to magnetic dif-
fusivity, that is ν± = ν∓ = ν. Equation (32) is an exact equation for anisotropic MHD equations
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that links the second-order complete tensor to the third-order mixed tensor via the average dissi-
pation rate tensor. Using the hypothesis of global homogeneity the term Λij = 0, while assuming
local isotropy Πij = 0. The equation for the trace of the tensor can be written as

∂t⟨|∆z±i |2⟩+ ∂

∂`α
⟨∆Z∓

α |∆z±i |2⟩ = 2ν
∂2

∂`α
⟨|∆z±i |2⟩ − 4

3

∂

∂`α
(ε±ii`α), (36)

where the various quantities depends on the vector `α. Moreover, by considering only the trace we
ruled out the possibility to investigate anisotropies related to different orientations of vectors within
the second-order moment. It is worthwhile to remark here that only the diagonal elements of the
dissipation rate tensor, namely ε±ii are positive defined while, in general, the off-diagonal elements
ε±ij are not positive. For a stationary state the Equation (36) can be written as the divergenceless
condition of a quantity involving the third-order correlations and the dissipation rates

∂

∂`α

[

⟨∆z∓α |∆z±i |2⟩ − 2ν
∂

∂`α
⟨|∆z±i |2⟩ − 4

3
(ε±ii`α)

]

= 0, (37)

from which we can obtain the Yaglom’s relation by projecting Equation (37) along the longitudinal
`α = `er direction. This operation involves the assumption that the flow is locally isotropic, that
is fields depends locally only on the separation `, so that

(

2

`
+

∂

∂`

)[

⟨∆z∓` |∆z±i |2⟩ − 2ν
∂

∂`
⟨|∆z±i |2⟩+ 4

3
ε±ii`

]

= 0. (38)

The only solution that is compatible with the absence of singularity in the limit `→ 0 is

⟨∆z∓` |∆z±i |2⟩ = 2ν
∂

∂`
⟨|∆z±i |2⟩ − 4

3
ε±ii`, (39)

which reduces to the Yaglom’s law for MHD turbulence as obtained by Politano and Pouquet
(1998) in the inertial range when ν → 0

Y ±
` ≡ ⟨∆z∓` |∆z±i |2⟩ = −4

3
ε±ii`. (40)

Finally, in the fluid-like case where z+i = z−i = vi we obtain the usual Yaglom’s law for fluid flows

⟨∆v`|∆vi|2⟩ = −4

3
(ε`) , (41)

which in the isotropic case, where ⟨∆v3` ⟩ = 3⟨∆v`∆v2y⟩ = 3⟨∆v`∆v2z⟩ (Monin and Yaglom, 1975),
immediately reduces to the Kolmogorov’s law

⟨∆v3` ⟩ = −4

5
ε` (42)

(the separation ` has been taken along the streamwise x-direction).
The relations we obtained can be used, or better, in a certain sense they might be used, as a

formal definition of inertial range. Since they are exact relationships derived from Navier–Stokes
and MHD equations under usual hypotheses, they represent a kind of “zeroth-order” conditions on
experimental and theoretical analysis of the inertial range properties of turbulence. It is worthwhile
to remark the two main properties of the Yaglom’s laws. The first one is the fact that, as it clearly
appears from the Kolmogorov’s relation (Kolmogorov, 1941), the third-order moment of the velocity
fluctuations is different from zero. This means that some non-Gaussian features must be at work,
or, which is the same, some hidden phase correlations. Turbulence is something more complicated
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than random fluctuations with a certain slope for the spectral density. The second feature is the
minus sign which appears in the various relations. This is essential when the sign of the energy
cascade must be inferred from the Yaglom relations, the negative asymmetry being a signature of
a direct cascade towards smaller scales. Note that, Equation (40) has been obtained in the limit
of zero viscosity assuming that the pseudo-energy dissipation rates ε±ii remain finite in this limit.
In usual fluid flows the analogous hypothesis, namely ε remains finite in the limit ν → 0, is an
experimental evidence, confirmed by experiments in different conditions (Frisch, 1995). In MHD
turbulent flows this remains a conjecture, confirmed only by high resolution numerical simulations
(Mininni and Pouquet, 2009).

From Equation (37), by defining ∆Z±
i = ∆vi ±∆bi we immediately obtain the two equations

∂

∂`α

[

⟨∆vα∆E⟩ − 2⟨∆bα∆C⟩ − 2ν
∂

∂`α
⟨∆E⟩ − 4

3
(εE`α)

]

= 0 (43)

∂

∂`α

[

−⟨∆bα∆E⟩+ 2⟨∆vα∆C⟩ − 4ν
∂

∂`α
⟨∆C⟩ − 4

3
(εC`α)

]

= 0, (44)

where we defined the energy fluctuations ∆E = |∆vi|2 + |∆bi|2 and the correlation fluctuations
∆C = ∆vi∆bi. In the same way the quantities εE =

(

ε+ii + ε−ii
)

/2 and εC =
(

ε+ii − ε−ii
)

/2 represent
the energy and correlation dissipation rate, respectively. By projecting once more on the longitu-
dinal direction, and assuming vanishing viscosity, we obtain the Yaglom’s law written in terms of
velocity and magnetic fluctuations

⟨∆v`∆E⟩ − 2⟨∆b`∆C⟩ = −4

3
εE` (45)

−⟨∆b`∆E⟩+ 2⟨∆v`∆C⟩ = −4

3
εC`. (46)

2.12 Density-mediated Elsässer variables and Yaglom’s law

Relation (40), which is of general validity within MHD turbulence, requires local characteristics
of the turbulent fluid flow which can be not always satisfied in the solar wind flow, namely, large-
scale homogeneity, isotropy, and incompressibility. Density fluctuations in solar wind have a low
amplitude, so that nearly incompressible MHD framework is usually considered (Montgomery et al.,
1987; Matthaeus and Brown, 1988; Zank and Matthaeus, 1993; Matthaeus et al., 1991; Bavassano
and Bruno, 1995). However, compressible fluctuations are observed, typically convected structures
characterized by anticorrelation between kinetic pressure and magnetic pressure (Tu and Marsch,
1994). Properties and interaction of the basic MHD modes in the compressive case have also been
considered (Goldreich and Sridhar, 1995; Cho and Lazarian, 2002).

A first attempt to include density fluctuations in the framework of fluid turbulence was due to
Lighthill (1955). He pointed out that, in a compressible energy cascade, the mean energy transfer

rate per unit volume εV ∼ ρv3/` should be constant in a statistical sense (v being the characteristic
velocity fluctuations at the scale `), thus obtaining the scaling relation v ∼ (`/ρ)1/3. Fluctuations
of a density-weighted velocity field u ≡ ρ1/3v should thus follow the usual Kolmogorov scaling
u3 ∼ `. The same phenomenological arguments can be introduced in MHD turbulence Carbone
et al. (2009a) by considering the pseudoenergy dissipation rates per unit volume ε±V = ρε±ii and
introducing density-weighted Elsässer fields, defined as w± ≡ ρ1/3z±. A relation equivalent to the
Yaglom-type relation (40)

W±
` ≡ ⟨ρ⟩−1⟨∆w∓

` |∆w±
i |2⟩ = Cε±ii` (47)

(C is some constant assumed to be of the order of unit) should then hold for the density-weighted
increments ∆w±. RelationW±

` reduces to Y ±
` in the case of constant density, allowing for compar-

ison between the Yaglom’s law for incompressible MHD flows and their compressible counterpart.
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Despite its simple phenomenological derivation, the introduction of the density fluctuations in the
Yaglom-type scaling (47) should describe the turbulent cascade for compressible fluid (or mag-
netofluid) turbulence. Even if the modified Yaglom’s law (47) is not an exact relation as (40),
being obtained from phenomenological considerations, the law for the velocity field in a compress-
ible fluid flow has been observed in numerical simulations, the value of the constant C results
negative and of the order of unity (Padoan et al., 2007; Kowal and Lazarian, 2007).

2.13 Yaglom’s law in the shell model for MHD turbulence

As far as the shell model is concerned, the existence of a cascade towards small scales is expressed
by an exact relation, which is equivalent to Equation (41). Using Equations (24), the scale-by-scale
pseudo-energy budget is given by

d

dt

∑

n

|Z±
n |2 = knIm

[

T±
n

]

−
∑

n

2νk2n|Z±
n |2 +

∑

n

2ℜe
[

Z±
n F

±*
n

]

.

The second and third terms on the right hand side represent, respectively, the rate of pseudo-
energy dissipation and the rate of pseudo-energy injection. The first term represents the flux of
pseudo-energy along the wave vectors, responsible for the redistribution of pseudo-energies on the
wave vectors, and is given by

T±
n = (a+ c)Z±

n Z
±
n+1Z

∓
n+2 +

(

2− a− c

λ

)

Z±
n−1Z

±
n+1Z

∓
n +

+ (2− a− c)Z±
n Z

±
n+2Z

∓
n+1 +

(

c− a

λ

)

Z)Z
±
n Z

±
n+1Z

∓
n−1. (48)

Using the same assumptions as before, namely: i) the forcing terms act only on the largest
scales, ii) the system can reach a statistically stationary state, and iii) in the limit of fully developed
turbulence, ν → 0, the mean pseudo-energy dissipation rates tend to finite positive limits ε±, it
can be found that

⟨T±
n ⟩ = −ε±k−1

n . (49)

This is an exact relation which is valid in the inertial range of turbulence. Even in this case it
can be used as an operative definition of the inertial range in the shell model, that is, the inertial
range of the energy cascade in the shell model is defined as the range of scales kn, where the law
from Equation (49) is verified.
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3 Early Observations of MHD Turbulence in the Ecliptic

Here we briefly present the history, since the first Mariner missions during the 1960s, of the main
steps towards the completion of an observational picture of turbulence in interplanetary space.
This retrospective look at all the advances made in this field shows that space flights allowed us
to discover a very large laboratory in space. As a matter of fact, in a wind tunnel we deal with
characteristic dimensions of the order of L ≤ 10 m and probes of the size of about d ≃ 1 cm.
In space, L ≃ 108 m, while “probes” (say spacecrafts) are about d ≃ 5 m. Thus, space provides
a much larger laboratory. Most measurements are single point measurements, the ESA-Cluster
project providing for multiple measurements only recently.

3.1 Turbulence in the ecliptic

When dealing with laboratory turbulence it is important to know all the aspects of the experimental
device where turbulent processes take place in order to estimate related possible effects driven or
influenced by the environment. In the solar wind, the situation is, in some aspects, similar although
the plasma does not experience any confinement due to the “experimental device”, which would be
represented by free interplanetary space. However, it is a matter of fact that the turbulent state of
the wind fluctuations and the subsequent radial evolution during the wind expansion greatly differ
from fast to slow wind, and it is now well accepted that the macrostructure convected by the wind
itself plays some role (see reviews by Tu and Marsch, 1995a; Goldstein et al., 1995b).

Fast solar wind originates from the polar regions of the Sun, within the open magnetic field line
regions identified by coronal holes. Beautiful observations by SOHO spacecraft (see animation of
Figure 14) have localized the birthplace of the solar wind within the intergranular lane, generally
where three or more granules get together. Clear outflow velocities of up to 10 km s–1 have been
recorded by SOHO/SUMER instrument (Hassler et al., 1999).

Figure 14: Still from a movie showing An animation built on SOHO/EIT and SOHO/SUMER observa-
tions of the solar-wind source regions and magnetic structure of the chromospheric network. Outflow veloc-
ities, at the network cell boundaries and lane junctions below the polar coronal hole, reach up to 10 km s–1

are represented by the blue colored areas (original figures from Hassler et al., 1999). (To watch the movie,
please go to the online version of this review article at http://www.livingreviews.org/lrsp-2013-2.)

Slow wind, on the contrary, originates from the equatorial zone of the Sun. The slow wind
plasma leaks from coronal features called “helmets”, which can be easily seen protruding into the
Sun’s atmosphere during a solar eclipse (see Figure 15). Moreover, plasma emissions due to violent
and abrupt phenomena also contribute to the solar wind in these regions of the Sun. An alternative
view is that both high- and low-speed winds come from coronal holes (defined as open field regions)
and that the wind speed at 1 AU is determined by the rate of flux-tube expansion near the Sun as

Living Reviews in Solar Physics

http://www.livingreviews.org/lrsp-2013-2

http://www.livingreviews.org/lrsp-2013-2
http://www.livingreviews.org/lrsp-2013-2


34 Roberto Bruno and Vincenzo Carbone

firstly suggested by Levine et al. (1977) (Wang and Sheeley Jr, 1990; Bravo and Stewart, 1997; Arge
and Pizzo, 2000; Poduval and Zhao, 2004; Whang et al., 2005, see also:) and/or by the location and
strength of the coronal heating (Leer and Holzer, 1980; Hammer, 1982; Hollweg, 1986; Withbroe,
1988; Wang, 1993, 1994; Sandbaek et al., 1994; Hansteen and Leer, 1995; Cranmer et al., 2007).

Figure 15: Helmet streamer during a solar eclipse. Slow wind leaks into the interplanetary space along
the flanks of this coronal structure. Image reproduced from MSFC.

However, this situation greatly changes during different phases of the solar activity cycle. Polar
coronal holes, which during the maximum of activity are limited to small and not well defined
regions around the poles, considerably widen up during solar minimum, reaching the equatorial
regions (Forsyth et al., 1997; Forsyth and Breen, 2002; Balogh et al., 1999). This new configuration
produces an alternation of fast and slow wind streams in the ecliptic plane, the plane where most
of the spacecraft operate and record data. During the expansion, a dynamical interaction between
fast and slow wind develops, generating the so called “stream interface”, a thin region ahead of
the fast stream characterized by strong compressive phenomena.

Figure 16 shows a typical situation in the ecliptic where fast streams and slow wind were
observed by Helios 2 s/c during its primary mission to the Sun. At that time, the spacecraft
moved from 1 AU (around day 17) to its closest approach to the Sun at 0.29 AU (around day 108).
During this radial excursion, Helios 2 had a chance to observe the same co-rotating stream, that
is plasma coming from the same solar source, at different heliocentric distances. This fortuitous
circumstance, gave us the unique opportunity to study the radial evolution of turbulence under
the reasonable hypothesis of time-stationarity of the source regions. Obviously, similar hypotheses
decay during higher activity phase of the solar cycle since, as shown in Figure 17, the nice and
regular alternation of fast co-rotating streams and slow wind is replaced by a much more irregular
and spiky profile also characterized by a lower average speed.

Figure 18 focuses on a region centered on day 75, recognizable in Figure 16, when the s/c
was at approximately 0.7 AU from the Sun. Slow wind on the left-hand side of the plot, fast
wind on the right hand side, and the stream interface in between, can be clearly seen. This is a
sort of canonical situation often encountered in the ecliptic, within the inner heliosphere, during
solar activity minimum. Typical solar wind parameters, like proton number density ρp, proton
temperature Tp, magnetic field intensity |B|, azimuthal angle Φ, and elevation angle Θ are shown
in the panels below the wind speed profile. A quick look at the data reveals that fast wind is
less dense but hotter than slow wind. Moreover, both proton number density and magnetic field
intensity are more steady and, in addition, the bottom two panels show that magnetic field vector
fluctuates in direction much more than in slow wind. This last aspect unravels the presence of
strong Alfvénic fluctuations which act mainly on magnetic field and velocity vector direction, and
are typically found within fast wind (Belcher and Davis Jr, 1971; Belcher and Solodyna, 1975).
The region just ahead of the fast wind, namely the stream interface, where dynamical interaction
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Figure 16: High velocity streams and slow wind as seen in the ecliptic during solar minimum as func-
tion of time [yyddd]. Streams identified by labels are the same co-rotating stream observed by Helios 2,
during its primary mission to the Sun in 1976, at different heliocentric distances. These streams, named
“The Bavassano–Villante streams” after Tu and Marsch (1995a), have been of fundamental importance in
understanding the radial evolution of MHD turbulence in the solar wind.
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Figure 17: High velocity streams and slow wind as seen in the ecliptic during solar maximum. Data refer
to Helios 2 observations in 1979.
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Figure 18: High velocity streams and slow wind as seen in the ecliptic during solar minimum.

between fast and slow wind develops, is characterized by compressive effects which enhance proton
density, temperature and field intensity. Within slow wind, a further compressive region precedes
the stream interface but it is not due to dynamical effects but identifies the heliospheric current
sheet, the surface dividing the two opposite polarities of the interplanetary magnetic field. As a
matter of fact, the change of polarity can be noted within the first half of day 73 when the azimuthal
angle Φ rotates by about 180∘. Detailed studies (Bavassano et al., 1997) based on interplanetary
scintillations (IPS) and in-situ measurements have been able to find a clear correspondence between
the profile of path-integrated density obtained from IPS measurements and in-situ measurements
by Helios 2 when the s/c was around 0.3 AU from the Sun.

Figure 19 shows measurements of several plasma and magnetic field parameters. The third
panel from the top is the proton number density and it shows an enhancement within the slow
wind just preceding the fast stream, as can be seen at the top panel. In this case the increase in
density is not due to the dynamical interaction between slow and fast wind but it represents the
profile of the heliospheric current sheet as sketched on the left panel of Figure 19. As a matter of
fact, at these short distances from the Sun, dynamical interactions are still rather weak and this
kind of compressive effects can be neglected with respect to the larger density values proper of the
current sheet.

3.1.1 Spectral properties

First evidences of the presence of turbulent fluctuations were showed by Coleman (1968), who,
using Mariner 2 magnetic and plasma observations, investigated the statistics of interplanetary
fluctuations during the period August 27 –October 31, 1962, when the spacecraft orbited from 1.0
to 0.87 AU. At variance with Coleman (1968), Barnes and Hollweg (1974) analyzed the properties
of the observed low-frequency fluctuations in terms of simple waves, disregarding the presence of an
energy spectrum. Here we review the gross features of turbulence as observed in space by Mariner
and Helios spacecraft. By analyzing spectral densities, Coleman (1968) concluded that the solar
wind flow is often turbulent, energy being distributed over an extraordinarily wide frequency range,
from one cycle per solar rotation to 0.1 Hz. The frequency spectrum, in a range of intermediate
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Figure 19: Left panel: a simple sketch showing the configuration of a helmet streamer and the density
profile across this structure. Right panel: Helios 2 observations of magnetic field and plasma parameters
across the heliospheric current sheet. From top to bottom: wind speed, magnetic field azimuthal angle,
proton number density, density fluctuations and normalized density fluctuations, proton temperature,
magnetic field magnitude, total pressure, and plasma beta, respectively. Image reproduced by permission
from Bavassano et al. (1997), copyright by AGU.
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frequencies [2 × 10−5 – 2.3 × 10−3], was found to behave roughly as f−1.2, the difference with
the expected Kraichnan f−1.5 spectral slope was tentatively attributed to the presence of high-
frequency transverse fluctuations resulting from plasma garden-hose instability (Scarf et al., 1967).
Waves generated by this instability contribute to the spectrum only in the range of frequencies
near the proton cyclotron frequency and would weaken the frequency dependence relatively to the
Kraichnan scaling. The magnetic spectrum obtained by Coleman (1968) is shown in Figure 20.

Figure 20: The magnetic energy spectrum as obtained by Coleman (1968).

Spectral properties of the interplanetary medium have been summarized by Russell (1972), who
published a composite spectrum of the radial component of magnetic fluctuations as observed by
Mariner 2, Mariner 4, and OGO 5 (see Figure 21). The frequency spectrum so obtained was divided
into three main ranges: i) up to about 10−4 Hz the spectral slope is about 1/f ; ii) at intermediate
frequencies 10−4 ≤ f ≤ 10−1 Hz a spectrum which roughly behaves as f−3/2 has been found; iii)
the high-frequency part of the spectrum, up to 1 Hz, behaves as 1/f2. The intermediate range7

of frequencies shows the same spectral properties as that introduced by Kraichnan (1965) in the
framework of MHD turbulence. It is worth reporting that scatter plots of the values of the spectral

7 To be precise, it is worth remarking again that there are no convincing arguments to identify as inertial range

the intermediate range of frequencies where the observed spectral properties are typical of fully developed turbulence.
From a theoretical point of view here the association “intermediate range” ≃ “inertial range” is somewhat arbitrary.
Really an operative definition of inertial range of turbulence is the range of scales ` where relation (42) (for fluid
flows) or (41) (for MHD flows) is verified.
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index of the intermediate region do not allow us to distinguish between a Kolmogorov spectrum
f−5/3 and a Kraichnan spectrum f−3/2 (Veltri, 1980).

Figure 21: A composite figure of the magnetic spectrum obtained by Russell (1972).

Only lately, Podesta et al. (2007) addressed again the problem of the spectral exponents of
kinetic and magnetic energy spectra in the solar wind. Their results, instead of clarifying once
forever the ambiguity between f−5/3 and f−3/2 scaling, placed new questions about this unsolved
problem.

As a matter of fact, Podesta et al. (2007) chose different time intervals between 1995 and
2003 lasting 2 or 3 solar rotations during which WIND spacecraft recorded solar wind velocity
and magnetic field conditions. Figure 22 shows the results obtained for the time interval that
lasted about 3 solar rotations between November 2000 and February 2001, and is representative
also of the other analyzed time intervals. Quite unexpectedly, these authors found that the power
law exponents of velocity and magnetic field fluctuations often have values near 3/2 and 5/3,
respectively. In addition, the kinetic energy spectrum is characterized by a power law exponent
slightly greater than or equal to 3/2 due to the effects of density fluctuations.

It is worth mentioning that this difference was first observed by Salem (2000) years before, but,
at that time, the accuracy of the data was questioned Salem et al. (2009). Thus, to corroborate
previous results, Salem et al. (2009) investigated anomalous scaling and intermittency effects of
both magnetic field and solar wind velocity fluctuations in the inertial range using WIND data.
These authors used a wavelet technique for a systematic elimination of intermittency effects on
spectra and structure functions in order to recover the actual scaling properties in the inertial
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Figure 22: Magnetic energy spectra, velocity spectra and kinetic energy spectra obtained by Podesta
et al. (2007). Image reproduced by permission, copyright by AAS.

range. They found that magnetic field and velocity fluctuations exhibit a well-defined, although
different, monofractal behavior, following a Kolmogorov −5/3 scaling and a Iroshnikov–Kraichnan
−3/2 scaling, respectively. These results are clearly opposite to the expected scaling for kinetic
and magnetic fluctuations which should follow Kolmogorov and Kraichnan scaling, respectively
(see Section 2.8). However, as remarked by Roberts (2007), Voyager observations of the velocity
spectrum have demonstrated a likely asymptotic state in which the spectrum steepens towards a
spectral index of −5/3, finally matching the magnetic spectrum and the theoretical expectation
of Kolmogorov turbulence. Moreover, the same authors examined Ulysses spectra to determine if
the Voyager result, based on a very few sufficiently complete intervals, were correct. Preliminary
results confirmed the −5/3 slope for velocity fluctuations at ∼ 5 AU from the Sun in the ecliptic.

Figure 23, taken from Roberts (2007), shows the evolution of the spectral index during the
radial excursion of Ulysses. These authors examined many intervals in order to develop a more
general picture of the spectral evolution in various conditions, and how magnetic and velocity
spectra differ in these cases. The general trend shown in Figure 23 is towards −5/3 as the distance
increases. Lower values are due to the highly Alfvénic fast polar wind while higher values, around
2, are mainly due to the jumps at the stream fronts as previously shown by Roberts (2007). Thus,

Living Reviews in Solar Physics

http://www.livingreviews.org/lrsp-2013-2

http://www.livingreviews.org/lrsp-2013-2


The Solar Wind as a Turbulence Laboratory 41

Figure 23: Velocity spectral index vs. heliocentric distance (Roberts, 2007).

the discrepancy between magnetic and velocity spectral slope is only temporary and belongs to the
evolutionary phase of the spectra towards a well developed Kolmogorov like turbulence spectrum.

Horbury et al. (2008) performed a study on the anisotropy of the energy spectrum of magneto-
hydrodynamic (MHD) turbulence with respect to the magnetic field orientation to test the validity
of the critical balance theory (Goldreich and Sridhar, 1995) in space plasma environment. This
theory predicts that the power spectrum P (k) would scale as f−5/3 when the angle θB between
the mean field direction and the flow direction is 90∘. On the other hand, in case θB = 0∘ the
scaling would follow f−2. Moreover, the latter spectrum would also have a smaller energy content.

Horbury et al. (2008) used 30 days of Ulysses magnetic field observations (1995, days 100 – 130)
with a resolution of 1 second. At that time, Ulysses was immersed in the steady high speed solar
wind coming from the Sun’s Northern polar coronal hole at 1.4 AU from the Sun. These authors
studied the anisotropies of the turbulence by measuring how the spacecraft frame spectrum of
magnetic fluctuations varies with θB . They adopted a method based on wavelet analysis which
was sensitive to the frequent changes of the local magnetic field direction.

The lower panel of Figure 24 clearly shows that for angles larger than about 45∘ the spectral
index smoothly fluctuates around −5/3 while, for smaller angles, it tends to a value of −2, as
predicted by the critical balance type of cascade. However, although the same authors recognize
that a spectral index of −2 has not been routinely observed in the fast solar wind and that the
range of θB over which the spectral index deviates from −5/3 is wider than expected, they consider
these findings to be a robust evidence of the validity of critical balance theory in space plasma
environment.

3.1.2 Experimental evaluation of Reynolds number in the solar wind

Properties of solar wind fluctuations have been widely studied in the past, relying on the “frozen-in
approximation” (Taylor, 1938). The hypothesis at the basis of Taylor’s approximation is that, since
large integral scales in turbulence contain most of the energy, the advection due to the smallest
turbulent scales fluctuations can be disregarded and, consequently, the advection of a turbulent
field past an observer in a fixed location is considered solely due to the larger scales. In experimental
physics, this hypothesis allows time series measured at a single point in space to be interpreted
as spatial variations in the mean flow being swept past the observer. However, the canonical
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Figure 24: Top panel: Trace of power in the magnetic field as a function of the angle between the local
magnetic field and the sampling direction at a spacecraft frequency of 61 mHz. The larger scatter for
θB > 90 is the result of fewer data points at these angles. Bottom panel: spectral index of the trace, fitted
over spacecraft frequencies from 15.98 mHz. Image reproduced by permission from Horbury et al. (2008),
copyright by APS.

way to establish the presence of spatial structures relies in the computation of two-point single
time measurements. Only recently, the simultaneous presence of several spacecraft sampling solar
wind parameters allowed to correlate simultaneous in-situ observations in two different observing
locations in space. Matthaeus et al. (2005) and Weygand et al. (2007) firstly evaluated the two-
point correlation function using simultaneous measurements of interplanetary magnetic field from
the Wind, ACE, and Cluster spacecraft. Their technique allowed to compute for the first time
fundamental turbulence parameters previously determined from single spacecraft measurements.
In particular, these authors evaluated the correlation scale λC and the Taylor microscale λT which
allow to determine empirically the effective magnetic Reynolds number.

As a matter of fact, there are three standard turbulence length scales which can be identified in
a typical turbulence power spectrum as shown in Figure 25: the correlation length λC , the Taylor
scale λT and the Kolmogorov scale λK . The Correlation or integral length scale represents the
largest separation distance over which eddies are still correlated, i.e., the largest turbulent eddy
size. The Taylor scale is the scale size at which viscous dissipation begins to affect the eddies, it is
several times larger than Kolmogorov scale and marks the transition from the inertial range to the
dissipation range. The Kolmogorov scale is the one that characterizes the smallest dissipation-scale
eddies.

The Taylor scale λT and the correlation length λC , as indicated in Figure 26, can be obtained
from the two-point correlation function being the former the radius of curvature of the Correlation
function at the origin and the latter the scale at which turbulent fluctuation are no longer correlated.
Thus, λT can be obtained from from Taylor expansion of the two point correlation function for
r → 0 (Tennekes and Lumely, 1972):

R(r) ≈ 1− r2

2λ2T
+ . . . (50)

where r is the spacecraft separation and R(r) = ⟨b(x) · b(x+ r)⟩ is the auto-correlation function
computed along the x direction for the fluctuating field b(x). On the other hand, the correlation
length λC can be obtained integrating the normalized correlation function along a chosen direction
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Figure 25: Typical interplanetary magnetic field power spectrum at 1 AU. The low frequency range
refers to Helios 2 observations (adapted from Bruno et al., 2009) while the high frequency refers to WIND
observations (adapted from Leamon et al., 1998). Vertical dashed lines indicate the correlative, Taylor and
Kolmogorov length scales.
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of integration ξ:

λC =

∫ ∞

0

R(ξ)

R(0)
dξ. (51)

At this point, following Batchelor (1970) it is possible to obtain the effective magnetic Reynolds
number:

Reff
m =

(

λC
λT

)2

. (52)

Figure 27 shows estimates of the correlation function from ACE-Wind for separation distances
20 – 350RE and two sets of Cluster data for separations 0.02 – 0.04RE and 0.4 – 1.2RE , respectively.

Cluster 1

Cluster 2Cluster 2

ACE-Wind

Figure 27: Estimates of the correlation function from ACE-Wind for separation distances 20 – 350RE

and two sets of Cluster data for separations 0.02 – 0.04RE and 0.4 – 1.2RE , respectively. Image adapted
from Matthaeus et al. (2005).

Following the definitions of λC and λT given above, Matthaeus et al. (2005) were able to fit the
first data set of Cluster, i.e., the one with shorter separations, with a parabolic fit while they used
an exponential fit for ACE-Wind and the second Cluster data set. These fits provided estimates
for λC and λT from which these authors obtained the first empirical determination of Reff

m which
resulted to be of the order of 2.3× 105, as illustrated in Figure 28.

3.1.3 Evidence for non-linear interactions

As we said previously, Helios 2 s/c gave us the unique opportunity to study the radial evolution
of turbulent fluctuations in the solar wind within the inner heliosphere. Most of the theoretical
studies which aim to understand the physical mechanism at the base of this evolution originate
from these observations (Bavassano et al., 1982b; Denskat and Neubauer, 1983).

In Figure 29 we consider again similar observations taken by Helios 2 during its primary mission
to the Sun together with observations taken by Ulysses in the ecliptic at 1.4 and 4.8 AU in order
to extend the total radial excursion.

Helios 2 power density spectra were obtained from the trace of the spectral matrix of magnetic
field fluctuations, and belong to the same co-rotating stream observed on day 49, at a heliocentric
distance of 0.9 AU, on day 75 at 0.7 AU and, finally, on day 104 at 0.3 AU. Ulysses spectra,
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Figure 28: Left panel: parabolic fit at small scales in order to estimate λT . Right panel: exponential
fit at intermediate and large scales in order to estimate λC . The square of the ratio of these two length
scales gives an estimate of the effective magnetic Reynolds number. Image adapted from Matthaeus et al.
(2005).

constructed in the same way as those of Helios 2, were taken at 1.4 and 4.8 AU during the ecliptic
phase of the orbit. Observations at 4.8 AU refer to the end of 1991 (fast wind period started on
day 320, slow wind period started on day 338) while observations taken at 1.4 AU refer to fast
wind observed at the end of August of 2007, starting on day 241:12.

While the spectral index of slow wind does not show any radial dependence, being character-
ized by a single Kolmogorov type spectral index, fast wind is characterized by two distinct spectral
slopes: about −1 within low frequencies and about a Kolmogorov like spectrum at higher fre-
quencies. These two regimes are clearly separated by a knee in the spectrum often referred to as
“frequency break”. As the wind expands, the frequency break moves to lower and lower frequencies
so that larger and larger scales become part of the Kolmogorov-like turbulence spectrum, i.e., of
what we will indicate as “inertial range” (see discussion at the end of the previous section). Thus,
the power spectrum of solar wind fluctuations is not solely function of frequency f , i.e., P (f), but
it also depends on heliocentric distance r, i.e., P (f) → P (f, r).

Figure 30 shows the frequency location of the spectral breaks observed in the left-hand-side
panel of Figure 29 as a function of heliocentric distance. The radial distribution of these 5 points
suggests that the frequency break moves at lower and lower frequencies during the wind expansion
following a power-law of the order of R−1.5. Previous results, obtained for long data sets spanning
hundreds of days and inevitably mixing fast and slow wind, were obtained by Matthaeus and
Goldstein (1986) who found the breakpoint around 10 h at 1 AU, and Klein et al. (1992) who found
that the breakpoint was near 16 h at 4 AU. Obviously, the frequency location of the breakpoint
provided by these early determinations is strongly affected by the fact that mixing fast and slow
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Figure 29: Left panel: power density spectra of magnetic field fluctuations observed by Helios 2 between
0.3 and 1 AU within the trailing edge of the same corotating stream shown in Figure 16, during the first
mission to the Sun in 1976 and by Ulysses between 1.4 and 4.8 AU during the ecliptic phase. Ulysses
observations at 4.8 AU refer to the end of 1991 while observations taken at 1.4 AU refer to the end of
August of 2007. While the spectral index of slow wind does not show any radial dependence, the spectral
break, clearly present in fast wind and marked by a blue dot, moves to lower and lower frequency as the
heliocentric distance increases. Image adapted from Bruno et al. (2009).

wind would shift the frequency break to lower frequencies with respect to solely fast wind. In any
case, this frequency break is strictly related to the correlation length (Klein, 1987) and the shift
to lower frequency, during the wind expansion, is consistent with the growth of the correlation
length observed in the inner (Bruno and Dobrowolny, 1986) and outer heliosphere (Matthaeus and
Goldstein, 1982a). Analogous behavior for the low frequency shift of the spectral break, similar to
the one observed in the ecliptic, has been reported by Horbury et al. (1996a) studying the rate of
turbulent evolution over the Sun’s poles. These authors used Ulysses magnetic field observations
between 1.5 and 4.5 AU selecting mostly undisturbed, high speed polar flows. They found a radial
gradient of the order of R−1.1, clearly slower than the one reported in Figure 30 or that can be
inferred from results by Bavassano et al. (1982b) confirming that the turbulence evolution in the
polar wind is slower than the one in the ecliptic, as qualitatively predicted by Bruno (1992), because
of the lack of large scale stream shears. However, these results will be discussed more extensively
in in Section 4.1.

However, the phenomenology described above only apparently resembles hydrodynamic turbu-
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Figure 30: Radial dependence of the frequency break observed in the ecliptic within fast wind as shown
in the previous Figure 29. The radial dependence seems to be governed by a power-law of the order of
R−1.5.

lence where the large eddies, below the frequency break, govern the whole process of energy cascade
along the spectrum (Tu and Marsch, 1995b). As a matter of fact, when the relaxation time in-
creases, the largest eddies provide the energy to be transferred along the spectrum and dissipated,
with a decay rate approximately equal to the transfer rate and, finally, to the dissipation rate at the
smallest wavelengths where viscosity dominates. Thus, we expect that the energy containing scales
would loose energy during this process but would not become part of the turbulent cascade, say of
the inertial range. Scales on both sides of the frequency break would remain separated. Accurate
analysis performed in the solar wind (Bavassano et al., 1982b; Marsch and Tu, 1990b; Roberts,
1992) have shown that the low frequency range of the solar wind magnetic field spectrum radially
evolves following the WKB model, or geometrical optics, which predicts a radial evolution of the
power associated with the fluctuations ∼ r−3. Moreover, a steepening of the spectrum towards a
Kolmogorov like spectral index can be observed. On the contrary, the same in-situ observations
established that the radial decay for the higher frequencies was faster than ∼ r−3 and the overall
spectral slope remained unchanged. This means that the energy contained in the largest eddies
does not decay as it would happen in hydrodynamic turbulence and, as a consequence, the largest
eddies cannot be considered equivalent to the energy containing eddies identified in hydrodynamic
turbulence. So, this low frequency range is not separated from the inertial range but becomes
part of it as the turbulence ages. These observations cast some doubts on the applicability of
hydrodynamic turbulence paradigm to interplanetary MHD turbulence. A theoretical help came
from adopting a local energy transfer function (Tu et al., 1984; Tu, 1987a,b, 1988), which would
take into account the non-linear effects between eddies of slightly differing wave numbers, together
with a WKB description which would mainly work for the large scale fluctuations. This model
was able to reproduce the displacement of the frequency break with distance by combining the
linear WKB law and a model of nonlinear coupling besides most of the features observed in the
magnetic power spectra P (f, r) observed by Bavassano et al. (1982b). In particular, the concept
of the “frequency break”, just mentioned, was pointed out for the first time by Tu et al. (1984)
who, developing the analytic solution for the radially evolving power spectrum P (f, r) of fluctua-
tions, obtained a critical frequency “fc” such that for frequencies f ≪ fc, P (f, r) ∝ f−1 and for
f ≫ fc, P (f, r) ∝ f−1.5.
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3.1.4 Fluctuations anisotropy

Interplanetary magnetic field (IMF) and velocity fluctuations are rather anisotropic as for the first
time observed by Belcher and Davis Jr (1971); Belcher and Solodyna (1975); Chang and Nishida
(1973); Burlaga and Turner (1976); Solodyna and Belcher (1976); Parker (1980); Bavassano et al.

(1982a); Tu et al. (1989a); and Marsch and Tu (1990a). This feature can be better observed if
fluctuations are rotated into the minimum variance reference system (see Appendix D).

Sonnerup and Cahill (1967) introduced the minimum variance analysis which consists in deter-
mining the eigenvectors of the matrix

Sij = ⟨BiBj⟩ − ⟨Bi⟩⟨Bj⟩,

where i and j denote the components of magnetic field along the axes of a given reference system.
The statistical properties of eigenvalues approximately satisfy the following statements:

❼ One of the eigenvalues of the variance matrix is always much smaller than the others, say
λ1 ≪ (λ2, λ3), and the corresponding eigenvector Ṽ1 is the minimum-variance direction (see
Appendix D.1 for more details). This indicates that, at least locally, the magnetic fluctuations
are confined in a plane perpendicular to the minimum-variance direction.

❼ In the plane perpendicular to Ṽ1, fluctuations appear to be anisotropically distributed, say
λ3 > λ2. Typical values for eigenvalues are λ3 : λ2 : λ1 = 10 : 3.5 : 1.2 (Chang and Nishida,
1973; Bavassano et al., 1982a).

❼ The direction Ṽ1 is nearly parallel to the average magnetic field B0, that is, the distribution
of the angles between Ṽ1 and B0 is narrow with width of about 10∘ and centered around
zero.

As shown in Figure 31, in this new reference system it is readily seen that the maximum and
intermediate components have much more power compared with the minimum variance component.
Generally, this kind of anisotropy characterizes Alfvénic intervals and, as such, it is more commonly
found within high velocity streams (Marsch and Tu, 1990a).

A systematic analysis for both magnetic and velocity fluctuations was performed by Klein
et al. (1991, 1993) between 0.3 and 10 AU. These studies showed that magnetic field and velocity
minimum variance directions are close to each other within fast wind and mainly clustered around
the local magnetic field direction. The effects of expansion are such as to separate field and velocity
minimum variance directions. While magnetic field fluctuations keep their minimum variance
direction loosely aligned with the mean field direction, velocity fluctuations tend to have their
minimum variance direction oriented along the radial direction. The depleted alignment to the
background magnetic field would suggest a smaller anisotropy of the fluctuations. As a matter
of fact, Klein et al. (1991) found that the degree of anisotropy, which can be defined as the ratio
between the power perpendicular to and that along the minimum variance direction, decreases
with heliocentric distance in the outer heliosphere.

At odds with these conclusions were the results by Bavassano et al. (1982a) who showed that the
ratio λ1/λ3, calculated in the inner heliosphere within a co-rotating high velocity stream, clearly
decreased with distance, indicating that the degree of magnetic anisotropy increased with distance.
Moreover, this radial evolution was more remarkable for fluctuations of the order of a few hours
than for those around a few minutes. Results by Klein et al. (1991) in the outer heliosphere and by
Bavassano et al. (1982a) in the inner heliosphere remained rather controversial until recent studies
(see Section 10.2), performed by Bruno et al. (1999b), found a reason for this discrepancy.

A different approach to anisotropic fluctuations in solar wind turbulence have been made by
Bigazzi et al. (2006) and Sorriso-Valvo et al. (2006, 2010b). In these studies the full tensor of
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Figure 31: Power density spectra of the three components of IMF after rotation into the minimum
variance reference system. The black curve corresponds to the minimum variance component, the blue
curve to the maximum variance, and the red one to the intermediate component. This case refers to fast
wind observed at 0.3 AU and the minimum variance direction forms an angle of ∼ 8∘ with respect to
the ambient magnetic field direction. Thus, most of the power is associated with the two components
quasi-transverse to the ambient field.

the mixed second-order structure functions has been used to quantitatively measure the degree of
anisotropy and its effect on small-scale turbulence through a fit of the various elements of the tensor
on a typical function (Sorriso-Valvo et al., 2006). Moreover three different regions of the near-Earth
space have been studied, namely the solar wind, the Earth’s foreshock and magnetosheath showing
that, while in the undisturbed solar wind the observed strong anisotropy is mainly due to the large-
scale magnetic field, near the magnetosphere other sources of anisotropy influence the magnetic
field fluctuations (Sorriso-Valvo et al., 2010b).

3.1.5 Simulations of anisotropic MHD

In the presence of a DC background magnetic field B0 which, differently from the bulk velocity
field, cannot be eliminated by a Galilean transformation, MHD incompressible turbulence becomes
anisotropic (Shebalin et al., 1983; Montgomery, 1982; Zank and Matthaeus, 1992; Carbone and
Veltri, 1990; Oughton, 1993). The main effect produced by the presence of the background field
is to generate an anisotropic distribution of wave vectors as a consequence of the dependence
of the characteristic time for the non-linear coupling on the angle between the wave vector and
the background field. This effect can be easily understood if one considers the MHD equation.
Due to the presence of a term (B0 · ∇)z±, which describes the convection of perturbations in the
average magnetic field, the non-linear interactions between Alfvénic fluctuations are weakened,
since convection decorrelates the interacting eddies on a time of the order (k · B0)

−1. Clearly
fluctuations with wave vectors almost perpendicular to B0 are interested by such an effect much
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less than fluctuations with k ‖ B0. As a consequence, the former are transferred along the spectrum
much faster than the latter (Shebalin et al., 1983; Grappin, 1986; Carbone and Veltri, 1990).

To quantify anisotropy in the distribution of wave vectors k for a given dynamical variable
Q(k, t) (namely the energy, cross-helicity, etc.), it is useful to introduce the parameter

ΩQ = tan−1

√

⟨k2⊥⟩Q
2⟨k2‖⟩Q

(53)

(Shebalin et al., 1983; Carbone and Veltri, 1990), where the average of a given quantity g(k) is
defined as

⟨g(k)⟩Q =

∫

d3k g(k)Q(k, t)
∫

d3k Q(k, t)
.

For a spectrum with wave vectors perpendicular to B0 we have a spectral anisotropy Ω = 90∘,
while for an isotropic spectrum Ω = 45∘. Numerical simulations in 2D configuration by Shebalin
et al. (1983) confirmed the occurrence of anisotropy, and found that anisotropy increases with
the Reynolds number. Unfortunately, in these old simulations, the Reynolds numbers used are
too small to achieve a well defined spectral anisotropy. Carbone and Veltri (1990) started from
the spectral equations obtained through the Direct Interaction Approximation closure by Veltri
et al. (1982), and derived a shell model analogous for the anisotropic MHD turbulence. Of course
the anisotropy is over–simplified in the model, in particular the Alfvén time is assumed isotropic.
However, the model was useful to investigate spectral anisotropy at very high Reynolds numbers.
The phenomenological anisotropic spectrum obtained from the model, for both pseudo-energies
obtained through polarizations a = 1, 2 defined through Equation (18), can be written as

E±
a (k, t) ∼ C±

a

[

`2‖k
2
‖ + `2⊥k

2
⊥

]−µ±

. (54)

The spectral anisotropy is different within the injection, inertial, and dissipative ranges of
turbulence (Carbone and Veltri, 1990). Wave vectors perpendicular to B0 are present in the
spectrum, but when the process of energy transfer generates a strong anisotropy (at small times), a
competing process takes place which redistributes the energy over all wave vectors. The dynamical
balance between these tendencies fixes the value of the spectral anisotropy Ω ≃ 55∘ in the inertial
range. On the contrary, since the redistribution of energy cannot take place, in the dissipation
domain the spectrum remains strongly anisotropic, with Ω ≃ 80∘. When the Reynolds number
increases, the contribution of the inertial range extends, and the increases of the total anisotropy
tends to saturate at about Ω ≃ 60∘ at Reynolds number of 105. This value corresponds to a rather
low value for the ratio between parallel and perpendicular correlation lengths `‖/`⊥ ≃ 2, too
small with respect to the observed value `‖/`⊥ ≥ 10. This suggests that the non-linear dynamical
evolution of an initially isotropic spectrum of turbulence is perhaps not sufficient to explain the
observed anisotropy. These results have been confirmed numerically (Oughton et al., 1994).

3.1.6 Spectral anisotropy in the solar wind

The correlation time, as defined in Appendix A, estimates how much an element of our time series
x(t) at time t1 depends on the value assumed by x(t) at time t0, being t1 = t0 + δt. This concept
can be transferred from the time domain to the space domain if we adopt the Taylor hypothesis
and, consequently, we can talk about spatial scales.

Correlation lengths in the solar wind generally increase with heliocentric distance (Matthaeus
and Goldstein, 1982b; Bruno and Dobrowolny, 1986), suggesting that large scale correlations are
built up during the wind expansion. This kind of evolution is common to both fast and slow wind
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Figure 32: Correlation function just for the Z component of interplanetary magnetic field as observed
by Helios 2 during its primary mission to the Sun. The blue color refers to data recorded at 0.9 AU while
the red color refers to 0.3 AU. Solid lines refer to fast wind, dashed lines refer to slow wind.

as shown in Figure 32, where we can observe the behavior of the Bz correlation function for fast
and slow wind at 0.3 and 0.9 AU.

Moreover, the fast wind correlation functions decrease much faster than those related to slow
wind. This behavior reflects also the fact that the stochastic character of Alfvénic fluctuations
in the fast wind is very efficient in decorrelating the fluctuations of each of the magnetic field
components.

More detailed studies performed by Matthaeus et al. (1990) provided for the first time the two-
dimensional correlation function of solar wind fluctuations at 1 AU. The original dataset comprised
approximately 16 months of almost continuous magnetic field 5-min averages. These results, based
on ISEE 3 magnetic field data, are shown in Figure 33, also called the “The Maltese Cross”.

This figure has been obtained under the hypothesis of cylindrical symmetry. Real determination
of the correlation function could be obtained only in the positive quadrant, and the whole plot
was then made by mirroring these results on the remaining three quadrants. The iso-contour lines
show contours mainly elongated along the ambient field direction or perpendicular to it. Alfvénic
fluctuations with k ‖ B0 contribute to contours elongated parallel to r⊥. Fluctuations in the
two-dimensional turbulence limit (Montgomery, 1982) contribute to contours elongated parallel to
r‖. This two-dimensional turbulence is characterized for having both the wave vector k and the
perturbing field δb perpendicular to the ambient field B0. Given the fact that the analysis did
not select fast and slow wind, separately, it is likely that most of the slab correlations came from
the fast wind while the 2D correlations came from the slow wind. As a matter of fact, Dasso et al.

(2005), using 5 years of spacecraft observations at roughly 1 AU, showed that fast streams are
dominated by fluctuations with wavevectors quasi-parallel to the local magnetic field, while slow
streams are dominated by quasi-perpendicular fluctuation wavevectors. Anisotropic turbulence
has been observed in laboratory plasmas and reverse pinch devices (Zweben et al., 1979).

Bieber et al. (1996) formulated an observational test to distinguish the slab (Alfvénic) from
the 2D component within interplanetary turbulence. These authors assumed a mixture of trans-
verse fluctuations, some of which have wave vectors perpendicular k ⊥ B0 and polarization of
fluctuations δB(k⊥) perpendicular to both vectors (2D geometry with k‖ ≃ 0), and some parallel
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Figure 33: Contour plot of the 2D correlation function of interplanetary magnetic field fluctuations as a
function of parallel and perpendicular distance with respect to the mean magnetic field. The separation in
r‖ and r⊥ is in units of 1010 cm. Image reproduced by permission from Matthaeus et al. (1990), copyright
by AGU.

to the mean magnetic field k ‖ B0, the polarization of fluctuations δB(k‖) being perpendicular
to the direction of B0 (slab geometry with k⊥ ≃ 0). The magnetic field is then rotated into the
same mean field coordinate system used by Belcher and Davis Jr (1971) and Belcher and Solodyna
(1975), where the y-coordinate is perpendicular to both B0 and the radial direction, while the
x-coordinate is perpendicular to B0 but with a component also in the radial direction. Using that
geometry, and defining the power spectrum matrix as

Pij(k) =
1

(2π)3

∫

d3r⟨Bi(x)Bj(x+ r)⟩e−ik·r,

it can be found that, assuming axisymmetry, a two-component model can be written in the fre-
quency domain

fPyy(f) = rCs

(

2πf

Uw cosψ

)1−q

+ (1− r)Cs
2q

(1 + q)

(

2πf

Uw sinψ

)1−q

, (55)

fPxx(f) = rCs

(

2πf

Uw cosψ

)1−q

+ (1− r)Cs
2

(1 + q)

(

2πf

Uw sinψ

)1−q

, (56)

where the anisotropic energy spectrum is the sum of both components:

fT (f) = 2rCs

(

2πf

Uw cosψ

)1−q

+ 2(1− r)Cs

(

2πf

Uw sinψ

)1−q

. (57)
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Here f is the frequency, Cs is a constant defining the overall spectrum amplitude in wave vector
space, Uw is the bulk solar wind speed and ψ is the angle between B0 and the wind direction.
Finally, r is the fraction of slab components and (1− r) is the fraction of 2D components.

The ratio test adopted by these authors was based on the ratio between the reduced perpen-
dicular spectrum (fluctuations ⊥ to the mean field and solar wind flow direction) and the reduced
quasi-parallel spectrum (fluctuations ⊥ to the mean field and in the plane defined by the mean
field and the flow direction). This ratio, expected to be 1 for slab turbulence, resulted to be
∼ 1.4 for fluctuations within the inertial range, consistent with 74% of 2D turbulence and 26%
of slab. A further test, the anisotropy test, evaluated how the spectrum should vary with the
angle between the mean magnetic field and the flow direction of the wind. The measured slab
spectrum should decrease with the field angle while the 2D spectrum should increase, depending
on how these spectra project on the flow direction. The results from this test were consistent with
with 95% of 2D turbulence and 5% of slab. In other words, the slab turbulence due to Alfvénic
fluctuations would be a minor component of interplanetary MHD turbulence. A third test derived
from Mach number scaling associated with the nearly incompressible theory (Zank and Matthaeus,
1992), assigned the same fraction ∼ 80% to the 2D component. However, the data base for this
analysis was derived from Helios magnetic measurements, and all data were recorded near times
of solar energetic particle events. Moreover, the quasi totality of the data belonged to slow solar
wind (Wanner and Wibberenz, 1993) and, as such, this analysis cannot be representative of the
whole phenomenon of turbulence in solar wind. As a matter of fact, using Ulysses observations,
Smith (2003) found that in the polar wind the percentage of slab and 2D components is about
the same, say the high latitude slab component results unusually higher as compared with ecliptic
observations.

Successive theoretical works by Ghosh et al. (1998a,b) in which they used compressible models
in large variety of cases were able to obtain, in some cases, parallel and perpendicular correlations
similar to those obtained in the solar wind. However, they concluded that the “Maltese” cross
does not come naturally from the turbulent evolution of the fluctuations but it strongly depends
on the initial conditions adopted when the simulation starts. It seems that the existence of these
correlations in the initial data represents an unavoidable constraint. Moreover, they also stressed
the importance of time-averaging since the interaction between slab waves and transverse pressure-
balanced magnetic structures causes the slab turbulence to evolve towards a state in which a
two-component correlation function emerges during the process of time averaging.

The presence of two populations, i.e., a slab-like and a quasi-2D like, was also inferred by Dasso
et al. (2003). These authors computed the reduced spectra of the normalized cross-helicity and
the Alfvén ratio from ACE dataset. These parameters, calculated for different intervals of the
angle θ between the flow direction and the orientation of the mean field B0, showed a remarkable
dependence on θ.

The geometry used in these analyses assumes that the energy spectrum in the rest frame of
the plasma is axisymmetric and invariant for rotations about the direction of B0. Even if these
assumption are good when we want to translate results coming from 2D numerical simulations to 3D
geometry, these assumptions are quite in contrast with the observational fact that the eigenvalues
of the variance matrix are different, namely λ3 ̸= λ2.

Going back from the correlation tensor to the power spectrum is a complicated technical prob-
lem. However, Carbone et al. (1995a) derived a description of the observed anisotropy in terms
of a model for the three-dimensional energy spectra of magnetic fluctuations. The divergence-less
of the magnetic field allows to decompose the Fourier amplitudes of magnetic fluctuations in two
independent polarizations: The first one I [1](k) corresponds, in the weak turbulence theory, to the
Alfvénic mode, while the second polarization I [2](k) corresponds to the magnetosonic mode. By
using only the hypothesis that the medium is statistically homogeneous and some algebra, authors
found that the energy spectra of both polarizations can be related to the two-points correlation
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tensor and to the variance matrix. Through numerical simulations of the shell model (see later in
the review) it has been shown that the anisotropic energy spectrum can be described in the inertial
range by a phenomenological expression

I [s](k) = Cs

[

(

`[s]x kx

)2

+
(

`[s]y ky

)2

+
(

`[s]z kz

)2
]−1−µs/2

, (58)

where ki are the Cartesian components of the wave vector k, and Cs, `
[s]
i , and µs (s = 1, 2 indicates

both polarizations; i = x, y, z) are free parameters. In particular, Cs gives information on the

energy content of both polarizations, `
[s]
i represent the spectral extensions along the direction of a

given system of coordinates, and µs are two spectral indices.
A fit to the eigenvalues of the variance matrix allowed Carbone et al. (1995a) to fix the free

parameters of the spectrum for both polarizations. They used data from Bavassano et al. (1982a)
who reported the values of λi at five wave vectors calculated at three heliocentric distances, select-
ing periods of high correlation (Alfvénic periods) using magnetic field measured by the Helios 2
spacecraft. They found that the spectral indices of both polarizations, in the range 1.1 ≤ µ1 ≤ 1.3
and 1.46 ≤ µ2 ≤ 1.8 increase systematically with increasing distance from the Sun, the polarization
[2] spectra are always steeper than the corresponding polarization [1] spectra, while polarization [1]
is always more energetic than polarization [2]. As far as the characteristic lengths are concerned,

it can be found that `
[1]
x > `

[1]
y ≫ `z[1], indicating that wave vectors k ‖ B0 largely dominate.

Concerning polarization [2], it can be found that `x[2] ≫ `
[2]
y ≃ `

[2]
z , indicating that the spectrum

I [2](k) is strongly flat on the plane defined by the directions of B0 and the radial direction. Within
this plane, the energy distribution does not present any relevant anisotropy.

Let us compare these results with those by Matthaeus et al. (1990), the comparison being
significant as far as the plane yz is taken into account. The decomposition of Carbone et al. (1995a)
in two independent polarizations is similar to that of Matthaeus et al. (1990), a contour plot of
the trace of the correlation tensor Fourier transform T (k) = I [1](k) + I [2](k) on the plane (ky; kz)
shows two populations of fluctuations, with wave vectors nearly parallel and nearly perpendicular
to B0, respectively. The first population is formed by all the polarization [1] fluctuations and by
the fluctuations with k ‖ B0 belonging to polarization [2]. The latter fluctuations are physically
indistinguishable from the former, in that when k is nearly parallel to B0, both polarization vectors
are quasi-perpendicular to B0. On the contrary, the second population is almost entirely formed
by fluctuations belonging to polarization [2]. While it is clear that fluctuations with k nearly
parallel to B0 are mainly polarized in the plane perpendicular to B0 (a consequence of ∇·B = 0),
fluctuations with k nearly perpendicular to B0 are polarized nearly parallel to B0.

Although both models yield to the occurrence of two populations, Matthaeus et al. (1990) give
an interpretation of their results which is in contrast with that of Carbone et al. (1995a). Namely
Matthaeus et al. (1990) suggest that a nearly 2D incompressible turbulence characterized by wave
vectors and magnetic fluctuations, both perpendicular to B0, is present in the solar wind. However,
this interpretation does not arise from data analysis, rather from the 2D numerical simulations by
Shebalin et al. (1983) and from analytical studies (Montgomery, 1982). Let us note, however, that
in the former approach, which is strictly 2D, when k ⊥ B0 magnetic fluctuations are necessarily
parallel to B0. In the latter one, along with incompressibility, it is assumed that the energy in
the fluctuations is much less than in the DC magnetic field; both hypotheses do not apply to
the solar wind case. On the contrary, results by Carbone et al. (1995a) can be directly related
to the observational data. In any case, it is worth reporting that a model like that discussed
here, that is a superposition of fluctuations with both slab and 2D components, has been used to
describe turbulence also in the Jovian magnetosphere (Saur et al., 2002, 2003). In addition, several
theoretical and observational works indicate that there is a competition between the radial axis
and the mean field axis in shaping the polarization and spectral anisotropies in the solar wind.
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In this respect, Grappin and Velli (1996) used numerical simulations of MHD equations which
included expansion effects (Expanding Box Model) to study the formation of anisotropy in the wind
and the interaction of Alfvén waves within a transverse magnetic structures. These authors found
that a large-scale isotropic Alfvénic eddy stretched by expansion naturally mixes with smaller scale
transverse Alfvén waves with a different anisotropy.

Saur and Bieber (1999), on the other hand, employed three different tests on about three decades
of solar wind observations at 1 AU in order to better understand the anisotropic nature of solar
wind fluctuations. Their data analysis strongly supported the composite model of a turbulence
made of slab and 2-D fluctuations.

Narita et al. (2011b), using the four Cluster spacecraft, determined the three-dimensional wave-
vector spectra of fluctuating magnetic fields in the solar wind within the inertial range. These
authors found that the spectra are anisotropic throughout the analyzed frequency range and the
power is extended primarily in the directions perpendicular to the mean magnetic field, as might be
expected of 2-D turbulence, however, the analyzed fluctuations cannot be considered axisymmetric.

Finally, Turner et al. (2011) suggested that the non-axisymmetry anisotropy of the frequency
spectrum observed using in-situ observations may simply arise from a sampling effect related to
the fact that the s/c samples three dimensional fluctuations as a one-dimensional series and that
the energy density is not equally distributed among the different scales (i.e., spectral index > 1).

3.1.7 Magnetic helicity

Magnetic helicity Hm, as defined in Appendix B.1, measures the “knottedness” of magnetic field
lines (Moffatt, 1978). Moreover, Hm is a pseudo scalar and changes sign for coordinate inversion.
The plus or minus sign, for circularly polarized magnetic fluctuations in a slab geometry, indicates
right or left-hand polarization. Statistical information about the magnetic helicity is derived from
the Fourier transform of the magnetic field auto-correlation matrix Rij(r) = ⟨Bi(x) ·Bj(x+ r)⟩ as
shown by Matthaeus and Goldstein (1982b). While the trace of the symmetric part of the spectral
matrix accounts for the magnetic energy, the imaginary part of the spectral matrix accounts
for the magnetic helicity (Batchelor, 1970; Montgomery, 1982; Matthaeus and Goldstein, 1982b).
However, what is really available from in-situ measurements in space experiments are data from
a single spacecraft, and we can obtain values of R only for collinear sequences of r along the x
direction which corresponds to the radial direction from the Sun. In these conditions the Fourier
transform of R allows us to obtain only a reduced spectral tensor along the radial direction so that
Hm(k) will depend only on the wave-number k in this direction. Although the reduced spectral
tensor does not carry the complete spectral information of the fluctuations, for slab and isotropic
symmetries it contains all the information of the full tensor. The expression used by Matthaeus
and Goldstein (1982b) to compute the reduced Hm is given in Appendix B.2. In the following, we
will drop the suffix r for sake of simplicity.

The general features of the reduced magnetic helicity spectrum in the solar wind were described
for the first time by Matthaeus and Goldstein (1982b) in the outer heliosphere, and by Bruno and
Dobrowolny (1986) in the inner heliosphere. A useful dimensionless way to represent both the
degree of and the sense of polarization is the normalized magnetic helicity σm (see Appendix B.2).
This quantity can randomly vary between +1 and −1, as shown in Figure 34 from the work by
Matthaeus and Goldstein (1982b) and relative to Voyager’s data taken at 1 AU. However, net
values of ±1 are reached only for pure circularly polarized waves.

Based on these results, Goldstein et al. (1991) were able to reproduce the distribution of the
percentage of occurrence of values of σm(f) adopting a model where the magnitude of the magnetic
field was allowed to vary in a random way and the tip of the vector moved near a sphere. By this
way they showed that the interplanetary magnetic field helicity measurements were inconsistent
with the previous idea that fluctuations were randomly circularly polarized at all scales and were

Living Reviews in Solar Physics

http://www.livingreviews.org/lrsp-2013-2

http://www.livingreviews.org/lrsp-2013-2


56 Roberto Bruno and Vincenzo Carbone

Figure 34: σm vs. frequency and wave number relative to an interplanetary data sample recorded by
Voyager 1 at approximately 1 AU. Image reproduced by permission from Matthaeus and Goldstein (1982b),
copyright by AGU.

also magnitude preserving.

However, evidence for circular polarized MHD waves in the high frequency range was provided
by Polygiannakis et al. (1994), who studied interplanetary magnetic field fluctuations from various
datasets at various distances ranging from 1 to 20 AU. They also concluded that the difference
between left- and right-hand polarizations is significant and continuously varying.

As already noticed by Smith et al. (1983, 1984), knowing the sign of σm and the sign of the
normalized cross-helicity σc it is possible to infer the sense of polarization of the fluctuations. As
a matter of fact, a positive cross-helicity indicates an Alfvén mode propagating outward, while a
negative cross-helicity indicates a mode propagating inward. On the other hand, we know that
a positive magnetic-helicity indicates a right-hand polarized mode, while a negative magnetic-
helicity indicates a left-hand polarized mode. Thus, since the sense of polarization depends on
the propagating direction with respect to the observer, σm(f)σc(f) < 0 will indicate right circular

polarization while σm(f)σc(f) > 0 will indicate left circular polarization. Thus, each time magnetic
helicity and cross-helicity are available from measurements in a super-Alfvénic flow, it is possible
to infer the rest frame polarization of the fluctuations from a single point measurements, assuming
the validity of the slab geometry.

The high variability of σm, observable in Voyager’s data (see Figure 34), was equally observed in
Helios 2 data in the inner heliosphere (Bruno and Dobrowolny, 1986). The authors of this last work
computed the difference (MH > 0)− |MH < 0| of magnetic helicity for different frequency bands
and noticed that most of the resulting magnetic helicity was contained in the lowest frequency
band. This result supported the theoretical prediction of an inverse cascade of magnetic helicity
from the smallest to the largest scales during turbulence development (Pouquet et al., 1976).

Numerical simulations of the incompressible MHD equations by Mininni et al. (2003a), discussed
in Section 3.1.9, clearly confirm the tendency of magnetic helicity to follow an inverse cascade. The
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generation of magnetic field in turbulent plasmas and the successive inverse cascade has strong
implications in the emergence of large scale magnetic fields in stars, interplanetary medium and
planets (Brandenburg, 2001).

This phenomenon was firstly demonstrated in numerical simulations based on the eddy damped
quasi normal Markovian (EDQNM) closure model of three-dimensional MHD turbulence by Pou-
quet et al. (1976). Successively, other investigators confirmed such a tendency for the magnetic
helicity to develop an inverse cascade (Meneguzzi et al., 1981; Cattaneo and Hughes, 1996; Bran-
denburg, 2001).

Mininni et al. (2003a) performed the first direct numerical simulations of turbulent Hall dy-
namo. They showed that the Hall current can have strong effects on turbulent dynamo action,
enhancing or even suppressing the generation of the large-scale magnetic energy. These authors
injected a weak magnetic field at small scales in a system kept in a stationary regime of hydro-
dynamic turbulence and followed the exponential growth of magnetic energy due to the dynamo
action. This evolution can be seen in Figure 35 in the same format described for Figure 40, shown
in Section 3.1.9. Now, the forcing is applied at wave number kforce = 10 in order to give enough
room for the inverse cascade to develop. The fluid is initially in a strongly turbulent regime as
a result of the action of the external force at wave number kforce = 10. An initial magnetic fluc-
tuation is introduced at t = 0 at kseed = 35. The magnetic energy starts growing exponentially
fast and, when the saturation is reached, the magnetic energy is larger than the kinetic energy.
Notably, it is much larger at the largest scales of the system (i.e., k = 1). At these large scales,
the system is very close to a magnetostatic equilibrium characterized by a force-free configuration.

Figure 35: Still from a movie showing A numerical simulation of the incompressible MHD equations
in three dimensions, assuming periodic boundary conditions (see details in Mininni et al., 2003a). The
left panel shows the power spectra for kinetic energy (green), magnetic energy (red), and total energy
(blue) vs. time. The right panel shows the spatially integrated kinetic, magnetic, and total energies vs.
time. The vertical (orange) line indicates the current time. These results correspond to a 1283 simulation
with an external force applied at wave number kforce = 10 (movie kindly provided by D. Gómez). (To
watch the movie, please go to the online version of this review article at http://www.livingreviews.org/
lrsp-2013-2.)
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3.1.8 Alfvénic correlations as incompressive turbulence

In a famous paper, Belcher and Davis Jr (1971) showed that a strong correlation exists between
velocity and magnetic field fluctuations, in the form

δv ≃ ± δB√
4πρ

, (59)

where the sign of the correlation is given by the sign[−k · B0], being k the wave vector and B0

the background magnetic field vector. These authors showed that in about 25 d of data from
Mariner 5, out of the 160 d of the whole mission, fluctuations were described by Equation (59),
and the sign of the correlation was such to indicate always an outward sense of propagation with
respect to the Sun. Authors also noted that these periods mainly occur within the trailing edges
of high-speed streams. Moreover, in the regions where Equation (59) is verified to a high degree,
the magnetic field magnitude is almost constant (B2 ∼ const.).

Figure 36: Alfvénic correlation in fast solar wind. Left panel: large scale Alfvénic fluctuations found by
Bruno et al. (1985). Right panel: small scale Alfvénic fluctuations for the first time found by Belcher and
Solodyna (1975). Image reproduced by permission, copyright by AGU.

Today we know that Alfvénic correlations are ubiquitous in the solar wind and that these
correlations are much stronger and are found at lower and lower frequencies, as we look at shorter
and shorter heliocentric distances. In the right panel of Figure 36 we show results from Belcher and
Solodyna (1975) obtained on the basis of 5 min averages of velocity and magnetic field recorded
by Mariner 5 in 1967, during its mission to Venus. On the left panel of Figure 36 we show results
from a similar analysis performed by Bruno et al. (1985) obtained on the basis of 1 h averages of
velocity and magnetic field recorded by Helios 2 in 1976, when the s/c was at 0.29 AU from the
Sun. These last authors found that, in their case, Alfvénic correlations extended to time periods
as low as 15 h in the s/c frame at 0.29 AU, and to periods a factor of two smaller near the Earth’s
orbit. Now, if we think that this long period of the fluctuations at 0.29 AU was larger than the
transit time from the Sun to the s/c, this results might be the first evidence for a possible solar
origin for these fluctuations, probably caused by the shuffling of the foot-points of the solar surface
magnetic field.
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Alfvén modes are not the only low frequency plasma fluctuations allowed by the MHD equa-
tions but they certainly are the most frequent fluctuations observed in the solar wind. The reason
why other possible propagating modes like the slow sonic mode and the fast magnetosonic mode
cannot easily be found, besides the fact that the eigenvectors associated with these modes are not
directly identifiable because they necessitate prior identification of wavevectors, contrary to the
simple Alfvén eigenvectors, depends also on the fact that these compressive modes are strongly
damped in the solar wind shortly after they are generated (see Section 6). On the contrary, Alfvénic
fluctuations, which are difficult to be damped because of their incompressive nature, survive much
longer and dominate solar wind turbulence. Nevertheless, there are regions where Alfvénic correla-
tions are much stronger like the trailing edge of fast streams, and regions where these correlations
are weak like intervals of slow wind (Belcher and Davis Jr, 1971; Belcher and Solodyna, 1975).
However, the degree of Alfvénic correlations unavoidably fades away with increasing heliocentric
distance, although it must be reported that there are cases when the absence of strong velocity
shears and compressive phenomena favor a high Alfvénic correlation up to very large distances
from the Sun (Roberts et al., 1987a; see Section 5.1).
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Figure 37: Alfvénic correlation in fast and slow wind. Notice the different degree of correlation between
these two types of wind.

Just to give a qualitative quick example about Alfvénic correlations in fast and slow wind, we
show in Figure 37 the speed profile for about 100 d of 1976 as observed by Helios 2, and the traces
of velocity and magnetic field Z components (see Appendix D for the orientation of the reference
system) VZ and BZ (this last one expressed in Alfvén units, see Appendix B.1) for two different
time intervals, which have been enlarged in the two inserted small panels. The high velocity interval
shows a remarkable anti-correlation which, since the mean magnetic field B0 is oriented away from
the Sun, suggests a clear presence of outward oriented Alfvénic fluctuations given that the sign
of the correlation is the sign[−k · B0]. At odds with the previous interval, the slow wind shows
that the two traces are rather uncorrelated. For sake of brevity, we omit to show the very similar
behavior for the other two components, within both fast and slow wind.
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The discovery of Alfvénic correlations in the solar wind stimulated fundamental remarks by
Kraichnan (1974) who, following previous theoretical works by Kraichnan (1965) and Iroshnikov
(1963), showed that the presence of a strong correlation between velocity and magnetic fluctua-
tions renders non-linear transfer to small scales less efficient than for the Navier–Stokes equations,
leading to a turbulent behavior which is different from that described by Kolmogorov (1941). In
particular, when Equation (59) is exactly satisfied, non-linear interactions in MHD turbulent flows
cannot exist. This fact introduces a problem in understanding the evolution of MHD turbulence
as observed in the interplanetary space. Both a strong correlation between velocity and magnetic
fluctuations and a well defined turbulence spectrum (Figures 29, 37) are observed, and the ex-
istence of the correlations is in contrast with the existence of a spectrum which in turbulence is
due to a non-linear energy cascade. Dobrowolny et al. (1980b) started to solve the puzzle on the
existence of Alfvénic turbulence, say the presence of predominately outward propagation and the
fact that MHD turbulence with the presence of both Alfvénic modes present will evolve towards a
state where one of the mode disappears. However, a lengthy debate based on whether the highly
Alfvénic nature of fluctuations is what remains of the turbulence produced at the base of the corona
or the solar wind itself is an evolving turbulent magnetofluid, has been stimulating the scientific
community for quite a long time.

3.1.9 Radial evolution of Alfvénic turbulence

The degree of correlation not only depends on the type of wind we look at, i.e., fast or slow, but
also on the radial distance from the Sun and on the time scale of the fluctuations.

Figure 38 shows the radial evolution of σc (see Appendix B.1) as observed by Helios and Voyager
s/c (Roberts et al., 1987b). It is clear enough that σc not only tends to values around 0 as the
heliocentric distance increases, but larger and larger time scales are less and less Alfvénic. Values
of σc ∼ 0 suggest a comparable amount of “outward” and “inward” correlations.

The radial evolution affects also the Alfvén ratio rA (see Appendix B.3.1) as it was found by
Bruno et al. (1985). However, early analyses (Belcher and Davis Jr, 1971; Solodyna and Belcher,
1976; Matthaeus and Goldstein, 1982b) had already shown that this parameter is usually less than
unit. Spectral studies by Marsch and Tu (1990a), reported in Figure 39, showed that within slow
wind it is the lowest frequency range the one that experiences the strongest decrease with distance,
while the highest frequency range remains almost unaffected. Moreover, the same study showed
that, within fast wind, the whole frequency range experiences a general depletion. The evolution
is such that close to 1 AU the value of rA in fast wind approaches that in slow wind.

Moreover, comparing these results with those by Matthaeus and Goldstein (1982b) obtained
from Voyager at 2.8 AU, it seems that the evolution recorded within fast wind tends to a sort of
limit value around 0.4 – 0.5.

Also Roberts et al. (1990), analyzing fluctuations between 9 h and 3 d found a similar radial
trend. These authors showed that rA dramatically decreases from values around unit at the
Earth’s orbit towards 0.4 – 0.5 at approximately 8 AU. For larger heliocentric distances, rA seems
to stabilize around this last value.

The reason why rA tends to a value less than unit is still an open question although MHD
computer simulations (Matthaeus, 1986) showed that magnetic reconnection and high plasma
viscosity can produce values of rA < 1 within the inertial range. Moreover, the magnetic energy
excess can be explained as a competing action between the equipartition trend due to linear
propagation (or Alfvén effect, Kraichnan (1965)), and a local dynamo effect due to non-linear
terms (Grappin et al., 1991), see closure calculations by Grappin et al. (1983); DNS by Müller and
Grappin (2005).

However, this argument forecasts an Alfvén ratio rA ̸= 1 but, it does not say whether it would
be larger or smaller than “1”, i.e., we could also have a final excess of kinetic energy.
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Figure 38: Histograms of normalized cross-helicity σc showing its evolution between 0.3 (circles), 2
(triangles), and 20 (squares) AU for different time scales: 3 h (top panel), 9 h (middle panel), and 81 h
(bottom panel). Image reproduced by permission from Roberts et al. (1987b), copyright by AGU.

Figure 39: Values of the Alfvén ratio rA as a function of frequency and heliocentric distance, within slow
(left column) and fast (right column) wind. Image reproduced by permission from Marsch and Tu (1990a),
copyright by AGU.
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Similar unbalance between magnetic and kinetic energy has recently been found in numerical
simulations by Mininni et al. (2003a), already cited in Section 3.1.7. These authors studied the
effect of a weak magnetic field at small scales in a system kept in a stationary regime of hydro-
dynamic turbulence. In these conditions, the dynamo action causes the initial magnetic energy
to grow exponentially towards a state of quasi equipartition between kinetic and magnetic energy.
This simulation was aiming to provide more insights on a microscopic theory of the alpha-effect,
which is responsible to convert part of the toroidal magnetic field on the Sun back to poloidal
to sustain the cycle. However, when the simulation saturates, the unbalance between kinetic and
magnetic energy reminds the conditions in which the Alfvén ratio is found in interplanetary space.
Results from the above study can be viewed in the animation of Figure 40. At very early time
the fluid is in a strongly turbulent regime as a result of the action of the external force at wave
number kforce = 3. An initial magnetic fluctuation is introduced at t = 0 at kseed = 35. The
magnetic energy starts growing exponentially fast and, when the simulation reaches the saturation
stage, the magnetic power spectrum exceeds the kinetic power spectrum at large wave numbers
(i.e., k > kforce), as also observed in Alfvénic fluctuations of the solar wind (Bruno et al., 1985; Tu
and Marsch, 1990a) as an asymptotic state (Roberts et al., 1987a,b; Bavassano et al., 2000b) of
turbulence.

Figure 40: Still from a movie showing A 1283 numerical simulation, as in Figure 35, but with an external
force applied at wave number kforce = 3 (movie kindly provided by D. Gómez). (To watch the movie,
please go to the online version of this review article at http://www.livingreviews.org/lrsp-2013-2.)

However, when the two-fluid effect, such as the Hall current and the electron pressure (Mininni
et al., 2003b), is included in the simulation, the dynamo can work more efficiently and the final
stage of the simulation is towards equipartition between kinetic and magnetic energy.

On the other hand, Marsch and Tu (1993a) analyzed several intervals of interplanetary observa-
tions to look for a linear relationship between the mean electromotive force ε = ⟨δVδB⟩, generated
by the turbulent motions, and the mean magnetic field B0, as predicted by simple dynamo the-
ory (Krause and Rädler, 1980). Although sizable electromotive force was found in interplanetary
fluctuations, these authors could not establish any simple linear relationship between B0 and ε.

Lately, Bavassano and Bruno (2000) performed a three-fluid analysis of solar wind Alfvénic
fluctuations in the inner heliosphere, in order to evaluate the effect of disregarding the multi-
fluid nature of the wind on the factor relating velocity and magnetic field fluctuations. It is
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well known that converting magnetic field fluctuations into Alfvén units we divide by the factor
Fp = (4πMpNp)

1/2. However, fluctuations in velocity tend to be smaller than fluctuations in
Alfvén units. In Figure 41 we show scatter plots between the z-component of the Alfvén velocity
and the proton velocity fluctuations. The z-direction has been chosen as the same of Vp×B, where
Vp is the proton bulk flow velocity and B is the mean field direction. The reason for such a choice
is due to the fact that this direction is the least affected by compressive phenomena deriving from
the wind dynamics. These results show that although the correlation coefficient in both cases is
around −0.95, the slope of the best fit straight line passes from 1 at 0.29 AU to a slope considerably
different from 1 at 0.88 AU.

Figure 41: Scatter plot between the z-component of the Alfvén velocity and the proton velocity fluctu-
ations at about 2 mHz. Data refer to Helios 2 observations at 0.29 AU (left panel) and 0.88 AU (right
panel). Image adapted from Bavassano and Bruno (2000).

Belcher and Davis Jr (1971) suggested that this phenomenon had to be ascribed to the presence
of α particles and to an anisotropy in the thermal pressure. Moreover, taking into account the
multi-fluid nature of the solar wind, the dividing factor should become F = FpFiFa, where Fi

would take into account the presence of other species besides protons, and Fa would take into
account the presence of pressure anisotropy P‖ ̸= P⊥, where ‖ and ⊥ refer to the background field
direction. In particular, following Bavassano and Bruno (2000), the complete expressions for Fi

and Fa are

Fi =

[

1 +
∑

s

(MsNs)/(MpNp)

]1/2

and

Fa =

[

1− 4π

B2
0

∑

s

(P‖s − P⊥s +MsNsU
2
s)

]−1/2

,

where the letter “s” stands for the s-th species, being Us = Vs − V its velocity in the center
of mass frame of reference. Vs is the velocity of the species “s” in the s/c frame and V =
(
∑

sMsNsVs)/(
∑

sMsNs) is the velocity of the center of mass.
Bavassano and Bruno (2000) analyzed several time intervals within the same co-rotating high

velocity stream observed at 0.3 and 0.9 AU and performed the analysis using the new factor “F” to
express magnetic field fluctuations in Alfvén units, taking into account the presence of α particles
and electrons, besides the protons. However, the correction resulted to be insufficient to bring
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back to “1” the slope of the δVPz − δVAz relationship shown in the right panel of Figure 41. In
conclusion, the radial variation of the Alfvén ratio rA towards values less than 1 is not completely
due to a missed inclusion of multi-fluid effects in the conversion from magnetic field to Alfvén
units. Thus, we are left with the possibility that the observed depletion of rA is due to a natural
evolution of turbulence towards a state in which magnetic energy becomes dominant (Grappin
et al., 1991; Roberts et al., 1992; Roberts, 1992), as observed in the animation of Figure 40 taken
from numerical simulations by Mininni et al. (2003a) or, it is due to the increased presence of
magnetic structures like MFDT (Tu and Marsch, 1993).

3.2 Turbulence studied via Elsässer variables

The Alfvénic character of solar wind fluctuations,especially within co-rotating high velocity streams,
suggests to use the Elsässer variables (Appendix B.3) to separate the “outward” from the “inward”
contribution to turbulence. These variables, used in theoretical studies by Dobrowolny et al.

(1980a,b); Veltri et al. (1982); Marsch and Mangeney (1987); and Zhou and Matthaeus (1989),
were for the first time used in interplanetary data analysis by Grappin et al. (1990) and Tu et al.

(1989b). In the following, we will describe and discuss several differences between “outward” and
“inward” modes, but the most important one is about their origin. As a matter of fact, the exis-
tence of the Alfvénic critical point implies that only “outward” propagating waves of solar origin
will be able to escape from the Sun. “Inward” waves, being faster than the wind bulk speed, will
precipitate back to the Sun if they are generated before this point. The most important implication
due to this scenario is that “inward” modes observed beyond the Alfvénic point cannot have a solar
origin but they must have been created locally by some physical process. Obviously, for the other
Alfvénic component, both solar and local origins are still possible.

3.2.1 Ecliptic scenario

Early studies by Belcher and Davis Jr (1971), performed on magnetic field and velocity fluctuations
recorded by Mariner 5 during its trip to Venus in 1967, already suggested that the majority of
the Alfvénic fluctuations are characterized by an “outward” sense of propagation, and that the
best regions where to observe these fluctuations are the trailing edge of high velocity streams.
Moreover, Helios spacecraft, repeatedly orbiting around the Sun between 0.3 to 1 AU, gave the
first and unique opportunity to study the radial evolution of turbulence (Bavassano et al., 1982b;
Denskat and Neubauer, 1983). Successively, when Elsässer variables were introduced in the analysis
(Grappin et al., 1989), it was finally possible not only to evaluate the “inward” and “outward”
Alfvénic contribution to turbulence but also to study the behavior of these modes as a function of
the wind speed and radial distance from the Sun.

Figure 42 (Tu et al., 1990) clearly shows the behavior of e± (see Appendix B.3) across a high
speed stream observed at 0.3 AU. Within fast wind e+ is much higher than e− and its spectral
slope shows a break. Lower frequencies have a flatter slope while the slope of higher frequencies is
closer to a Kolmogorov-like. e− has a similar break but the slope of lower frequencies follows the
Kolmogorov slope, while higher frequencies form a sort of plateau.

This configuration vanishes when we pass to the slow wind where both spectra have almost
equivalent power density and follow the Kolmogorov slope. This behavior, for the first time re-
ported by Grappin et al. (1990), is commonly found within co-rotating high velocity streams,
although much more clearly expressed at shorter heliocentric distances, as shown below.

Spectral power associated with outward (right panel) and inward (left panel) Alfvénic fluctua-
tions, based on Helios 2 observations in the inner heliosphere, are concisely reported in Figure 43.
The e– spectrum, if we exclude the high frequency range of the spectrum relative to fast wind at
0.4 AU, shows an average power law profile with a slope of −1.64, consistent with Kolmogorov’s
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Figure 42: Power density spectra e± computed from δz± fluctuations for different time intervals indicated
by the arrows. Image reproduced by permission from Tu et al. (1990), copyright by AGU.

Figure 43: Power density spectra e− and e+ computed from δz− and δz+ fluctuations. Spectra have
been computed within fast (H) and slow (L) streams around 0.4 and 0.9 AU as indicated by different line
styles. The thick line represents the average power spectrum obtained from all the about 50 e– spectra,
regardless of distances and wind speed. The shaded area is the 1σ width related to the average. Image
reproduced by permission from Tu and Marsch (1990b), copyright by AGU.
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scaling. The lack of radial evolution of e– spectrum brought Tu and Marsch (1990a) to name it
“the background spectrum” of solar wind turbulence.

Quite different is the behavior of e+ spectrum. Close to the Sun and within fast wind, this
spectrum appears to be flatter at low frequency and steeper at high frequency. The overall evolution
is towards the “background spectrum” by the time the wind reaches 0.8 AU.

In particular, Figure 43 tells us that the radial evolution of the normalized cross-helicity has to
be ascribed mainly to the radial evolution of e+ rather than to both Alfvénic fluctuations (Tu and
Marsch, 1990a). In addition, Figure 44, relative to the Elsässer ratio rE, shows that the hourly
frequency range, up to ∼ 2× 10−3 Hz, is the most affected by this radial evolution.

Figure 44: Ratio of e– over e+ within fast wind at 0.3 and 0.9 AU in the left and right panels, respectively.
Image reproduced by permission from Marsch and Tu (1990a), copyright by AGU.

As a matter of fact, this radial evolution can be inferred from Figure 45 where values of e–

and e+ together with solar wind speed, magnetic field intensity, and magnetic field and particle
density compression are shown between 0.3 and 1 AU during the primary mission of Helios 2. It
clearly appears that enhancements of e– and depletion of e+ are connected to compressive events,
particularly within slow wind. Within fast wind the average level of e– is rather constant during
the radial excursion while the level of e+ dramatically decreases with a consequent increase of the
Elsässer ratio (see Appendix B.3.1).

Further ecliptic observations (see Figure 46) do not indicate any clear radial trend for the
Elsässer ratio between 1 and 5 AU, and its value seems to fluctuate between 0.2 and 0.4.

However, low values of the normalized cross-helicity can also be associated with a particular type
of incompressive events, which Tu and Marsch (1991) called Magnetic Field Directional Turnings
or MFDT. These events, found within slow wind, were characterized by very low values of σc close
to zero and low values of the Alfvén ratio, around 0.2. Moreover, the spectral slope of e+, e– and
the power associated with the magnetic field fluctuations was close to the Kolmogorov slope. These
intervals were only scarcely compressive, and short period fluctuations, from a few minutes to about
40 min, were nearly pressure balanced. Thus, differently from what had previously been observed
by Bruno et al. (1989), who found low values of cross-helicity often accompanied by compressive
events, these MFDTs were mainly incompressive. In these structures most of the fluctuating
energy resides in the magnetic field rather than velocity as shown in Figure 47 taken from Tu and
Marsch (1991). It follows that the amplitudes of the fluctuating Alfvénic fields δz± result to be
comparable and, consequently, the derived parameter σc → 0. Moreover, the presence of these
structures would also be able to explain the fact that rA < 1. Tu and Marsch (1991) suggested
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Figure 45: Upper panel: solar wind speed and solar wind speed multiplied by σc. In the lower panels the
authors reported: σc, rE, e

–, e+, magnetic compression, and number density compression, respectively.
Image reproduced by permission from Bruno and Bavassano (1991), copyright by AGU.

Figure 46: Ratio of e– over e+ within fast wind between 1 and 5 AU as observed by Ulysses in the
ecliptic. Image reproduced by permission from Bavassano et al. (2001), copyright by AGU.
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that these fluctuations might derive from a special kind of magnetic structures, which obey the
MHD equations, for which (B · ∇)B = 0, field magnitude, proton density, and temperature are all
constant. The same authors suggested the possibility of an interplanetary turbulence mainly made
of outwardly propagating Alfvén waves and convected structures represented by MFDTs. In other
words, this model assumed that the spectrum of e– would be caused by MFDTs. The different
radial evolution of the power associated with these two kind of components would determine
the radial evolution observed in both σc and rA. Although the results were not quantitatively
satisfactory, they did show a qualitative agreement with the observations.

Figure 47: Left column: e+ and e– spectra (top) and σc (bottom) during a slow wind interval at 0.9 AU.
Right column: kinetic ev and magnetic eB energy spectra (top) computed from the trace of the relative
spectral tensor, and spectrum of the Alfvén ratio rA (bottom) Image reproduced by permission from Tu
and Marsch (1991).

These convected structures are an important ingredient of the turbulent evolution of the fluc-
tuations and can be identified as the 2D incompressible turbulence suggested by Matthaeus et al.
(1990) and Tu and Marsch (1991).

As a matter of fact, a statistical analysis by Bruno et al. (2007) showed that magnetically
dominated structures represent an important component of the interplanetary fluctuations within
the MHD range of scales. As a matter of fact, these magnetic structures and Alfvénic fluctuations
dominate at scales typical of MHD turbulence. For instance, this analysis suggested that more than
20% of all analyzed intervals of 1 hr scale are magnetically dominated and only weakly Alfvénic.
Observations in the ecliptic performed by Helios and WIND s/c and out of the ecliptic, performed
by Ulysses, showed that these advected, mostly incompressive structures are ubiquitous in the
heliosphere and can be found in both fast and slow wind.

It proves interesting enough to look at the radial evolution of interplanetary fluctuations in
terms of normalized cross-helicity σc and normalized residual energy σr (see Appendix B.3).

These results, shown in the left panels of Figure 48, highlight the presence of a radial evolution
of the fluctuations towards a double-peaked distribution during the expansion of the solar wind.
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Figure 48: Left, from top to bottom: frequency histograms of σr vs. σc (here σC and σR) for fast wind
observed by Helios 2 at 0.29, 0.65 and 0.88 AU, respectively. The color code, for each panel, is normalized
to the maximum of the distribution. The yellow circle represents the limiting value given by σ2

c + σ2
r = 1

while, the yellow dashed line represents the relation σr = σc − 1, see text for details. Right, from top to

bottom: frequency histograms of σr vs. σc (here σC and σR) for slow wind observed by Helios 2 at 0.32,
0.69 and 0.90 AU, respectively. The color code, for each panel, is normalized to the maximum of the
distribution. Image reproduced by permission from Bruno et al. (2007), copyright EGU.
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The relative analysis has been performed on a co-rotating fast stream observed by Helios 2 at
three different heliocentric distances over consecutive solar rotations (see Figure 16 and related
text). Closer to the Sun, at 0.3 AU, the distribution is well centered around σr = 0 and σc = 1,
suggesting that Alfvénic fluctuations, outwardly propagating, dominate the scenario. By the time
the wind reaches 0.7 AU, the appearance of a tail towards negative values of σr and lower values
of σc indicates a partial loss of the Alfvénic character in favor of fluctuations characterized by a
stronger magnetic energy content. This clear tendency ends up with the appearance of a secondary
peak by the time the wind reaches 0.88 AU. This new family of fluctuations forms around σr = −1
and σc = 0. The values of σr and σc which characterize this new population are typical of MFDT
structures described by Tu and Marsch (1991). Together with the appearance of these fluctuations,
the main peak characterized by Alfvén like fluctuations looses much of its original character shown
at 0.3 AU. The yellow straight line that can be seen in the left panels of Figure 48 would be the
linear relation between σr and σc in case fluctuations were made solely by Alfvén waves outwardly
propagating and advected MFDTs (Tu and Marsch, 1991) and it would replace the canonical,
quadratic relation σ2

r + σ2
c ≤ 1 represented by the yellow circle drawn in each panel. However,

the yellow dashed line shown in the left panels of Figure 48 does not seem to fit satisfactorily the
observed distributions.

Quite different is the situation within slow wind, as shown in the right panels of Figure 48.
As a matter of fact, these histograms do not show any striking radial evolution like in the case
of fast wind. High values of σc are statistically much less relevant than in fast wind and a well
defined population characterized by σr = −1 and σc = 0, already present at 0.3 AU, becomes one
of the dominant peaks of the histogram as the wind expands. This last feature is really at odds
with what happens in fast wind and highlights the different nature of the fluctuations which, in
this case, are magnetically dominated. The same authors obtained very similar results for fast and
slow wind also from the same type of analysis performed on WIND and Ulysses data which, in
addition, confirmed the incompressive character of the Alfvénic fluctuations and highlighted a low
compressive character also for the populations characterized by σr ∼ −1 and σc ∼ 0.

About the origin of these structures, these authors suggest that they might be not only created
locally during the non linear evolution of the fluctuations but they might also have a solar origin.
The reason why they are not seen close to the Sun, within fast wind, might be due to the fact that
these fluctuations, mainly non-compressive, change the direction of the magnetic field similarly
to Alfvénic fluctuations but produce a much smaller effect since the associated δb is smaller than
the one corresponding to Alfvénic fluctuations. As the wind expands, the Alfvénic component
undergoes non-linear interactions which produce a transfer of energy to smaller and smaller scales
while, these structures, being advected, have a much longer lifetime. As the expansion goes on,
the relative weight of these fluctuations grows and they start to be detected.

3.2.2 On the nature of Alfvénic fluctuations

The Alfvénic nature of outward modes has been widely recognized through several frequency
decades up to periods of the order of several hours in the s/c rest frame (Bruno et al., 1985).
Conversely, the nature of those fluctuations identified by δz−, called “inward Alfvén modes”,
is still not completely clear. There are many clues which would suggest that these fluctuations,
especially in the hourly frequencies range, have a non-Alfvénic nature. Several studies on this topic
in the low frequency range have suggested that structures convected by the wind could well mimic
non-existent inward propagating modes (see the review by Tu and Marsch, 1995a). However, other
studies (Tu et al., 1989b) have also found, in the high frequency range and within fast streams,
a certain anisotropy in the components which resembles the same anisotropy found for outward
modes. So, these observations would suggest a close link between inward modes at high frequency
and outward modes, possibly the same nature.
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Figure 49: Power density spectra for e+ and e– during a high velocity stream observed at 0.3 AU. Best
fit lines for different frequency intervals and related spectral indices are also shown. Vertical lines fix the
limits of five different frequency intervals analyzed by Bruno et al. (1996). Image reproduced by permission,
copyright by AIP.

Figure 49 shows power density spectra for e+ and e– during a high velocity stream observed at
0.3 AU (similar spectra can be also found in the paper by Grappin et al., 1990 and Tu et al., 1989b).
The observed spectral indices, reported on the plot, are typically found within high velocity streams
encountered at short heliocentric distances. Bruno et al. (1996) analyzed the power relative to e+

and e– modes, within five frequency bands, ranging from roughly 12 h to 3 min, delimited by
the vertical solid lines equally spaced in log-scale. The integrated power associated with e+ and
e– within the selected frequency bands is shown in Figure 50. Passing from slow to fast wind
e+ grows much more within the highest frequency bands. Moreover, there is a good correlation
between the profiles of e– and e+ within the first two highest frequency bands, as already noticed
by Grappin et al. (1990) who looked at the correlation between daily averages of e– and e+ in
several frequency bands, even widely separated in frequency. The above results stimulated these
authors to conclude that it was reminiscent of the non-local coupling in k-space between opposite
modes found by Grappin et al. (1982) in homogeneous MHD. Expansion effects were also taken
into account by Velli et al. (1990) who modeled inward modes as that fraction of outward modes
back-scattered by the inhomogeneities of the medium due to expansion effects (Velli et al., 1989).
However, following this model we would often expect the two populations to be somehow related
to each other but, in situ observations do not favor this kind of forecast (Bavassano and Bruno,
1992).

An alternative generation mechanism was proposed by Tu et al. (1989b) based on the parametric
decay of e+ in high frequency range (Galeev and Oraevskii, 1963). This mechanism is such that
large amplitude Alfvén waves, unstable to perturbations of random field intensity and density
fluctuations, would decay into two secondary Alfvén modes propagating in opposite directions and
a sound-like wave propagating in the same direction of the pump wave. Most of the energy of
the mother wave would go into the sound-like fluctuation and the backward propagating Alfvén
mode. On the other hand, the production of e– modes by parametric instability is not particularly
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Figure 50: Left panel: wind speed profile is shown in the top panel. Power density associated with e+

(thick line) and e– (thin line), within the five frequency bands chosen, is shown in the lower panels. Right
panel: wind speed profile is shown in the top panel. Values of the angle θ± between the minimum variance
direction of δz+ (thick line) and δz− (thin line) and the direction of the ambient magnetic field are shown
in the lower panels, relatively to each frequency band. Image reproduced by permission from Bruno et al.

(1996), copyright by AIP.

fast if the plasma β ∼ 1, like in the case of solar wind (Goldstein, 1978; Derby, 1978), since this
condition slows down the growth rate of the instability. It is also true that numerical simulations
by Malara et al. (2000, 2001a, 2002), and Primavera et al. (2003) have shown that parametric
decay can still be thought as a possible mechanism of local production of turbulence within the
polar wind (see Section 4). However, the strong correlation between e+ and e– profiles found
only within the highest frequency bands would support this mechanism and would suggest that
e– modes within these frequency bands would have an Alfvénic nature. Another feature shown in
Figure 50 that favors these conclusions is the fact that both δz+ and δz− keep the direction of
their minimum variance axis aligned with the background magnetic field only within the fast wind,
and exclusively within the highest frequency bands. This would not contradict the view suggested
by Barnes (1981). Following this model, the majority of Alfvénic fluctuations propagating in one
direction have the tip of the magnetic field vector randomly wandering on the surface of half a
sphere of constant radius, and centered along the ambient field B∘. In this situation the minimum
variance would be oriented along B∘, although this would not represent the propagation direction
of each wave vector which could propagate even at large angles from this direction. This situation
can be seen in the right hand panel of Figure 98 of Section 10, which refers to a typical Alfvénic
interval within fast wind. Moreover, δz+ fluctuations show a persistent anisotropy throughout
the fast stream since the minimum variance axis remains quite aligned to the background field
direction. This situation downgrades only at the very low frequencies where θ+, the angle between
the minimum variance direction of δz+ and the direction of the ambient magnetic field, starts
wandering between 0∘ and 90∘. On the contrary, in slow wind, since Alfvénic modes have a smaller
amplitude, compressive structures due to the dynamic interaction between slow and fast wind
or, of solar origin, push the minimum variance direction to larger angles with respect to B∘, not
depending on the frequency range.

In a way, we can say that within the stream, both θ+ and θ−, the angle between the minimum
variance direction of δz− and the direction of the ambient magnetic field, show a similar behavior
as we look at lower and lower frequencies. The only difference is that θ− reaches higher values
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at higher frequencies than θ+. This was interpreted (Bruno et al., 1996) as due to the fact that
transverse fluctuations of δz− carry much less power than those of δz+ and, consequently, they
are more easily influenced by perturbations represented by the background, convected structure
of the wind (e.g., TD’s and PBS’s). As a consequence, at low frequency δz− fluctuations may
represent a signature of the compressive component of the turbulence while, at high frequency,
they might reflect the presence of inward propagating Alfvén modes. Thus, while for periods of
several hours δz+ fluctuations can still be considered as the product of Alfvén modes propagating
outward (Bruno et al., 1985), δz− fluctuations are rather due to the underlying convected structure
of the wind. In other words, high frequency turbulence can be looked at mainly as a mixture of
inward and outward Alfvénic fluctuations plus, presumably, sound-like perturbations (Marsch and
Tu, 1993a). On the other hand, low frequency turbulence would be made of outward Alfvénic
fluctuations and static convected structures representing the inhomogeneities of the background
medium.
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4 Observations of MHD Turbulence in the Polar Wind

In 1994 – 1995, Ulysses gave us the opportunity to look at the solar wind out-of-the-ecliptic, pro-
viding us with new exciting observations. For the first time heliospheric instruments were sampling
pure, fast solar wind, free of any dynamical interaction with slow wind. There is one figure that
within our scientific community has become as popular as “La Gioconda” by Leonardo da Vinci
within the world of art. This figure produced at LANL (McComas et al., 1998) is shown in the
upper left panel of Figure 51, which has been taken from a successive paper by (McComas et al.,
2003), and summarizes the most important aspects of the large scale structure of the polar solar
wind during the minimum of the solar activity phase, as indicated by the low value of the Wolf’s
number reported in the lower panel. It shows speed profile, proton number density profile and
magnetic field polarity vs. heliographic latitude during the first complete Ulysses’ polar orbit. Fast
wind fills up north and south hemispheres of the Sun almost completely, except a narrow latitudinal
belt around the equator, where the slow wind dominates. Flow velocity, which rapidly increases
from the equator towards higher latitudes, quickly reaches a plateau and the wind escapes the polar
regions with a rather uniform speed. Moreover, polar wind is characterized by a lower number
density and shows rather uniform magnetic polarity of opposite sign, depending on the hemisphere.
Thus, the main difference between ecliptic and polar wind is that this last one completely lacks
of dynamical interactions with slower plasma and freely flows into the interplanetary space. The
presence or not of this phenomenon, as we will see in the following pages, plays a major role in the
development of MHD turbulence during the wind expansion.

During solar maximum (look at the upper right panel of Figure 51) the situation dramatically
changes and the equatorial wind extends to higher latitudes, to the extent that there is no longer
difference between polar and equatorial wind.

Figure 51: Large scale solar wind profile as a function of latitude during minimum (left panel) and
maximum (right panel) solar cycle phases. The sunspot number is also shown at the bottom panels.
Image reproduced by permission from McComas et al. (2003), copyright by AGU.

4.1 Evolving turbulence in the polar wind

Ulysses observations gave us the possibility to test whether or not we could forecast the turbulent
evolution in the polar regions on the basis of what we had learned in the ecliptic. We knew that,
in the ecliptic, velocity shear, parametric decay, and interaction of Alfvénic modes with convected
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structures (see Sections 3.2.1, 5.1) all play some role in the turbulent evolution and, before Ulysses
reached the polar regions of the Sun, three possibilities were given:

i. Alfvénic turbulence would have not relaxed towards standard turbulence because the large
scale velocity shears would have been much less relevant (Grappin et al., 1991);

ii. since the magnetic field would be smaller far from the ecliptic, at large heliocentric distances,
even small shears would lead to an isotropization of the fluctuations and produce a turbulent
cascade faster than the one observed at low latitudes, and the subsequent evolution would
take less time (Roberts et al., 1990);

iii. there would still be evolution due to interaction with convected plasma and field structures
but it would be slower than in the ecliptic since the power associated with Alfvénic fluc-
tuations would largely dominate over the inhomogeneities of the medium. Thus, Alfvénic
correlations should last longer than in the ecliptic plane, with a consequent slower evolution
of the normalized cross-helicity (Bruno, 1992).

A fourth possibility was added by Tu and Marsch (1995a), based on their model (Tu and
Marsch, 1993). Following this model they assumed that polar fluctuations were composed by
outward Alfvénic fluctuations and MFDT. The spectra of these components would decrease with
radial distance because of a WKB evolution and convective effects of the diverging flow. As the
distance increases, the field becomes more transverse with respect to the radial direction, the s/c
would sample more convective structures and, as a consequence, would observe a decrease of both
σc and rA.

Today we know that polar Alfvénic turbulence evolves in the same way it does in the ecliptic
plane, but much more slowly. Moreover, the absence of strong velocity shears and enhanced com-
pressive phenomena suggests that also some other mechanism based on parametric decay instability
might play some role in the local production of turbulence (Bavassano et al., 2000a; Malara et al.,
2001a, 2002; Primavera et al., 2003).

The first results of Ulysses magnetic field and plasma measurements in the polar regions, i.e.,
above ±30∘ latitude (left panel of Figure 51), revealed the presence of Alfvénic correlations in
a frequency range from less than 1 to more than 10 h (Balogh et al., 1995; Smith et al., 1995;
Goldstein et al., 1995a) in very good agreement with ecliptic observations (Bruno et al., 1985).
However, it is worth noticing that Helios observations referred to very short heliocentric distances
around 0.3 AU while the above Ulysses observations were taken up to 4 AU. As a matter of
fact, these long period Alfvén waves observed in the ecliptic, in the inner solar wind, become less
prominent as the wind expands due to stream-stream dynamical interaction effects (Bruno et al.,
1985) and strong velocity shears (Roberts et al., 1987a). At high latitude, the relative absence of
enhanced dynamical interaction between flows at different speed and, as a consequence, the absence
of strong velocity shears favors the survival of these extremely low frequency Alfvénic fluctuations
for larger heliocentric excursions.

Figure 52 shows the hourly correlation coefficient for the transverse components of magnetic
and velocity fields as Ulysses climbs to the south pole and during the fast latitude scanning that
brought the s/c from the south to the north pole of the Sun in just half a year. While the
equatorial phase of Ulysses journey is characterized by low values of the correlation coefficients,
a gradual increase can be noticed starting at half of year 1993 when the s/c starts to increase
its heliographic latitude from the ecliptic plane up to 80.2∘ south, at the end of 1994. Not only
the degree of δb − δv correlation resembled Helios observations but also the spectra of these
fluctuations showed characteristics which were very similar to those observed in the ecliptic within
fast wind like the spectral index of the components, that was found to be flat at low frequency and
more Kolmogorov-like at higher frequencies (Smith et al., 1995). Balogh et al. (1995) and Forsyth
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Figure 52: Magnetic field and velocity hourly correlation vs. heliographic latitude. Image reproduced by
permission from Smith et al. (1995), copyright by AGU.

et al. (1996) discussed magnetic fluctuations in terms of latitudinal and radial dependence of their
variances. Similarly to what had been found within fast wind in the ecliptic (Mariani et al., 1978;
Bavassano et al., 1982b; Tu et al., 1989b; Roberts et al., 1992), variance of magnetic magnitude
was much less than the variance associated with the components. Moreover, transverse variances
had consistently higher values than the one along the radial direction and were also much more
sensitive to latitude excursion, as shown in Figure 53. In addition, the level of the normalized
hourly variances of the transverse components observed during the ecliptic phase, right after the
compressive region ahead of co-rotating interacting regions, was maintained at the same level once
the s/c entered the pure polar wind. Again, these observations showed that the fast wind observed
in the ecliptic was coming from the equatorward extension of polar coronal holes.

Horbury et al. (1995c) and Forsyth et al. (1996) showed that the interplanetary magnetic field
fluctuations observed by Ulysses continuously evolve within the fast polar wind, at least out to
4 AU. Since this evolution was observed within the polar wind, rather free of co-rotating and
transient events like those characterizing low latitudes, they concluded that some other mechanism
was at work and this evolution was an intrinsic property of turbulence.

Results in Figure 54 show the evolution of the spectral slope computed across three different
time scale intervals. The smallest time scales show a clear evolution that keeps on going past the
highest latitude on day 256, strongly suggesting that this evolution is radial rather than latitudinal
effect. Horbury et al. (1996a) worked on determining the rate of turbulent evolution for the polar
wind.

They calculated the spectral index at different frequencies from the scaling of the second order
structure function (see Section 7 and papers by Burlaga, 1992a,b; Marsch and Tu, 1993a; Ruzmaikin
et al., 1995; and Horbury et al., 1996b) since the spectral scaling α is related to the scaling of the
structure function s by the following relation: α = s+1 (Monin and Yaglom, 1975). Horbury et al.

(1996a), studying variations of the spectral index with frequency for polar turbulence, found that
there are two frequency ranges where the spectral index is rather steady. The first range is around
10−2 Hz with a spectral index around −5/3, while the second range is at very low frequencies
with a spectral index around −1. This last range is the one where Goldstein et al. (1995a) found
the best example of Alfvénic fluctuations. Similarly, ecliptic studies found that the best Alfvénic
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Figure 53: Normalized magnetic field components and magnitude hourly variances plotted vs. helio-
graphic latitude during a complete latitude survey by Ulysses. Image reproduced by permission from
Forsyth et al. (1996), copyright by AGU.

Figure 54: Spectral indexes of magnetic fluctuations within three different time scale intervals as indicated
in the plot. The bottom panel shows heliographic latitude and heliocentric distance of Ulysses. Image
reproduced by permission from Horbury et al. (1995c), copyright by AGU.
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correlations belonged to the hourly, low frequency regime (Bruno et al., 1985).
Horbury et al. (1995a) presented an analysis of the high latitude magnetic field using a fractal

method. Within the solar wind context, this method has been described for the first time by
Burlaga and Klein (1986) and Ruzmaikin et al. (1993), and is based on the estimate of the scaling
of the length function L(τ) with the scale τ . This function is closely related to the first order
structure function and, if statistical self-similar, has scaling properties L(τ) ∼ τ `, where ` is the
scaling exponent. It follows that L(τ) is an estimate of the amplitude of the fluctuations at scale
τ , and the relation that binds L(τ) to the variance of the fluctuations (δB)2 ∼ τ s(2) is:

L(τ) ∼ N(τ)[(δB)2]1/2 ∝ τ s(2)/2−1,

where N(τ) represents the number of points at scale τ and scales like τ−1. Since the power density
spectrum W (f) is related to (δB)2 through the relation fW (f) ∼ (δB)2, if W (f) ∼ f−α, then
s(2) = α− 1, and, as a consequence α = 2`+ 3 (Marsch and Tu, 1996). Thus, it results very easy
to estimate the spectral index at a given scale or frequency, without using spectral methods but
simply computing the length function.

Figure 55: Spectral exponents for the Bz component estimated from the length function computed from
Ulysses magnetic field data, when the s/c was at about 4 AU and ∼ −50∘ latitude. Different symbols refer
to different time intervals as reported in the graph. Image reproduced by permission from (from Horbury
et al., 1995a).

Results in Figure 55 show the existence of two different regimes, one with a spectral index
around the Kolmogorov scaling extending from 101.5 to 103 s and, separated by a clear break-
point at scales of 103 s, a flatter and flatter spectral exponent for larger and larger scales. These
observations were quite similar to what had been observed by Helios 2 in the ecliptic, although
the turbulence state recorded by Ulysses resulted to be more evolved than the situation seen at
0.3 AU and, perhaps, more similar to the turbulence state observed around 1 AU, as shown by
Marsch and Tu (1996). These authors compared the spectral exponents, estimated using the
same method of Horbury et al. (1995a), from Helios 2 magnetic field observations at two different
heliocentric distances: 0.3 and 1.0 AU. The comparison with Ulysses results is shown in Figure 56
where it appears rather clear that the slope of the Bz spectrum experiences a remarkable evolution
during the wind expansion between 0.3 and 4 AU. Obviously, this comparison is meaningful in the
reasonable hypothesis that fluctuations observed by Helios 2 at 0.3 AU are representative of out-
of-the-ecliptic solar wind (Marsch and Tu, 1996). This figure also shows that the degree of spectral
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evolution experienced by the fluctuations when observed at 4 AU at high latitude, is comparable
to Helios observations at 1 AU in the ecliptic. Thus, the spectral evolution at high latitude is
present although quite slower with respect to the ecliptic.

Figure 56: Spectral exponents for the Bz component estimated from the length function computed from
Helios and Ulysses magnetic field data. Ulysses length function (dotted line) is the same shown in the
paper by Horbury et al. (1995a) when the s/c was at about 4 AU and ∼ −50∘ latitude. Image reproduced
by permission from Marsch and Tu (1996), copyright by AGU.

Forsyth et al. (1996) studied the radial dependence of the normalized hourly variances of the
components BR, BT and BN and the magnitude |B| of the magnetic field (see Appendix D to
learn about the RTN reference system). The variance along the radial direction was computed
as σR

2 = ⟨BR
2 > − < BR⟩2 and successively normalized to |B|2 to remove the field strength

dependence. Moreover, variances along the other two directions T and N were similarly defined.
Fitting the radial dependence with a power law of the form r−α, but limiting the fit to the radial
excursion between 1.5 and 3 AU, these authors obtained α = 3.39 ± 0.07 for σ2

r , α = 3.45 ± 0.09
for σ2

T , α = 3.37± 0.09 for σ2
N , and α = 2.48± 0.14 for σ2

B . Thus, for hourly variances, the power
associated with the components showed a radial dependence stronger than the one predicted by the
WKB approximation, which would provide α = 3. These authors also showed that including data
between 3 and 4 AU, corresponding to intervals characterized by compressional features mainly
due to high latitude CMEs, they would obtain less steep radial gradients, much closer to a WKB
type. These results suggested that compressive effects can feed energy at the smallest scales,
counteracting dissipative phenomena and mimicking a WKB-like behavior of the fluctuations.
However, they concluded that for lower frequencies, below the frequency break point, fluctuations
do follow the WKB radial evolution.

Horbury and Balogh (2001) presented a detailed comparison between Ulysses and Helios obser-
vations about the evolution of magnetic field fluctuations in high-speed solar wind. Ulysses results,
between 1.4 and 4.1 AU, were presented as wave number dependence of radial and latitudinal power
scaling. The first results of this analysis showed (Figure 3 of their work) a general decrease of the
power levels with solar distance, in both magnetic field components and magnitude fluctuations.
In addition, the power associated with the radial component was always less than that of the
transverse components, as already found by Forsyth et al. (1996). However, Horbury and Balogh
(2001), supposing a possible latitude dependence, performed a multiple linear regression of the
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-3.45±0.09

-3.37±0.09

-2.48±0.14

Figure 57: Hourly variances of the components and the magnitude of the magnetic field vs. radial distance
from the Sun. The meaning of the different symbols is also indicated in the upper right corner. Image
reproduced by permission from Forsyth et al. (1996), copyright by AGU.

type:

log10 w = Ap +Bp log10 r + Cp sin θ, (60)

where w is the power density integrated in a given spectral band, r is the radial distance and θ is
the heliolatitude (0∘ at the equator). Moreover, the same procedure was applied to spectral index
estimates α of the form α = Aα + Bα log10 r + Cα sin θ. Results obtained for Bp, Cp, Bα, Cα are
shown in Figure 58.

On the basis of variations of spectral index and radial and latitudinal dependencies, these
authors were able to identify four wave number ranges as indicated by the circled numbers in
the top panel of Figure 58. Range 1 was characterized by a radial power decrease weaker than
WKB (−3), positive latitudinal trend for components (more power at higher latitude) and negative
for magnitude (less compressive events at higher latitudes). Range 2 showed a more rapid radial
decrease of power for both magnitude and components and a negative latitudinal power trend,
which implies less power at higher latitudes. Moreover, the spectral index of the components
(bottom panel) is around 0.5 and tends to 0 at larger scales. Within range 3 the power of the
components follows a WKB radial trend and the spectral index is around −1 for both magnitude
and components. This hourly range has been identified as the most Alfvénic at low latitudes
and its radial evolution has been recognized to be consistent with WKB radial index (Roberts,
1989; Marsch and Tu, 1990a). Even within this range, and also within the next one, the latitude
power trend is slightly negative for both components and magnitude. Finally, range 4 is clearly
indicative of turbulent cascade with a radial power trend of the components much faster than WKB
expectation and becoming even stronger at higher wave numbers. Moreover, the radial spectral
index reveals that steepening is at work only for the previous wave number ranges as expected since
the breakpoint moves to smaller wave number during spectrum evolution. The spectral index of the
components tends to −5/3 with increasing wave number while that of the magnitude is constantly
flatter. The same authors gave an estimate of the radial scale-shift of the breakpoint during the
wind expansion around k ∝ r1.1, in agreement with earlier estimates (Horbury et al., 1996a).

Although most of these results support previous conclusions obtained for the ecliptic turbulence,
the negative value of the latitudinal power trend that starts within the second range, is unexpected.
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Figure 58: (a) Scale dependence of radial power, (b) latitudinal power, (c) radial spectral index, (d)
latitudinal spectral index, and (e) spectral index computed at 2.5 AU. Solid circles refer to the trace of the
spectral matrix of the components, open squares refer to field magnitude. Correspondence between wave
number scale and time scale is based on a wind velocity of 750 km s–1. Image reproduced by permission
from Horbury and Balogh (2001), copyright by AGU.

As a matter of fact, moving towards more Alfénic regions like the polar regions, one would perhaps
expect a positive latitudinal trend similarly to what happens in the ecliptic when moving from
slow to fast wind.

Horbury and Balogh (2001) and Horbury and Tsurutani (2001) estimated that the power ob-
served at 80∘ is about 30% less than that observed at 30∘. These authors proposed a possible
effect due to the over-expansion of the polar coronal hole at higher latitudes. In addition, within
the fourth range, field magnitude fluctuations radially decrease less rapidly than the fluctuations
of the components, but do not show significant latitudinal variations. Finally, the smaller spectral
index reveals that the high frequency range of the field magnitude spectrum shows a flattening.

The same authors investigated the anisotropy of these fluctuations as a function of radial and
latitudinal excursion. Their results, reported in Figure 59, show that, at 2.5 AU, the lowest
compressibility is recorded within the hourly frequency band (third and part of the fourth band),
which has been recognized as the most Alfvénic frequency range. The anisotropy of the components
confirms that the power associated with the transverse components is larger than that associated
with the radial one, and this difference slightly tends to decrease at higher wave numbers.
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Figure 59: (a) Scale dependence of power anisotropy at 2.5 AU plotted as the log10 of the ratio of BR

(solid circles), BT (triangles), BN (diamonds), and |B| (squares) to the trace of the spectral matrix; (b)
the radial, and (c) latitudinal behavior of the same values, respectively. Image reproduced by permission
from Horbury and Balogh (2001), copyright by AGU.

As already shown by Horbury et al. (1995b), around the 5 min range, magnetic field fluctua-
tions are transverse to the mean field direction the majority of the time. The minimum variance
direction lies mainly within an angle of about 26∘ from the average background field direction and
fluctuations are highly anisotropic, such that the ratio between perpendicular to parallel power
is about 30. Since during the observations reported in Horbury and Balogh (2001) and Horbury
and Tsurutani (2001) the mean field resulted to be radially oriented most of the time, the radial
minimum variance direction at short time scales is an effect induced by larger scales behavior.

Anyhow, radial and latitudinal anisotropy trends tend to disappear for higher frequencies. In
the mean time, interesting enough, there is a strong radial increase of magnetic field compression
(top panel of Figure 59), defined as the ratio between the power density associated with mag-
netic field intensity fluctuations and that associated with the fluctuations of the three components
(Bavassano et al., 1982a; Bruno and Bavassano, 1991). The attempt to attribute this phenomenon
to parametric decay of large amplitude Alfvén waves or dynamical interactions between adjacent
flux tubes or interstellar pick-up ions was not satisfactory in all cases.

Comparing high latitude with low latitude results for high speed streams, Horbury and Balogh
(2001) found remarkable good agreement between observations by Ulysses at 2.5 AU and by Helios
at 0.7 AU. In particular, Figure 60 shows Ulysses and Helios 1 spectra projected to 1 AU for
comparison.

It is interesting to notice that the spectral slope of the spectrum of the components for Helios 1
is slightly higher than that of Ulysses, suggesting a slower radial evolution of turbulence in the
polar wind (Bruno, 1992; Bruno and Bavassano, 1992). However, the faster spectral evolution at
low latitudes does not lead to strong differences between the spectra.

Living Reviews in Solar Physics

http://www.livingreviews.org/lrsp-2013-2

http://www.livingreviews.org/lrsp-2013-2


The Solar Wind as a Turbulence Laboratory 83

0

1

2

3

4

5

6

7

-8 -7 -6 -5 -4 -3
log   wavenumber (/km)

10

lo
g

  
 p

o
w

e
r 

(n
T

  
/H

z
)

1
0

5 min1 hr1 day

Figure 60: Power spectra of magnetic field components (solid circles) and magnitude (open squares) from
Ulysses (solid line) and Helios 1 (dashed line). Spectra have been extrapolated to 1 AU using radial trends
in power scalings estimated from Ulysses between 1.4 and 4.1 AU and Helios between 0.3 and 1 AU. Image
reproduced by permission from Horbury and Balogh (2001), copyright by AGU.

4.2 Polar turbulence studied via Elsässer variables

Goldstein et al. (1995a) for the first time showed a spectral analysis of Ulysses observations based
on Elsässer variables during two different time intervals, at 4 AU and close to −40∘, and at
2 AU and around the maximum southern pass, as shown in Figure 61. Comparing the two Ulysses
observations it clearly appears that the spectrum closer to the Sun is less evolved than the spectrum
measured farther out, as will be confirmed by the next Figure 62, where these authors reported
the normalized cross-helicity and the Alfvén ratio for the two intervals. Moreover, following these
authors, the comparison between Helios spectra at 0.3 AU and Ulysses at 2 and 4 AU suggests
that the radial scaling of e+ at the low frequency end of the spectrum follows the WKB prediction
of 1/r decrease (Heinemann and Olbert, 1980). However, the selected time interval for Helios s/c
was characterized by rather slow wind taken during the rising phase the solar cycle, two conditions
which greatly differ from those referring to Ulysses data. As a consequence, comparing Helios
results with Ulysses results obtained within the fast polar wind might be misleading. It would be
better to choose Helios observations within high speed co-rotating streams which resemble much
better solar wind conditions at high latitude.

Anyhow, results relative to the normalized cross-helicity σc (see Figure 62) clearly show high
values of σc, around 0.8, which normally we observe in the ecliptic at much shorter heliocen-
tric distances (Tu and Marsch, 1995a). A possible radial effect would be responsible for the
depleted level of σc at 4 AU. Moreover, a strong anisotropy can also be seen for frequencies be-
tween 10−6 – 10−5 Hz with the transverse σc much larger than the radial one. This anisotropy is
somewhat lost during the expansion to 4 AU.

The Alfvén ratio (bottom panels of Figure 62) has values around 0.5 for frequencies higher
than roughly 10−5 Hz, with no much evolution between 2 and 4 AU. A result similar to what was
originally obtained in the ecliptic at about 1 AU (Martin et al., 1973; Belcher and Solodyna, 1975;
Solodyna et al., 1977; Neugebauer et al., 1984; Bruno et al., 1985; Marsch and Tu, 1990a; Roberts
et al., 1990). The low frequency extension of rA⊥ together with σc⊥, where the subscript⊥ indicates
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Figure 61: Trace of e+ (solid line) and e– (dash-dotted line) power spectra. The central and right panels
refer to Ulysses observations at 2 and 4 AU, respectively, when Ulysses was embedded in the fast southern
polar wind during 1993 – 1994. The leftmost panel refers to Helios observations during 1978 at 0.3 AU.
Image reproduced by permission from Goldstein et al. (1995a), copyright by AGU.

Figure 62: Normalized cross-helicity and Alfvén ratio at 2 and 4 AU, as observed by Ulysses at −80∘

and −40∘ latitude, respectively. Image reproduced by permission from Goldstein et al. (1995a), copyright
by AGU.
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that these quantities are calculated from the transverse components only, was interpreted by the
authors as due to the sampling of Alfvénic features in longitude rather than to a real presence of
Alfvénic fluctuations. However, by the time Ulysses reaches to 4 AU, σc⊥ has strongly decreased as
expected while rA⊥ gets closer to 1, making the situation less clear. Anyhow, these results suggest
that the situation at 2 AU and, even more at 4 AU, can be considered as an evolution of what
Helios 2 recorded in the ecliptic at shorter heliocentric distance. Ulysses observations at 2 AU
resemble more the turbulence conditions observed by Helios at 0.9 AU rather than at 0.3 AU.

Bavassano et al. (2000a) studied in detail the evolution of the power e+ and e– associated with
outward δz+ and inward δz− Alfvénic fluctuations, respectively. The study referred to the polar
regions, during the wind expansion between 1.4 and 4.3 AU. These authors analyzed 1 h variances
of δz± and found two different regimes, as shown in Figure 63. Inside 2.5 AU outward modes e+

decrease faster than inward modes e–, in agreement with previous ecliptic observations performed
within the trailing edge of co-rotating fast streams (Bruno and Bavassano, 1991; Tu and Marsch,
1990b; Grappin et al., 1989). Beyond this distance, the radial gradient of e– becomes steeper
and steeper while that of e+ remains approximately unchanged. This change in e– is rather fast
and both species keep declining with the same rate beyond 2.5 AU. The radial dependence of e+

between r−1.39 and r−1.48, reported by Bavassano et al. (2000a), indicate a radial decay faster
than r−1 predicted by WKB approximation. This is in agreement with the analysis performed by
Forsyth et al. (1996) using magnetic field observations only.
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Figure 63: Left panel: values of hourly variance of δz± (i.e., e±) vs. heliocentric distance, as observed by
Ulysses. Helios observations are shown for comparison and appear to be in good agreement. Right panel:

Elsässer ratio (top) and Alfvén ratio (bottom) are plotted vs. radial distance while Ulysses is embedded
in the polar wind. Image reproduced by permission from Bavassano et al. (2000a), copyright by AGU.

This different radial behavior is readily seen in the radial plot of the Elsässer ratio rE shown
in the top panel of the right column of Figure 63. Before 2.5 AU this ratio continuously grows to
about 0.5 near 2.5 AU. Beyond this region, since the radial gradient of the inward and outward
components is approximately the same, rE stabilizes around 0.5.

On the other hand, also the Alfvén ratio rA shows a clear radial dependence that stops at
about the same limit distance of 2.5 AU. In this case, rA constantly decreases from ∼ 0.4 at
1.4 AU to ∼ 0.25 at 2.5 AU, slightly fluctuating around this value for larger distances. A different
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interpretation of these results was offered by Grappin (2002). For this author, since Ulysses has
not explored the whole three-dimensional heliosphere, solar wind parameters experience different
dependencies on latitude and distance which would result in the same radial distance variation
along Ulysses trajectory as claimed in Bavassano’s works. Another interesting feature observed in
polar turbulence is unraveled by Figure 64 from Bavassano et al. (1998, 2000b). The plot shows
2D histograms of normalized cross-helicity and normalized residual energy (see Appendix B.3.1 for
definition) for different heliospheric regions (ecliptic wind, mid-latitude wind with strong velocity
gradients, polar wind). A predominance of outward fluctuations (positive values of σc) and of
magnetic fluctuations (negative values of σr) seems to be a general feature. It results that the
most Alfvénic region is the one at high latitude and at shorter heliocentric distances. However, in
all the panels there is always a relative peak at σc ≃ 0 and σr ≃ −1, which might well be due to
magnetic structures like the MFDT found by Tu and Marsch (1991) in the ecliptic.

Figure 64: 2D histograms of normalized cross-helicity σc (here indicated by σC) and normalized residual
energy σr (here indicated by σR) for different heliospheric regions (ecliptic wind, mid-latitude wind with
strong velocity gradients, polar wind). Image reproduced by permission from Bavassano et al. (1998),
copyright by AGU.

In a successive paper, Bavassano et al. (2002a) tested whether or not the radial dependence
observed in e± was to be completely ascribed to the radial expansion of the wind or possible
latitudinal dependencies also contributed to the turbulence evolution in the polar wind.

As already discussed in the previous section, Horbury and Balogh (2001), using Ulysses data
from the northern polar pass, evaluated the dependence of magnetic field power levels on solar
distance and latitude using a multiple regression analysis based on Equation (60). In the Alfvénic
range, the latitudinal coefficient “C” for power in field components was appreciably different from
0 (around 0.3). However, this analysis was limited to magnetic field fluctuations alone and cannot
be transferred sic et simpliciter to Alfvénic turbulence. In their analysis, Bavassano et al. (2002b)
used the first southern and northern polar passes and removed from their dataset all intervals with
large gradients in plasma velocity, and/or plasma density, and/or magnetic field magnitude, as
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already done in Bavassano et al. (2000a). As a matter of fact, the use of Elsässer variables (see
Appendix B.3.1) instead of magnetic field, and of selected data samples, leads to very small values
of the latitudinal coefficient as shown in Figure 65, where different contributions are plotted with
different colors and where the top panel refers to the same dataset used by Horbury and Balogh
(2001), while the bottom panel refers to a dataset omni-comprehensive of south and north passages
free of strong compressive events (Bavassano et al., 2000a). Moreover, the latitudinal effect appears
to be very weak also for the data sample used by Horbury and Balogh (2001), although this is the
sample with the largest value of the “C” coefficient.

log e+ = A + B log r + C sin θθθθ

Figure 65: Results from the multiple regression analysis showing radial and latitudinal dependence of
the power e+ associated with outward modes (see Appendix B.3.1). The top panel refers to the same
dataset used by Horbury and Balogh (2001). The bottom panel refers to a dataset omni-comprehensive of
south and north passages free of strong compressive events (Bavassano et al., 2000a). Values of e+ have
been normalized to the value e+

∘ assumed by this parameter at 1.4 AU, closest approach to the Sun. The
black line is the total regression, the blue line is the latitudinal contribution and the red line is the radial
contribution. Image reproduced by permission from Bavassano et al. (2002a), copyright by AGU.

A further argument in favor of radial vs. latitudinal dependence is represented by the compar-
ison of the radial gradient of e+ in different regions, in the ecliptic and in the polar wind. These
results, shown in Figure 66, provide the radial slopes for e+ (red squares) and e– (blue diamonds)
in different regions. The first three columns (labeled EQ) summarize ecliptic results obtained with
different values of an upper limit (TBN) for relative fluctuations of density and magnetic intensity.
The last two columns (labeled POL) refer to the results for polar turbulence (north and south
passes) outside and inside 2.6 AU, respectively. A general agreement exists between slopes in
ecliptic and in polar wind with no significant role left for latitude, the only exception being e– in
the region inside 2.6 AU. The behavior of the inward component cannot be explained by a simple
power law over the range of distances explored by Ulysses. Moreover, a possible latitudinal effect
has been clearly rejected by the results from a multiple regression analysis performed by Bavassano
et al. (2002a) similar to that reported above for e+.
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Figure 66: e+ (red) and e– (blue) radial gradient for different latitudinal regions of the solar wind. The
first three columns, labeled EQ, refer to ecliptic observations obtained with different values of the upper
limit of TBN defined as the relative fluctuations of density and magnetic intensity. The last two columns,
labeled POL, refer to observations of polar turbulence outside and inside 2.6 AU, respectively. Image
reproduced by permission from Bavassano et al. (2001), copyright by AGU.

5 Numerical Simulations

Numerical simulations currently represent one of the main source of information about non-linear
evolution of fluid flows. The actual super-computers are now powerful enough to simulate equations
(NS or MHD) that describe turbulent flows with Reynolds numbers of the order of 104 in two-
dimensional configurations, or 103 in three-dimensional one. Of course, we are far from achieving
realistic values, but now we are able to investigate turbulence with an inertial range extended
for more than one decade. Rather the main source of difficulties to get results from numerical
simulations is the fact that they are made under some obvious constraints (say boundary conditions,
equations to be simulated, etc.), mainly dictated by the limited physical description that we are
able to use when numerical simulations are made, compared with the extreme richness of the
phenomena involved: numerical simulations, even in standard conditions, are used tout court as
models for the solar wind behavior. Perhaps the only exception, to our knowledge, is the attempt
to describe the effects of the solar wind expansion on turbulence evolution like, for example, in
the papers by Velli et al. (1989, 1990); Hellinger and Trávńıček (2008). Even with this far too
pessimistic point of view, used here solely as a few words of caution, simulations in some cases
were able to reproduce some phenomena observed in the solar wind.

Nevertheless, numerical simulations have been playing a key role, and will continue to do so in
our seeking an understanding of turbulent flows. Numerical simulations allows us to get information
that cannot be obtained in laboratory. For example, high resolution numerical simulations provide
information at every point on a grid and, for some times, about basic vector quantities and their
derivatives. The number of degree of freedom required to resolve the smaller scales is proportional
to a power of the Reynolds number, say to Re9/4, although the dynamically relevant number of
modes may be much less. Then one of the main challenge remaining is how to handle and analyze
the huge data files produced by large simulations (of the order of Terabytes). Actually a lot of
papers appeared in literature on computer simulations related to MHD turbulence. The interested
reader can look at the book by Biskamp (1993) and the reviews by Pouquet (1993, 1996).
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5.1 Local production of Alfvénic turbulence in the ecliptic

The discovery of the strong correlation between velocity and magnetic field fluctuations has rep-
resented the motivation for some MHD numerical simulations, aimed to confirm the conjecture
by Dobrowolny et al. (1980b). The high level of correlation seems to be due to a kind of self-
organization (dynamical alignment) of MHD turbulence, generated by the natural evolution of
MHD towards the strongest attractive fixed point of equations (Ting et al., 1986; Carbone and
Veltri, 1987, 1992). Numerical simulations (Carbone and Veltri, 1992; Ting et al., 1986) confirmed
this conjecture, say MHD turbulence spontaneously can tends towards a state were correlation
increases, that is, the quantity σc = 2Hc/E, where Hc is the cross-helicity and E the total energy
of the flow (see Appendix B.1), tends to be maximal.

The picture of the evolution of incompressible MHD turbulence, which comes out is rather nice
but solar wind turbulence displays a more complicated behavior. In particular, as we have reported
above, observations seems to point out that solar wind evolves in the opposite way. The correlation
is high near the Sun, at larger radial distances, from 1 to 10 AU the correlation is progressively
lower, while the level in fluctuations of mass density and magnetic field intensity increases. What
is more difficult to understand is why correlation is progressively destroyed in the solar wind,
while the natural evolution of MHD is towards a state of maximal normalized cross-helicity. A
possible solution can be found in the fact that solar wind is neither incompressible nor statistically
homogeneous, and some efforts to tentatively take into account more sophisticated effects have
been made.

A mechanism, responsible for the radial evolution of turbulence, was suggested by Roberts and
Goldstein (1988); Goldstein et al. (1989); and Roberts et al. (1991, 1992) and was based on velocity
shear generation. The suggestion to adopt such a mechanism came from a detailed analysis made by
Roberts et al. (1987a,b) of Helios and Voyager interplanetary observations of the radial evolution of
the normalized cross-helicity σc at different time scales. Moreover, Voyager’s observations showed
that plasma regions, which had not experienced dynamical interactions with neighboring plasma,
kept the Alfvénic character of the fluctuations at distances as far as 8 AU (Roberts et al., 1987b). In
particular, the vicinity of Helios trajectory to the interplanetary current sheet, characterized by low
velocity flow, suggested Roberts et al. (1991) to include in his simulations a narrow low speed flow
surrounded by two high speed flows. The idea was to mimic the slow, equatorial solar wind between
north and south fast polar wind. Magnetic field profile and velocity shear were reconstructed using
the six lowest Z± Fourier modes as shown in Figure 67. An initial population of purely outward
propagating Alfvénic fluctuations (z+) was added at large k and was characterized by a spectral
slope of k−1. No inward modes were present in the same range. Results of Figure 67 show that the
time evolution of z+ spectrum is quite rapid at the beginning, towards a steeper spectrum, and
slows down successively. At the same time, z− modes are created by the generation mechanism at
higher and higher k but, along a Kolmogorov-type slope k−5/3.

These results, although obtained from simulations performed using 2D incompressible spectral
and pseudo-spectral codes, with fairly small Reynolds number of Re ≃ 200, were similar to the
spectral evolution observed in the solar wind (Marsch and Tu, 1990a). Moreover, spatial averages
across the simulation box revealed a strong cross-helicity depletion right across the slow wind,
representing the heliospheric current sheet. However, magnetic field inversions and even relatively
small velocity shears would largely affect an initially high Alfvénic flow (Roberts et al., 1992).
However, Bavassano and Bruno (1992) studied an interaction region, repeatedly observed between
0.3 and 0.9 AU, characterized by a large velocity shear and previously thought to be a good
candidate for shear generation (Bavassano and Bruno, 1989). They concluded that, even in the
hypothesis of a very fast growth of the instability, inward modes would not have had enough time
to fill up the whole region as observed by Helios 2.

The above simulations by Roberts et al. (1991) were successively implemented with a com-

Living Reviews in Solar Physics

http://www.livingreviews.org/lrsp-2013-2

http://www.livingreviews.org/lrsp-2013-2


90 Roberto Bruno and Vincenzo Carbone

Figure 67: Time evolution of the power density spectra of z+ and z− showing the turbulent evolution of
the spectra due to velocity shear generation (from Roberts et al., 1991).

pressive pseudo-spectral code (Ghosh and Matthaeus, 1990) which provided evidence that, during
this turbulence evolution, clear correlations between magnetic field magnitude and density fluctu-
ations, and between z− and density fluctuations should arise. However, such a clear correlation,
by-product of the non-linear evolution, was not found in solar wind data (Marsch and Tu, 1993b;
Bruno et al., 1996). Moreover, their results did not show the flattening of e– spectrum at higher
frequency, as observed by Helios (Tu et al., 1989b). As a consequence, velocity shear alone cannot
explain the whole phenomenon, other mechanisms must also play a relevant role in the evolution
of interplanetary turbulence.

Compressible numerical simulations have been performed by Veltri et al. (1992) and Malara
et al. (1996, 2000) which invoked the interactions between small scale waves and large scale mag-
netic field gradients and the parametric instability, as characteristic effects to reduce correlations.
In a compressible, statistically inhomogeneous medium such as the heliosphere, there are many
processes which tend to destroy the natural evolution toward a maximal correlation, typical of stan-
dard MHD. In such a medium an Alfvén wave is subject to parametric decay instability (Viñas
and Goldstein, 1991; Del Zanna et al., 2001; Del Zanna, 2001), which means that the mother wave
decays in two modes: i) a compressive mode that dissipates energy because of the steepening effect,
and ii) a backscattered Alfvénic mode with lower amplitude and frequency. Malara et al. (1996)
showed that in a compressible medium, the correlation between the velocity and the magnetic field
fluctuations is reduced because of the generation of the backward propagating Alfvénic fluctua-
tions, and of a compressive component of turbulence, characterized by density fluctuations δρ ̸= 0
and magnetic intensity fluctuations δ|B| ≠ 0.

From a technical point of view it is worthwhile to remark that, when a large scale field which
varies on a narrow region is introduced (typically a tanh-like field), periodic boundaries conditions
should be used with some care. Roberts et al. (1991, 1992) used a double shear layer, while Malara
et al. (1992) introduced an interesting numerical technique based on both the glue between two
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simulation boxes and a Chebyshev expansion, to maintain a single shear layer, say non periodic
boundary conditions, and an increased resolution where the shear layer exists.

Grappin et al. (1992) observed that the solar wind expansion increases the lengths normal to the
radial direction, thus producing an effect similar to a kind of inverse energy cascade. This effect
perhaps should be able to compete with the turbulent cascade which transfers energy to small
scales, thus stopping the non-linear interactions. In absence of non-linear interactions, the natural
tendency towards an increase of σc is stopped. These inferences have been corroborated by further
studies like those by Grappin and Velli (1996) and Goldstein and Roberts (1999). A numerical
model treating the evolution of e+ and e–, including parametric decay of e+, was presented by
Marsch and Tu (1993a). The parametric decay source term was added in order to reproduce the
decreasing cross-helicity observed during the wind expansion. As a matter of fact, the cascade
process, when spectral equations for both e+ and e– are included and solved self-consistently, can
only steepen the spectra at high frequency. Results from this model, shown in Figure 68, partially
reproduce the observed evolution of the normalized cross-helicity. While the radial evolution of e+

is correctly reproduced, the behavior of e– shows an over-production of inward modes between 0.6
and 0.8 AU probably due to an overestimation of the strength of the pump-wave. However, the
model is applied to the situation observed by Helios at 0.3 AU where a rather flat e– spectrum
already exists.

Figure 68: Radial evolution of e+ and e– spectra obtained from the Marsch and Tu (1993a) model, in
which a parametric decay source term was added to the Tu’s model (Tu et al., 1984) that was, in turn,
extended by including both spectrum equations for e+ and e– and solved them self-consistently. Image
reproduced by permission from Marsch and Tu (1993a), copyright by AGU.
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5.2 Local production of Alfvénic turbulence at high latitude

An interesting solution to the radial behavior of the minority modes might be represented by local
generation mechanisms, like parametric decay (Malara et al., 2001a; Del Zanna et al., 2001), which
might saturate and be inhibited beyond 2.5 AU.

Parametric instability has been studied in a variety of situations depending on the value of
the plasma β (among others Sagdeev and Galeev, 1969; Goldstein, 1978; Hoshino and Goldstein,
1989; Malara and Velli, 1996). Malara et al. (2000) and Del Zanna et al. (2001) recently studied
the non-linear growth of parametric decay of a broadband Alfvén wave, and showed that the final
state strongly depends on the value of the plasma β (thermal to magnetic pressure ratio). For
β < 1 the instability completely destroys the initial Alfvénic correlation. For β ∼ 1 (a value close
to solar wind conditions) the instability is not able to go beyond some limit in the disruption of the
initial correlation between velocity and magnetic field fluctuations, and the final state is σc ∼ 0.5
as observed in the solar wind (see Section 4.2).

These authors solved numerically the fully compressible, non-linear MHD equations in a one-
dimensional configuration using a pseudo-spectral numerical code. The simulation starts with a
non-monochromatic, large amplitude Alfvén wave polarized on the yz plane, propagating in a
uniform background magnetic field. Successively, the instability was triggered by adding some
noise of the order 10–6 to the initial density level.

During the first part of the evolution of the instability the amplitude of unstable modes is
small and, consequently, non-linear couplings are negligible. A subsequent exponential growth,
predicted by the linear theory, increases the level of both e– and density compressive fluctuations.
During the second part of the development of the instability, non-linear couplings are not longer
disregardable and their effect is firstly to slow down the exponential growth of unstable modes and
then to saturate the instability to a level that depends on the value of the plasma β.

Spectra of e± are shown in Figure 69 for different times during the development of the instability.
At the beginning the spectrum of the mother-wave is peaked at k = 10, and before the instability
saturation (t ≤ 35) the back-scattered e– and the density fluctuations eρ are peaked at k = 1 and
k = 11, respectively. After saturation, as the run goes on, the spectrum of e– approaches that
of e+ towards a common final state characterized by a Kolmogorov-like spectrum and e+ slightly
larger than e–.

The behavior of outward and inward modes, density and magnetic magnitude variances and
the normalized cross-helicity σc is summarized in the left column of Figure 70. The evolution of σc,
when the instability reaches saturation, can be qualitatively compared with Ulysses observations
(courtesy of B. Bavassano) in the right panel of the same figure, which shows a similar trend.

Obviously, making this comparison, one has to take into account that this model has strong
limitations like the presence of a peak in e+ not observed in real polar turbulence. Another
limitation, partly due to dissipation that has to be included in the model, is that the spectra
obtained at the end of the instability growth are steeper than those observed in the solar wind.
Finally, a further limitation is represented by the fact that this code is 1D. However, although for
an incompressible 1-D simulation we do not expect to have turbulence development, in this case,
since parametric decay is based on compressive phenomena, an energy transfer along the spectrum
might be at work.

In addition, Umeki and Terasawa (1992) studying the non-linear evolution of a large-amplitude
incoherent Alfvén wave via 1D magnetohydrodynamic simulations, reported that while in a low
beta plasma (β ≈ 0.2) the growth of backscattered Alfvén waves, which are opposite in helicity
and propagation direction from the original Alfvén waves, could be clearly detected, in a high
beta plasma (β ≈ 2) there was no production of backscattered Alfvén waves. Consequently,
although numerical results obtained by Malara et al. (2001b) are very encouraging, the high beta
plasma (β ≈ 2), characteristic of fast polar wind at solar minimum, plays against a relevant role
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Figure 69: Spectra of e+ (thick line), e– (dashed line), and eρ (thin line) are shown for 6 different times
during the development of the instability. For t ≥ 50 a typical Kolmogorov slope appears. These results
refer to β = 1. Image reproduced by permission from Malara et al. (2001b), copyright by EGU.

0.0

0.2

0.4

E+, E-

0.0

0.05

r, m

0 10 20 30 40 50 60 70 80 90

Time

-1

0

1

Figure 70: Top left panel: time evolution of e+ (solid line) and e– (dashed line). Middle left panel:

density (solid line) and magnetic magnitude (dashed line) variances. Bottom left panel: normalized cross
helicity σc. Right panel: Ulysses observations of σc radial evolution within the polar wind (left column is
from Malara et al., 2001b, right panel is a courtesy of B. Bavassano).
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of parametric instability in developing solar wind turbulence as observed by Ulysses. However,
these simulations do remain an important step forward towards the understanding of turbulent
evolution in the polar wind until other mechanisms will be found to be active enough to justify
the observations shown in Figure 63.

6 Compressive Turbulence

Interplanetary medium is slightly compressive, magnetic field intensity and proton number density
experience fluctuations over all scales and the compression depends on both the scale and the
nature of the wind. As a matter of fact, slow wind is generally more compressive than fast wind,
as shown in Figure 71 where, following Bavassano et al. (1982a) and Bruno and Bavassano (1991),
we report the ratio between the power density associated with magnetic field intensity fluctuations
and that associated with the fluctuations of the three components. In addition, as already shown
by Bavassano et al. (1982a), this parameter increases with heliocentric distance for both fast and
slow wind as shown in the bottom panel, where the ratio between the compression at 0.9 AU and
that at 0.3 AU is generally greater than 1. It is also interesting to notice that within the Alfvénic
fast wind, the lowest compression is observed in the middle frequency range, roughly between
10−4 – 10−3 Hz. On the other hand, this frequency range has already been recognized as the most
Alfvénic one, within the inner heliosphere (Bruno et al., 1996).

As a matter of fact, it seems that high Alfvénicity is correlated with low compressibility of the
medium (Bruno and Bavassano, 1991; Klein et al., 1993; Bruno and Bavassano, 1993) although
compressibility is not the only cause for a low Alfvénicity (Roberts et al., 1991, 1992; Roberts,
1992).

The radial dependence of the normalized number density fluctuations δn/n for the inner and
outer heliosphere were studied by Grappin et al. (1990) and Roberts et al. (1987b) for the hourly
frequency range, but no clear radial trend emerged from these studies. However, interesting enough,
Grappin et al. (1990) found that values of e– were closely associated with enhancements of δn/n
on scales longer than 1 h.

On the other hand, a spectral analysis of proton number density, magnetic field intensity,
and proton temperature performed by Marsch and Tu (1990b) and Tu et al. (1991) in the inner
heliosphere, separately for fast and slow wind (see Figure 72), showed that normalized spectra of
the above parameters within slow wind were only marginally dependent on the radial distance. On
the contrary, within fast wind, magnetic field and proton density normalized spectra showed not
only a clear radial dependence but also similar level of power for k < 4×10−4 km s−1. For larger k
these spectra show a flattening that becomes steeper for increasing distance, as was already found
by Bavassano et al. (1982b) for magnetic field intensity. Normalized temperature spectra does not
suffer any radial dependence neither in slow wind nor in fast wind.

Spectral index is around −5/3 for all the spectra in slow wind while, fast wind spectral index
is around −5/3 for k < 4× 10−4 km−1 and slightly less steep for larger wave numbers.

6.1 On the nature of compressive turbulence

Considerable efforts, both theoretical and observational, have been made in order to disclose the
nature of compressive fluctuations. It has been proposed (Montgomery et al., 1987; Matthaeus
and Brown, 1988; Zank et al., 1990; Zank and Matthaeus, 1990; Matthaeus et al., 1991; Zank
and Matthaeus, 1992) that most of compressive fluctuations observed in the solar wind could be
accounted for by the Nearly Incompressible (NI) model. Within the framework of this model,
(Montgomery et al., 1987) showed that a spectrum of small scale density fluctuations follows
a k−5/3 when the spectrum of magnetic field fluctuations follows the same scaling. Moreover,
it was showed (Matthaeus and Brown, 1988; Zank and Matthaeus, 1992) that if compressible
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Figure 71: The first two rows show magnetic field compression (see text for definition) for fast (left
column) and slow (right column) wind at 0.3 AU (upper row) and 0.9 AU (middle row). The bottom
panels show the ratio between compression at 0.9 AU and compression at 0.3 AU. This ratio is generally
greater than 1 for both fast and slow wind.
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Figure 72: From left to right: normalized spectra of number density, magnetic field intensity fluctuations
(adapted from Marsch and Tu, 1990b), and proton temperature (adapted from Tu et al., 1991). Different
lines refer to different heliocentric distances for both slow and fast wind.

MHD equations are expanded in terms of small turbulent sonic Mach numbers, pressure balanced
structures, Alfvénic and magnetosonic fluctuations naturally arise as solutions and, in particular,
the RMS of small density fluctuations would scale like M2, being M = δv/Cs the turbulent sonic
Mach number, δv the RMS of velocity fluctuations and Cs the sound speed. In addition, if heat
conduction is allowed in the approximation, temperature fluctuations dominate over magnetic and
density fluctuations, temperature and density are anticorrelated and would scale like M . However,
in spite of some examples supporting this theory (Matthaeus et al., 1991 reported 13% of cases
satisfied the requirements of NI-theory), wider statistical studies, conducted by Tu and Marsch
(1994), Bavassano et al. (1995) and Bavassano and Bruno (1995), showed that NI theory is not
applicable sic et simpliciter to the solar wind. The reason might be in the fact that interplanetary
medium is highly inhomogeneous because of the presence of an underlying structure convected
by the wind. As a matter of fact, Thieme et al. (1989) showed evidence for the presence of time
intervals characterized by clear anti-correlation between kinetic pressure and magnetic pressure
while the total pressure remained fairly constant. These pressure balance structures were for the
first time observed by Burlaga and Ogilvie (1970) for a time scale of roughly one to two hours.
Later on, Vellante and Lazarus (1987) reported strong evidence for anti-correlation between field
intensity and proton density, and between plasma and field pressure on time scales up to 10 h.
The anti-correlation between kinetic and magnetic pressure is usually interpreted as indicative of
the presence of a pressure balance structure since slow magnetosonic modes are readily damped
(Barnes, 1979).

These features, observed also in their dataset, were taken by Thieme et al. (1989) as evidence of
stationary spatial structures which were supposed to be remnants of coronal structures convected
by the wind. Different values assumed by plasma and field parameters within each structure were
interpreted as a signature characterizing that particular structure and not destroyed during the
expansion. These intervals, identifiable in Figure 73 by vertical dashed lines, were characterized
by pressure balance and a clear anti-correlation between magnetic field intensity and temperature.

These structures were finally related to the fine ray-like structures or plumes associated with
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the underlying chromospheric network and interpreted as the signature of interplanetary flow-
tubes. The estimated dimension of these structures, back projected onto the Sun, suggested that
they over-expand in the solar wind. In addition, Grappin et al. (2000) simulated the evolution
of Alfvén waves propagating within such pressure equilibrium ray structures in the framework of
global Eulerian solar wind approach and found that the compressive modes in these simulations
are very much reduced within the ray structures, which indeed correspond to the observational
findings (Buttighoffer et al., 1995, 1999).

Figure 73: From top to bottom: field intensity |B|; proton and alpha particle velocity vp and vα; corrected
proton velocity vpc = vp−δvA, where vA is the Alfvén speed; proton and alpha number density np and nα;
proton and alpha temperature Tp and Tα; kinetic and magnetic pressure Pk and Pm, which the authors
call Pgas and Pmag; total pressure Ptot and β = Pgas/Pmag (from Tu and Marsch, 1995a).

The idea of filamentary structures in the solar wind dates back to Parker (1964), followed by
other authors like McCracken and Ness (1966), Siscoe et al. (1968), and more recently has been
considered again in the literature with new results (see Section 10). These interplanetary flow tubes
would be of different sizes, ranging from minutes to several hours and would be separated from each
other by tangential discontinuities and characterized by different values of plasma parameters and a
different magnetic field orientation and intensity. This kind of scenario, because of some similarity
to a bunch of tangled, smoking “spaghetti” lifted by a fork, was then named “spaghetti-model”.

A spectral analysis performed by Marsch and Tu (1993a) in the frequency range 6× 10−3 – 6×
10−6 showed that the nature and intensity of compressive fluctuations systematically vary with
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the stream structure. They concluded that compressive fluctuations are a complex superposition
of magnetoacoustic fluctuations and pressure balance structures whose origin might be local, due
to stream dynamical interaction, or of coronal origin related to the flow tube structure. These
results are shown in Figure 74 where the correlation coefficient between number density n and
total pressure Ptot (indicated with the symbols pT in the figure), and between kinetic pressure
Pk and magnetic pressure Pm (indicated with the symbols pk and pb, respectively) is plotted for
both Helios s/c relatively to fast wind. Positive values of correlation coefficients C(n, pT) and
C(pk, pb) identify magnetosonic waves, while positive values of C(n, pT) and negative values of
C(pk, pb) identify pressure balance structures. The purest examples of each category are located
at the upper left and right corners.

Figure 74: Correlation coefficient between number density n and total pressure pT plotted vs. the cor-
relation coefficient between kinetic pressure and magnetic pressure for both Helios relatively to fast wind.
Image reproduced by permission from Marsch and Tu (1993b).

Following these observations, Tu and Marsch (1994) proposed a model in which fluctuations
in temperature, density, and field directly derive from an ensemble of small amplitude pressure
balanced structures and small amplitude fast perpendicular magnetosonic waves. These last ones
should be generated by the dynamical interaction between adjacent flow tubes due to the expansion
and, eventually, they would experience also a non-linear cascade process to smaller scales. This
model was able to reproduce most of the correlations described by Marsch and Tu (1993a) for fast
wind.

Later on, Bavassano et al. (1996a) tried to characterize compressive fluctuations in terms of
their polytropic index, which resulted to be a useful tool to study small scale variations in the solar
wind. These authors followed the definition of polytropic fluid given by Chandrasekhar (1967): “a
polytropic change is a quasi-static change of state carried out in such a way that the specific heat
remains constant (at some prescribed value) during the entire process”. For such a variation of
state the adiabatic laws are still valid provided that the adiabatic index γ is replaced by a new
adiabatic index γ′ = (cP − c)/(cV − c) where c is the specific heat of the polytropic variation,
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and cP and cV are the specific heat at constant pressure and constant volume, respectively. This
similarity is lost if we adopt the definition given by Courant and Friedrichs (1976), for whom a fluid
is polytropic if its internal energy is proportional to the temperature. Since no restriction applies to
the specific heats, relations between temperature, density, and pressure do not have a simple form
as in Chandrasekhar approach (Zank and Matthaeus, 1991). Bavassano et al. (1996a) recovered the
polytropic index from the relation between density n and temperature T changes for the selected
scale Tn1−γ′

= const. and used it to determine whether changes in density and temperature were
isobaric (γ′ = 0), isothermal (γ′ = 1), adiabatic (γ′ = γ), or isochoric (γ′ = ∞). Although the
role of the magnetic field was neglected, reliable conclusions could be obtained whenever the above
relations between temperature and density were strikingly clear. These authors found intervals
characterized by variations at constant thermal pressure P . They interpreted these intervals as
a subset of total-pressure balanced structures where the equilibrium was assured by the thermal
component only, perhaps tiny flow tubes like those described by Thieme et al. (1989) and Tu
and Marsch (1994). Adiabatic changes were probably related to magnetosonic waves excited by
contiguous flow tubes (Tu and Marsch, 1994). Proton temperature changes at almost constant
density were preferentially found in fast wind, close to the Sun. These regions were characterized
by values of B and N remarkable stable and by strong Alfvénic fluctuations (Bruno et al., 1985).
Thus, they suggested that these temperature changes could be remnants of thermal features already
established at the base of the corona.

Thus, the polytropic index offers a very simple way to identify basic properties of solar wind
fluctuations, provided that the magnetic field does not play a major role.

6.2 Compressive turbulence in the polar wind

Compressive fluctuations in high latitude solar wind have been extensively studied by Bavassano
et al. (2004) looking at the relationship between different parameters of the solar wind and com-
paring these results with predictions by existing models.

These authors indicated with N,Pm, Pk, and Pt the proton number density n, magnetic pres-
sure, kinetic pressure and total pressure (Ptot = Pm + Pk), respectively, and computed correlation
coefficients ρ between these parameters. Figure 75 clearly shows that a pronounced positive cor-
relation for N −Pt and a negative pronounced correlation for Pm −Pk is a constant feature of the
observed compressive fluctuations. In particular, the correlation for N − Pt is especially strong
within polar regions at small heliocentric distance. In mid-latitude regions the correlation weakens,
while almost disappears at low latitudes. In the case of Pm−Pk, the anticorrelation remains strong
throughout the whole latitudinal excursion. For polar wind the anticorrelation appears to be less
strong at small distances, just where the N − Pt correlation is highest.

The role played by density and temperature in the anticorrelation between magnetic and ther-
mal pressures is investigated in Figure 76, where the magnetic field magnitude is directly compared
with proton density and temperature. As regards the polar regions, a strong B-T anticorrelation
is clearly apparent at all distances (right panel). For B-N an anticorrelation tends to emerge when
solar distance increases. This means that the magnetic-thermal pressure anticorrelation is mostly
due to an anticorrelation of the magnetic field fluctuations with respect to temperature fluctua-
tions, rather than density (see, e.g., Bavassano et al., 1996a,b). Outside polar regions the situation
appears in part reversed, with a stronger role for the B-N anticorrelation.

In Figure 77 scatter plots of total pressure vs. density fluctuations are used to test a model by
Tu and Marsch (1994), based on the hypothesis that the compressive fluctuations observed in solar
wind are mainly due to a mixture of pressure-balanced structures (PBS) and fast magnetosonic
waves (W). Waves can only contribute to total pressure fluctuations while both waves and pressure-
balanced structures may contribute to density fluctuations. A tunable parameter in the model is
the relative PBS/W contribution to density fluctuations α. Straight lines in Figure 77 indicate
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Figure 75: Histograms of ρ(N − Pt) and ρ(Pm − Pk) per solar rotation. The color bar on the left side
indicates polar (red), mid-latitude (blue), and low latitude (green) phases. Moreover, universal time UT,
heliocentric distance, and heliographic latitude are also indicated on the left side of the plot. Occurrence
frequency is indicated by the color bar shown on the right hand side of the figure. Image reproduced by
permission from Bavassano et al. (2004), copyright EGU.

the model predictions for different values of α. It is easily seen that for all polar wind samples the
great majority of experimental data fall in the α > 1 region. Thus, pressure-balanced structures
appear to play a major role with respect to magnetosonic waves. This is a feature already observed
by Helios in the ecliptic wind (Tu and Marsch, 1994), although in a less pronounced way. Different
panels of Figure 77 refer to different heliocentric distances within the polar wind. Namely, going
from P1 to P4 is equivalent to move from 1.4 to 4 AU. A comparison between these panels indicates
that the observed distribution tends to shift towards higher values of α (i.e., pressure-balanced
structures become increasingly important), which probably is a radial distance effect.

Finally, the relative density fluctuations dependence on the turbulent Mach number M (the
ratio between velocity fluctuation amplitude and sound speed) is shown in Figure 78. The aim is
to look for the presence, in the observed fluctuations, of nearly incompressible MHD behaviors.
In the framework of the NI theory (Zank and Matthaeus, 1991, 1993) two different scalings for
the relative density fluctuations are possible, as M or as M2, depending on the role that thermal
conduction effects may play in the plasma under study (namely a heat-fluctuation-dominated or a
heat-fluctuation-modified behavior, respectively). These scalings are shown in Figure 78 as solid
(for M) and dashed (for M2) lines.

It is clearly seen that for all the polar wind samples no clear trend emerges in the data. Thus,
NI-MHD effects do not seem to play a relevant role in driving the polar wind fluctuations. This
confirms previous results in the ecliptic by Helios in the inner heliosphere (Bavassano et al., 1995;
Bavassano and Bruno, 1995) and by Voyagers in the outer heliosphere (Matthaeus et al., 1991).
It is worthy of note that, apart from the lack of NI trends, the experimental data from Ulysses,
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Figure 76: Solar rotation histograms of B-N and B-T in the same format of Figure 75. Image reproduced
by permission from Bavassano et al. (2004), copyright EGU.
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Figure 77: Scatter plots of the relative amplitudes of total pressure vs. density fluctuations for polar
wind samples P1 to P4. Straight lines indicate the Tu and Marsch (1994) model predictions for different
values of α, the relative PBS/W contribution to density fluctuations. Image reproduced by permission
from Bavassano et al. (2004), copyright EGU.
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Voyagers, and Helios missions in all cases exhibit quite similar distributions. In other words, for
different heliospheric regions, solar wind regimes, and solar activity conditions, the behavior of
the compressive fluctuations in terms of relative density fluctuations and turbulent Mach numbers
seems almost to be an invariant feature.
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Figure 78: Relative amplitude of density fluctuations vs. turbulent Mach number for polar wind. Solid
and dashed lines indicate the M and M2 scalings, respectively. Image reproduced by permission from
Bavassano et al. (2004), copyright EGU.

The above observations fully support the view that compressive fluctuations in high latitude
solar wind are a mixture of MHD modes and pressure balanced structures. It has to be reminded
that previous studies (McComas et al., 1995, 1996; Reisenfeld et al., 1999) indicated a relevant
presence of pressure balanced structures at hourly scales. Moreover, nearly-incompressible (see
Section 6.1) effects do not seem to play any relevant role. Thus, polar observations do not show
major differences when compared with ecliptic observations in fast wind, the only possible difference
being a major role of pressure balanced structures.

6.3 The effect of compressive phenomena on Alfvénic correlations

A lack of δV − δB correlation does not strictly indicate a lack of Alfvénic fluctuations since a
superposition of both outward and inward oriented fluctuations of the same amplitude would pro-
duce a very low correlation as well. In addition, the rather complicated scenario at the base of the
corona, where both kinetic and magnetic phenomena contribute to the birth of the wind, suggest
that the imprints of such a structured corona is carried away by the wind during its expansion.
At this point, we would expect that solar wind fluctuations would not solely be due to the ubiq-
uitous Alfvénic and other MHD propagating modes but also to an underlying structure convected
by the wind, not necessarily characterized by Alfvén-like correlations. Moreover, dynamical in-
teractions between fast and slow wind, built up during the expansion, contribute to increase the
compressibility of the medium.

It has been suggested that disturbances of the mean magnetic field intensity and plasma density
act destructively on δV − δB correlation. Bruno and Bavassano (1993) analyzed the loss of the
Alfvénic character of interplanetary fluctuations in the inner heliosphere within the low frequency
part of the Alfvénic range, i.e., between 2 and 10 h. Figure 79, from their work, shows the wind
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speed profile, σc, the correlation coefficients, phase and coherence for the three components (see
Appendix B.2.1), the angle between magnetic field and velocity minimum variance directions, and
the heliocentric distance. Magnetic field sectors were rectified (see Appendix B.3) and magnetic
field and velocity components were rotated into the magnetic field minimum variance reference
system (see Appendix D). Although the three components behave in a similar way, the most
Alfvénic ones are the two components Y and Z transverse to the minimum variance component X.
As a matter of fact, for an Alfvén mode we would expect a high δV − δB correlation, a phase close
to zero for outward waves and a high coherence. Moreover, it is rather clear that the most Alfvénic
intervals are located within the trailing edges of high velocity streams. However, as the radial
distance increases, the Alfvénic character of the fluctuations decreases and the angle Θbv increases.
The same authors found that high values of Θbv are associated with low values of σc and correspond
to the most compressive intervals. They concluded that the depletion of the Alfvénic character
of the fluctuations, within the hourly frequency range, might be driven by the interaction with
static structures or magnetosonic perturbations able to modify the homogeneity of the background
medium on spatial scales comparable to the wavelength of the Alfvénic fluctuations. A subsequent
paper by Klein et al. (1993) showed that the δV − δB decoupling increases with the plasma β,
suggesting that in regions where the local magnetic field is less relevant, compressive events play
a major role in this phenomenon.

Figure 79: Wind speed profile V and |σc|V are shown in the top panel. The lower three panels refer
to correlation coefficient, phase angle and coherence for the three components of δV and δB fluctuations,
respectively. The successive panel indicates the value of the angle between magnetic field and velocity
fluctuations minimum variance directions. The bottom panel refers to the heliocentric distance (from
Bruno and Bavassano, 1993).
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7 A Natural Wind Tunnel

The solar wind has been used as a wind tunnel by Burlaga who, at the beginning of the 1990s,
started to investigate anomalous fluctuations (Burlaga, 1991a,b,c, 1995) as observed by measure-
ments in the outer heliosphere by the Voyager spacecraft. In 1991, Marsch, in a review on solar
wind turbulence given at the Solar Wind Seven conference, underlined the importance of inves-
tigating scaling laws in the solar wind and we like to report his sentence: “The recent work by
Burlaga (1991a,b) opens in my mind a very promising avenue to analyze and understand solar
wind turbulence from a new theoretical vantage point. . . . This approach may also be useful for
MHD turbulence. Possible connections between intermittent turbulence and deterministic chaos
have recently been investigated . . .We are still waiting for applications of these modern concepts
of chaos theory to solar wind MHD fluctuations.” (cf. Marsch, 1992, p. 503). A few years later
Carbone (1993) and, independently, Biskamp (1993) faced the question of anomalous scaling from
a theoretical point of view. More than ten years later the investigation of statistical mechanics of
MHD turbulence from one side, and of low-frequency solar wind turbulence on the other side, has
produced a lot of papers, and is now mature enough to be tentatively presented in a more organic
way.

7.1 Scaling exponents of structure functions

The phenomenology of turbulence developed by Kolmogorov (1941) deals with some statistical
hypotheses for fluctuations. The famous footnote remark by Landau (Landau and Lifshitz, 1971)
pointed out a defect in the Kolmogorov theory, namely the fact that the theory does not take proper
account of spatial fluctuations of local dissipation rate (Frisch, 1995). This led different authors
to investigate the features related to scaling laws of fluctuations and, in particular, to investigate
the departure from the Kolmogorov’s linear scaling of the structure functions (cf. Section 2.8). An
up-to-date comprehensive review of these theoretical efforts can be found in the book by Frisch
(1995).

Here we are interested in understanding what we can learn from solar wind turbulence about
the basic features of scaling laws for fluctuations. We use velocity and magnetic fields time series,
and we investigate the scaling behavior of the high-order moments of stochastic variables defined
as variations of fields separated by a time8 interval τ . First of all, it is worthwhile to remark that
scaling laws and, in particular, the exact relation (41) which defines the inertial range in fluid flows,
is valid for longitudinal (streamwise) fluctuations. In common fluid flows the Kolmogorov linear
scaling law is compared with the moments of longitudinal velocity differences. In the same way for
the solar wind turbulence we investigate the scaling behavior of ∆uτ = u(t+ τ)− u(t), where u(t)
represents the component of the velocity field along the radial direction. As far as the magnetic
differences are concerned ∆bτ = B(t + τ) − B(t), we are free for different choices and, in some
sense, this is more interesting from an experimental point of view. We can use the reference system
where B(t) represents the magnetic field projected along the radial direction, or the system where
B(t) represents the magnetic field along the local background magnetic field, or B(t) represents
the field along the minimum variance direction. As a different case we can simply investigate the
scaling behavior of the fluctuations of the magnetic field intensity.

Let us consider the p-th moment of both absolute values9 of velocity fluctuations Rp(τ) =

8 Since the solar wind moves at supersonic speed Vsw, the usual Taylor’s hypothesis is verified, and we can get
information on spatial scaling laws ` by using time differences τ = `/Vsw.

9 Note that, according to the occurrence of the Yaglom’s law, that is a third-order moment is different from
zero, the fluctuations at a given scale in the inertial range must present some non-Gaussian features. From this
point of view the calculation of structure functions with the absolute value is unappropriate because in this way we
risk to cancel out non-Gaussian features. Namely we symmetrize the probability density functions of fluctuations.
However, in general, the number of points at disposal is much lower than required for a robust estimate of odd
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⟨|∆uτ |p⟩ and magnetic fluctuations Sp(τ) = ⟨|∆bτ |p⟩, also called p-th order structure function in
literature (brackets being time average). Here we use magnetic fluctuations across structures at
intervals τ calculated by using the magnetic field intensity. Typical structure functions of magnetic
field fluctuations, for two different values of p, for both a slow wind and a fast wind at 0.9 AU, are
shown in Figures 80. The magnetic field we used is that measured by Helios 2 spacecraft. Structure
functions calculated for the velocity fields have roughly the same shape. Looking at these Figures
the typical scaling features of turbulence can be observed. Starting from low values at small scales,
the structure functions increase towards a region where Sp → const. at the largest scales. This
means that at these scales the field fluctuations are uncorrelated. A kind of “inertial range”, that
is a region of intermediate scales τ where a power law can be recognized for both

Rp(τ) = ⟨|∆uτ |p⟩ ∼ τ ζp

Sp(τ) = ⟨|∆bτ |p⟩ ∼ τ ξp (61)

is more or less visible only for the slow wind. In this range correlations exists, and we can obtain
the scaling exponents ζp and ξp through a simple linear fit.

Figure 80: Structure functions for the magnetic field intensity Sn(r) for two different orders, n = 3 and
n = 5, for both slow wind and fast wind, as a function of the time scale r. Data come from Helios 2
spacecraft at 0.9 AU.

Since as we have seen, Yaglom’s law is observed only in some few samples, the inertial range
in the whole solar wind is not well defined. A look at Figure 80 clearly shows that we are in
a situation similar to a low-Reynolds number fluid flow. In order to compare scaling exponents
of the solar wind turbulent fluctuations with other experiments, it is perhaps better to try to
recover exponents using the Extended Self-Similarity (ESS), introduced some time ago by Benzi
et al. (1993), and used here as a tool to determine relative scaling exponents. In the fluid-like
case, the third-order structure function can be regarded as a generalized scaling using the inverse
of Equation (42) or of Equation (41) (Politano et al., 1998). Then, we can plot the p-th order
structure function vs. the third-order one to recover at least relative scaling exponents ζp/ζ3 and

structure functions, even in usual fluid flows. Then, as usually, we will obtain structure functions by taking the
absolute value, even if some care must be taken in certain conclusions which can be found in literature.
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ξp/ξ3 (61). Quite surprisingly (see Figure 81), we find that the range where a power law can be
recovered extends well beyond the inertial range, covering almost all the experimental range. In the
fluid case the scaling exponents which can be obtained through ESS at low or moderate Reynolds
numbers, coincide with the scaling exponents obtained for high Reynolds, where the inertial range
is very well defined Benzi et al. (1993). This is due to the fact that, since by definition ζ3 = 1 in
the inertial range (Frisch, 1995), whatever its extension might be. In our case scaling exponents
obtained through ESS can be used as a surrogate, since we cannot be sure that an inertial range
exists.

Figure 81: Structure functions Sn(r) for two different orders, n = 3 and n = 5, for both slow wind and
high wind, as a function of the fourth-order structure function S4(r). Data come from Helios 2 spacecraft
at 0.9 AU.

It is worthwhile to remark (as shown in Figure 81) that we can introduce a general scaling
relation between the q-th order velocity structure function and the p-th order structure function,
with a relative scaling exponent αp(q). It has been found that this relation becomes an exact
relation

Sq(r) = [Sp(r)]
αp(q) ,

when the velocity structure functions are normalized to the average velocity within each period
used to calculate the structure function (Carbone et al., 1996a). This is very interesting because it
implies (Carbone et al., 1996a) that the above relationship is satisfied by the following probability
distribution function, if we assume that odd moments are much smaller than the even ones:

PDF (∆uτ ) =

∫ ∞

−∞
dk eik∆uτ

∞
∑

q=0

(ik)2q

2π(2q)!
[Sp(τ)]

αp(2q) . (62)

That is, for each scale τ the knowledge of the relative scaling exponents αp(q) completely determines
the probability distribution of velocity differences as a function of a single parameter Sp(τ).

Relative scaling exponents, calculated by using data coming from Helios 2 at 0.9 AU, are
reported in Table 1. As it can be seen, two main features can be noted:
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Table 1: Scaling exponents for velocity ζp and magnetic ξp variables calculated through ESS. Errors
represent the standard deviations of the linear fitting. The data used comes from a turbulent sample of
slow wind at 0.9 AU from Helios 2 spacecraft. As a comparison we show the normalized scaling exponents
of structure functions calculated in a wind tunnel on Earth (Rúız-Chavarŕıa et al., 1995) for velocity and
temperature. The temperature is a passive scalar in this experiment.

p ζp ξp u(t) (fluid) T (t) (fluid)

1 0.37 ➧ 0.06 0.56 ➧ 0.06 0.37 0.61
2 0.70 ➧ 0.05 0.83 ➧ 0.05 0.70 0.85
3 1.00 1.00 1.00 1.00
4 1.28 ➧ 0.02 1.14 ➧ 0.02 1.28 1.12
5 1.54 ➧ 0.03 1.25 ➧ 0.03 1.54 1.21
6 1.79 ➧ 0.05 1.35 ➧ 0.05 1.78 1.38

i. There is a significant departure from the Kolmogorov linear scaling, that is, real scaling
exponents are anomalous and seem to be non-linear functions of p, say ζp/ζ3 > p/3 for
p < 3, while ζp/ζ3 < p/3 for p > 3. The same behavior can be observed for ξp/ξ3. In
Table 1 we report also the scaling exponents obtained in usual fluid flows for velocity and
temperature, the latter being a passive scalar. Scaling exponents for velocity field are similar
to scaling exponents obtained in turbulent flows on Earth, showing a kind of universality in
the anomaly. This effect is commonly attributed to the phenomenon of intermittency in fully
developed turbulence (Frisch, 1995). Turbulence in the solar wind is intermittent, just like
its fluid counterpart on Earth.

ii. The degree of intermittency is measured through the distance between the curve ζp/ζ3 and
the linear scaling p/3. It can be seen that the magnetic field is more intermittent than the
velocity field. The same difference is observed between the velocity field and a passive scalar
(in our case the temperature) in ordinary fluid flows (Rúız-Chavarŕıa et al., 1995). That is the
magnetic field, as long as intermittency properties are concerned, has the same scaling laws
of a passive field. Of course this does not mean that the magnetic field plays the same role as

a passive field. Statistical properties are in general different from dynamical properties.

In Table 1 we show scaling exponents up to the sixth order. Actually, a question concerns the
validation of high-order moments estimates, say the maximum value of the order p which can be
determined with a finite number of points of our dataset. As the value of p increases, we need
an increasing number of points for an optimal determination of the structure function (Tennekes
and Wyngaard, 1972). Anomalous scaling laws are generated by rare and intense events due to
singularities in the gradients: the higher their intensity the more rare these events are. Of course,
when the data set has a finite extent, the probability to get singularities stronger than a certain
value approaches zero. In that case, scaling exponents ζp of order higher than a certain value
become linear functions of p. Actually, the structure function Sp(τ) depends on the probability
distribution function PDF(∆uτ ) through

Sp(τ) =

∫

∆upτ PDF(δuτ ) d∆uτ

and, the function Sp is determined only when the integral converges. As p increases, the function
Fp(δuτ ) = ∆upτ PDF(∆uτ ) becomes more and more disturbed, with some spikes, so that the
integral becomes more and more undefined, as can be seen for example in Figure 1 of the paper by
Dudok de Wit (2004). A simple calculation (Dudok de Wit, 2004) for the maximum value of the
order pm which can reliably be estimated with a given number N of points in the dataset, gives
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Table 2: Normalized scaling exponents ξp/ξ3 for radial magnetic fluctuations in a laboratory plasma, as
measured at different distances a/R (R ≃ 0.45 cm being the minor radius of the torus in the experiment)
from the external wall. Errors represent the standard deviations of the linear fitting. Scaling exponents
have been obtained using the ESS.

p a/R = 0.96 a/R = 0.93 a/R = 0.90 a/R = 0.86

1 0.39 ➧ 0.01 0.38 ➧ 0.01 0.37 ➧ 0.01 0.36 ➧ 0.01
2 0.74 ➧ 0.01 0.73 ➧ 0.02 0.71 ➧ 0.01 0.70 ➧ 0.01
3 1.00 1.00 1.00 1.00
4 1.20 ➧ 0.02 1.24 ➧ 0.02 1.27 ➧ 0.01 1.28 ➧ 0.01
5 1.32 ➧ 0.03 1.41 ➧ 0.03 1.51 ➧ 0.03 1.55 ➧ 0.03
6 1.38 ➧ 0.04 1.50 ➧ 0.04 1.71 ➧ 0.03 1.78 ➧ 0.04

the empirical criterion pm ≃ logN . Structure functions of order p > pm cannot be determined
accurately.

Only few large structures are enough to generate the anomalous scaling laws. In fact, as shown
by Salem et al. (2009), by suppressing through wavelets analysis just a few percentage of large
structures on all scales, the scaling exponents become linear functions of p, respectively p/4 and
p/3 for the kinetic and magnetic fields.

As far as a comparison between different plasmas is concerned, the scaling exponents of magnetic
structure functions, obtained from laboratory plasma experiments of a Reversed-Field Pinch at
different distances from the external wall (Carbone et al., 2000) are shown in Table 2. In laboratory
plasmas it is difficult to measure all the components of the vector field at the same time, thus,
here we show only the scaling exponents obtained using magnetic field differences Br(t+τ)−Br(t)
calculated from the radial component in a toroidal device where the z-axis is directed along the
axis of the torus. As it can be seen, intermittency in magnetic turbulence is not so strong as it
appears to be in the solar wind, actually the degree of intermittency increases when going toward
the external wall. This last feature appears to be similar to what is currently observed in channel
flows, where intermittency also increases when going towards the external wall (Pope, 2000).

Scaling exponents of structure functions for Alfvén variables, velocity, and magnetic variables
have been calculated also for high resolution 2D incompressible MHD numerical simulations (Poli-
tano et al., 1998). In this case, we are freed from the constraint of the Taylor hypothesis when
calculating the fluctuations at a given scale. From 2D simulations we recover the fields u(r, t)
and b(r, t) at some fixed times. We calculate the longitudinal fluctuations directly in space at a
fixed time, namely ∆u` = [u(r+ `, t)−u(r, t)] · `/` (the same are made for different fields, namely
the magnetic field or the Elsässer fields). Finally, averaging both in space and time, we calculate
the scaling exponents through the structure functions. These scaling exponents are reported in
Table 3. Note that, even in numerical simulations, intermittency for magnetic variables is stronger
than for the velocity field.

7.2 Probability distribution functions and self-similarity of fluctuations

The presence of scaling laws for fluctuations is a signature of the presence of self-similarity in
the phenomenon. A given observable u(`), which depends on a scaling variable `, is invariant
with respect to the scaling relation ` → λ`, when there exists a parameter µ(λ) such that u(`) =
µ(λ)u(λ`). The solution of this last relation is a power law u(`) = C`h, where the scaling exponent
is h = − logλ µ.

Since, as we have just seen, turbulence is characterized by scaling laws, this must be a signature
of self-similarity for fluctuations. Let us see what this means. Let us consider fluctuations at two
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Table 3: Normalized scaling exponents ξp/ξ3 for Alfvénic, velocity, and magnetic fluctuations obtained
from data of high resolution 2D MHD numerical simulations. Scaling exponents have been calculated
from spatial fluctuations; different times, in the statistically stationary state, have been used to improve
statistics. The scaling exponents have been calculated by ESS using Equation (41) as characteristic scale
rather than the third-order structure function (cf. Politano et al., 1998, for details).

p Z+ Z− v B

1 0.36 ➧ 0.06 0.56 ➧ 0.06 0.37 ➧ 0.01 0.46 ➧ 0.02
2 0.70 ➧ 0.05 0.83 ➧ 0.05 0.70 ➧ 0.01 0.78 ➧ 0.01
3 1.00 1.00 1.00 1.00
4 1.28 ➧ 0.02 1.14 ➧ 0.02 1.28 ➧ 0.02 1.18 ➧ 0.02
5 1.53 ➧ 0.03 1.25 ➧ 0.03 1.54 ➧ 0.03 1.31 ➧ 0.03
6 1.79 ➧ 0.05 1.35 ➧ 0.05 1.78 ➧ 0.05 1.40 ➧ 0.03

different scales, namely ∆z±` and ∆z±λ`. Their ratio ∆z±λ`/∆z
±
` ∼ λh depends only on the value

of h, and this should imply that fluctuations are self-similar. This means that PDFs are related
through

P (∆z±λ`) = PDF(λh∆z±` ).

Let us consider the normalized variables

y±` =
∆z±`

⟨(∆z±` )2⟩1/2
.

When h is unique or in a pure self-similar situation, PDFs are related through P (y±` ) = PDF(y±λ`),
say by changing scale PDFs coincide.

The PDFs relative to the normalized magnetic fluctuations δbτ = ∆bτ/⟨∆b2τ ⟩1/2, at three
different scales τ , are shown in Figure 82. It appears evident that the global self-similarity in real
turbulence is broken. PDFs do not coincide at different scales, rather their shape seems to depend
on the scale τ . In particular, at large scales PDFs seem to be almost Gaussian, but they become
more and more stretched as τ decreases. At the smallest scale PDFs are stretched exponentials.
This scaling dependence of PDFs is a different way to say that scaling exponents of fluctuations
are anomalous, or can be taken as a different definition of intermittency. Note that the wings of
PDFs are higher than those of a Gaussian function. This implies that intense fluctuations have a
probability of occurrence higher than that they should have if they were Gaussianly distributed.
Said differently, intense stochastic fluctuations are less rare than we should expect from the point
of view of a Gaussian approach to the statistics. These fluctuations play a key role in the statistics
of turbulence. The same statistical behavior can be found in different experiments related to the
study of the atmosphere (see Figure 83) and the laboratory plasma (see Figure 84).
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Figure 82: Left panel: normalized PDFs for the magnetic fluctuations observed in the solar wind turbu-
lence by using Helios data. Right panel: distribution function of waiting times ∆t between structures at
the smallest scale. The parameter β is the scaling exponent of the scaling relation PDF(∆t) ∼ ∆t−β for
the distribution function of waiting times.

Figure 83: Left panel: normalized PDFs of velocity fluctuations in atmospheric turbulence. Right panel:
distribution function of waiting times ∆t between structures at the smallest scale. The parameter β is the
scaling exponent of the scaling relation PDF(∆t) ∼ ∆t−β for the distribution function of waiting times.
The turbulent samples have been collected above a grass-covered forest clearing at 5 m above the ground
surface and at a sampling rate of 56 Hz (Katul et al., 1997).
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Figure 84: Left panel: normalized PDFs of the radial magnetic field collected in RFX magnetic turbulence
(Carbone et al., 2000). Right panel: distribution function of waiting times ∆t between structures at the
smallest scale. The parameter β is the scaling exponent of the scaling relation PDF(∆t) ∼ ∆t−β for the
distribution function of waiting times.

7.3 What is intermittent in the solar wind turbulence? The multifractal
approach

Time dependence of ∆uτ and ∆bτ for three different scales τ is shown in Figures 85 and 86,
respectively. These plots show that, as τ becomes small, intense fluctuations become more and
more important, and they dominate the statistics. Fluctuations at large scales appear to be
smooth while, as the scale becomes smaller, intense fluctuations becomes visible. These dominating
fluctuations represent relatively rare events. Actually, at the smallest scales, the time behavior of
both ∆uτ and ∆bτ is dominated by regions where fluctuations are low, in between regions where
fluctuations are intense and turbulent activity is very high. Of course, this behavior cannot be
described by a global self-similar behavior. Allowing the scaling laws to vary with the region of
turbulence we are investigating would be more convincing.

The behavior we have just described is at the heart of the multifractal approach to turbulence
(Frisch, 1995). In that description of turbulence, even if the small scales of fluid flow cannot be
globally self-similar, self-similarity can be reintroduced as a local property. In the multifractal
description it is conjectured that turbulent flows can be made by an infinite set of points Sh(r),
each set being characterized by a scaling law ∆Z±

` ∼ `h(r), that is, the scaling exponent can depend
on the position r. The usual dimension of that set is then not constant, but depends on the local
value of h, and is quoted as D(h) in literature. Then, the probability of occurrence of a given
fluctuation can be calculated through the weight the fluctuation assumes within the whole flow,
i.e.,

P (∆Z±
` ) ∼ (∆Z±

` )h × volume occupied by fluctuations,

and the p-th order structure function is immediately written through the integral over all (contin-
uous) values of h weighted by a smooth function µ(h) ∼ 0(1), i.e.,

Sp(`) =

∫

µ(h)(∆Z±
` )ph(∆Z±

` )3−D(h)dh.
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Figure 85: Differences for the longitudinal velocity δuτ = u(t + τ) − u(t) at three different scales τ , as
shown in the figure.
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Figure 86: Differences for the magnetic intensity ∆bτ = B(t + τ) − B(t) at three different scales τ , as
shown in the figure.
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A moment of reflection allows us to realize that in the limit ` → 0 the integral is dominated by
the minimum value (over h) of the exponent and, as shown by Frisch (1995), the integral can
be formally solved using the usual saddle-point method. The scaling exponents of the structure
function can then be written as

ζp = min
h

[ph+ 3−D(h)].

In this way, the departure of ζp from the linear Kolmogorov scaling and thus intermittency, can be
characterized by the continuous changing of D(h) as h varies. That is, as p varies we are probing
regions of fluid where even more rare and intense events exist. These regions are characterized by
small values of h, that is, by stronger singularities of the gradient of the field.

Owing to the famous Landau footnote on the fact that fluctuations of the energy transfer rate
must be taken into account in determining the statistics of turbulence, people tried to interpret
the non-linear energy cascade typical of turbulence theory, within a geometrical framework. The
old Richardson’s picture of the turbulent behavior as the result of a hierarchy of eddies at different
scales has been modified and, as realized by Kraichnan (1974), once we leave the idea of a constant
energy cascade rate we open a “Pandora’s box” of possibilities for modeling the energy cascade.
By looking at scaling laws for ∆z±` and introducing the scaling exponents for the energy transfer
rate ⟨εp` ⟩ ∼ rτp , it can be found that ζp = p/m + τp/m (being m = 3 when the Kolmogorov-like
phenomenology is taken into account, or m = 4 when the Iroshnikov-Kraichnan phenomenology
holds). In this way the intermittency correction are determined by a cascade model for the energy
transfer rate. When τp is a non-linear function of p, the energy transfer rate can be described
within the multifractal geometry (see, e.g., Meneveau, 1991, and references therein) characterized
by the generalized dimensions Dp = 1 − τp/(p − 1) (Hentschel and Procaccia, 1983). The scaling
exponents of the structure functions are then related to Dp by

ζp =
( p

m
− 1
)

Dp/m + 1.

The correction to the linear scaling p/m is positive for p < m, negative for p > m, and zero for
p = m. A fractal behavior where Dp = const. < 1 gives a linear correction with a slope different
from 1/m.

7.4 Fragmentation models for the energy transfer rate

Cascade models view turbulence as a collection of fragments at a given scale `, which results from
the fragmentation of structures at the scale `′ > `, down to the dissipative scale (Novikov, 1969).
Sophisticated statistics are applied to obtain scaling exponents ζp for the p-th order structure
function.

The starting point of fragmentation models is the old β-model, a “pedagogical” fractal model
introduced by Frisch et al. (1978) to account for the modification of the cascade in a simple way.
In this model, the cascade is realized through the conjecture that active eddies and non-active
eddies are present at each scale, the space-filling factor for the fragments being fixed for each scale.
Since it is a fractal model, the β-model gives a linear modification to ζp. This can account for a
fit on the data, as far as small values of p are concerned. However, the whole curve ζp is clearly
nonlinear, and a multifractal approach is needed.

The random-β model (Benzi et al., 1984), a multifractal modification of the β-model, can be
derived by invoking that the space-filling factor for the fragments at a given scale in the energy
cascade is not fixed, but is given by a random variable β. The probability of occurrence of a given
β is assumed to be a bimodal distribution where the eddies fragmentation process generates either
space-filling eddies with probability ξ or planar sheets with probability (1 − ξ) (for conservation
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0 ≤ ξ ≤ 1). It can be found that

ζp =
p

m
− log2

[

1− ξ + ξ2p/m−1
]

, (63)

where the free parameter ξ can be fixed through a fit on the data.
The p-model (Meneveau, 1991; Carbone, 1993) consists in an eddies fragmentation process

described by a two-scale Cantor set with equal partition intervals. An eddy at the scale `, with
an energy derived from the transfer rate εr, breaks down into two eddies at the scale `/2, with
energies µεr and (1 − µ)εr. The parameter 0.5 ≤ µ ≤ 1 is not defined by the model, but is fixed
from the experimental data. The model gives

ζp = 1− log2

[

µp/m + (1− µ)p/m
]

. (64)

In the model by She and Leveque (see, e.g., She and Leveque, 1994; Politano and Pouquet,
1998) one assumes an infinite hierarchy for the moments of the energy transfer rates, leading to

ε
(p+1)
r ∼ [ε

(p)
r ]β [ε

(∞)
r ]1−β , and a divergent scaling law for the infinite-order moment ε

(∞)
r ∼ r−x,

which describes the most singular structures within the flow. The model reads

ζp =
p

m
(1− x) + C

[

1−
(

1− x

C

)p/m
]

. (65)

The parameter C = x/(1 − β) is identified as the codimension of the most singular structures.
In the standard MHD case (Politano and Pouquet, 1995) x = β = 1/2, so that C = 1, that is,
the most singular dissipative structures are planar sheets. On the contrary, in fluid flows C = 2
and the most dissipative structures are filaments. The large p behavior of the p-model is given
by ζp ∼ (p/m) log2(1/µ) + 1, so that Equations (64, 65) give the same results providing µ ≃ 2−x.
As shown by Carbone et al. (1996b) all models are able to capture intermittency of fluctuations
in the solar wind. The agreement between the curves ζp and normalized scaling exponents is
excellent, and this means that we realistically cannot discriminate between the models we reported
above. The main problem is that all models are based on a conjecture which gives a curve ζp as
a function of a single free parameter, and that curve is able to fit the smooth observed behavior
of ζp. Statistics cannot prove, just disprove. We can distinguish between the fractal model and
multifractal models, but we cannot realistically distinguish among the various multifractal models.

7.5 A model for the departure from self-similarity

Besides the idea of self-similarity underlying the process of energy cascade in turbulence, a different
point of view can be introduced. The idea is to characterize the behavior of the PDFs through
the scaling laws of the parameters, which describe how the shape of the PDFs changes when going
towards small scales. The model, originally introduced by Castaing et al. (2001), is based on a
multiplicative process describing the cascade. In its simplest form the model can be introduced by
saying that PDFs of increments δZ±

` , at a given scale, are made as a sum of Gaussian distributions
with different widths σ = ⟨(δZ±

` )2⟩1/2. The distribution of widths is given by Gλ(σ), namely

P (δZ±
` ) =

1

2π

∫ ∞

0

Gλ(σ) exp

(

− (δZ±
` )2

2σ2

)

dσ

σ
. (66)

In a purely self-similar situation, where the energy cascade generates only a trivial variation of
σ with scales, the width of the distribution Gλ(σ) is zero and, invariably, we recover a Gaussian
distribution for P (δZ±

` ). On the contrary, when the cascade is not strictly self-similar, the width
of Gλ(σ) is different from zero and the scaling behavior of the width λ2 of Gλ(σ) can be used to
characterize intermittency.
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7.6 Intermittency properties recovered via a shell model

Shell models have remarkable properties which closely resemble those typical of MHD phenomena
(Gloaguen et al., 1985; Biskamp, 1994; Giuliani and Carbone, 1998; Plunian et al., 2012). However,
the presence of a constant forcing term always induces a dynamical alignment, unless the model
is forced appropriately, which invariably brings the system towards a state in which velocity and
magnetic fields are strongly correlated, that is, where Z±

n ̸= 0 and Z∓
n = 0. When we want

to compare statistical properties of turbulence described by MHD shell models with solar wind
observations, this term should be avoided. It is possible to replace the constant forcing term by
an exponentially time-correlated Gaussian random forcing which is able to destabilize the Alfvénic
fixed point of the model (Giuliani and Carbone, 1998), thus assuring the energy cascade. The
forcing is obtained by solving the following Langevin equation:

dFn

dt
= −Fn

τ
+ µ(t), (67)

where µ(t) is a Gaussian stochastic process δ-correlated in time ⟨µ(t)µ(t′)⟩ = 2Dδ(t′ − t). This
kind of forcing will be used to investigate statistical properties.
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Figure 87: We show the kinetic energy spectrum |un(t)|
2 as a function of log2 kn for the MHD shell

model. The full line refer to the Kolmogorov spectrum k
−2/3
n .

A statistically stationary state is reached by the system Gloaguen et al. (1985); Biskamp (1994);
Giuliani and Carbone (1998); Plunian et al. (2012), with a well defined inertial range, say a
region where Equation (49) is verified. Spectra for both the velocity |un(t)|2 and magnetic |bn(t)|2
variables, as a function of kn, obtained in the stationary state using the GOY MHD shell model,
are shown in Figures 87 and 88. Fluctuations are averaged over time. The Kolmogorov spectrum
is also reported as a solid line. It is worthwhile to remark that, by adding a random term like
iknB0(t)Z

±
n to a little modified version of the MHD shell models (B0 is a random function with

some statistical characteristics), a Kraichnan spectrum, say E(kn) ∼ k
−3/2
n , where E(kn) is the

total energy, can be recovered (Biskamp, 1994; Hattori and Ishizawa, 2001). The term added to
the model could represent the effect of the occurrence of a large-scale magnetic field.

Intermittency in the shell model is due to the time behavior of shell variables. It has been
shown (Okkels, 1997) that the evolution of GOY model consists of short bursts traveling through
the shells and long period of oscillations before the next burst arises. In Figures 89 and 90 we report
the time evolution of the real part of both velocity variables un(t) and magnetic variables bn(t) at
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Figure 88: We show the magnetic energy spectrum |bn(t)|
2 as a function of log2 kn for the MHD shell

model. The full line refer to the Kolmogorov spectrum k
−2/3
n .

three different shells. It can be seen that, while at smaller kn variables seems to be Gaussian, at
larger kn variables present very sharp fluctuations in between very low fluctuations.

The time behavior of variables at different shells changes the statistics of fluctuations. In
Figure 91 we report the probability distribution functions P (δun) and P (δBn), for different shells
n, of normalized variables

δun =
ℜe(un)
√

⟨|un|2⟩
and δBn =

ℜe(bn)
√

⟨|bn|2⟩
,

where ℜe indicates that we take the real part of un and bn. Typically we see that PDFs look
differently at different shells: At small kn fluctuations are quite Gaussian distributed, while at
large kn they tend to become increasingly non-Gaussian, by developing fat tails. Rare fluctuations
have a probability of occurrence larger than a Gaussian distribution. This is the typical behavior
of intermittency as observed in usual fluid flows and described in previous sections.

The same phenomenon gives rise to the departure of scaling laws of structure functions from a
Kolmogorov scaling. Within the framework of the shell model the analogous of structure functions
are defined as

⟨|un|p⟩ ∼ k−ξp
n ; ⟨|bn|p⟩ ∼ k−ηp

n ; ⟨|Z±
n |p⟩ ∼ k

−ξ±p
n .

For MHD turbulence it is also useful to report mixed correlators of the flux variables, i.e.,

⟨[T±
n ]p/3⟩ ∼ k

−β±
p

n .

Scaling exponents have been determined from a least square fit in the inertial range 3 ≤ n ≤ 12.
The values of these exponents are reported in Table 4. It is interesting to notice that, while scaling
exponents for velocity are the same as those found in the solar wind, scaling exponents for the
magnetic field found in the solar wind reveal a more intermittent character. Moreover, we notice
that velocity, magnetic and Elsässer variables are more intermittent than the mixed correlators
and we think that this could be due to the cancelation effects among the different terms defining
the mixed correlators.

Time intermittency in the shell model generates rare and intense events. These events are the
result of the chaotic dynamics in the phase-space typical of the shell model (Okkels, 1997). That
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Figure 89: Time behavior of the real part of velocity variable un(t) at three different shells n, as indicated
in the different panels.
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Figure 90: Time behavior of the real part of magnetic variable bn(t) at three different shells n, as indicated
in the different panels.
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Figure 91: In the first three panels we report PDFs of both velocity (left column) and magnetic (right
column) shell variables, at three different shells `n. The bottom panels refer to probability distribution
functions of waiting times between intermittent structures at the shell n = 12 for the corresponding velocity
and magnetic variables.

Table 4: Scaling exponents for velocity and magnetic variables, Elsässer variables, and fluxes. Errors on
β±
p are about one order of magnitude smaller than the errors shown.

p ζp ηp ξ+p ξ−p β+
p β−

p

1 0.36 ➧ 0.01 0.35 ➧ 0.01 0.35 ➧ 0.01 0.36 ➧ 0.01 0.326 0.318
2 0.71 ➧ 0.02 0.69 ➧ 0.03 0.70 ➧ 0.02 0.70 ➧ 0.03 0.671 0.666
3 1.03 ➧ 0.03 1.01 ➧ 0.04 1.02 ➧ 0.04 1.02 ➧ 0.04 1.000 1.000
4 1.31 ➧ 0.05 1.31 ➧ 0.06 1.30 ➧ 0.05 1.32 ➧ 0.06 1.317 1.323
5 1.57 ➧ 0.07 1.58 ➧ 0.08 1.54 ➧ 0.07 1.60 ➧ 0.08 1.621 1.635
6 1.80 ➧ 0.08 1.8 ➧ 0.10 1.79 ➧ 0.09 1.87 ➧ 0.10 1.91 1.94
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dynamics is characterized by a certain amount of memory, as can be seen through the statistics
of waiting times between these events. The distributions P (δt) of waiting times is reported in the
bottom panels of Figures 91, at a given shell n = 12. The same statistical law is observed for the
bursts of total dissipation (Boffetta et al., 1999).

8 Observations of Yaglom’s Law in Solar Wind Turbulence

To avoid the risk of misunderstanding, let us start by recalling that Yaglom’s law (40) has been
derived from a set of equations (MHD) and under assumptions which are far from representing
an exact mathematical model for the solar wind plasma. Yaglom’s law is valid in MHD under
the hypotheses of incompressibility, stationarity, homogeneity, and isotropy. Also, the form used
for the dissipative terms of MHD equations is only valid for collisional plasmas, characterized
by quasi-Maxwellian distribution functions, and in case of equal kinematic viscosity and magnetic
diffusivity coefficients (Biskamp, 2003). In solar wind plasmas the above hypotheses are only rough
approximations, and MHD dissipative coefficients are not even defined (Tu and Marsch, 1995a).
At frequencies higher than the ion cyclotron frequency, kinetic processes are indeed present, and a
number of possible dissipation mechanisms can be discussed. When looking for the Yaglom’s law
in the SW, the strong conjecture that the law remains valid for any form of the dissipative term is
needed.

Despite the above considerations, Yaglom’s law results surprisingly verified in some solar wind
samples. Results of the occurrence of Yaglom’s law in the ecliptic plane, has been reported by
MacBride et al. (2008, 2010) and Smith et al. (2009) and, independently, in the polar wind by
Sorriso-Valvo et al. (2007). It is worthwhile to note that, the occurrence of Yaglom’s law in polar
wind, where fluctuations are Alfvénic, represents a double surprising feature because, according
to the usual phenomenology of MHD turbulence, a nonlinear energy cascade should be absent for
Alfénic turbulence.

In a first attempt to evaluate phenomenologically the value of the energy dissipation rate,
MacBride et al. (2008) analyzed the data from ACE to evaluate the occurrence of both the Kol-
mogorov’s 4/5-law and their MHD analog (40). Although some words of caution related to spikes
in wind speed, magnetic field strength caused by shocks and other imposed heliospheric structures
that constitute inhomogeneities in the data, authors found that both relations are more or less
verified in solar wind turbulence. They found a distribution for the energy dissipation rate, defined
in the above paper as ε = (ε+ii + ε−ii)/2, with an average of about ε ≃ 1.22× 104 J/Kg s.

In order to avoid variations of the solar activity and ecliptic disturbances (like slow wind
sources, coronal mass ejections, ecliptic current sheet, and so on), and mainly mixing between fast
and slow wind, Sorriso-Valvo et al. (2007) used high speed polar wind data measured by the Ulysses
spacecraft. In particular, authors analyze the first seven months of 1996, when the heliocentric
distance slowly increased from 3 AU to 4 AU, while the heliolatitude decreased from about 55∘ to
30∘. The third-order mixed structure functions have been obtained using 10-days moving averages,
during which the fields can be considered as stationary. A linear scaling law, like the one shown
in Figure 92, has been observed in a significant fraction of samples in the examined period, with a
linear range spanning more than two decades. The linear law generally extends from few minutes
up to 1 day or more, and is present in about 20 periods of a few days in the 7 months considered.
This probably reflects different regimes of driving of the turbulence by the Sun itself, and it is
certainly an indication of the nonstationarity of the energy injection process. According to the
formal definition of inertial range in the usual fluid flows, authors attribute to the range where
Yaglom’s law appear the role of inertial range in the solar wind turbulence (Sorriso-Valvo et al.,
2007). This range extends on scales larger than the usual range of scales where a Kolmogorov
relation has been observed, say up to about few hours (cf. Figure 25).
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Figure 92: An example of the linear scaling for the third-order mixed structure functions Y ±, obtained
in the polar wind using Ulysses measurements. A linear scaling law represents a range of scales where
Yaglom’s law is satisfied. Image reproduced by permission from Sorriso-Valvo et al. (2007), copyright by
APS.

Several other periods are found where the linear scaling range is reduced and, in particular, the
sign of Y ±

` is observed to be either positive or negative. In some other periods the linear scaling
law is observed either for Y +

` or Y −
` rather than for both quantities. It is worth noting that in a

large fraction of cases the sign switches from negative to positive (or viceversa) at scales of about
1 day, roughly indicating the scale where the small scale Alfvénic correlations between velocity and
magnetic fields are lost. This should indicate that the nature of fluctuations changes across the
break. The values of the pseudo-energies dissipation rates ε± has been found to be of the order of
magnitude about few hundreds of J/Kg s, higher than that found in usual fluid flows which result
of the order of 1÷ 50 J/Kg s.

The occurrence of Yaglom’s law in solar wind turbulence has been evidenced by a systematic
study by MacBride et al. (2010), which, using ACE data, found a reasonable linear scaling for the
mixed third-order structure functions, from about 64 s. to several hours at 1 AU in the ecliptic
plane. Assuming that the third-order mixed structure function is perpendicular to the mean field,
or assuming that this function varies only with the component of the scale `α that is perpendicular
to the mean field, and is cylindrically symmetric, the Yaglom’s law would reduce to a 2D state.
On the other hand, if the third-order function is parallel to the mean field or varies only with
the component of the scale that is parallel to the mean field, the Yaglom’slaw would reduce to a
1D-like case. In both cases the result will depend on the angle between the average magnetic field
and the flow direction. In both cases the energy cascade rate varies in the range 103 ÷ 104 J/Kg s
(see MacBride et al., 2010, for further details).

Quite interestingly, Smith et al. (2009) found that the pseudo-energy cascade rates derived from
Yaglom’s scaling law reveal a strong dependence on the amount of cross-helicity. In particular, they
showed that when the correlation between velocity and magnetic fluctuations are higher than about
0.75, the third-order moment of the outward-propagating component, as well as of the total energy
and cross-helicity are negative. As already made by Sorriso-Valvo et al. (2007), they attribute this
phenomenon to a kind of inverse cascade, namely a back-transfer of energy from small to large
scales within the inertial range of the dominant component. We should point out that experimental
values of energy transfer rate in the incompressive case, estimated with different techniques from
different data sets (Vasquez et al., 2007; MacBride et al., 2010), are only partially in agreement
with that obtained by Sorriso-Valvo et al. (2007). However, the different nature of wind (ecliptic
vs. polar, fast vs. slow, at different radial distances from the Sun) makes such a comparison only
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indicative.
As far as the scaling law (47) is concerned, Carbone et al. (2009a) found that a linear scaling for

W±
` as defined in (47), appears almost in all Ulysses dataset. In particular, the linear scaling for

W±
` is verified even when there is no scaling at all for Y ±

` (40). In particular, it has been observed
(Carbone et al., 2009a) that a linear scaling for W+

` appears in about half the whole signal, while
W−

` displays scaling on about a quarter of the sample. The linear scaling law generally extends on
about two decades, from a few minutes up to one day or more, as shown in Figure 93. At variance
to the incompressible case, the two fluxes W±

` coexist in a large number of cases. The pseudo-
energies dissipation rates so obtained are considerably larger than the relative values obtained in
the incompressible case. In fact it has been found that on average ε+ ≃ 3 × 103 J/Kg s. This
result shows that the nonlinear energy cascade in solar wind turbulence is considerably enhanced
by density fluctuations, despite their small amplitude within the Alfvénic polar turbulence. Note
that the new variables ∆w±

i are built by coupling the Elsässer fields with the density, before
computing the scale-dependent increments. Moreover, the third-order moments are very sensitive
to intense field fluctuations, that could arise when density fluctuations are correlated with velocity
and magnetic field. Similar results, but with a considerably smaller effect, were found in numerical
simulations of compressive MHD (Mac Low and Klessen, 2004).
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Figure 93: The linear scaling relation is reported for both the usual third-order structure function Y +
`

and the same quantity build up with the density-mediated variables W+
` . A linear relation full line is

clearly observed. Data refer to the Ulysses spacecraft. Image reproduced by permission from Carbone
et al. (2009a), copyright by APS.

Finally, it is worth reporting that the presence of Yaglom’s law in solar wind turbulence is an
interesting theoretical topic, because this is the first real experimental evidence that the solar wind
turbulence, at least at large-scales, can be described within the magnetohydrodynamic model. In
fact, Yaglom’s law is an exact law derived from MHD equations and, let us say once more, their
occurrence in a medium like the solar wind is a welcomed surprise. By the way, the presence
of the law in the polar wind solves the paradox of the presence of Alfvénic turbulence as first
pointed out by Dobrowolny et al. (1980a). Of course, the presence of Yaglom’s law generates some
controversial questions about data selection, reliability and a brief discussion on the extension of
the inertial range. The interested reader can find some questions and relative answers in Physical

Review Letters (Forman et al., 2010; Sorriso-Valvo et al., 2010a).
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9 Intermittency Properties in the 3D Heliosphere: Taking
a Look at the Data

In this section, we present a reasoned look at the main aspect of what has been reported in literature
about the problem of intermittency in the solar wind turbulence. In particular, we present results
from data analysis.

9.1 Structure functions

Apart from the earliest investigations on the fractal structure of magnetic field as observed in inter-
planetary space (Burlaga and Klein, 1986), the starting point for the investigation of intermittency
in the solar wind dates back to 1991, when Burlaga (1991a) started to look at the scaling of the
bulk velocity fluctuations at 8.5 AU using Voyager 2 data. This author found that anomalous
scaling laws for structure functions could be recovered in the range 0.85 ≤ r ≤ 13.6 h. This range
of scales has been arbitrarily identified as a kind of “inertial range”, say a region were a linear

scaling exists between logS
(p)
r and log r, and the scaling exponents have been calculated as the

slope of these curves. However, structure functions of order p ≤ 20 were determined on the basis
of only about 4500 data points. Nevertheless the scaling was found to be quite in agreement with
that found in ordinary fluid flows. Although the data might be in agreement with the random-β
model, from a theoretical point of view Carbone (1993, 1994b) showed that normalized scaling
exponents ζp/ζ4 calculated by Burlaga (1991a) would be better fitted by using a p-model derived
from the Kraichnan phenomenology (Kraichnan, 1965; Carbone, 1993), and considering the pa-
rameter µ ≃ 0.77. The same author (Burlaga, 1991b) investigated the multifractal structure of
the interplanetary magnetic field near 25 AU and analyzed positive defined fields as magnetic field
strength, temperature, and density using the multifractal machinery of dissipation fields (Paladin
and Vulpiani, 1987; Meneveau, 1991). Burlaga (1991c) showed that intermittent events observed
in co-rotating streams at 1 AU should be described by a multifractal geometry. Even in this case
the number of points used was very low to assure the reliability of high-order moments.

Marsch and Liu (1993) investigated the structure of intermittency of the turbulence observed
in the inner heliosphere by using Helios 2 data. They analyzed both bulk velocity and Alfvén
speed to calculate structure functions in the whole range 40.5 s (the instrument resolution) up
to 24 h to estimate the p-th order scaling exponents. Note that also in this analysis the number
of data points used was too small to assure a reliability for order p = 20 structure functions as
reported by Marsch and Liu (1993). From the analysis analogous to Burlaga (1991a), authors
found that anomalous scaling laws are present. A comparison between fast and slow streams at
two heliocentric distances, namely 0.3 AU and 1 AU, allows authors to conjecture a scenario for
high speed streams were Alfvénic turbulence, originally self-similar (or poorly intermittent) near
the Sun, “. . . loses its self-similarity and becomes more multifractal in nature” (Marsch and Liu,
1993), which means that intermittent corrections increase from 0.3 AU to 1 AU. No such behavior
seems to occur in the slow solar wind. From a phenomenological point of view, Marsch and Liu
(1993) found that data can be fitted with a piecewise linear function for the scaling exponents ζp,
namely a β-model ζp = 3−D+p(D−2)/3, where D ≃ 3 for p ≤ 6 and D ≃ 2.6 for p > 6. Authors
say that “We believe that we see similar indications in the data by Burlaga, who still prefers to
fit his whole ζp dataset with a single fit according to the non-linear random β-model.”. We like
to comment that the impression by Marsch and Liu (1993) is due to the fact that the number of
data points used was very small. As a matter of fact, only structure functions of order p ≤ 4 are
reliably described by the number of points used by Burlaga (1991a).

However, the data analyses quoted above, which in some sense present some contradictory
results, are based on high order statistics which is not supported by an adequate number of data
points and the range of scales, where scaling laws have been recovered, is not easily identifiable.
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To overcome these difficulties Carbone et al. (1996a) investigated the behavior of the normalized
ratios ζp/ζ3 through the ESS procedure described above, using data coming from low-speed streams
measurements of Helios 2 spacecraft. Using ESS the whole range covered by measurements is linear,
and scaling exponent ratios can be reliably calculated. Moreover, to have a dataset with a high
number of points, authors mixed in the same statistics data coming from different heliocentric
distances (from 0.3 AU up to 1 AU). This is not correct as far as fast wind fluctuations are taken
into account, because, as found by Marsch and Liu (1993) and Bruno et al. (2003b), there is a radial
evolution of intermittency. Results showed that intermittency is a real characteristic of turbulence
in the solar wind, and that the curve ζp/ζ3 is a non-linear function of p as soon as values of p ≤ 6
are considered.

Marsch et al. (1996) for the first time investigated the geometrical and scaling properties of
the energy flux along the turbulent cascade and dissipation rate of kinetic energy. They showed
the multifractal nature of the dissipation field and estimated, for the first time in solar wind MHD
turbulence, the associated singularity spectrum which resulted to be very similar to those obtained
for ordinary fluid turbulence (Meneveau and Sreenivasan, 1987). They also estimated the energy
dissipation rate for time scales of 102 s to be around 5.4 × 10−16 erg cm−3 s−1. This value was
similar to the theoretical heating rate required in the model by Tu (1988) with Alfvén waves to
explain the radial temperature dependence observed in fast solar wind. Looking at the literature,
it can be realized that often scaling exponents ζp, as observed mainly in the high-speed streams
of the inner solar wind, cannot be explained properly by any cascade model for turbulence. This
feature has been attributed to the fact that this kind of turbulence is not in a fully-developed
state with a well defined spectral index. Models developed by Tu et al. (1984) and Tu (1988)
were successful in describing the evolution of the observed power spectra. Using the same idea Tu
et al. (1996) and Marsch and Tu (1997) investigated the behavior of an extended cascade model
developed on the base of the p-model (Meneveau and Sreenivasan, 1987; Carbone, 1993). Authors
conjectured that: i) the scaling laws for fluctuations are still valid in the form δZ±

` ∼ `h, even
when turbulence is not fully developed; ii) the energy cascade rate is not constant, its moments
rather depend not only on the generalized dimensions Dp but also on the spectral index α of the
power spectrum, say ⟨εpr⟩ ∼ εp(`, α)`(p−1)Dp , where the averaged energy transfer rate is assumed
to be

ε(`, α) ∼ `−(m/2+1)P
α/2
` ,

being P` ∼ `α the usual energy spectrum (` ∼ 1/k). The model gives

ζp = 1 +
( p

m
− 1
)

Dp/m +
[

α
m

2
−
(

1 +
m

2

)] p

m
, (68)

where the generalized dimensions are recovered from the usual p-model

Dp =
log2 [µ

p + (1− µ)p]

(1− p)
.

In the limit of “fully developed turbulence”, say when the spectral slope is α = 2/m + 1 the
usual Equation (64) is recovered. The Helios 2 data are consistent with this model as far as the
parameters are µ ≃ 0.77 and α ≃ 1.45, and the fit is relatively good (Tu et al., 1996). Recently,
Horbury et al. (1997) and Horbury and Balogh (1997) studied the magnetic field fluctuations of
the polar high-speed turbulence from Ulysses measurements at 3.1 AU and at 63∘ heliolatitude.
These authors showed that the observed magnetic field fluctuations were in agreement with the
intermittent turbulence p-model of Meneveau and Sreenivasan (1987). They also showed that the
scaling exponents of structure functions of order p ≤ 6, in the scaling range 20 ≤ r ≤ 300 s followed
the Kolmogorov scaling instead of Kraichnan scaling as expected. In addition, the same authors
(Horbury et al., 1997) estimated the applicability of the model by Tu et al. (1996) and Marsch and
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Tu (1997) to the spectral transition range where the spectral index changes during the spectral
evolution and concluded that this model was able to fit the observations much better than the
p-model when values of the parameters p change continuously with the scale.

Analysis of scaling exponents of p-th order structure functions has been performed using dif-
ferent spacecraft datasets of Ulysses spacecraft. Horbury et al. (1995a) and Horbury et al. (1995c)
investigated the structure functions of magnetic field as obtained from observations recorded be-
tween 1.7 and 4 AU, and covering a heliographic latitude between 40∘ and 80∘ south. By in-
vestigating the spectral index of the second order structure function, they found a decrease with
heliocentric distance attributed to the radial evolution of fluctuations. Further investigations (see,
e.g., Ruzmaikin et al., 1995) were obtained using structure functions to study the Ulysses magnetic
field data in the range of scales 1 ≤ r ≤ 32 min. Ruzmaikin et al. (1995) showed that intermit-
tency is at work and developed a bi-fractal model to describe Alfvénic turbulence. They found
that intermittency may change the spectral index of the second order structure function and this
modifies the calculation of the spectral index (Carbone, 1994a). Ruzmaikin et al. (1995) found
that polar Alfvénic turbulence should be described by a Kraichnan phenomenology (Kraichnan,
1965). However, the same data can be fitted also with a fluid-like scaling law (Tu et al., 1996) and,
due to the relatively small amount of data, it is difficult to decide, on the basis of the second order
structure function, which scaling relation describes appropriately intermittency in the solar wind.

In a further paper Carbone et al. (1995b) provided evidence for differences in the ESS scaling
laws between ordinary fluid flows and solar wind turbulence. Through the analysis of different
datasets collected in the solar wind and in ordinary fluid flows, it was shown that normalized
scaling exponents ζp/ζ3 are the same as far as p ≤ 8 are considered. This indicates a kind of
universality in the scaling exponents for the velocity structure functions. Differences between
scaling exponents calculated in ordinary fluid flows and solar wind turbulence are confined to high-
order moments. Nevertheless, the differences found in the datasets were related to different kind
of singular structures in the model described by Equation (65). Solar wind data can be fitted by
that model as soon as the most intermittent structures are assumed to be planar sheets C = 1 and
m = 4, that is a Kraichnan scaling is used. On the contrary, ordinary fluid flows can be fitted only
when C = 2 and m = 3, that is, structures are filaments and the Kolmogorov scaling have been
used. However it is worthwhile to remark that differences have been found for high-order structure
functions, just where measurements are unreliable.

9.2 Probability distribution functions

As said in Section 7.2 the statistics of turbulent flows can be characterized by the PDF of field
differences over varying scales. At large scales PDFs are Gaussian, while tails become higher than
Gaussian (actually, PDFs decay as exp[−δZ±

` ]) at smaller scales.

Marsch and Tu (1994) started to investigate the behavior of PDFs of fluctuations against scales
and they found that PDFs are rather spiky at small scales and quite Gaussian at large scales. The
same behavior have been obtained by Sorriso-Valvo et al. (1999, 2001) who investigated Helios 2
data for both velocity and magnetic field.

In order to make a quantitative analysis of the energy cascade leading to the scaling dependence
of PDFs just described, the distributions obtained in the solar wind have been fitted (Sorriso-Valvo
et al., 1999) by using the log-normal ansatz

Gλ(σ) =
1√
2πλ

exp

(

− ln2 σ/σ0
2λ2

)

. (69)

The width of the log-normal distribution of σ is given by λ2(`) =
√

⟨(δσ)2⟩, while σ0 is the most
probable value of σ.
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Table 5: The values of the parameters σ0, µ, and γ, in the fit of λ2(τ) (see Equation (69) as a kernel for
the scaling behavior of PDFs. FW and SW refer to fast and slow wind, respectively, as obtained from the
Helios 2 spacecraft, by collecting in a single dataset all periods.

parameter B field (SW) V field (SW) B field (FW) V field (FW)

σ0 0.90 ➧ 0.05 0.95 ➧ 0.05 0.85 ➧ 0.05 0.90 ➧ 0.05
µ 0.75 ➧ 0.03 0.38 ➧ 0.02 0.90 ➧ 0.03 0.54 ➧ 0.03
γ 0.18 ➧ 0.03 0.20 ➧ 0.04 0.19 ➧ 0.02 0.44 ➧ 0.05

The Equation (66) has been fitted to the experimental PDFs of both velocity and magnetic
intensity, and the corresponding values of the parameter λ have been recovered. In Figure 94 the
solid lines show the curves relative to the fit. It can be seen that the scaling behavior of PDFs, in
all cases, is very well described by Equation (66). At every scale r, we get a single value for the
width λ2(r), which can be approximated by a power law λ2(r) = µr−γ for r < 1 h, as it can be
seen in Figure 95. The values of parameters µ and γ obtained in the fit, along with the values of
σ0, are reported in Table 5. The fits have been obtained in the range of scales τ ≤ 0.72 h for the
magnetic field, and τ ≤ 1.44 h for the velocity field. The analysis of PDFs shows once more that
magnetic field is more intermittent than the velocity field.
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Figure 94: Left: normalized PDFs of fluctuations of the longitudinal velocity field at four different scales
τ . Right: normalized PDFs of fluctuations of the magnetic field magnitude at four different scales τ .
Solid lines represent the fit made by using the log-normal model. Image reproduced by permission from
Sorriso-Valvo et al. (1999), copyright by AGU.

The same analysis has been repeated by Forman and Burlaga (2003). These authors used 64 s
averages of radial solar wind speed reported by the SWEPAM instrument on the ACE spacecraft,
increments have been calculated over a range of lag times from 64 s to several days. From the
PDF obtained through the Equation (69) authors calculated the structure functions and compared
the free parameters of the model with the scaling exponents of the structure functions. Then a
fit on the scaling exponents allows to calculate the values of λ2 and σ0. Once these parameters
have been calculated, the whole PDF is evaluated. The same authors found that the PDFs do
not precisely fit the data, at least for large values of the moment order. Interesting enough,
Forman and Burlaga (2003) investigated the behavior of PDFs when different kernels Gλ(σ),
derived from different cascade models, are taken into account in Equation (66). They discussed
the physical content of each model, concluding that a cascade model derived from lognormal or
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Figure 95: Scaling laws of the parameter λ2(τ) as a function of the scales τ , obtained by the fits of the
PDFs of both velocity and magnetic variables (see Figure 94). Solid lines represent fits made by power
laws. Image reproduced by permission from Sorriso-Valvo et al. (1999), copyright by AGU.

log-Lévy theories,10 modified by self-organized criticality proposed by Schertzer et al. (1997), seems
to avoid all problems present in other cascade models.

10 The lognormal model is derived by using a multiplicative process, where random variable generates the cascade.
Then, according to the Central Limit Theorem, the process converges to a lognormal distribution of finite variance.
The log-Lévy model is a modification of the lognormal model. In such case, the Central Limit Theorem is used
to derive the limit distribution of an infinite sum of random variables by relaxing the hypothesis of finite variance
usually used. The resulting limit function is a Lévy function.
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10 Turbulent Structures

The non-linear energy cascade towards smaller scales accumulates fluctuations only in relatively
small regions of space, where gradients become singular. As a rather different point of view (see
Farge, 1992) these regions can be viewed as localized zones of fluid where phase correlation ex-
ists, in some sense coherent structures. These structures, which dominate the statistics of small
scales, occur as isolated events with a typical lifetime greater than that of stochastic fluctuations
surrounding them. The idea of a turbulence in the solar wind made by a mixture of structures
convected by the wind and stochastic fluctuations is not particularly new (see, e.g., Tu and Marsch,
1995a). However, these large-scale structures cannot be considered as intermittent structures at
all scales. Structures continuously appear and disappear apparently in a random fashion, at some
random location of fluid, and carry a great quantity of energy of the flow. In this framework inter-
mittency can be considered as the result of the occurrence of coherent (non-Gaussian) structures
at all scales, within the sea of stochastic Gaussian fluctuations.

This point of view is the result of data analysis of scaling laws of turbulent fluctuations made
by using wavelets filters (see Appendix C) instead of the usual Fourier transform. Unlike the
Fourier basis, wavelets allow a decomposition both in time and frequency (or space and scale). In
analyzing intermittent structures it is useful to introduce a measure of local intermittency, as for
example the Local Intermittency Measure (LIM) introduced by Farge (1992) (see Appendix C).

The spatial structures generating intermittency have been investigated by Veltri and Mangeney
(1999), using the Haar basis applied to time series of thirteen months of velocity and magnetic data
from ISEE s/c. Analyzing intermittent events, they found that intermittent events occur on time
scale of the order of few minutes and that they are one-dimensional structures (in agreement with
Carbone et al., 1995b). In particular, they found different types of structures which can represent
two different categories:

i. Some of the structures are the well known one-dimensional current sheets, characterized by
pressure balance and almost constant density and temperature. When a minimum variance
analysis is made on the magnetic field near the structure, it can be seen that the most
variable component of the magnetic field changes sign. This component is perpendicular to
the average magnetic field, the third component being zero. An interesting property of these
structures is that the correlation between velocity and magnetic field within them is opposite
with respect to the rest of fluctuations. That is, when they occur during Alfvénic periods
velocity and magnetic field correlation is low; on the contrary, during non-Alfvénic periods
the correlation of structure increases.

ii. A different kind of structures looks like a shock wave. They can be parallel shocks or slow-
mode shocks. In the first case they are observed on the radial component of the velocity field,
but are also seen on the magnetic field intensity, proton temperature, and density. In the
second case they are characterized by a very low value of the plasma β parameter, constant
pressure, anti-correlation between density and proton temperature, no magnetic fluctuations,
and velocity fluctuations directed along the average magnetic field.

However, Salem et al. (2009), as already anticipated in Section 3.1.1, demonstrated that a
monofractal can be recovered and intermittency eliminated simply by subtracting a small subset
of the events at small scales.

Given a turbulent time series, as derived in the solar wind, a very interesting statistics can be
made on the time separation between the occurrence of two consecutive structures. Let us consider
a signal, for example u(t) or b(t) derived from solar wind, and let us define the wavelets set ws(r, t)
as the set which captures, at time t, the occurrence of structures at the scale r. Then define the
waiting times δt, as that time between two consecutive structures at the scale r, that is, between
ws(r, t) and ws(r, t+ δt). The PDFs of waiting times P (δt) are reported in Figure 82. As it can be
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seen, waiting times are distributed according to a power law P (δt) ∼ δt−β extended over at least
two decades. This property is very interesting, because this means that the underlying process for
the energy cascade is non-Poissonian. Waiting times occurring between isolated Poissonian events,
must be distributed according to an exponential function. The power law for P (δt) represents the
asymptotic behavior of a Lévy function with characteristic exponent α = β − 1. This describes
self-affine processes and are obtained from the central limit theorem by relaxing the hypothesis
that the variance of variables is finite. The power law for waiting times we found is a clear evidence
that long-range correlation (or in some sense “memory”) exists in the underlying cascade process.

On the other hand, Bruno et al. (2001), analyzing the statistics of the occurrence of waiting
times of magnetic field intensity and wind speed intermittent events for a short time interval
within the trailing edge of a high velocity stream, found a possible Poissonian-like behavior with a
characteristic time around 30 min for both magnetic field and wind speed. These results are to be
compared with previous estimates of the occurrence of interplanetary discontinuities performed by
Tsurutani and Smith (1979), who found a waiting time around 14 min. In addition, Bruno et al.

(2001), taking into account the wind speed and the orientation of the magnetic field vector at
the site of the observation, in the hypothesis of spherical expansion, estimated the corresponding
size at the Sun surface that resulted to be of the order of the photospheric structures estimated
also by Thieme et al. (1989). Obviously, the Poissonian statistics found by these authors does
not agree with the clear power law shown in Figure 82. However, Bruno et al. (2001) included
intermittent events found at all scales while results shown in Figure 82 refer to waiting times
between intermittent events extracted at the smallest scale, which results to be about an order of
magnitude smaller than the time resolution used by Bruno et al. (2001). A detailed study on this
topic would certainly clarify possible influences on the waiting time statistics due to the selection
of intermittent events according to the corresponding scale.

In the same study by Bruno et al. (2001), these authors analyzed in detail an event charac-
terized by a strong intermittent signature in the magnetic field intensity. A comparative study
was performed choosing a close-by time interval which, although intermittent in velocity, was not
characterized by strong magnetic intermittency. This time interval was located a few hours apart
from the previous one. These two intervals are indicated in Figure 96 by the two vertical boxes
labeled 1 and 2, respectively. Wind speed profile and magnetic field magnitude are shown in the
first two panels. In the third panel, the blue line refers to the logarithmic value of the magnetic
pressure Pm, here indicated by PB ; the red line refers to the logarithmic value of the thermal
pressure Pk, here indicated by PK and the black line refers to the logarithmic value of the total
pressure Ptot, here indicated by PT = PB +PK , including an average estimate of the electrons and
αs contributions. Magnetic field intensity residuals, obtained from the LIM technique, are shown
in the bottom panel. The first interval is characterized by strong magnetic field intermittency
while the second one is not. In particular, the first event corresponds to a relatively strong field
discontinuity which separates two regions characterized by a different bulk velocity and different
level of total pressure. While kinetic pressure (red trace) does not show any major jump across
the discontinuity but only a light trend, magnetic pressure (blue trace) clearly shows two distinct
levels.

A minimum variance analysis further reveals the intrinsic different nature of these two inter-
vals as shown in Figure 97 where original data have been rotated into the field minimum variance
reference system (see Appendix D.1) where maximum, intermediate and minimum variance com-
ponents are identified by λ3, λ2, and λ1, respectively. Moreover, at the bottom of the column we
show the hodogram on the maximum variance plane λ3 − λ2, as a function of time on the vertical
axis.

The good correlation existing between magnetic and velocity variations for both time intervals
highlights the presence of Alfvénic fluctuations. However, only within the first interval the mag-
netic field vector describes an arc-like structure larger than 90∘ on the maximum variance plane
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Figure 96: From top to bottom: 81 s averages of velocity wind profile in km s–1, magnetic field intensity
in nT, the logarithmic value of magnetic (blue line), thermal (red line), and total pressure (black line) in
dyne/cm2 and field intensity residuals in nT. The two vertical boxes delimit the two time intervals #1 and
#2 which were chosen for comparison. While the first interval shows strong magnetic intermittency, the
second one does not. Image reproduced by permission from Bruno et al. (2001), copyright by Elsevier.

(see rotation from A to B on the 3D graph at the bottom of the left column in Figure 97) in
correspondence with the time interval identified, in the profile of the magnetic field components,
by the green color. At this location, the magnetic field intensity shows a clear discontinuity, B[λ3]
changes sign, B[λ2] shows a hump whose maximum is located where the previous component
changes sign and, finally, B[λ1] keeps its value close to zero across the discontinuity. Velocity
fluctuations are well correlated with magnetic field fluctuations and, in particular, the minimum
variance component V [λ1] has the same value on both sides of the discontinuity, approximately
350 km s–1, indicating that there is no mass flux through the discontinuity. During this interval,
which lasts about 26 min, the minimum variance direction lies close to the background magnetic
field direction at 11.9∘ so that the arc is essentially described on a plane perpendicular to the
average background magnetic field vector. However, additional although smaller and less regular
arc-like structures can be recognized on the maximum variance plane λ2 − λ3, and they tend to
cover the whole 2π interval.

Within the second interval, magnetic field intensity is rather constant and the three components
do not show any particular fluctuation, which could resemble any sort of rotation. In other words,
the projection on the maximum variance plane does not show any coherent path. Even in this
case, these fluctuations happen to be in a plane almost perpendicular to the average field direction
since the angle between this direction and the minimum variance direction is about 9.3∘.

Further insights about differences between these two intervals can be obtained when we plot
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Figure 97: Left column, from top to bottom: we show magnetic field intensity, maximum λ3, intermediate
λ2 and minimum λ1 variance components for magnetic field (blue color) and wind velocity relative to the
time interval #1 shown in Figure 96. Right below, we show the hodogram on the maximum variance plane
λ3 − λ2, as a function of time (blue color line). The red lines are the projection of the blue line. The large
arc, from A to B, corresponds to the green segment in the profile of the magnetic field components shown
in the upper panel. The same parameters are shown for interval #2 (Figure 96), in the same format, on
the right hand side of the figure. The time resolution of the data is 81 s. Image reproduced by permission
from Bruno et al. (2001), copyright by Elsevier.
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the trajectory followed by the tip of the magnetic field vector in the minimum variance reference
system, as shown in Figure 98. The main difference between these two plots is that the one
relative to the first interval shows a rather patchy trajectory with respect to the second interval.
As a matter of fact, if we follow the displacements of the tip of the vector as the time goes by, we
observe that the two intervals have a completely different behavior.

Within the first time interval, the magnetic field vector experiences for some time small displace-
ments around a given direction in space and then it suddenly performs a much larger displacement
towards another direction in space, about which it starts to wander again. This process keeps on
going several times within this time interval. In particular, the thick green line extending from
label A to label B refers to the arc-like discontinuity shown in Figure 97, which is also the largest
directional variation within this time interval. Within the second interval, the vector randomly
fluctuates in all direction and, as a consequence, both the 3D trajectory and its projection on the
maximum variance plane do not show any large empty spot. In practice, the second time inter-
val, although longer, is similar to any sub-interval corresponding to one of the trajectory patches
recognizable in the left hand side panel. As a matter of fact, selecting a single patch from the
first interval and performing a minimum variance analysis, the maximum variance plane would
result to be perpendicular to the local average magnetic field direction and the tip of the vector
would randomly fluctuate in all directions. The first interval can be seen as a collection of sev-
eral sub-intervals similar to interval #2 characterized by different field orientations and, possibly,
intensities. Thus, magnetic field intermittent events mark the border between adjacent intervals
populated by stochastic Alfvénic fluctuations.
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Figure 98: Trajectory followed by the tip of the magnetic field vector (blue color line) in the minimum
variance reference system for interval #1 (left) and #2 (right). Projections on the three planes (red color
lines) formed by the three eigenvectors λ1, λ2, λ3, and the average magnetic field vector, with its projections
on the same planes, are also shown. The green line extending from label A to label B refers to the arc-
like discontinuity shown in Figure 97. The time resolution of the magnetic field averages is 6 s. Image
reproduced by permission from Bruno et al. (2001), copyright by Elsevier. (To see animations relative to
similar time intervals click on Figures 99 for a timeseries affected by the intermittency phenomenon or at
100 for non-intermittent and intermittent samples.

These differences in the dynamics of the orientation of the field vector can be appreciated
running the two animations behind Figures 99 and 100. Although the data used for these movies
do not exactly correspond to the same time intervals analyzed in Figure 96, they show the same
dynamics that the field vector has within intervals #1 and #2. In particular, the animation
corresponding to Figure 99 represents interval #2 while, Figure 100 represents interval #1.

The observations reported above suggested these authors to draw the sketch shown in Figure 101
that shows a simple visualization of hypothetical flux tubes, convected by the wind, which tangle up
in space. Each flux tube is characterized by a local field direction and intensity, and within each flux
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Figure 99: Still from a movie showing Trajectory followed by the tip of the magnetic field vector in
the minimum variance reference system during a time interval not characterized by intermittency. The
duration of the interval is 2000 Ö 6 s but the magnetic field vector moves only for 100 Ö 6 s in order to
make a smaller file (movie kindly provided by A. Vecchio). (To watch the movie, please go to the online
version of this review article at http://www.livingreviews.org/lrsp-2013-2.)

Figure 100: Still from a movie showing Trajectory followed by the tip of the magnetic field vector in
the minimum variance reference system during a time interval characterized by intermittent events. The
duration of the interval is 2000 Ö 6 s but the magnetic field vector moves only for 100 Ö 6 s in order to
make a smaller file (movie kindly provided by A. Vecchio). (To watch the movie, please go to the online
version of this review article at http://www.livingreviews.org/lrsp-2013-2.)
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tube the presence of Alfvénic fluctuations makes the magnetic field vector randomly wander bout
this direction. Moreover, the large scale is characterized by an average background field direction
aligned with the local interplanetary magnetic field. This view, based on the idea that solar wind
fluctuations are a superposition of propagating Alfvén waves and convected structures (Bavassano
and Bruno, 1989), strongly recalls the work by Tu and Marsch (1990a, 1993) who suggested the
solar wind fluctuations being a uperposition of pressure balance structure (PBS) type flux tubes
and Alfvén waves. In the inner heliosphere these PBS-type flux tubes are embedded in the large
structure of fast solar wind streams and would form a kind of spaghetti-like sub-structure, which
probably has its origin t the base of the solar atmosphere.

The border between these flux tubes can be a tangential discontinuity where the total pressure
on both sides of the discontinuity is in equilibrium or, as in the case of interval #1, the discontinuity
is located between two regions not in pressure equilibrium. If the observer moves across these tubes
he will record the patchy configuration shown in Figure 100 relative to interval #1. Within each
flux tube he will observe a local average field direction and the magnetic field vector would mainly
fluctuate on a plane perpendicular to this direction. Moving to the next tube, the average field
direction would rapidly change and magnetic vector fluctuations would cluster around this new
direction. Moreover, if we imagine a situation with many flux tubes, each one characterized by a
different magnetic field intensity, moving across them would possibly increase the intermittent level
of the fluctuations. On the contrary, moving along a single flux tube, the same observer would
constantly be in the situation typical of interval #2, which is mostly characterized by a rather
constant magnetic field intensity and directional stochastic fluctuations mainly on a plane quasi
perpendicular to the average magnetic field direction. In such a situation, magnetic field intensity
fluctuations would not increase their intermittency.

Local B

mean field

Figure 101: Simple visualization of hypothetical flux tubes which tangle up in space. Each flux tube is
characterized by a local field direction, and within each flux tube the presence of Alfvénic fluctuations makes
the magnetic field vector randomly wander about this direction. Moreover, the large scale is characterized
by an average background field direction aligned with the local interplanetary magnetic field. Moving
across different flux-tubes, characterized by a different values of |B|, enhances the intermittency level of
the magnetic field intensity time series (cf. Bruno et al., 2001).

A recent theoretical effort by Chang et al. (2004), Chang (2003), and Chang and Wu (2002)
models MHD turbulence in a way that recalls the interpretation of the interplanetary observations
given by Bruno et al. (2001) and, at the same time, reminds also the point of view expressed by
Farge (1992) in this section. These authors stress the fact that propagating modes and coherent,
convected structures share a common origin within the general view described by the physics of
complexity. Propagating modes experience resonances which generate coherent structures, possibly
flux tubes, which, in turn, will migrate, interact, and, eventually, generate new modes. This
process, schematically represented in Figure 102, which favors the local generation of coherent
structures in the solar wind, fully complement the possible solar origin of the convected component
of interplanetary MHD turbulence.
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Magnetic flux Current density

Figure 102: Composite figure made adapting original figures from the paper by Chang et al. (2004).
The first element on the upper left corner represents field-aligned spatio-temporal coherent structures. A
cross-section of two of these structures of the same polarity is shown in the upper right corner. Magnetic
flux iso-contours and field polarity are also shown. The darkened area represents intense current sheet
during strong magnetic shear. The bottom element of the figure is the result of 2D MHD simulations of
interacting coherent structures, and shows intermittent spatial distribution of intense current sheets. In
this scenario, new fluctuations are produced which can provide new resonance sites, possibly nucleating
new coherent structures.

10.1 On the statistics of magnetic field directional fluctuations

Interesting enough is to look at the statistics of the angular jumps relative to the orientation
of the magnetic field vector. Studies of this kind can help to infer the relevance of modes and
advected structures within MHD turbulent fluctuations. Bruno et al. (2004) found that PDFs
of interplanetary magnetic field vector angular displacements within high velocity streams can
be reasonably fitted by a double log-normal distribution, reminiscent of multiplicative processes
following turbulence evolution. As a matter of fact, the multiplicative cascade notion was intro-
duced by Kolmogorov into his statistical theory (Kolmogorov, 1941, 1991, 1962) of turbulence as a
phenomenological framework to accommodate extreme behavior observed in real turbulent fluids.

The same authors, studying the radial behavior of the two lognormal components of this distri-
bution concluded that they could be associated with Alfvénic fluctuations and advected structures,
respectively. In particular, it was also suggested that the nature of these advected structures could
be intimately connected to tangential discontinuities separating two contiguous flux tubes (Bruno
et al., 2001). Whether or not these fluctuations should be identified with the 2D turbulence was
uncertain since their relative PDF, differently from the one associated with Alfvénic fluctuations,
did not show a clear radial evolution. As a matter of fact, since 2D turbulence is characterized by
having its k vectors perpendicular to the local field it should experience a remarkable evolution
given that the turbulent cascade acts preferably on wave numbers perpendicular to the ambient
magnetic field direction, as suggested by the three-wave resonant interaction (Shebalin et al., 1983).
Obviously, an alternative solution would be the solar origin of these fluctuations. However, it is
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Figure 103: Probability distributions of the angular displacements experienced by magnetic vector on a
time scale of 6 s at 0.3 and 0.9 AU, for a fast wind, respectively. Solid curves refer to lognormals contributing
to form the thick solid curve which best fits the distribution. Image reproduced by permission from Bruno
et al. (2004), copyright EGU.)

still unclear whether these structures come directly from the Sun or are locally generated by some
mechanism. Some theoretical results (Primavera et al., 2003) would indicate that coherent struc-
tures causing intermittency in the solar wind (Bruno et al., 2003a), might be locally created by
parametric decay of Alfvén waves. As a matter of fact, coherent structures like current sheets are
continuously created when the instability is active (Primavera et al., 2003).

A more recent analysis (Borovsky, 2008) on changes in the field direction experienced by the
solar wind magnetic field vector reproposed the picture that the inner heliosphere is filled with
a network of entangled magnetic flux tubes (Bruno et al., 2001) and interpreted these flux tubes
like fossil structures that originate at the solar surface. These tubes are characterized by strong
changes in the magnetic field direction as shown by the distribution illustrated in Figure 104 that
refers to the occurrence of changes in the magnetic field direction observed by ACE for about
7 years for a time scale of roughly 2 minutes. Two exponential curves have been used to fit the
distribution, one for the small angular change population and one for the large angular change
population. The small angular-change population is associated with fluctuations active within the
flux tube while, the second population would be due to large directional jumps identifying the
crossing of the border between adjacent flux tubes. The same authors performed similar analyses
on several plasma and magnetic field parameters like velocity fluctuations, alpha to proton ratio,
proton and electron entropies, and found that also for these parameters small/large changes of
these parameters are associated with small/large angular changes confirming the different nature
of these two populations. Larger flux tubes, originating at the Sun, thanks to wind expansion
which would inhibit reconnection, would eventually reach 1 AU.
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Figure 104: Measurements of angular differences of magnetic field direction on time scale of 128 s. Data
set is from ACE measurements for the years 1998 – 2004. Exponential fits to two portions of the distribution
are shown as dashed curves. Images reproduced by permission from Borovsky (2008), copyright by AGU.

In another recent paper, Li (2008) developed a genuine data analysis method to localize indi-
vidual current sheets from a turbulent solar wind magnetic field sample. He noticed that, in the
presence of a current sheet, a scaling law appears for the cumulative distribution function of the
angle between two magnetic field vectors separated by some time lags. In other words, if we define
the function F (θ, ζ) to represent the frequency of having the measured angle between magnetic
vectors separated by a time lag ζ larger than θ we expect to have the following scaling relation:

F (θ,Nζ) ∼ NF (θ, ζ). (70)

As a matter of fact, if the distribution function F (θ, ζ) above a certain critical angle θ0 is
dominated by current-sheet crossing separating two adjacent flux tubes, we expect to find the
scaling represented by relation 70. On the contrary, if we are observing these fluctuations within
the same side of the current sheet F (θ, ζ) is dominated by small angular fluctuations and we do
not expect to find any scaling.

Using the same methodology, Li et al. (2008) also studied fluctuations in the Earth’s magnetotail
to highlight the absence of similar structures and to conclude that most of those advected structures
observed in the solar wind must be of solar origin.

10.2 Radial evolution of intermittency in the ecliptic

Marsch and Liu (1993) investigated for the first time solar wind scaling properties in the inner
heliosphere. These authors provided some insights on the different intermittent character of slow
and fast wind, on the radial evolution of intermittency, and on the different scaling characterizing
the three components of velocity. In particular, they found that fast streams were less intermit-
tent than slow streams and the observed intermittency showed a weak tendency to increase with
heliocentric distance. They also concluded that the Alfvénic turbulence observed in fast streams
starts from the Sun as self-similar but then, during the expansion, decorrelates becoming more
multifractal. This evolution was not seen in the slow wind, supporting the idea that turbulence
in fast wind is mainly made of Alfvén waves and convected structures (Tu and Marsch, 1993), as
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Figure 105: Distribution function for two time periods. The left panels show the dependence of F (θ, ζ)
on θ, and the right panels show the dependence of F (θ, ζ) on ζ. The presence of a current sheet makes
F (θ, ζ) to increases linearly with ζ (dashed lines in the right panels). Image reproduced by permission
from Li (2008), copyright by AAS.

already inferred by looking at the radial evolution of the level of cross-helicity in the solar wind
(Bruno and Bavassano, 1991).

Bruno et al. (2003a) investigated the radial evolution of intermittency in the inner heliosphere,
using the behavior of the flatness of the PDF of magnetic field and velocity fluctuations as a function
of scale. As a matter of fact, probability distribution functions of fluctuating fields affected by
intermittency become more and more peaked at smaller and smaller scales. Since the peakedness
of a distribution is measured by its flatness factor, they studied the behavior of this parameter at
different scales to estimate the degree of intermittency of their time series, as suggested by Frisch
(1995).

In order to study intermittency they computed the following estimator of the flatness factor ℱ :

ℱ(τ) =
⟨S4

τ ⟩
⟨S2

τ ⟩2
, (71)

where τ is the scale of interest and Sp
τ = ⟨|V (t+τ)−V (t)|p⟩ is the structure function of order p of the

generic function V (t). They considered a given function to be intermittent if the factor ℱ increased
when considering smaller and smaller scales or, equivalently, higher and higher frequencies.

In particular, vector field, like velocity and magnetic field, encompasses two distinct contri-
butions, a compressive one due to intensity fluctuations that can be expressed as δ|B(t, τ)| =
|B(t + τ)| − |B(t)|, and a directional one due to changes in the vector orientation δB(t, τ) =
√

∑

i=x,y,z(Bi(t+ τ)−Bi(t))2. Obviously, relation δB(t, τ) takes into account also compressive

contributions, and the expression δB(t, τ) ≥ |δ|B(t, τ)|| is always true.
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Figure 106: Flatness ℱ vs. time scale τ relative to magnetic field fluctuations. The left column (panels
A and C) refers to slow wind and the right column (panels B and D) refers to fast wind. The upper
panels refer to compressive fluctuations and the lower panels refer to directional fluctuations. Vertical
bars represent errors associated with each value of ℱ . The three different symbols in each panel refer to
different heliocentric distances as reported in the legend. Image reproduced by permission from Bruno
et al. (2003b), copyright by AGU.

Living Reviews in Solar Physics

http://www.livingreviews.org/lrsp-2013-2

http://www.livingreviews.org/lrsp-2013-2


The Solar Wind as a Turbulence Laboratory 139

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

 

 

F
la

tn
e

s
s
 F

τ [sec]

SLOW WIND 

DIRECTIONAL FLUCTUATIONS

 0.9AU  0.7AU  0.3AU

 D  C 

 B  A 

 

 

F
la

tn
e

s
s
 F

SLOW WIND 

COMPRESSIVE FLUCTUATIONS

 0.9AU  0.7AU  0.3AU

 

 

FAST WIND 

COMPRESSIVE FLUCTUATIONS

 0.9AU  0.7AU  0.3AU

Solar Wind Velocity

 

 

τ [sec]

FAST WIND 

DIRECTIONAL FLUCTUATIONS

 0.9AU  0.7AU  0.3AU

Figure 107: Flatness ℱ vs. time scale τ relative to wind velocity fluctuations. In the same format
of Figure 106 panels A and C refer to slow wind and panels B and D refer to fast wind. The upper
panels refer to compressive fluctuations and the lower panels refer to directional fluctuations. Vertical
bars represent errors associated with each value of ℱ . Image reproduced by permission from Bruno et al.

(2003b), copyright by AGU.
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Looking at Figures 106 and 107, taken from the work of Bruno et al. (2003a), the following
conclusions can be drawn:

❼ Magnetic field fluctuations are more intermittent than velocity fluctuations.

❼ Compressive fluctuations are more intermittent than directional fluctuations.

❼ Slow wind intermittency does not show appreciable radial dependence.

❼ Fast wind intermittency, for both magnetic field and velocity, clearly increases with distance.

❼ Magnetic and velocity fluctuations have a rather Gaussian behavior at large scales, as ex-
pected, regardless of type of wind or heliocentric distance.

Moreover, they also found that the intermittency of the components rotated into the mean field
reference system (see Appendix D.1) showed that the most intermittent component of the magnetic
field is the one along the mean field, while the other two show a similar level of intermittency within
the associated uncertainties. Finally, with increasing the radial distance, the component along the
mean field becomes more and more intermittent with respect to the transverse components. These
results agree with conclusions drawn by Marsch and Tu (1994) who, analyzing fast and slow wind at
0.3 AU in Solar Ecliptic (SE hereafter) coordinate system, found that the PDFs of the fluctuations
of transverse components of both velocity and magnetic fields, constructed for different time scales,
were appreciably more Gaussian-like than fluctuations observed for the radial component, which
resulted to be more and more spiky for smaller and smaller scales.

However, at odds with results by Bruno et al. (2003a), Tu et al. (1996) could not establish any
radial dependence due to the fact that their analysis was performed in the SE reference system
instead of the mean field reference system as in the analysis of Bruno et al. (2003a). As a matter of
fact, the mean field reference system is a more natural reference system where to study magnetic
field fluctuations.

The reason is that components normal to the mean field direction are more influenced by
Alfvénic fluctuations and, as a consequence, their fluctuations are more stochastic and less inter-
mittent. This effect largely reduces during the radial excursion mainly because in the SE reference
system cross-talking between different components is artificially introduced. As a matter of fact,
the presence of the large scale spiral magnetic field breaks the spatial symmetry introducing a
preferential direction parallel to the mean field. The same Bruno et al. (2003b) showed that it
was not possible to find a clear radial trend unless magnetic field data were rotated into this more
natural reference system.

On the other hand, it looks more difficult to reconcile the radial evolution of intermittency
found by Bruno et al. (2003b) and Marsch and Liu (1993) in fast wind with conclusions drawn
by Tu et al. (1996), who stated that “Neither a clear radial evolution nor a clear anisotropy can
be established. The value of P1 in high-speed and low-speed wind are not prominent different.”.
However, it is very likely that the conclusions given above are related with how to deal with the
flat slope of the spectrum in fast wind near 0.3 AU. Tu et al. (1996) concluded, indeed: “It should
be pointed out that the extended model cannot be used to analyze the intermittency of such
fluctuations which have a flat spectrum. If the index of the power spectrum is near or less than
unity . . . P1 would be 0.5. However, this does not mean there is no intermittency. The model
simply cannot be used in this case, because the structure function(1) does not represent the effects
of intermittency adequately for those fluctuations which have a flat spectrum and reveal no clear
scaling behavior”.

Bruno et al. (2003a) suggested that, depending on the type of solar wind sample and on the
heliocentric distance, the observed scaling properties would change accordingly. In particular, as
the radial distance increases, convected, coherent structures of the wind assume a more relevant
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role since the Alfvénic component of the fluctuations is depleted. This would be reflected in the
increased intermittent character of the fluctuations. The coherent nature of the convected struc-
tures would contribute to increase intermittency while the stochastic character of the Alfvénic
fluctuations would contribute to decrease it. This interpretation would also justify why compres-
sive fluctuations are always more intermittent than directional fluctuations. As a matter of fact,
coherent structures would contribute to the intermittency of compressive fluctuations and, at the
same time, would also produce intermittency in directional fluctuations. However, since directional
fluctuations are greatly influenced by Alfvénic stochastic fluctuations, their intermittency will be
more or less reduced depending on the amplitude of the Alfvén waves with respect to the amplitude
of compressive fluctuations.

The radial dependence of the intermittency behavior of solar wind fluctuations stimulated
Bruno et al. (1999b) to reconsider previous investigations on fluctuations anisotropy reported in
Section 3.1.4. These authors studied magnetic field and velocity fluctuations anisotropy for the
same co-rotating, high velocity stream observed by Bavassano et al. (1982a) within the framework
of the dynamics of non-linear systems. Using the Local Intermittency Measure (Farge et al.,
1990; Farge, 1992; Bruno et al., 1999b) were able to justify the controversy between results by
Klein et al. (1991) in the outer heliosphere and Bavassano et al. (1982a) in the inner heliosphere.
Exploiting the possibility offered by this technique to locate in space and time those events which
produce intermittency, these authors were able to remove intermittent events and perform again
the anisotropy analysis. They found that intermittency strongly affected the radial dependence
of magnetic fluctuations while it was less effective on velocity fluctuations. In particular, after
intermittency removal, the average level of anisotropy decreased for both magnetic and velocity
field at all distances. Although magnetic fluctuations remained more anisotropic than their kinetic
counterpart, the radial dependence was eliminated. On the other hand, the velocity field anisotropy
showed that intermittency, although altering the anisotropic level of the fluctuations, does not
markedly change its radial trend.

10.3 Radial evolution of intermittency at high latitude

Recently, Pagel and Balogh (2003) studied intermittency in the outer heliosphere using Ulysses
observations at high heliographic latitude, well within high speed solar wind. In particular, these
authors used Castaing distribution Castaing et al. (2001) to study the Probability Distribution
Functions (PDF) of the fluctuations of magnetic field components (see Section 9.2 for description
of Castaing distribution and related governing parameters definition λ and σ). They found that
intermittency of small scales fluctuations, within the inertial range, increased with increasing the
radial distance from the Sun as a consequence of the growth to larger scales of the inertial range.

As a matter of fact, using the scaling found by Horbury et al. (1996a) between the transition
scale (the inverse of the frequency corresponding to the break-point in the magnetic field spectrum)
TB ∼ r1.1±0.1, Pagel and Balogh (2003) quantitatively evaluated how the top of the inertial range
in their data should shift to larger time scales with increasing heliocentric distance. Moreover,
taking into account that inside the inertial range λ2 ∼ τ−β =⇒ λ2 = aτ−β and that the proposed
scaling from Castaing et al. (2001) would be λ2 ∼ const.(τ/T )−β , we should expect that for τ = T
the parameter λ2 = const.. Thus, these authors calculated σ2 and λ2 at different heliocentric
distances and made the hypothesis of a similar scaling for σ2 and λ2, although this is not assured
by the model. Figure 108 reports values of λ2 and σ2 vs. distance calculated for the top of the
inertial range at that distance using the above procedure. The radial behavior shown in this figure
suggests that there is no radial dependence for these parameters for all the three components
(indicated by different symbols), as expected if the observed radial increase of intermittency in the
inertial range is due to a broadening of the inertial range itself.

They also found that, in the RTN reference system, transverse magnetic field components ex-
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Figure 108: Values of λ2 (upper panel) and σ2 (lower panel) vs. heliocentric distance (see Section 9.2
for description of Castaing distribution and definition of λ and σ). These values have been calculated for
the projected low frequency beginning of the inertial range relative to each distance (see text for details).
R, T, and N components are indicated by asterisks, crosses and circles, respectively. Image reproduced by
permission from Pagel and Balogh (2003), copyright by AGU.

hibit less Gaussian behavior with respect to the radial component. This result should be compared
with results from similar studies by Marsch and Tu (1994) and Bruno et al. (2003b) who, studying
the radial evolution of intermittency in the ecliptic, found that the components transverse to the
local magnetic field direction, are the most Gaussian ones. Probably, the above discrepancy de-
pends totally on the reference system adopted in these different studies and it would be desirable to
perform a new comparison between high and low latitude intermittency in the mean-field reference
system.

Pagel and Balogh (2002) focused also on the different intermittent level of magnetic field fluctu-
ations during two fast latitudinal scans which happened to be during solar minimum the first one,
and during solar maximum the second one. Their results showed a strong latitudinal dependence
but were probably not, or just slightly, affected by radial dependence given the short heliocentric
radial variations during these time intervals. They analyzed the anomalous scaling of the third
order magnetic field structure functions looking at the value of the parameter µ obtained from the
best fit performed using the p-model (see Section 7.4). In a previous analysis of the same kind,
but focalized on the first latitudinal scan, the same authors tested three intermittency models,
namely: “lognormal”, “p” and “G-infinity” models. In particular, this last model was an empirical
model introduced by Pierrehumbert (1999) and Cho et al. (2000) and was not intended for turbu-
lent systems. Anyhow, the best fits were obtained with the lognormal and Kolmogorov-p model.
These authors concluded that magnetic field components display a very high level of intermittency
throughout minimum and maximum phases of solar cycle, and slow wind shows a lower level of
intermittency compared with the Alfvénic polar flows. These results do not seem to agree with
ecliptic observations (Marsch and Liu, 1993; Bruno et al., 2003a) which showed that fast wind is
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generally less intermittent than slow wind not only for wind speed and magnetic field magnitude,
but also for the components. At this point, since it has been widely recognized that low latitude
fast wind collected within co-rotating streams and fast polar wind share many common turbulence
features, they should be expected to have many similarities also as regards intermittency. Thus,
it is possible that also in this case the reference system in which the analysis is performed plays
some role in determining some of the results regarding the behavior of the components. In any
case, further analyses should clarify the reasons for this discrepancy.

11 Solar Wind Heating by the Turbulent Energy Cascade

The Parker theory of solar wind (Parker, 1964) predicts an adiabatic expansion from the hot corona
without further heating. For such a model, the proton temperature T (r) should decrease with the
heliocentric distance r as T (r) ∼ r−4/3. The radial profile of proton temperature have been
obtained from measurements by the Helios spacecraft at 0.3 AU (Marsch et al., 1982; Marsch,
1983; Schwenn, 1983; Freeman, 1988; Goldstein, 1996), up to 100 AU or more by Voyager and
Pioneer spacecrafts (Gazis, 1984; Gazis et al., 1994; Richardson et al., 1995). These measurements
show that the temperature decay is in fact considerably slower than expected. Fits of the radial
temperature profile gave an effective decrease T ∼ T0(r0/r)

ξ in the ecliptic plane, with the exponent
ξ ∈ [0.7; 1], much smaller than the adiabatic case. Actually ξ ≃ 1 within 1 AU, while ξ flattens to
ξ ≃ 0.7 beyond 30 AU, where pickup ions probably contribute significantly (Richardson et al., 1995;
Zank et al., 1996; Smith et al., 2001b). These observations imply that some heating mechanism
must be at work within the wind plasma to supply the energy required to slow down the decay.
The nature of the heating process of solar wind is an open problem.

The primary process governing the solar wind heating is probably active locally in the wind.
However, since collisions are very rare in the solar wind plasma, the usual viscous coefficients
have no meaning, say energy must be transferred to very small scales before it can be efficiently
dissipated, perhaps by kinetic processes. As a consequence, the presence of a turbulent energy flux
is the crucial first step towards the understanding of solar wind heating (Coleman, 1968; Tu and
Marsch, 1995a) because, as said in Section 2.4, the turbulent energy cascade represents nothing but
the way for energy to be efficiently dissipated in a high-Reynolds number flow.11 In other words,
before to face the problem of what actually be the physical mechanisms responsible for energy
dissipation, if we conjecture that these processes happens at small scales, the turbulent energy flux
towards small scales must be of the same order of the heating rate.

Using the hypothesis that the energy dissipation rate is equal to the heat addition, one can use
the omnidirectional power law spectrum derived by Kolmogorov

P (k) = CKε
2/3
P k−5/3

(CK is the Kolmogorov constant that can be obtained from measurements) to infer the energy
dissipation rate (Leamon et al., 1999)

εP =

[

5

3
P (k)C−1

K

]3/2

k5/2 , (72)

where k = 2πf/V (f is the frequency in the spacecraft frame and V is the solar wind speed). The
same conjecture can be made by using Elsässer variables, thus obtaining a generalized Kolmogorov
phenomenology for the power spectra P±(k) of the Elsässer variables (Zhou and Matthaeus, 1989,
1990; Marsch, 1991)

ε±P = C
−3/2
k P±(k)

√

P∓(k)k5/2 . (73)

11 For a discussion on non-turbulent mechanism of solar wind heating cf. Tu and Marsch (1995a).
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Even if the above expressions are affected by the presence of intermittency, namely extreme fluctu-
ations of the energy transfer rate, and an estimated value for the Kolmogorov constant is required,
the estimated energy dissipation rates roughly agree with the heating rates derived from gradients
of the thermal proton distribution (MacBride et al., 2010).

A different estimate for the energy dissipation rate in spherical symmetry can be derived from
an expression that uses the adiabatic cooling in combination with local heating rate ε. In a steady
state situation the equation for the radial profile of ions temperature can be written as (Verma
et al., 1995)

dT (r)

dr
+

4

3

T (r)

r
=

mpε

(3/2)VSW(r)kB
, (74)

where mp is the proton mass and VSW(r) is the radial profile of the bulk wind speed in km s–1.
(kB is the Boltzmann constant). Equation (74) can be solved using the actual radial profile of
temperature thus obtaining an expression for the radial profile of the heating rate needed to heat
the wind at the actual value (Vasquez et al., 2007)

ε(r) =
3

2

(

4

3
− ξ

)

VSW(r)kBT (r)

rmp
. (75)

This relation is obtained by considering a polytropic index γ = 5/3 for the adiabatic expansion of
the solar wind plasma, the protons being the only particles heated in the process. Such assumptions
are only partially correct, since the electrons could play a relevant role in the heat exchange.
Heating rates obtained using Equation (75) should thus be only seen as a first approximation
that could be improved with better models of the heating processes. Using the expected solar
wind parameters at 1 AU, the expected heating rate ranges from 102 J/Kg s for cold wind to
104 J/Kg s in hot wind. Cascade rates estimated from the energy-containing scale of turbulence
at 1 AU obtained by evaluating triple correlations of fluctuations and the correlation length scale
of turbulence give values in this range (Smith et al., 2001a, 2006; Isenberg, 2005; Vasquez et al.,
2007)

Rather than estimating the heating rate by typical solar wind fluctuations and the Kolmogorov
constant, it is perhaps much more convenient to get a direct estimate of the energy dissipation rate
by measurements of the turbulent energy cascade using the Yaglom’s law, say from measurements
of the third-order mixed moments of fluctuations. In fact, the roughly constant values of Y ±

` /`, or
alternatively their compressible counterpart W±

` /` will result in an estimate for the pseudo-energy
dissipation rates ε± (at least within a constant of order unity), over a range of scales `, which by
definition is unaffected by intermittency. This has been done both in the ecliptic plane (MacBride
et al., 2008, 2010) and in polar wind (Marino et al., 2009; Carbone et al., 2009b). Even preliminary
attempts (MacBride et al., 2008) result in an estimate for the energy dissipation rate εE which
is close to the value required for the heating of solar wind. However, refined analysis (MacBride
et al., 2010) give results which indicate that at 1 AU in the ecliptic plane the solar wind can be
heated by a turbulent energy cascade. As a different approach, Marino et al. (2009) using the data
from the Ulysses spacecraft in the polar wind, calculate the values of the pseudo-energies from the
relation Y ±

` /`, and compare these values with the radial profile of the heating rate (75) required to
maintain the observed temperature against the adiabatic cooling. The Ulysses database provides
two different estimates for the temperature, T1, indicated as Tlarge in literature, and T2, known as
Tsmall. In general, T1 and T2 are known to sometimes give an overestimate and an underestimate of
the true temperature, respectively, so that analysis are performed using both temperatures (Marino
et al., 2009). The heating rate are estimated at the same positions for which the energy cascade
was observed. As shown in Figure 109 results indicate that turbulent transfer rate represents a
significant amount of the expected heating, say the MHD turbulent cascade contributes to the
in situ heating of the wind from 8% to 50% (for T1 and T2 respectively), up to 100% in some
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cases. The authors concluded that, although the turbulent cascade in the polar wind must be
considered an important ingredient of the heating, the turbulent cascade alone seems unable to
provide all the heating needed to explain the observed slowdown of the temperature decrease, in
the framework of the model profile given in Equation (75). The situation is completely different
as far as compressibility is taken into account. In fact, when the pseudo-energy transfer rates have
been calculated through W±

` /`, the radial profile of energy dissipation rate is well described thus
indicating that the turbulent energy cascade provides the amount of energy required to locally
heat the solar wind to the observed values.
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Figure 109: Radial profile of the pseudoenergy transfer rates obtained from the turbulent cascade rate
through the Yaglom relation, for both the compressive and the incompressive case. The solid lines represent
the radial profiles of the heating rate required to obtain the observed temperature profile.

11.1 Dissipative/dispersive range in the solar wind turbulence

As we saw in Section 8, the energy cascade in turbulence can be recognized by looking at Yaglom’s
law. The presence of this law in the solar wind turbulence showed that an energy cascade is at
work, thus transferring energy to small scales where it is dissipated by some mechanism. While,
as we showed before, the inertial range of turbulence in solar wind can be described more or less
in a fluid framework, the small scales dissipative region can be much more (perhaps completely)
different. The main motivation for this is the fact that the collision length in the solar wind,
as a rough estimate the thermal velocity divided by the collision frequency, results to be of the
order of 1 AU. Then the solar wind behaves formally as a collisionless plasma, that is the usual
viscous dissipation is negligible. At the same time, in a magnetized plasma there are a number
of characteristic scales, then understanding the physics of the generation of the small-scale region
of turbulence in solar wind is a challenging topic from the point of view of basic plasma physics.
With small-scales we mean scales ranging between the ion-cyclotron frequency fci = eB/mi (which
in the solar wind at 1 AU is about fci ≃ 0.1 Hz), or the ion inertial length λi = c/ωpi, and the
electron-cyclotron frequency. At these scales the usual MHD approximation could breaks down in
favour of a more complex description of plasma where kinetic processes must take place.

Some times ago Leamon et al. (1998) analyzed small-scales magnetic field measurements at
1 AU, by using 33 one-hour intervals of the MFI instrument on board Wind spacecraft. Figure 110
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Figure 110: a) Typical interplanetary magnetic field power spectrum obtained from the trace of the
spectral matrix. A spectral break at about ∼ 0.4 Hz is clearly visible. b) Corresponding magnetic helicity
spectrum. Image reproduced by permission from Leamon et al. (1998), copyright by AGU.

shows the trace of the power spectral density matrix for hour 1300 on day 30 of 1995, which is
the typical interplanetary power spectrum measured by Leamon et al. (1998). It is evident that a
spectral break exists at about fbr ≃ 0.44 Hz, close to the ion-cyclotron frequency. Below the ion-
cyclotron frequency, the spectrum follows the usual power law f−α, where the spectral index is close
to the Kolmogorov value α ≃ 5/3. At small-scales, namely at frequencies above fbr, the spectrum
steepens significantly, but is still described by a power law with a slope in the range α ∈ [2 – 4]
(Leamon et al., 1998; Smith et al., 2006), typically α ≃ 7/3. As a direct analogy to hydrodynamic
where the steepening of the inertial range spectrum corresponds to the onset of dissipation, the
authors attribute the steepening of the spectrum to the occurrence of a “dissipative” range (Leamon
et al., 1998). Statistical analysis by Smith et al. (2006), showed that the distribution of spectral
slopes (cf. Figure 2 of Smith et al., 2006), is broader for the high-frequency region, while it is
more peaked around the Kolmogorov’s value in the low-frequency region. Moreover, as a matter
of fact, the high-frequency region of the spectrum seems to be related to the low-frequency region
(Smith et al., 2006). In particular, the steepening of the high-frequency range spectrum is clearly
dependent on the rate of the energy cascade ε obtained as a rough estimate (cf. Figure 4 of Smith
et al., 2006).

Further properties of turbulence in the high-frequency region have been evidenced by looking
at solar wind observations by the FGM instrument onboard Cluster satellites (Alexandrova et al.,
2008) spanning a 0.02÷ 0.5 Hz frequency range. The authors found that the same spectral break
by Leamon et al. (1998) exists when different datasets (Helios for large scales and Cluster for small
scales) are used. The break (cf. Figure 1 of Alexandrova et al., 2008) has been found at about
fbr ≃ 0.3 Hz, near the ion cyclotron frequency fci ≃ 0.1 Hz, which roughly corresponds to spatial
scales of about 1900 km ≃ 15λi (being λi ≃ 130 km the ion-skin-depth). However, as evidenced
in Figure 1 of Alexandrova et al. (2008), the compressible magnetic fluctuations, measured by
magnetic field parallel spectrum S‖, are enhanced at small scales. This means that, after the break
compressible fluctuations become much more important than in the low-frequency part. The
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parameter ⟨S‖⟩/⟨S⟩/ ≃ 0.03 in the low-frequency range (S is the total power spectrum density and
brackets means averages value over the whole range) while compressible fluctuations are increased
to about ⟨S‖⟩/⟨S⟩/ ≃ 0.26 in the high-frequency part. The increase of the above ratio were already
noted in the paper by Leamon et al. (1998). Moreover, Alexandrova et al. (2008) found that, as
results in the low-frequency region (cf. Section 7.2), intermittency is a basic property of the high-
frequency range. In fact, the authors found that PDFs of normalized magnetic field increments
strongly depend on the scale (Alexandrova et al., 2008), a typical signature of intermittency in
fully developed turbulence (cf. Section 7.2). More quantitatively, the behavior of the fourth-order
moment of magnetic fluctuations at different frequencies K(f) is shown in Figure 111

Figure 111: The fourth-order momentK(f) of magnetic fluctuations as a function of frequency f is shown.
Dashed line refers to data from Helios spacecraft while full line refers to data from Cluster spacecrafts at
1 AU. The inset refers to the number of intermittent structures revealed as da function of frequency. Image
reproduced by permission from Alexandrova et al. (2008), copyright by AAS.

It is evident that this quantity increases as the frequency becomes smaller, thus indicating the
presence of intermittency. However the rate at which K(f) increases is pronounced above the
ion cyclotron frequency, meaning that intermittency in the high-frequency range is much more
effective than in the low-frequency region. Recently, by analyzing a different dataset from Cluster
spacecraft, Kiyani et al. (2009) using high-order statistics of magnetic differences, showed that the
scaling exponents of structure functions, evaluated at small scales, are no more anomalous as the
low-frequency range, even if the situation is not so clear (Yordanova et al., 2008, 2009). This is a
good example of absence of universality in turbulence, a topic which received renewed attention in
the last years (Chapman et al., 2009; Lee et al., 2010; Matthaeus, 2009).
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12 The Origin of the High-Frequency Region

How is the high-frequency region of the spectrum generated? This has become the urgent topic
which must be addressed. Ghosh et al. (1996) appeals to change of invariants in controlling the
flow of spectral energy transfer in the cascade process, and in this picture no dissipation is required
to explain the steepening of the magnetic power spectrum. Furthermore it is believed that the
high-frequency region is highly anisotropic, with a significant fraction of turbulent energy cascades
mostly in the quasi 2D structures, perpendicular to the background magnetic field. How magnetic
energy dissipated in the anisotropic energy cascade still remains an open question.

12.1 A dissipation range

As we have already said, in their analysis of Wind data Leamon et al. (1998) attribute the presence
of the region at frequencies higher than the ion-cyclotron frequency to a kind of dissipative range.
Apart for the power spectrum, the authors examined the normalized reduced magnetic helicity
σ(f), and they found an excess of negative values at high frequencies. Since this quantity is a
measure of the spatial handedness of the magnetic field (Moffatt, 1978) and can be related to the
polarization in the plasma frame once the direction propagation direction is known (Smith et al.,
1983), the above observations should be consistent with the ion-cyclotron damping of Alfvén waves.
Using a reference system relative to the mean magnetic field direction eB and radial direction eR
as (eB×eR, eB×(eB×eR), eB), they conclude that transverse fluctuations are less dominant than
in the inertial range and the high frequency range is best described by a mixture of 46% slab waves
and of 54% 2D geometry. Since in the low-frequency range they found 11% and 89% respectively,
the increased slab fraction my be explained by the preferential dissipation of oblique structures.
Thermal particles interactions with the 2D slab component may be responsible for the formation
of dissipative range, even if the situation seems to be more complicated. In fact they found that
kinetic Alfvén waves propagating at large angles to the background magnetic field might be also
consistent with the observations and may form some portion of the 2D component.

Recently the question of the increased anisotropy of the high-frequency region has been ad-
dressed by Perri et al. (2009) who investigated the scaling behavior of the eigenvalues of the
variance matrix of magnetic fluctuations, which give information on the anisotropy due to different
polarizations of fluctuations. The authors investigated data coming from Cluster spacecrafts when
satellites orbited in front of the Earth’s parallel Bow Shock (Perri et al., 2009). Results indicates
that magnetic turbulence in the high-frequency region is strongly anisotropic, the minimum vari-
ance direction being almost parallel to the background magnetic field at scales larger than the ion
cyclotron scale. A very interesting result is the fact that the eigenvalues of the variance matrix have
a strong intermittent behavior, with very high localized fluctuations below the ion cyclotron scale.
This behavior, never investigated before, generates a cross-scale effect in magnetic turbulence. In-
deed, PDFs of eigenvalues evolve with the scale, namely they are almost Gaussian above the ion
cyclotron scale and become power laws at scales smaller than the ion cyclotron scale. As a conse-
quence it is not possible to define a characteristic value (as the average value) for the eigenvalues
of the variance matrix at small scales. Since the wave-vector spectrum of magnetic turbulence is
related to the characteristic eigenvalues of the variance matrix (Carbone et al., 1995a), the absence
of a characteristic value means that a typical power spectrum at small scales cannot be properly
defined. This is a feature which received little attention, and represents a further indication for
the absence of universal characteristics of turbulence at small scales.
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12.2 A dispersive range

The presence of a magnetic power spectrum with a slope close to 7/3 (Leamon et al., 1998; Smith
et al., 2006), suggests the fact that the high-frequency region above the ion-cyclotron frequency
might be interpreted as a kind of different energy cascade due to dispersive effects. Then turbulence
in this region can be described through the Hall-MHD models, which is the most simple model to
investigate dispersive effects in a fluid-like framework. In fact, at variance with the usual MHD,
when the effect of ion inertia is taken into account the generalized Ohm’s law reads

E = −V ×B+
mi

ρe
(∇×B)×B,

where the second term on the r.h.s. of this equation represents the Hall term (mi being the ion
mass). This means that MHD equations are enriched by a new term in the equation describing
the magnetic field and derived from the induction equation

∂B

∂t
= ∇×

[

V ×B− mi

ρe
(∇×B)×B+ η∇×B

]

, (76)

which is quadratic in the magnetic field. The above equation contains three different physical
processes characterized by three different times. By introducing a length scale ` and characteristic
fluctuations ρ`, B`, and u`, we can define an eddy-turnover time TNL ∼ `/u`, related to the
convective process, an Hall time TH ∼ ρ``

2/B` which characterizes typical processes related to the
presence of the Hall term, and a dissipative time TD ∼ `2/η. At large scales the first term on the
r.h.s. of Equation (76) describes the Alfvénic turbulent cascade, realized in a time TNL. At very
small scales, the dissipative time becomes the smallest timescale, and dissipation takes place.12

However, one can conjecture that at intermediate scales a cascade is realized in a time which is
no more TNL and not yet TD, rather the cascade is realized in a time TH . This happens when
TH ∼ TNL. Since at these scales density fluctuations becomes important, the mean volume rate
of energy transfer can be defined as εV ∼ B2

` /TH ∼ B3
` /`

2ρ`, where TH is used as a characteristic
time for the cascade. Using the usual Richardson’s cartoon for the energy cascade which is viewed
as a hierarchy of eddies at different scales, and following (von Weizsäcker, 1951), the ratio of the
mass density ρ` at two successive levels `ν > `ν+1 of the hierarchy is related to the corresponding
scale size by

ρν
ρν+1

∼
(

`ν
`nu+1

)−3r

, (77)

where 0 ≤ |r| ≤ 1 is a measure of the degree of compression at each level `ν . Using a scaling law
for compressive effects ρ` ∼ `−3r and assuming a constant spectrum energy transfer rate, we have
B` ∼ `(2/3−2r), from which the spectral energy density

E(k) ∼ k−7/3+r. (78)

The observed range of scaling exponents observed in solar wind α ∈ [2 , 4] (Leamon et al., 1998;
Smith et al., 2006), can then be reproduced by different degree of compression of the solar wind
plasma −5/6 ≤ r ≤ 1/6.

12 Of course, this is based on classical turbulence. As said before, in the solar wind the dissipative term is
unknown, even if it might happens at very small kinetic scales.
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13 Two Further Questions About Small-Scale Turbulence

The most “conservative” way to describe the presence of a dissipative/dispersive region in the solar
wind turbulence, as we reported before, is for example through the Hall-MHD model. While when
dealing with large scale we can successfully approach the problem of turbulence by saying that some
form of dissipation must exist at small scales, the dissipationless character of solar wind cannot
be avoided when we deal with small scales. The full understanding of the physical mechanisms
that allow the dissipation of energy in the absence of collisional viscosity would be a step of crucial
importance in the problem of high frequency turbulence in space plasmas. Another fundamental
question concerns the dispersive properties of small-scale turbulence beyond the spectral break.
This last question has been reformulated by saying: what are the principal constituent modes
of small-scale turbulence? This approach explicitly assumes that small-scale fluctuations in solar
wind can be described through a weak turbulence framework. In other words, a dispersion relation,
namely a precise relationship between the frequency ω and the wave-vector k, is assumed.

As it is well known from basic plasma physics, linear theory for homogeneous, collisionless
plasma yields three kind of modes at and below the proton cyclotron frequency Ωp. At wave-
vectors transverse to the background magnetic field and Ωp > ωr (being ωr the real part of the
frequency of fluctuation), two modes are present, namely a left-hand polarized Alfvén cyclotron
mode and a right-hand polarized magnetosonic mode. A third ion-acoustic (slow) mode exists
but is damped, except when Te ≫ Tp, which is not common in solar wind turbulence. At quasi-
perpendicular propagation the Alfvénic branch evolves into Kinetic Alfvén Waves (KAW), while
magnetosonic modes may propagate at Ωp ≪ ωr as whistler modes. As the wave-vector becomes
oblique to the background magnetic field both modes develop a nonzero magnetic compressibility
where parallel fluctuations becomes important. There are two distinct scenarios for the subsequent
energy cascade of KAW and whistlers (Gary and Smith, 2009).

13.1 Whistler modes scenario

This scenario involves a two-mode cascade process, both Alfvénic and magnetosonic modes which
are only weakly damped as the plasma β ≤ 1, transfer energy to quasi-perpendicular propagating
wave-vectors. The KAW are damped by Landau damping which is proportional to k2⊥, so that they
cannot contribute to the formation of dispersive region (unless for fluctuations propagating along
the perpendicular direction). Even left-hand polarized Alfvén modes at quasi-parallel propagation
suffer for proton cyclotron damping at scales k‖ ∼ ωp/c and do not contribute. Quasi-parallel
magnetosonic modes are not damped at the above scale, so that a weak cascade of right-hand
polarized fluctuations can generate a dispersive region of whistler modes (Stawicki et al., 2001;
Gary and Borovsky, 2004, 2008; Goldstein et al., 1994). The cascade of weakly damped whistler
modes has been reproduced through electron MHD numerical simulations (Biskamp et al., 1996,
1999; Wareing and Hollerbach, 2009; Cho and Lazarian, 2004) and Particle-in-Cell (PIC) codes
(Gary et al., 2008; Saito et al., 2008).

13.2 Kinetic Alfvén waves scenario

In this scenario (Howes, 2008; Schekochihin et al., 2009) long-wavelength Alfvénic turbulence trans-
fer energy to quasi-perpendicular propagation for the primary turbulent cascade up to the thermal
proton gyroradius where fluctuations are subject to the proton Landau damping. The remaining
fluctuation energy continues the cascade to small scales as KAW at quasi-perpendicular propa-
gation and at frequencies ωr < Ωp Bale et al. (2005); Sahraoui et al. (2009). Fluctuations are
completely damped via electron Landau resonance at wavelength of the order of the electron gy-
roradius. This scenario has been observed through gyrokinetic numerical simulations Howes et al.
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(2008b), where the spectral breakpoint k⊥ ∼ Ωp/vth (being vth the proton thermal speed) has
been observed.

13.3 Where does the fluid-like behavior break down in solar wind tur-
bulence?

Up to now spacecraft observations do not allow us to unambiguously distinguish between both
previous scenarios. As stated by Gary and Smith (2009) at our present level of understanding of
linear theory, the best we can say is that quasi-parallel whistlers, quasi-perpendicular whistlers,
and KAW all probably could contribute to dispersion range turbulence in solar wind. Thus, the
critical question is not which mode is present (if any exists in a nonlinear, collisionless medium as
solar wind), but rather, what are the conditions which favor one mode over the others. On the other
hand, starting from observations, we cannot rule out the possibility that strong turbulence rather
than “modes” are at work to account for the high-frequency part of the magnetic energy spectrum.
One of the most striking observations of small-scale turbulence is the fact that the electric field is
strongly enhanced after the spectral break (Bale et al., 2005). This means that turbulence at small
scales is essentially electrostatic in nature, even if weak magnetic fluctuations are present. The
enhancement of the electrostatic part has been viewed as a strong indication for the presence of
KAW, because gyrokinetic simulations show the same phenomenon Howes et al. (2008b). However,
as pointed out by Matthaeus et al. (2008) (see also the Reply by Howes et al., 2008a to the comment
by Matthaeus et al., 2008), the enhancement of electrostatic fluctuations can be well reproduced
by Hall-MHD turbulence, without the presence of KAW modes. Actually, the enhancement of the
electric field turns out to be a statistical property of the inviscid Hall MHD (Servidio et al., 2008),
that is in the absence of viscous and dissipative terms the statistical equilibrium ensemble of Hall-
MHD equations in the wave-vectors space is build up with an enhancement of the electric field at
large wave-vectors. This represents a thermodynamic equilibrium property of equations, and has
little to do with a non-equilibrium turbulent cascade13. This would means that the enhancement
of the electrostatic part of fluctuations cannot be seen as a proof firmly establishing that KAW are
at work in the dispersive region.

One of the most peculiar possibility from the Cluster spacecraft was the possibility to separate
the time domain from the space domain, using the tetrahedral formation of the four spacecrafts
which form the Cluster mission (Escoubet et al., 2001). This allows us to obtain a 3D wavevector
spectrum and the possibility to identify the actual dispersion relation of solar wind turbulence, if
any exists, at small scales. This can be made by using the k-filtering technique which is based on
the strong assumption of plane-wave propagation (Glassmeier et al., 2001). Of course, due to the
relatively small distances between spacecrafts, this cannot be applied to large-scale turbulence.

Apart for the spectral break identified by Leamon et al. (1998), a new break has been identified
in the solar wind turbulence using high-frequency Cluster data, at about few tens of Hz. In fact,
Cluster data at the burst mode can reach the characteristic electron inertial scale λe and the
electron Larmor radius ρe. Using FluxGate Magnetometer and Spatiotemporal Analysis of Field
Fluctuations experiment/search coil, Sahraoui et al. (2009) showed that the turbulent spectrum
changes shape at wavevectors of about kρe ∼ kλe ≃ 1. This result, which perhaps identify the
occurrence of a dissipative range in solar wind turbulence, has been obtained in the upstream
solar wind magnetically connected to the bow shock. However, in these studies the plasma β

13 It is worthwhile to remark that a turbulent fluid flows is out of equilibrium, say the cascade requires the
injection of energy (input) and a dissipation mechanism (output), usually lying on well separated scales, along with
a transfer of energy. Without input and output, the nonlinear term of equations works like an energy redistribution
mechanism towards an equilibrium in the wave vectors space. This generates an equilibrium energy spectrum which
should in general be the same as that obtained when the cascade is at work (cf., e.g., Frisch et al., 1975). However,
even if the turbulent spectra could be anticipated by looking at the equilibrium spectra, the physical mechanisms
are different. Of course, this should also be the case for the Hall MHD.
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was of the order of β ≃ 1, thus not allowing the separation between both scales. Alexandrova
et al. (2009), using three instruments onboard Cluster spacecrafts operating in different frequency
ranges, resolved the spectrum up to 300 Hz. They confirmed the presence of the high-frequency
spectral break at about kρe ∼ [0.1, 1] and, what is mainly interesting, they fitted this part of the
spectrum through an exponential decay ∼ exp[−

√
kρe], thus indicating the onset of dissipation.

The 3D spectral shape reveals poor surprise, that is the energy distribution exhibits anisotropic
features characterized by a prominently extended structure perpendicular to the mean magnetic
field preferring the ecliptic north direction and also by a moderately extended structure parallel to
the mean field (Narita et al., 2010). Results of the 3D energy distribution suggest the dominance
of quasi 2D turbulence toward smaller spatial scales, overall symmetry to changing the sign of the
wave vector (reflectional symmetry) and absence of spherical and axial symmetry. This last was
one of the main hypothesis for the Maltese Cross (Matthaeus et al., 1990), even if bias due to
satellite fly through can generate artificial deviations from axisymmetry (Turner et al., 2011).

More interestingly, (Sahraoui et al., 2010b) investigate the occurrence of a dispersion relation.
They claim that the energy cascade should be carried by highly oblique KAW with doppler-shifted
plasma frequency ωplas ≤ 0.1ωci down to k⊥ρi ∼ 2. Each wavevector spectrum in the direction
perpendicular to an “average” magnetic fieldB0 shows two scaling ranges separated by a breakpoint
in the interval [0.1, 1]k⊥ρi, say a Kolmogorov scaling followed by a steeper scaling. The authors
conjecture that the turbulence undergoes a transition-range, where part of energy is dissipated
into proton heating via Landau damping, and the remaining energy cascades down to electron
scales where Electron Landau damping may dominate. The dispersion relation, compared with
linear solutions of the Maxwell–Vlasov equations (Sahraoui et al., 2010b, cf. Figure 5 of), seems
to identify KAW as responsible for the cascade at small scales. The conjecture by Sahraoui et al.
(2010b) does not take into account the fact that Landau damping is rapidly saturating under solar
wind conditions (Marsch, 2006; Valentini et al., 2008).

Figure 112: Observed dispersion relations (dots), with estimated error bars, compared to linear solutions
of the Maxwell–Vlasov equations for three observed angles between the k vector and the local magnetic
field direction (damping rates are represented by the dashed lines). Proton and electron Landau resonances
are represented by the black curves Lp,e. Proton cyclotron resonance are shown by the curves Cp. (the
electron cyclotron resonance lies out of the plotted frequency range). Image reproduced by permission
from Sahraoui et al. (2010a), copyright by APS.

The question of the existence of a dispersion relation was investigated by Narita et al. (2011a),
which investigated three selected time intervals of magnetic field data of CLUSTER FGM in the
solar wind. They used a refined version of the k-filtering technique, called MSR technique, to
obtain high-resolution energy spectra in the wavevector domain. Like the wave telescope, the

Living Reviews in Solar Physics

http://www.livingreviews.org/lrsp-2013-2

http://www.livingreviews.org/lrsp-2013-2


The Solar Wind as a Turbulence Laboratory 153

MSR technique performs fitting of the measured data with a propagating plane wave as a function
of frequency and wave vector. The main result is the strong spread in the frequency-wavevector
domain, namely none of the three intervals exhibits a clear organization of dispersion relation (see
Figure 113). Frequencies and wave vectors appear to be strongly scattered, thus not allowing for
the identification of wave-like behavior.

Figure 113: Top: Angles between the wave vectors and the mean magnetic field as a function of the
wave number. Bottom: Frequency-wave number diagram of the identified waves in the plasma rest frame.
Magnetosonic (MS), whistler (WHL), and kinetic Alfvén waves (KAW)dispersion relations are represented
by dashed, straight, and dotted lines, respectively. Image reproduced by permission from Narita et al.

(2011a), copyright by AGU.

The above discussed papers shed some “darkness” on the scenario of small scales solar wind
turbulence as made by “modes”, or at least they indicate that solar wind turbulence, at least at
small scales, is far from universality. As a further stroke of the grey brush, Perri et al. (2011)
simply calculated the frequency of the spectral break as a function of radial distances from the
Sun. In fact, since plasma parameters, and in particular the magnetic field intensity, changes
when going towards large radial distances, the frequency break should change accordingly. They
used Messenger data, as far as the inner heliosphere is concerned, and Ulysses data for outer
heliosphere. Data from 0.5 AU, up to 5 AU, are summarized in Figure 2 of Perri et al. (2011).
While the characteristic frequencies of plasma lower going to higher radial distances, the position
of the spectral break remains constant over all the interval of distances investigated. That is the
observed high-frequency spectral break seems to be independent of the distance from the Sun, and
then of both the ion-cyclotron frequency and the proton gyroradius. So, where does the fluid-like
behavior break down in solar wind turbulence?

13.4 What physical processes replace “dissipation” in a collisionless
plasma?

As we said before, the understanding of the small-scale termination of the turbulent energy cascade
in collisionless plasmas is nowadays one of the outstanding unsolved problem in space plasma
physics. In the absence of collisional viscosity and resistivity the dynamics of small scales is
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kinetic in nature and must be described by the kinetic theory of plasma. The identification of
the physical mechanism that “replaces” dissipation in the collisionless solar wind plasma and
establishes a link between the macroscopic and the microscopic scales would open new scenarios
in the study of the turbulent heating in space plasmas. This problem is yet in its infancy. Kinetic
theory is known since long time from plasma physics, the interested reader can read the excellent
review by Marsch (2006). However, it is restricted mainly to linear theoretical arguments. The
fast technological development of supercomputers gives nowadays the possibility of using kinetic
Eulerian Vlasov codes that solve the Vlasov–Maxwell equations in multi-dimensional phase space.
The only limitation to the “dream” of solving 3D-3V problems (3D in real space and 3D in velocity
space) resides in the technological development of fast enough solvers. The use of almost noise-
less codes is crucial and allows for the first time the possibility of analyzing kinetic nonlinear
effects as the nonlinear evolution of particles distribution function, nonlinear saturation of Landau
damping, etc. Of course, faster numerical way to solve the dissipation issue in collisionless plasmas
might consist in using intermediate gyrokinetic descriptions (Brizard and Hahm, 2007) based on a
gyrotropy and strong anisotropy assumptions k‖ ≪ k⊥.

As we said before, observations of small-scale turbulence showed the presence of a significant
level of electrostatic fluctuations (Gurnett and Anderson, 1977; Gurnett and Frank, 1978; Gurnett
et al., 1979; Bale et al., 2005). Old observations of plasma wave measurements on the Helios 1
and 2 spacecrafts (Gurnett and Anderson, 1977; Gurnett and Frank, 1978; Gurnett et al., 1979)
have revealed the occurrence of electric field wave-like turbulence in the solar wind at frequencies
between the electron and ion plasma frequencies. Wavelength measurements using the IMP 6
spacecraft provided strong evidence for the presence of electric fluctuations which were identified
as ion acoustic waves which are Doppler-shifted upward in frequency by the motion of the solar
wind (Gurnett and Frank, 1978). Comparison of the Helios results showed that the ion acoustic
wave-like turbulence detected in interplanetary space has characteristics essentially identical to
those of bursts of electrostatic turbulence generated by protons streaming into the solar wind
from the earth’s bow shock (Gurnett and Frank, 1978; Gurnett et al., 1979). Gurnett and Frank
(1978) observed that in a few cases of Helios data, ion acoustic wave intensities are enhanced in
direct association with abrupt increases in the anisotropy of the solar wind electron distribution.
This relationship strongly suggests that the ion acoustic wave-like structures detected by Helios
far from the earth are produced by an electron heat flux instability or by protons streaming into
the solar wind from the earth’s bow shock. Further evidences (Marsch, 2006) revealed the strong
association between the electrostatic peak and nonthermal features of the velocity distribution
function of particles like temperature anisotropy and generation of accelerated beams.

Araneda et al. (2008) using Vlasov kinetic theory and one-dimensional Particle-in-Cell hybrid
simulations provided a novel explanation of the bursts of ion-acoustic activity occurring in the
solar wind. These authors studied the effect on the proton velocity distributions in a low-β plasma
of compressible fluctuations driven by the parametric instability of Alfvén-cyclotron waves. Sim-
ulations showed that field-aligned proton beams are generated during the saturation phase of the
wave-particle interaction, with a drift speed which is slightly greater than the Alfvén speed. As
a consequence, the main part of the distribution function becomes anisotropic due to phase mix-
ing. This observation is relevant, because the same anisotropy is typically observed in the velocity
distributions measured in the fast solar wind (Marsch, 2006).

In recent papers, Valentini et al. (2008) and Valentini and Veltri (2009) used hybrid Vlasov–
Maxwell model where ions are considered as kinetic particles, while electrons are treated as a
fluid. Numerical simulations have been obtained in 1D-3V phase space (1D in the physical space
and 3D in the velocity space) where a turbulent cascade is triggered by the nonlinear coupling of
circularly left-hand polarized Alfvén waves, in the perpendicular plane and in parallel propagation,
at plasma-β of the order of unity. Numerical results show that energy is transferred to short scales
in longitudinal electrostatic fluctuations of the acoustic form. The numerical dispersion relation in
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the k−ω plane displays the presence of two branches of electrostatic waves. The upper branch, at
higher frequencies, consists of ion-acoustic waves while the new lower frequency branch consists of
waves propagating with a phase speed of the order of the ion thermal speed. This new branch is
characterized by the presence of a plateau around the thermal speed in the ion distribution function,
which is a typical signature of the nonlinear saturation of wave-particle interaction process.

Numerical simulations show that energy should be “dissipated” at small scales through the
generation of an ion-beam in the velocity distribution function as a consequence of the trapping
process and the nonlinear saturation of Landau damping, which results in bursts of electrostatic
activity. Whether or not this picture, which seems to be confirmed by recent numerical simulations
(Araneda et al., 2008; Valentini et al., 2008; Valentini and Veltri, 2009), represents the final fate of
the real turbulent energy cascade observed at macroscopic scales, requires further investigations.
Available measurements in the interplanetary space, even using Cluster spacecrafts, do not allow
analysis at typical kinetic scales.
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14 Conclusions and Remarks

Now that the reader finally reached the conclusions, hoping that he was so patient to read the
whole paper, we suggest him to go back for a moment to the List of Contents, not to start all
over again, but just to take a look at the various problems that have been briefly touched by this
review. He will certainly realize how complex is the phenomenon of turbulence in general and, in
particular, in the solar wind. Almost four decades of observations and theoretical efforts have not
yet been sufficient to fully understand how this natural and fascinating phenomenon really works
in the solar wind. We certainly are convinced that we cannot think of a single mechanism able
to reproduce all the details we have directly observed since physical boundary conditions favor
or inhibit different generation mechanisms, like for instance, velocity-shear or parametric decay,
depending on where we are in the heliosphere.

On the other hand, there are some aspects which we believe are at the basis of turbulence
generation and evolution like: a) we do need non-linear interactions to develop the observed
Kolmogorov-like spectrum; b) in order to have non-linear interactions we need to have inward
modes and/or convected structures which the majority of the modes can interact with; c) outward
and inward modes can be generated by different mechanisms like velocity shear or parametric de-
cay; d) convected structures actively contribute to turbulent development of fluctuations and can
be of solar origin or locally generated.

In particular, ecliptic observations have shown that what we call Alfvénic turbulence, mainly
observed within high velocity streams, tends to evolve towards the more “standard” turbulence
that we mainly observe within slow wind regions, i.e., a turbulence characterized by e+ ∼ e−, an
excess of magnetic energy, and a Kolmogorov-like spectral slope. Moreover, the presence of a well
established “background” spectrum already at short heliocentric distances and the low Alfvénicity
of the fluctuations suggest that within slow wind turbulence is mainly due to convected structures
frozen in the wind which may well be the remnants of turbulent processes already acting within
the first layers of the solar corona. In addition, velocity shear, whenever present, seems to have a
relevant role in driving turbulence evolution in low-latitude solar wind.

Polar observations performed by Ulysses, combined with previous results in the ecliptic, finally
allowed to get a comprehensive view of the Alfvénic turbulence evolution in the 3D heliosphere,
inside 5 AU. However, polar observations, when compared with results obtained in the ecliptic,
do not appear as a dramatic break. In other words, the polar evolution is similar to that in the
ecliptic, although slower. This is a middle course between the two opposite views (a non-relaxing
turbulence, due to the lack of velocity shear, or a quick evolving turbulence, due to the large
relative amplitude of fluctuations) which were popular before the Ulysses mission. The process
driving the evolution of polar turbulence still is an open question although parametric decay might
play some role. As a matter of fact, simulations of non-linear development of the parametric
instability for large-amplitude, broadband Alfvénic fluctuations have shown that the final state
resembles values of σc not far from solar wind observations, in a state in which the initial Alfvénic
correlation is partially preserved. As already observed in the ecliptic, polar Alfvénic turbulence
appears characterized by a predominance of outward fluctuations and magnetic fluctuations. As
regards the outward fluctuations, their dominant character extends to large distances from the Sun.
At low solar activity, with the polar wind filling a large fraction of the heliosphere, the outward
fluctuations should play a relevant role in the heliospheric physics. Relatively to the imbalance in
favor of the magnetic energy, it does not appear to go beyond an asymptotic value. Several ways
to alter the balance between kinetic and magnetic energy have been proposed (e.g., 2D processes,
propagation in a non-uniform medium, and effect of magnetic structures, among others). However,
convincing arguments to account for the existence of such a limit have not yet been given, although
promising results from numerical simulations seem to be able to qualitatively reproduce the final
imbalance in favor of the magnetic energy.
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Definitely, the relatively recent adoption of numerical methods able to highlight scaling laws
features hidden to the usual spectral methods, allowed to disclose a new and promising way to
analyze turbulent interplanetary fluctuations. Interplanetary space is now looked at as a natural
wind tunnel where scaling properties of the solar wind can be studied on scales of the order of (or
larger than) 109 times than laboratory scales. Within this framework, intermittency represents an
important topic in both theoretical and observational studies. Intermittency properties have been
recovered via very promising models like the MHD shell models, and the nature of intermittent
events has finally been disclosed thanks to new numerical techniques based on wavelet transforms.
Moreover, similar techniques have allowed to tackle the problem of identify the spectral anisotropic
scaling although no conclusive and final analyses have been reported so far. In addition, recent
studies on intermittency of magnetic field and velocity vector fluctuations, together with analo-
gous analyses on magnitude fluctuations, contributed to sketch a scenario in which propagating
stochastic Alfvénic fluctuations and advected structures, possibly flux tubes embedded in the wind,
represent the main ingredients of interplanetary turbulence. The varying predominance of one of
the two species, waves or structures would make the observed turbulence more or less intermittent.
However, the fact that we can make measurements just at one point of this natural wind tunnel
represented by the solar wind does not allow us to discriminate temporal from spatial phenomena.
As a consequence, we do not know whether these advected structures are somehow connected to
the complicated topology observed at the Sun surface or can be considered as by-product of chaotic
developing phenomena. Comparative studies based on the intermittency phenomenon within fast
and slow wind during the wind expansion would suggest a solar origin for these structures which
would form a sort of turbulent background frozen in the wind. As a matter of fact, intermittency
in the solar wind is not limited to the dissipation range of the spectrum but abundantly extends
orders of magnitude away from dissipative scales, possibly into the inertial range which can be
identified taking into account all the possible caveats related to this problem and briefly reported
in this review. This fact introduces serious differences between hydrodynamic turbulence and solar
wind MHD turbulence, and the same “intermittency” assumes a different intrinsic meaning when
observed in interplanetary turbulence. In practice, coherent structures observed in the wind are
at odds with filaments or vortices observed in ordinary fluid turbulence since these last ones are
dissipative structures continuously created and destroyed by turbulent motion.

Small-scale turbulence, namely observations of turbulent fluctuations at frequencies greater
than say 0.1 Hz. revealed a rich and yet poorly understood physics, mainly related to the big
problem of dissipation in a dissipationless plasma. Data analysis received a strong impulse from
the Cluster spacecrafts, thus revealing a few number of well established and not contradictory
observations, as the presence of a double spectral breaks. However, the interpretation of the pres-
ence of a power spectrum at small scales is far from being clear and a number of contradictory
interpretations can be found in literature. Numerical simulations, based on Vlasov–Maxwell, gy-
rokinetic and PIC codes, have been made possible due to the increasingly power of computers.
They indicated some possible interpretation of the high-frequency part of the turbulent spectrum,
but unfortunately the interpretation is not unequivocal. The study of high-frequency part of the
turbulent spectrum is a rapidly growing field of research, here we reported the up to date state of
the art, while a more complete, systematic and thought-out analysis of the wide literature will be
done in a future version of the paper.

As a final remark, we would like to point out that we tried to start writing a particular point
of view on the turbulence in the solar wind. We apologize for the lack of some aspects of the
phenomenon at hand which can be found in the existing literature. There are still several topics
which we did not discuss in this revised version of our review.
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In particular, we leave for a future version:

❼ recent (non-shell) turbulent modeling;

❼ simulation of turbulence in the expanding solar wind;

❼ numerical simulations of anisotropic turbulence;

❼ a deeper view on Vlasov–Maxwell and gyrokinetic approaches.

Fortunately, we are writing a Living Review paper and mistakes and/or omissions will be
adequately fixed in the next version also with the help of all our colleagues, whom we strongly
encourage to send us comments and/or different points of view on particularly interesting topics
which we have not yet taken into account or discussed properly.
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A Some Characteristic Solar Wind Parameters

Although solar wind is a highly variable medium, it is possible to identify some characteristic values
for its most common parameters. Since the wind is an expanding medium, we ought to choose
one heliocentric distance to refer to and, usually, this distance is 1 AU. In the following, we will
provide different tables referring to several solar wind parameters, velocities, characteristic times,
and lengths.

As it can be seen, the solar wind is a super-Alfvénic, collisionless plasma, and MHD turbulence
can be investigated for frequencies smaller than ∼ 10−1 Hz.

Table 6: Typical values of several solar wind parameters as measured by Helios 2 at 1 AU.

Wind Parameter Slow wind Fast wind

number density ∼ 15 cm–3 ∼ 4 cm–3

bulk velocity ∼ 350 km s–1 ∼ 600 km s–1

proton temperature ∼ 5 Ö 104 K ∼ 2 Ö 105 K
electron temperature ∼ 2 Ö 105 K ∼ 1 Ö 105 K
α-particles temperature ∼ 2 Ö 105 K ∼ 8 Ö 105 K
magnetic field ∼ 6 nT ∼ 6 nT

Table 7: Typical values of different speeds obtained at 1 AU. The Alfvén speed has been measured, while
all the others have been obtained from the parameters reported in Table 6.

Speed Slow wind Fast wind

Alfvén ∼ 30 km s–1 ∼ 60 km s–1

ion sound ∼ 60 km s–1 ∼ 60 km s–1

proton thermal ∼ 35 km s–1 ∼ 70 km s–1

electron thermal ∼ 3000 km s–1 ∼ 2000 km s–1

Table 8: Typical values of different frequencies at 1 AU. These values have been obtained from the
parameters reported in Table 6.

Frequency Slow wind Fast wind

proton cyclotron ∼ 0.1 Hz ∼ 0.1 Hz
electron cyclotron ∼ 2 Ö 102 Hz ∼ 2 Ö 102 Hz
plasma ∼ 2 Ö 105 Hz ∼ 1 Ö 105 Hz
proton-proton collision ∼ 2 Ö 10–6 Hz ∼ 1 Ö 10–7 Hz
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Table 9: Typical values of different lengths at 1 AU plus the distance traveled by a proton before colliding
with another proton. These values have been obtained from the parameters reported in Table 6.

Length Slow wind Fast wind

Debye ∼ 4 m ∼ 15 m
proton gyroradius ∼ 130 km ∼ 260 km
electron gyroradius ∼ 2 km ∼ 1.3 km
distance between 2 proton collisions ∼ 1.2 AU ∼ 40 AU

B Tools to Analyze MHD Turbulence in Space Plasmas

No matter where we are in the solar wind, short scale data always look rather random as shown
in Figure 114.
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Figure 114: BY component of the IMF recorded within a high velocity stream.

This aspect introduces the problem of determining the time stationarity of the dataset. The
concept of stationarity is related to ensembled averaged properties of a random process. The
random process is the collection of the N samples x(t), it is called ensemble and indicated as
{x(t)}.

Properties of a random process {x(t)} can be described by averaging over the collection of all
the N possible sample functions x(t) generated by the process. So, chosen a begin time t1, we can
define the mean value µx and the autocorrelation function Rx, i.e., the first and the joint moment:

µx(t1) = lim
N−→∞

N
∑

k=1

xk(t1), (79)

Rx(t1, t1 + τ) = lim
N−→∞

N
∑

k=1

xk(t1)xk(t1 + τ). (80)

In case µx(t1) and Rx(t1, t1 + τ) do not vary as time t1 varies, the sample function x(t) is said
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to be weakly stationary, i.e.,
µx(t1) = µx, (81)

Rx(t1, t1 + τ) = Rx(τ). (82)

Strong stationarity would require all the moments and joint moments to be time independent.
However, if x(t) is normally distributed, the concept of weak stationarity naturally extends to
strong stationarity.

Generally, it is possible to describe the properties of {x(t)} simply computing time-averages
over just one x(t). If the random process is stationary and µx(k) and Rx(τ, k) do not vary when
computed over different sample functions, the process is said ergodic. This is a great advantage
for data analysts, especially for those who deals with data from s/c, since it means that properties
of stationary random phenomena can be properly measured from a single time history. In other
words, we can write:

µx(k) = µx, (83)

Rx(τ, k) = Rx(τ). (84)

Thus, the concept of stationarity, which is related to ensembled averaged properties, can now be
transferred to single time history records whenever properties computed over a short time interval
do not vary from one interval to the next more than the variation expected for normal dispersion.

Fortunately, Matthaeus and Goldstein (1982a) established that interplanetary magnetic field
often behaves as a stationary and ergodic function of time, if coherent and organized structures
are not included in the dataset. Actually, they proved the weak stationarity of the data, i.e.,
the stationarity of the average and two-point correlation function. In particular, they found that
the average and the autocorrelation function computed within a subinterval would converge to
the values estimated from the whole interval after a few correlation times tc. More recent analysis
(Perri and Balogh, 2010) extended the above studies to different parameter ranges by using Ulysses
data, showing that the stationarity assumption in the inertial range of turbulence on timescales
of 10 min to 1 day is reasonably satisfied in fast and uniform solar wind flows, but that in mixed,
interacting fast, and slow solar wind streams the assumption is frequently only marginally valid.
If our time series approximates a Markov process (a process whose relation to the past does not
extend beyond the immediately preceding observation), its autocorrelation function can be shown
(Doob, 1953) to approximate a simple exponential:

R(t) = R(0)e−
t
tc (85)

from which we obtain the definition given by Batchelor (1970):

tc =

∫ ∞

0

R(t)

R(0)
dt. (86)

Just to have an idea of the correlation time of magnetic field fluctuations, we show in Figure 115
magnetic field correlation time computed at 1 AU using Voyager 2’s data.

In this case, using the above definition, tc ≃ 3.2× 103 s.

B.1 Statistical description of MHD turbulence

When an MHD fluid is turbulent, it is impossible to know the detailed behavior of velocity field
v(x, t) and magnetic field b(x, t), and the only description available is the statistical one. Very
useful is the knowledge of the invariants of the ideal equations of motion for which the dissipative
terms µ∇2b and ν∇2v are equal to zero because the magnetic resistivity µ and the viscosity ν
are both equal to zero. Following Frisch et al. (1975) there are three quadratic invariants of the
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Figure 115: Magnetic field auto-correlation function at 1 AU. Image reproduced by permission from
Matthaeus and Goldstein (1982b), copyright by AGU.

ideal system which can be used to describe MHD turbulence: total energy E, cross-helicity Hc,
and magnetic helicity Hm. The above quantities are defined as follows:

E =
1

2
⟨v2 + b2⟩, (87)

Hc = ⟨v · b⟩, (88)

Hm = ⟨A ·B⟩, (89)

where v and b are the fluctuations of velocity and magnetic field, this last one expressed in Alfvén
units (b −→ b√

4πρ
), and A is the vector potential so that B = ∇ × A. The integrals of these

quantities over the entire plasma containing regions are the invariants of the ideal MHD equations:

E =
1

2

∫

(v2 + b2)d3x, (90)

Hc =
1

2

∫

(v · b)d3x, (91)

Hm =

∫

(A ·B)d3x, (92)

In particular, in order to describe the degree of correlation between v and b, it is convenient to
use the normalized cross-helicity σc:

σc =
2Hc

E
, (93)

since this quantity simply varies between +1 and −1.

B.2 Spectra of the invariants in homogeneous turbulence

Statistical information about the state of a turbulent fluid is contained in the n-point correlation
function of the fluctuating fields. In homogeneous turbulence these correlations are invariant under
arbitrary translation or rotation of the experimental apparatus. We can define the magnetic field
auto-correlation matrix

Rb
ij(r) = ⟨bi(x)bj(x+ r)⟩, (94)
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the velocity auto-correlation matrix

Rv
ij(r) = ⟨vi(x)vj(x+ r)⟩, (95)

and the cross-correlation matrix

Rvb
ij (r) =

1

2
⟨vi(x)bj(x+ r) + bi(x)vj(x+ r)⟩. (96)

At this point, we can construct the spectral matrix in terms of Fourier transform of Rij

Sb
ij(k) =

1

2π

∫

Rb
ij(r)e

−ik·rd3r, (97)

Sv
ij(k) =

1

2π

∫

Rv
ij(r)e

−ik·rd3r, (98)

Svb
ij (k) =

1

2π

∫

Rvb
ij (r)e

−ik·rd3r. (99)

However, in space experiments, especially in the solar wind, data from only a single spacecraft
are available. This provides values of Rb

ij , R
v
ij , and Rvb

ij , for separations along a single direction
r. In this situation, only reduced (i.e., one-dimensional) spectra can be measured. If r1 is the
direction of co-linear separations, we may only determine Rij(r1, 0, 0) and, as a consequence, the
Fourier transform on Rij yields the reduced spectral matrix

Sr
ij(k1) =

1

2π

∫

Rij(r1, 0, 0)e
−ik1·r1 dr1 =

∫

Sij(k1, k2, k3) dk2 dk3. (100)

Then, we define Hr
m, Hr

c , and E
r = Er

b +E
r
v as the reduced spectra of the invariants, depending

only on the wave number k1. Complete information about Sij might be lost when computing its
reduced version since we integrate over the two transverse k. However, for isotropic symmetry no
information is lost performing the transverse wave number integrals (Batchelor, 1970). That is,
the same spectral information is obtained along any given direction.

Coming back to the ideal invariants, now we have to deal with the problem of how to extract
information about Hm from Rij(r). We know that the Fourier transform of a real, homogeneous

matrix Rij(r) is an Hermitian form Sij , i.e., S = S̃* −→ sij = s*ji, and that any square matrix A
can be decomposed into a symmetric and an antisymmetric part, As and Aa:

A = As +Aa, (101)

where

As =
1

2
(A+ Ã), (102)

Aa =
1

2
(A− Ã). (103)

Since the Hermitian form implies that

S = S̃* −→ sij = s*ji, (104)

it follows that

Ss =
1

2
(S + S̃) =

1

2
(Sij + Sji) = real, (105)

and

Sa =
1

2
(S − S̃) =

1

2
(Sij − Sji) = imaginary. (106)
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It has been shown (Batchelor, 1970; Matthaeus and Goldstein, 1982b; Montgomery, 1983) that,
while the trace of the symmetric part of the spectral matrix accounts for the magnetic energy, the
imaginary part of the spectral matrix accounts for the magnetic helicity. In particular, Matthaeus
and Goldstein (1982b) showed that

Hr
m(k1) = 2ImSr

23(k1)/k1, (107)

where Hm has been integrated over the two transverse components

∫

ImS23(k) dk2 dk3 =
k1
2

∫

Hm(k) dk2 dk3. (108)

In practice, if co-linear measurements are made along the X direction, the reduced magnetic
helicity spectrum is given by:

Hr
m(k1) = 2ImSr

23(k1)/k1 = 2Im (Y Z*)/k1, (109)

where Y and Z are the Fourier transforms of By and Bz components, respectively.
Hm can be interpreted as a measure of the correlation between the two transverse components,

being one of them shifted by 90∘ in phase at frequency f . This parameter gives also an estimate of
how magnetic field lines are knotted with each other. Hm can assume positive and negative values
depending on the sense of rotation of the correlation between the two transverse components.

However, another parameter, which is a combination of Hm and Eb, is usually used in place of
Hm alone. This parameter is the normalized magnetic helicity

σm(k) = kHm(k)/Eb(k), (110)

where Eb is the magnetic spectral power density and σm varies between +1 and −1.

B.2.1 Coherence and phase

Since the cross-correlation function is not necessarily an even function, the cross-spectral density
function is generally a complex number:

Wxy(f) = Cxy(f) + jQxy(f),

where the real part Cxy(f) is the coincident spectral density function, and the imaginary part
Qxy(f) is the quadrature spectral density function (Bendat and Piersol, 1971). While Cxy(f)
can be thought of as the average value of the product x(t)y(t) within a narrow frequency band
(f, f + δf), Qxy(f) is similarly defined but one of the components is shifted in time sufficiently to
produce a phase shift of 90∘ at frequency f .

In polar notation
Wxy(f) = |Wxy(f)|e−jθxy(f).

In particular,

|Wxy(f)| =
√

C2
xy(f) +Q2

xy(f),

and the phase between C and Q is given by

θxy(f) = arctan
Qxy(f)

Cxy(f)
.

Moreover,
|Wxy(f)|2 ≤Wx(f)Wy(f),
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so that the following relation holds

γ2xy(f) =
|Wxy(f)|2

Wx(f)Wy(f)
≤ 1.

This function γ2xy(f), called coherence, estimates the correlation between x(t) and y(t) for a given
frequency f . Just to give an example, for an Alfvén wave at frequency f whose k vector is outwardly
oriented as the interplanetary magnetic field, we expect to find θvb(f) = 180∘ and γ2vb(f) = 1, where
the indexes v and b refer to the magnetic field and velocity field fluctuations.

B.3 Introducing the Elsässer variables

The Alfvénic character of turbulence suggests to use the Elsässer variables to better describe the
inward and outward contributions to turbulence. Following Elsässer (1950); Dobrowolny et al.

(1980b); Goldstein et al. (1986); Grappin et al. (1989); Marsch and Tu (1989); Tu and Marsch
(1990a); and Tu et al. (1989c), Elsässer variables are defined as

z± = v ± b√
4πρ

, (111)

where v and b are the proton velocity and the magnetic field measured in the s/c reference frame,
which can be looked at as an inertial reference frame. The sign in front of b, in Equation (111),
is decided by sign[−k · B0]. In other words, for an outward directed mean field B0, a negative
correlation would indicate an outward directed wave vector k and vice-versa. However, it is more
convenient to define the Elsässers variables in such a way that z+ always refers to waves going
outward and z− to waves going inward. In order to do so, the background magnetic field B0 is
artificially rotated by 180∘ every time it points away from the Sun, in other words, magnetic sectors
are rectified (Roberts et al., 1987a,b).

B.3.1 Definitions and conservation laws

If we express b in Alfvén units, that is we normalize it by
√
4πρ we can use the following handy

formulas relative to definitions of fields and second order moments. Fields:

z± = v ± b, (112)

v =
1

2
(z+ + z−), (113)

b =
1

2
(z+ − z−). (114)

Second order moments:

z+ and z− energies −→ e± =
1

2
⟨(z±)2⟩ , (115)

kinetic energy −→ ev =
1

2
⟨v2⟩ , (116)

magnetic energy −→ eb =
1

2
⟨b2⟩ , (117)

total energy −→ e = ev + eb , (118)

residual energy −→ er = ev − eb , (119)

cross-helicity −→ ec =
1

2
⟨v · b⟩ . (120)
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Normalized quantities:

normalized cross-helicity −→ σc =
e+ − e−

e+ + e−
=

2ec

ev + eb
, (121)

normalized residual-energy −→ σr =
ev − eb

ev + eb
=

2er

e+ + e−
, (122)

Alfvén ratio −→ rA =
ev

eb
=

1 + σr
1− σr

, (123)

Elsässer ratio −→ rE =
e−

e+
=

1− σc
1 + σc

. (124)

We expect an Alfvèn wave to satisfy the following relations:

Table 10: Expected values for Alfvèn ratio rA, normalized cross-helicity σc, and normalized residual
energy σr for a pure Alfvèn wave outward or inward oriented.

Parameter Definition Expected Value

rA eV /eB 1
σc (e+ − e−)/(e+ + e−) ±1
σr (eV − eB)/(eV + eB) 0

B.3.2 Spectral analysis using Elsässer variables

A spectral analysis of interplanetary data can be performed using z+ and z− fields. Following Tu
and Marsch (1995a) the energy spectrum associated with these two variables can be defined in the
following way:

e±j (fk) =
2δT

n
δz±j,k(δz

±
j,k)

*, (125)

where δz±j,k are the Fourier coefficients of the j-component among x, y, and z, n is the number
of data points, δT is the sampling time, and fk = k/nδT , with k = 0, 1, 2, . . . , n/2 is the k-th
frequency. The total energy associated with the two Alfvèn modes will be the sum of the energy
of the three components, i.e.,

e±(fk) =
∑

j=x,y,z

e±j (fk). (126)

Obviously, using Equations (125 and 126), we can redefine in the frequency domain all the
parameters introduced in the previous section.
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C Wavelets as a Tool to Study Intermittency

Following Farge et al. (1990) and Farge (1992), intermittent events can be viewed as localized
zones of fluid where phase correlation exists, in some sense coherent structures. These structures,
which dominate the statistics of small scales, occur as isolated events with a typical lifetime which
is greater than that of stochastic fluctuations surrounding them. Structures continuously appear
and disappear, apparently in a random fashion, at some random location of fluid, and they carry
most of the flow energy. In this framework, intermittency can be considered as the result of the
occurrence of coherent (non-Gaussian) structures at all scales, within the sea of stochastic Gaussian
fluctuations.

It follows that, since these structures are well localized in spatial scale and time, it would be
advisable to analyze them using wavelets filter instead of the usual Fourier transform. Unlike the
Fourier basis, wavelets allow a decomposition both in time and frequency (or space and scale).
The wavelet transform W{f(t)} of a function f(t) consists of the projection of f(t) on a wavelet
basis to obtain wavelet coefficients w(τ, t). These coefficients are obtained through a convolution
between the analyzed function and a shifted and scaled version of an optional wavelet base

w(τ, t) =

∫

f(t
′

)
1√
τ
Ψ

(

t− t
′

τ

)

dt
′

, (127)

where the wavelet function

Ψt′ ,τ (t) =
1√
τ
Ψ

(

t− t
′

τ

)

has zero mean and compact support. Some examples of translated and scaled version of this
function for a particular wavelet called “charro”, because its profile resembles the Mexican hat “El
Charro”, are given in Figure 116, and the analytical expression for this wavelet is

Ψt′ ,τ (t) =
1√
τ







1−
(

t− t
′

τ

)2


 exp



−1

2

(

t− t
′

τ

)2






 .

Since the Parceval’s theorem exists, the square modulus |w(τ, t)|2 represents the energy content
of fluctuations f(t+ τ)− f(t) at the scale τ at position t.

In analyzing intermittent structures it is useful to introduce a measure of local intermittency,
as for example the Local Intermittency Measure (LIM) introduced by Farge (see, e.g., Farge et al.,
1990; Farge, 1992)

LIM =
|w(τ, t)|2

⟨|w(τ, t)|2⟩t
(128)

(averages are made over all positions at a given scale τ). The quantity from Equation (128)
represents the energy content of fluctuations at a given scale with respect to the standard deviation
of fluctuations at that scale. The whole set of wavelets coefficients can then be split in two sets: a set
which corresponds to “Gaussian” fluctuations wg(τ, t), and a set which corresponds to “structure”
fluctuations ws(τ, t), that is, the whole set of coefficients w(τ, t) = wg(τ, t)⊕ ws(τ, t) (the symbol
⊕ stands here for the union of disjoint sets). A coefficient at a given scale and position will belong
to a structure or to the Gaussian background according whether LIM will be respectively greater
or lesser than a threshold value. An inverse wavelets transform performed separately on both
sets, namely fg(t) = W−1{wg(τ, t)} and fs(t) = W−1{ws(τ, t)}, gives two separate fields: a field
fg(t) where the Gaussian background is collected, and the field fs(t) where only the non-Gaussian
fluctuations of the original turbulent flow are taken into account. Looking at the field fs(t) one
can investigate the spatial behavior of structures generating intermittency. The Haar basis have
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Figure 116: Some examples of Mexican Hat wavelet, for different values of the parameters τ and t′.

been applied to time series of thirteen months of velocity and magnetic data from ISEE space
experiment for the first time by Veltri and Mangeney (1999).

In our analyses we adopted a recursive method (Bianchini et al., 1999; Bruno et al., 1999a)
similar to the one introduced by Onorato et al. (2000) to study experimental turbulent jet flows.
The method consists in eliminating, for each scale, those events which cause LIM to exceed a given
threshold. Subsequently, the flatness value for each scale is checked and, in case this value exceeds
the value of 3 (characteristic of a Gaussian distribution), the threshold is lowered, new events are
eliminated and a new flatness is computed. The process is iterated until the flatness is equal to
3, or reaches some constant value, for each scale of the wavelet decomposition. This process is
usually accomplished eliminating only a few percent of the wavelet coefficients for each scale, and
this percentage reduces moving from small to large scales.

The black curve in Figure 117 shows the original profile of the magnetic field intensity observed
by Helios 2 between day 50 and 52 within a highly velocity stream at 0.9 AU. The overlapped
red profile refers to the same time series after intermittent events have been removed using the
LIM method. Most of the peaks, present in the original time series, are not longer present in the
LIMed curve. The intermittent component that has been removed can be observed as the blue
curve centered around zero.
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Figure 117: The black curve indicates the original time series, the red one refers to the LIMed data, and
the blue one shows the difference between these two curves.

D Reference Systems

Interplanetary magnetic field and plasma data are provided, usually, in two main reference systems:
RTN and SE.

The RTN system (see top part of Figure 118) has the R axis along the radial direction, positive
from the Sun to the s/c, the T component perpendicular to the plane formed by the rotation axis
of the Sun Ω and the radial direction, i.e., T = Ω × R, and the N component resulting from the
vector product N = R× T .

The Solar Ecliptic reference system SE, is shown (see bottom part of Figure 118) in the con-
figuration used for Helios magnetic field data, i.e., s/c centered, with the X-axis positive towards
the Sun, and the Y -axis lying in the ecliptic plane and oriented opposite to the orbital motion.
The third component Z is defined as Z = X × Y . However, solar wind velocity is given in the
Sun-centered SE system, which is obtained from the previous one after a rotation of 180∘ around
the Z-axis.

Sometimes, studies are more meaningful if they are performed in particular reference systems
which result to be rotated with respect to the usual systems, in which the data are provided in
the data centers, for example RTN or SE. Here we will recall just two reference systems commonly
used in data analysis.

D.1 Minimum variance reference system

The minimum variance reference system, i.e., a reference system with one of its axes aligned with
a direction along whit the field has the smallest fluctuations (Sonnerup and Cahill, 1967). This
method provides information on the spatial distribution of the fluctuations of a given vector.

Given a generic field B(x, y, z), the variance of its components is

⟨B2
x⟩ − ⟨Bx⟩2; ⟨B2

y⟩ − ⟨By⟩2; ⟨B2
z ⟩ − ⟨Bz⟩2.
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Figure 118: The top reference system is the RTN while the one at the bottom is the Solar Ecliptic
reference system. This last one is shown in the configuration used for Helios magnetic field data, with the
X-axis positive towards the Sun.

Similarly, the variance of B along the direction S would be given by

VS = ⟨B2
S⟩ − ⟨BS⟩2.

Let us assume, for sake of simplicity, that all the three components of B fluctuate around zero,
then

⟨Bx⟩ = ⟨By⟩ = ⟨Bz⟩ = 0 =⇒ ⟨BS⟩ = x⟨Bx⟩+ y⟨By⟩+ z⟨Bz⟩ = 0.

Then, the variance VS can be written as

VS = ⟨B2
S⟩ = x2⟨B2

x⟩+ y2⟨B2
y⟩+ z2⟨B2

z ⟩+ 2xy⟨BxBy⟩+ 2xz⟨BxBz⟩+ 2yz⟨ByBz⟩,

which can be written (omitting the sign of average ⟨⟩) as

VS = x(xB2
x + yBxBy + zBxBz) + y(yB2

y + xBxBy + zByBz) + z(zB2
z + xBxBz + yByBz).

This expression can be interpreted as a scalar product between a vector S(x, y, z) and another
vector whose components are the terms in parentheses. Moreover, these last ones can be expressed
as a product between a matrix M built with the terms B2

x, B
2
y , B

2
z , BxBy, BxBz, ByBz, and a

vector S(x, y, z). Thus,
VS = (S,MS),

where

S ≡





x
y
z





and

M ≡





Bx
2 BxBy BxBz

BxBy By
2 ByBz

BxBz ByBz Bz
2



 .
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At this point, M is a symmetric matrix and is the matrix of the quadratic form VS which, in
turn, is defined positive since it represents a variance. It is possible to determine a new reference
system [x, y, z] such that the quadratic form VS does not contain mix terms, i.e.,

VS = x′2B′
x
2
+ y′2B′

y
2
+ z′2B′

z
2
.

Thus, the problem reduces to compute the eigenvalues λi and eigenvectors Ṽi of the matrix
M . The eigenvectors represent the axes of the new reference system, the eigenvalues indicate the
variance along these axes as shown in Figure 119.

Figure 119: Original reference system [x, y, z] and minimum variance reference system whose axes are
V1, V2, and V3 and represent the eigenvectors of M . Moreover, λ1, λ2, and λ3 are the eigenvalues of M .

At this point, since we know the components of unit vectors of the new reference system referred
to the old reference system, we can easily rotate any vector, defined in the old reference system,
into the new one.

D.2 The mean field reference system

The mean field reference system (see Figure 120) reduces the problem of cross-talking between the
components, due to the fact that the interplanetary magnetic field is not oriented like the axes of
the reference system in which we perform the measurement. As a consequence, any component
will experience a contribution from the other ones.

Let us suppose to have magnetic field data sampled in the RTN reference system. If the large-
scale mean magnetic field is oriented in the [x, y, z] direction, we will look for a new reference
system within the RTN reference system with the x-axis oriented along the mean field and the
other two axes lying on a plane perpendicular to this direction.

Thus, we firstly determine the direction of the unit vector parallel to the mean field, normalizing
its components

ex1 = Bx/|B|,
ex2 = By/|B|,
ex3 = Bz/|B|,

so that ê′x(ex1, ex2, ex3) is the orientation of the first axis, parallel to the ambient field. As second
direction it is convenient to choose the radial direction in RTN, which is roughly the direction of
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the solar wind flow, êR(1, 0, 0). At this point, we compute a new direction perpendicular to the
plane êR − êx

ê′z(ez1, ez2, ez3) = ê′x × êR.

Consequently, the third direction will be

ê′y(ey1, ey2, ey3) = ê′z × ê′x.

At this point, we can rotate our data into the new reference system. Data indicated as B(x, y, z)
in the old reference system, will become B

′

(x
′

, y
′

, z
′

) in the new reference system. The transfor-
mation is obtained applying the rotation matrix A

A =





ex1 ex2 ex3
ey1 ey2 ey3
ez1 ez2 ez3





to the vector B, i.e., B
′

= AB.

e
Y
=e

Z
xe

X

e
Z
=e

X
xe

R

e
X
(e

X1
,e

X2
,e

X3
)

e
R
(1,0,0)

Figure 120: Mean field reference system.
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E On-board Plasma and Magnetic Field Instrumentation

In this section, we briefly describe the working principle of two popular instruments commonly
used on board spacecraft to measure magnetic field and plasma parameters. For sake of brevity,
we will only concentrate on one kind of plasma and field instruments, i.e., the top-hat ion analyzer
and the flux-gate magnetometer. Ample review on space instrumentation of this kind can be found,
for example, in Pfaff et al. (1998a,b).

E.1 Plasma instrument: The top-hat

The top-hat electrostatic analyzer is a well known type of ion deflector and has been introduced
by Carlson et al. (1982). It can be schematically represented by two concentric hemispheres, set
to opposite voltages, with the outer one having a circular aperture centered around the symmetry
axis (see Figure 121). This entrance allows charged particles to penetrate the analyzer for being
detected at the base of the electrostatic plates by the anodes, which are connected to an electronic
chain. To amplify the signal, between the base of the plates and the anodes are located the Micro-
Channel Plates (not shown in this picture). The MCP is made of a huge amount of tiny tubes,
one close to the next one, able to amplify by a factor up to 106 the electric charge of the incoming
particle. The electron avalanche that follows hits the underlying anode connected to the electronic
chain. The anode is divided in a certain number of angular sectors depending on the desired
angular resolution.

Figure 121: Outline of a top-hat plasma analyzer.

The electric field E(r) generated between the two plates when an electric potential difference
δV is applied to them, is simply obtained applying the Gauss theorem and integrating between
the internal (R1) and external (R2) radii of the analyzer

E(r) = δV
R1R2

R1 −R2

1

r2
. (129)
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In order to have the particle q to complete the whole trajectory between the two plates and
hit the detector located at the bottom of the analyzer, its centripetal force must be equal to the
electric force acting on the charge. From this simple consideration we easily obtain the following
relation between the kinetic energy of the particle Ek and the electric field E(r):

Ek

q
=

1

2
E(r)r. (130)

Replacing E(r) with its expression from Equation (129) and differentiating, we get the energy
resolution of the analyzer

δEk

Ek
=
δr

r
= const., (131)

where δr is the distance between the two plates. Thus, δEk/Ek depends only on the geometry of
the analyzer. However, the field of view of this type of instrument is limited essentially to two
dimensions since δΨ is usually rather small (∼ 5∘). However, on a spinning s/c, a full coverage of
the entire solid angle 4π is obtained by mounting the deflector on the s/c, keeping its symmetry
axis perpendicular to the s/c spin axis. In such a way the entire solid angle is covered during half
period of spin.

Such an energy filter would be able to discriminate particles within a narrow energy interval
(Ek, Ek + δEk) and coming from a small element dΩ of the solid angle. Given a certain energy
resolution, the 3D particle velocity distribution function would be built sampling the whole solid
angle 4π, within the energy interval to be studied.

E.2 Measuring the velocity distribution function

In this section, we will show how to reconstruct the average density of the distribution function
starting from the particles detected by the analyzer. Let us consider the flux through a unitary
surface of particles coming from a given direction. If f(vx, vy, vz) is the particle distribution func-
tion in phase space, f(vx, vy, vz) dvx dvy dvz is the number of particles per unit volume (pp/cm3)
with velocity between vx and vx + dvx, vy and vy + dvy, vz and vz + dvz, the consequent incident
flux Φi through the unit surface is

Φi =

∫ ∫ ∫

vfd3ω, (132)

where d3ω = v2dv sin θ dθ dφ is the unit volume in phase space (see Figure 122).
The transmitted flux Ct will be less than the incident flux Φi because not all the incident

particles will be transmitted and Φi will be multiplied by the effective surface S(< 1), i.e.,

Ct =

∫ ∫ ∫

Svfd3ω =

∫ ∫ ∫

Svfv2 dv sin θ dθ dφ (133)

Since for a top-hat Equation 131 is valid, then

v2 dv = v3
dv

v
∼ v3.

We have that the counts recorded within the unit phase space volume would be given by

Ct
φ,θ,v = fφ,θ,vSv

4δθδφ
dv

v
sin θ = fφ,θ,vv

4G, (134)

where G is called Geometrical Factor and is a characteristic of the instrument. Then, from the pre-
vious expression it follows that the phase space density function fφ,θ,v can be directly reconstructed
from the counts

fφ,θ,v =
Ct

φ,θ,v

v4G
. (135)
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Figure 122: Unit volume in phase space.

E.3 Computing the moments of the velocity distribution function

Once we are able to measure the density particle distribution function fφ,θ,v, we can compute the
most used moments of the distribution in order to obtain the particle number density, velocity,
pressure, temperature, and heat-flux (Paschmann et al., 1998).

If we simply indicate with f(v) the density particle distribution function, we define as moment
of order n of the distribution the quantity Mn, i.e.,

Mn =

∫

vnf(v)d
3ω. (136)

It follows that the first 4 moments of the distribution are the following:

❼ the number density

n =

∫

f(v)d3ω, (137)

❼ the number flux density vector

nV =

∫

f(v)vd3ω, (138)

❼ the momentum flux density tensor

Π = m

∫

f(v)vvd3ω, (139)

❼ the energy flux density vector

Q =
m

2

∫

f(v)v2vd3ω. (140)

Once we have computed the zero-order moment, we can obtain the velocity vector from Equa-
tion (138). Moreover, we can compute Π and Q in terms of velocity differences with respect to the
bulk velocity, and Equations (139) and (140) become

P = m

∫

f(v)(v −V)(v −V) d3ω, (141)
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and

H =
m

2

∫

f(v)|v −V|2(v −V) d3ω. (142)

The new Equations (141) and (142) represent the pressure tensor and the heat flux vector,
respectively. Moreover, using the relation P = nKT we extract the temperature tensor from
Equations (141) and (137). Finally, the scalar pressure P and temperature T can be obtained
from the trace of the relative tensors

P =
Tr(Pij)

3

and

T =
Tr(Tij)

3
.

E.4 Field instrument: The flux-gate magnetometer

There are two classes of instruments to measure the ambient magnetic field: scalar and vector
magnetometers. While nuclear precession and optical pumping magnetometers are the most com-
mon scalar magnetometers used on board s/c (see Pfaff et al., 1998b, for related material), the
flux-gate magnetometer is, with no doubt, the mostly used one to perform vector measurements of
the ambient magnetic field. In this section, we will briefly describe only this last instrument just
for those who are not familiar at all with this kind of measurements in space.

The working principle of this magnetometer is based on the phenomenon of magnetic hysteresis.
The primary element (see Figure 123) is made of two bars of high magnetic permeability material.
A magnetizing coil is spooled around the two bars in an opposite sense so that the magnetic field
created along the two bars will have opposite polarities but the same intensity. A secondary coil
wound around both bars will detect an induced electric potential only in the presence of an external
magnetic field.

Driving 
oscillator

Detector

Figure 123: Outline of a flux-gate magnetometer. The driving oscillator makes an electric current, at
frequency f , circulate along the coil. This coil is such to induce along the two bars a magnetic field with
the same intensity but opposite direction so that the resulting magnetic field is zero. The presence of an
external magnetic field breaks this symmetry and the resulting field ̸= 0 will induce an electric potential
in the secondary coil, proportional to the intensity of the component of the ambient field along the two
bars.

The field amplitude BB produced by the magnetizing field H is such that the material period-
ically saturates during its hysteresis cycle as shown in Figure 124.

In absence of an external magnetic field, the magnetic field B1 and B2 produced in the two bars
will be exactly the same but out of phase by 180∘ since the two coils are spooled in an opposite
sense. As a consequence, the resulting total magnetic field would be 0 as shown in Figure 124. In
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Figure 124: Left panel: This figure refers to any of the two sensitive elements of the magnetometer. The
thick black line indicates the magnetic hysteresis curve, the dotted green line indicates the magnetizing
field H, and the thin blue line represents the magnetic field B produced by H in each bar. The thin blue
line periodically reaches saturation producing a saturated magnetic field B. The trace of B results to be
symmetric around the zero line. Right panel: magnetic fields B1 and B2 produced in the two bars, as a
function of time. Since B1 and B2 have the same amplitude but out of phase by 180∘, they cancel each
other.

these conditions no electric potential would be induced on the secondary coil because the magnetic
flux Φ through the secondary is zero.

On the contrary, in case of an ambient field HA ̸= 0, its component parallel to the axis of the
bar is such to break the symmetry of the resulting B (see Figure 125). HA represents an offset
that would add up to the magnetizing field H, so that the resulting field B would not saturate
in a symmetric way with respect to the zero line. Obviously, the other sensitive element would
experience a specular effect and the resulting field B = B1 + B2 would not be zero, as shown in
Figure 125.

In these conditions the resulting field B, fluctuating at frequency f , would induce an electric
potential V = −dΦ/dt, where Φ is the magnetic flux of B through the secondary coil.

At this point, the detector would measure this voltage which would result proportional to the
component of the ambient fieldHA along the axis of the two bars. To have a complete measurement
of the vector magnetic field B it will be sufficient to mount three elements on board the spacecraft,
like the one shown in Figure 123, mutually orthogonal, in order to measure all the three Cartesian
components.
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Figure 125: Left panel: the net effect of an ambient field HA is that of introducing an offset which will
break the symmetry of B with respect to the zero line. This figure has to be compared with Figure 124
when no ambient field is present. The upper side of the B curve saturates more than the lower side. An
opposite situation would be shown by the second element. Right panel: trace of the resulting magnetic
field B = B1 + B2. The asymmetry introduced by HA is such that the resulting field B is different from
zero.
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Figure 126: Time derivative of the curve B = B1 +B2 shown in Figure 125 assuming the magnetic flux
is referred to a unitary surface.
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F Spacecraft and Datasets

Measurements performed by spacecrafts represent a unique chance to investigate a wide range of
scales of low-frequency turbulence in a magnetized medium. The interested readers are strongly
encouraged to visit the web pages of each specific space mission or, more simply, the Heliophysics

Data Portal (formerly VSPO) (http://heliophysicsdata.gsfc.nasa.gov) as a wide source of
information. This portal represents an easy way to access all the available datasets, related to
magnetospheric and heliospheric missions, allowing the user to quickly find data files and interfaces
to data from a large number of space missions and ground-based observations.

Two of the s/c which have contributed most to the study of MHD turbulence are the old Helios
and Voyager spacecraft, which explored the inner and outer heliosphere, respectively, providing us
with an almost complete map of the gross features of low-frequency plasma turbulence. The Helios
project was a German-American mission consisting in two interplanetary probes: Helios 1, which
was launched in December 1974, and Helios 2, launched one year later. These s/c had a highly
elliptic orbit, lying in the ecliptic, which brought the s/c from 1 AU to 0.3 AU in only 6 months.
Helios dataset is, with no doubt, the most important and unique one to study MHD turbulence
in the inner heliosphere. Most of the knowledge we have today about this topic is based on Helios
data mainly because this s/c is the only one that has gone so close to the Sun. As a matter of fact,
the orbit of this s/c allowed to observe the radial evolution of turbulence within regions of space
(< 0.7 AU) where dynamical processes between fast and slow streams have not yet reprocessed the
plasma.

The two Voyagers were launched in 1977. One of them, Voyager 1 will soon reach the termi-
nation shock and enter the interstellar medium. As a consequence, for the first time, we will be
able to measure interstellar particles and fields not affected by the solar wind. Within the study
of MHD turbulence, the importance of the two Voyagers in the outer heliosphere is equivalent to
that of the two Helios in the inner regions of the heliosphere. However, all these s/c have been
limited to orbit in the, or close to the ecliptic plane.

Finally, in October 1990, Ulysses was launched and, after a fly-by with Jupiter it reached its
final orbit tilted at 80.2∘ with respect to the solar equator. For the first time, we were able to
sample the solar wind coming from polar coronal holes, the pure fast wind not “polluted” by the
dynamical interaction with slow equatorial wind. As a matter of fact, the Ulysses scientific mission
has been dedicated to investigate the heliospheric environment out of the ecliptic plane. This
mission is still providing exciting results.

Another spacecraft called WIND was launched in November 1994 and is part of the ISTP
Project. WIND, was initially located at the Earth-Sun Lagrangian point L1 to sample continuously
the solar wind. Afterwards, it was moved to a much more complicated orbit which allows the
spacecraft to repeatedly visit different regions of space around Earth, while continuing to sample
the solar wind. The high resolution of magnetic field and plasma measurements of WIND makes
this spacecraft very useful to investigate small scales phenomena, where kinetic effects start to play
a key role.

The Advanced Composition Explorer (ACE) represents another solar wind monitor located at
L1. This spacecraft was launched by NASA in 1997 and its solar wind instruments are characterized
by a high rate sampling. Finally, we like to call the attention of the reader on the possibility to
easily view and retrieve from the web real time solar wind data from both WIND and ACE.

A few years ago, Voyager 1 and Voyager 2 reached the termination shock, extending our ex-
ploration to almost the whole heliosphere. However, the exploration will not be complete until we
will reach the base of the solar corona. All the fundamental physical processes concurring during
the birth of the solar wind take place in this part of the heliosphere. Moreover, this is a key region
also for the study of turbulence, since here non-linear interactions between inward and outward
modes start to be active and produce the turbulence spectrum that we observe in the heliosphere.
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This region is so important for our understanding of the solar wind that both ESA and
NASA are planning space mission dedicated to explore it. In particular, the European Space
Agency is planning to launch the Solar Orbiter mission in January 2017 (http://sci.esa.int/
solarorbiter).

Solar Orbiter is proposed as a space mission dedicated to study the solar surface, the corona, and
the solar wind by means of remote sensing and in-situ measurements, respectively. Consequently,
the s/c will carry a heliospheric package primarily designed to measure ions and electrons of the
solar wind, energetic particles, radio waves, and magnetic fields and a remote sensing package for
for EUV/X-ray spectroscopy and imaging of the disk and the extended corona. In particular, the
high resolution imaging of the Sun will give close-up observations of the solar atmosphere, with the
capability of resolving fine structures (of the order of 100 km) in the transition region and corona.
This will certainly represent a major step forward in investigating the occurrence of intermittent
structures of turbulence at very small scales.

The observations provided by Helios 25 years ago and, more recently, by Ulysses suggest that
the local production of Alfvén waves is much stronger in the region just inside 0.3 AU, and Solar
Orbiter, repeatedly reaching 0.28 AU, will provide excellent observations to study problems related
to local generation and non-linear coupling between outward and inward waves. Moreover, the high
data sampling will provide extremely useful and totally new insight about wave dissipation via
wave-particle coupling mechanism and the role that the damping of slow, fast, and Alfvén waves
can have in the heating of the solar wind ions. Finally, the opportunity given by Solar Orbiter to
correlate in-situ plasma measures with the simultaneous imaging of the same flow element of the
solar wind during the co-rotation phase, will provide the possibility to separate temporal effects
from spatial effects for the first time in the solar wind. This will be of primary importance for
finally understand the physical mechanisms at the basis of the solar wind generation.

A similar mission, Solar Probe Plus (http://solarprobe.jhuapl.edu/), is under development
by NASA, on a schedule to launch no later than 2018. Solar Probe Plus will orbit the Sun 24 times,
gradually approaching the Sun with each pass. On the final three orbits, Solar Probe Plus will
fly to within 8.5 solar radii of the Sun’s surface. This mission, although very risky, will allow us
to tremendously advance our knowledge about the physical processes that heat and accelerate the
solar wind.

Thus, future key missions for investigating turbulence properties in the solar wind plasma are
not just behind the corner and, for the time being, we have to use observations from already flown
or still flying spacecraft. This does not mean that exciting results are over, while we wait for
these new missions. The main difference with the past is that now we are in a different phase of
our research. This phase aims to refine many of the concepts we learned in the past, especially
those concerning the radial evolution and the local production of turbulence. As a consequence
more refined data analysis and computer simulations are now discovering new and very interesting
aspects of MHD turbulence which, we hope, we contributed to illustrate in this review.
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Grappin, R., 2002, “Comment on ‘Alfvénic turbulence in the polar wind: A statistical study on cross
helicity and residual energy variations’ by B. Bavassano et al.”, J. Geophys. Res., 107, 1247. [DOI],
[ADS] (Cited on page 86.)

Grappin, R. and Velli, M., 1996, “Waves and streams in the expanding solar wind”, J. Geophys. Res., 101,
425–444. [DOI], [ADS] (Cited on pages 22, 55, and 91.)

Grappin, R., Frisch, U., Pouquet, A. and Leorat, J., 1982, “Alfvénic fluctuations as asymptotic states of
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