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Abstract. Integrable 1-+1 dimensional systems associated to linear first-order
matrix equations meromorphic in a complex parameter, as formulated by
Zakharov, Mikhailov, and Shabat [ 1-3] (ZMS) are analyzed by a new method
based upon the “soliton correlation matrix” (M-matrix). The multi-Bicklund
transformation, which is equivalent to the introduction of an arbitrary number
of poles in the ZMS dressing matrix, is expressed by a pair of matrix Riccati
equations for the M-matrix. Through a geometrical interpretation based upon
group actions on Grassman manifolds, the solution of this system is explicitly
determined in terms of the solutions to the ZMS linear system. Reductions of
the system corresponding to invariance under finite groups of automorphisms
are also solved by reducing the M-matrix suitably so as to preserve the class of
invariant solutions.

1. Introduction

Consider the pair of differential equations
p.=Uyp, }
Y, =Vy,

where U(4, &, 1), V(4,&,n), and (4, £, 1) are n x n matrix functions depending on a
complex parameter 4, with y assumed invertible, and U and ¥ meromorphic in 4
with fixed poles on the Riemann sphere at {e,},_  , {B.}._( ., respectively.
Such systems were introduced and studied by Zakharov, Mlkhallov and Shabat
through the use of the “dressing method” [1-3]. Expressing the A dependence of U
and V explicitly as:

(1.1)

AS
U=4, +Z()L O "
B; ‘
IR T A
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where A,, By, A5, B! are independent of 4, the integrability conditions for (1.1),

U,—V.+[U,V]=0, (1.3)
give rise to a system of nonlinear differential equations in {A,, B,, A, B}} which
include, after applying suitable reduction procedures, many, if not all, known
integrable two-dimensional system. In particular, if we restrict U in (1.2) to have
only simple poles at A= cc and V to be a polynomial in 2 and 27! (i.e. finite order
poles at 0 and o0) and add some algebraic restrictions, then (1.1) becomes the
generalized AKNS system [4], while if A, and B, are chosen to vanish and a pair
of simple poles are allowed in U and V at —1 and +1, respectively, we obtain the
nonlinear sigma models and various other relativistically invariant 2-dimensional
models by reductions [1-3, 5-8].

The “dressing method” [1-3] restricted to the generation of soliton-like
additions to a given solution may be summarized as follows. Assume that a
solution {U, V,p} to the system (1.1) with the correct analytic structure in 4 is
known. Then, following ZMS, we introduce a dressing matrix (2, &, #) which, with
its inverse x~ (4, ¢,7), is assumed meromorphic with simple poles in 4 at fixed

points {4;},_  x {#;};=, g respectively, and normalized such that
y(A=o00)=1. (1.4)
These may be expressed in terms of the residues:
1
0= i § x(A)dA, (1.5a)
; -1 1.5b
R= TG (1.5b)
(where the integration is on a small contour containing only the pole indicated),
as: K o
A =1+ 3 =
L (1.6)
=1+ i R,
X = —t
iT1 A K
The condition
)= (1.7)
requires that the residues be related by the quadratic constraints:
RQ, R, ]
+R,+ + L =0,
2 E f=2y o =iyl
. Ré : 5 Ro (1.8)
RQ,=— i“ii #"“Ri :(Hi_;”i) - = +0:1-
¢ ( ) jgl :“i_/lj =1 A

J*i J*i

These are expressed here in a form equally valid whether or not 4;=yu;, but we
assume without loss of generality that A, p;, if i<
A new solution {U, V. p} to (1.1) is defined by the transformation:
P-p=yp,
U—U=yUy 470 . (L9)

Vo V=gVt



Soliton Correlation Matrix 35

provided the analytic structures of {U, 7} is identical to that of {U, V}; namely,
U=A,+ Y 4 (1.10a)
— 7 u—af’ '

r, S

By + Z ﬁ 7 (1.10b)

This implies the set of nonlinear differential equations for the residues Q,, R

Q= E}(li)Qi —-Q.U(4), } (1.11)
Qm = V(/li)Qi - QiV(;Li) s
or equivalently,
Ri:= U(u)R; ~ Ri?(ﬂi) > } (1.11")
Riq = V()R — R V(). .
The nonlinearity arises from the terms U, V determined by:
Bi= o UG ), (1.12a)
ig
B= 2; (/1 B AV (A, (1.12b)

Ay,=A,, B,=B,.
The system (1.11), (1.12) together with the constraints (1.8) may be regarded as a
multi-Béicklund transformation mapping the solution {U, ¥y} to the family of
solutions {U, V,{} determined by (1.9) after integration of (1.11), (1.11").

The purpose of the present work is the following. First, we shall present a
method for integrating the system (1.11), (1.11’), (1.12) using a new quantity, the
“soliton correlation matrix” or M-matrix, which was introduced in [8] for the case
of nonlinear sigma models. All the results presented here are direct generalizations
of results obtained in [8]. In the following section, we define the M-matrix and
show that it satisfies a matrix Riccati system equivalent to (1.11), (1.12). This is
explicitly solved by use of the geometrical structure of such equations based upon
the action of linear groups on Grassman manifolds, as developed in [5-9]. The key
step in this procedure is the recognition that the Riccati system is not the most
general one associated with the given group but admits a reduction to a much
smaller one, which essentially reduces the system to 2K copies of Eq. (1.1), for
A={A;} and {y,}.

In Sect. 3, the reduction of the systems (1.1)~(1.3) by algebraic automorphisms
is studied, following the programme of Mikhailov [ 10, 11]. We apply the reduction
procedure to deduce a set of linear constraints on the M-matrix which are
necessary and sufficient to assure that the solution generated by the multi-
Bicklund transformation satisfy the equations of the reduced system. As illus-
tration of these results, the multi-soliton solutions are deduced in Sect. 4 for two
specific reduced models; the nonlinear sigma model with values in SL(n, IR)/SO(n)
and the non-abelian two-dimensional Toda lattice. For the latter, the results
reduce in the Abelian case to those obtained by Mikhailov.
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2. The Soliton Correlation Matrix

We define the nK xnK dimensional matrix M, which we call the soliton
correlation matrix, such that its i/ nx n block M, is:
1 x A
M. = dp b di———""~
5= Gy ST

. dj=1,..k. (2.1)

In this definition, all choices of disjoint contours including only the poles indicated
give rise to the same value for M;; The residues @, R; and hence the dressing
matrix y and its inverse are recovered by summing along row or column blocks:

K K
Q= ZMji’ Ri=~ ZMU’ 2.2
i=1 i=1

as may be seen by replacing the integration on the sum of the contours at finite
poles by a contour at co.

A number of further properties of the M-matrix following from such contour
integrations will be relevant in what follows:

L. I w,=*4,, then

M, = izi (2.3)

2. The constraints (1.8) on the residues are equivalent to the following ones
onM:

K
uiMij—/lei}.:~%Milej. (2.4)

3. There exists a block diagonal matrix S=diag{s,}, s,(&, y)e C"**" with s,=0 if
u; ¥ A;, such that

M(D+SM=M, (2.5)

where D is the constant matrix with ij block :

1
D.=- 1 if A+
e (2.6)
=0 it A=u.

Properties 1 and 2 are immediate from the definitions and Property 3 is proved
in [8].
The first main result of this section is the following:

Theorem 2.1. The soliton correlation matrix M satisfies the following Riccati
system:

M,=p"M—Ms"—Mr"M, (2.7a)
M,=p M~-Ms"—Mr M, (2.7b)
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where

p* =diag{U(u)},
s* =diag {(U(4)}.

e U(,uj)'_ U(ii) - V(:uj)_ V(/Ii)
L e T 7 E e
”J‘_)“i Auj—/li
if wFA i wFA
=-Uly=4) =—Vi(y=2)
i w=4. i w=4.

p~ =diag{V(u)},

s =diag{V(4)},

37

(2.8)

This system is compatible with the constraints (2.4) and is equivalent to the multi-
Biicklund transformation determined by Eqs. (1.11), (1.12) with constraints (1.8).

Proof. This result generalizes one given in [ 8] for the case of the sigma model, and
only those parts of the proof which are not immediate repetitions of those in [8]
will be indicated.

Differentiating the integrand of (2.1) and using (1.9), we have

o, U ) 7 vty (06— 00)
UL PRI L BT )[—WM_A Jx(/l)-

Integrating over the first two terms gives exactly the first two terms of Eq. (2.7a).
The bracketed expression in the third term may be written:

U(u U(l) U(o)
[ } —){o—4)
o U(o)
“5 2 306
1 (VY U(o)y ™ o)
RP TP L rea
using Eq. (1.9) and the known location of poles in U(s) and U(o). Expressing 55‘)
1 o)
-~ as

ag— A

xo) x(@) _ b () x(1)

Pyl e K anym Rl rrID VR =Ty st

o) 1 R R NP 1)

Py i i Ly 7y S ey O L7 7 v R



38 J. Harnad, Y. Saint-Aubin, and S. Shnider

we have:
o) )
et K = D P u)}
“Ho)(2) 1 . (B)x(i)}
$aE N = = T

Substituting gives :

—t_ﬁd,u§d)(2 g Zgﬁrdcrz $ do

) Ule) 2 Bd)
ZW[ o) @—ao—P B }

U(o) }
= S & $40| ) Mo
—ZMlk’”kl T

where 1, s as deﬁned in Eq. (2.8). A similar computation yields (2.7b) for the
y-derivative. [

The compatibility of Eqgs. (2.7a) and (2.7b) with the constraints (2.4) follows
most easily from the geometrical interpretation of matrix Riccati systems which
we summarize briefly here. (A more detailed account is given in [6, 8].) Introduce a
GL(nK, €)-valued function 9(¢, n) determined by the system of linear equations:

.
pm 0

gf(r+ S+)q¢, (292)
-0

{4,;(’7 A)%, (2.9b)
r S

with some suitable chosen initial value %(&,,7,). The solution will be of block

triangular form
P 0
G = 2.10
w5 210

provided %(£,, #,) is. The integrability condition for (2.9a) and (2.9b) is identical to
that for (2.7a) and (2.7b), namely,

o e s i L
FooSyl, \ro S_J: Py Sy oS-

which is equivalent to Eq. (1.3) evaluated at A = {4, 41,}. The general solution to Eq.
(2.7a) and (2.7b) is given in terms of ¥ by the linear fractional transformation

M(& ) =P nm[REmm+SEm] T, (2.12)
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where m is an arbitrary constant 2nK x 2nK dimensional matrix satisfying the
constraints (2.4). The geometrical significance of this is that M(&,n) may be
regarded as the affine coordinates of a point in the complex Grassman manifold
G,x(2nK,C) of nK-planes in €C*"*. The group GL(21nK, €) acts on G,;(2nK,C),in a
natural manner which, expressed in affine coordinates is given by linear fractional
transformations

P 0\ -1

(R S) :m—>{Pm+Q)Rm+S)" ',

(; §>€ GL{(2nK,C), me@k= "L,

(For the action to be effective, the group must be quotiented by its center.) The
function M :RZ—>C"®**™ may be regarded as defining a section of the trivial
Grassmannian bundle IR? x G, . (€*"¥), and similarly ¢ :R* > GL(2nK, C) defines a
section of the trivial principal bundle R* x GL(2nK, €). The Egs. (2.7a) and (2.7b)
and (2.8a) and (2.8b) express the fact that these sections are covariant constant
with respect to the integrable connection defined by the gl(2nK, €) valued form:

Dy =AdG 0+ 914G, 2.13)
where
0 0
o= Mae- (= Oan, (.14
r.oS, F_oS_

and the integrability condition (2.11) expresses the vanishing of the curvature. The
constraint (2.4) expresses the fact that M has values in the submanifold of fixed
points under the map: T: G, (C*"*)— G, (C>"¥), defined by the matrix:

T:T®ﬂn><n’
diag{u} ! 0 )
_ (d1agik N 215
K < —E | diag{i}) @13)
1.1
E=|: o
1.1

acting, as in Eq. (2.12) by linear fractional transformations. This constraint is
consistent with Egs. (2.7a) and (2.7b) because the connection form commutes
with T: [, T] =0, and hence the infinitesimal holonomy group is contained in the
subgroup of GL(2xnK, C) of elements commuting with T.

The solution to Egs. (2.9a) and (2.9b) may be explicitly given in terms of the
solutions of Eq.(1.1) by noting that this subgroup reduction leads to a block
diagonalization of the connection form by a transformation independent of (&, #).
The specific form of the subgroup reduction depends on whether degeneracies
occur between the constants {4, p,} which are the eigenvalues of the matrix 7.
Since we may assume without loss of generality that the {4} and {u;} are
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separately distinct and the only possible degeneracies occur between pairs {4, 4},
the Jordan blocks are all 1- and 2-dimensional. The matrix of generalized
eigenvectors is:

1 0
S= 216
! 216
where
dy= =g 1 2
2.17)
dy= it A=p;.

The simultaneous block diagonalization of T and o by the matrix S®1 leads to
the solution of (2.9a) and (2.9b) in the form:

G=S1%,S ‘@1, (2.18)
where %, satisfies:
U0
Gy = <U : _U_) 9, (2.19a)
Vo
Gy, = (V T _V_> v, (2.19b)

with the block diagonal matrices l}, U, U, I~/, v,V given by:
U=diag{U()},
U =diag{U(1)}.
V=diag{V(g,)},
v =diag (V(L)},
U:diag{Ul.},
V=diag{V}},

(2.20)

where

U=—U0) it A=u

=0 otherwise,
Vi==V{4) if A=y
=0 otherwise.

If there are no degeneracies and 4,(¢,,,) is taken as nx n block diagonal, Egs.
(2.19a) and (2.19D) is just 2K copies of (1.1) evaluated at A={4,u,}. If 1,=y, for
certain i, the corresponding blocks reduce to the solution of the block triangular
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2n x 2n dimensional system

v Oy _( U@ 03[y O
(¢ lP><_(—U’(/1) U(i)) (4; w)’ (2.21a)
v 0V [ V) 0 )(w ())

<¢ w),, (—-V'(A) Vi) \¢ )’ (2.21b)

whose general solution is determined by a solution y of (1.1), plus a solution to the
equation obtained from (1.1) by differentiating with respect to A, namely:

P = -y (D +yp(HCA), (2.22)

where C(1) is an arbitrary n x n matrix constant in (,#).
Combining these results, we find the general solution of (2.9a) and (2.9b) to be

of the form
gz(})lff—il)ﬂb ;) (2.23)
where
¥ = diag {p(u,)} ,
¥ =diag{p(4,)}, (2.24)
& =diag{¢,)
with

¢,=— () +p(A)C) if A=y
=0 if A

and D as defined in Eq. (2.6). Combining with Eq. (2.12), we arrive at the following
result.

Theorem 2.2. The general solution of the system (2.7a) and (2.7b) is:
M=Ym[(DY—-¥D+Pm+¥] 1, (2.25)
where ¥, ¥, and @ are defined in Eq. (2.24).

This form of the solution is identical for all integrable systems of type (1.1)+1.3)
and was explicitly given in [8] for the nonlinear ¢-model. Another form of the
solution given there relates the result to the notation of Zakharov, Mikhailov, and
Shabat and we quote it here for completeness. The proof for the general case
coincides with that given in [8] and will not be repeated.

Theorem 2.3. The solution (2.25) of Theorem 2.2 is equivalently expressed in terms
of the residues {Q,, R} defining the ZMS dressing matrix y and its inverse as
follows :

Q=X;F], }

2.26
R—H K. (2.26)
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where {X, F,} and {H,K,} are pairs of rectangular maximal rank matrices of
dimension n x q; and n X r; respectively, with F,, H,; determined by

Fi:ngl(/li)fi,}
Hi:w(ui)hia

in terms of arbitrary constant maximal rank matrices f;e C**%, h,eC"*", and X, K,
are determined by solving the linear system:

LXL 1]

(2.27)

, (2.28)
ZK! ij J
and
r,= i H, if A*u., (2.29a)
VT —p i T H;
Li=F oy "U0)H; if Ji=p, (2.29b)
with
F/'H,=0 (2.30)

in the latter case.

This completes the analysis for the general case. In the next section we shall
show how these results may be applied to the solution of the system (1.1)—(1.3)
reduced by suitable algebraic constraints.

3. Algebraic Reductions

Following the programme suggested by Mikhailov {10, 11], we now consider
reduced systems obtained from (1.1) by the application of certain additional
constraints corresponding to invariance under finite automorphism groups. The
transformations leaving (1.1) invariant which will be considered are of the type:

W) folp(s™ (NI = D),
U= fo, UG TS~ + fuf 1=0(4), (3.1)
V(D)= fo, Vs TSI+ ff T =),

where s : CP' > CP! is a conformal map of the Riemann sphere, e Aut[GL(n, C)],
feC?(R?, GL(n,T)), and I=1ifo , 18 linear, A=Jif 7, is anti-linear. We may, up
to a sign, define s as an element of SL(2,C)

b

s=(“ ) ad—be=1, (3.2)
c d

acting on the complex plane by linear fractional transformations

al+b
- M
cA+d
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and preserving the set of poles {«,} and {f,}. The automorphisms of GL(n, C) are
one of the following types:

o,(g)=tgt" ",
Gz(g):tgt—la (3 4)
ay(g)=tg" 71, '

04(g)ztgtﬁlfl >

where ¢ is some fixed element of GL({n,C). The function f(¢,#) defines a gauge
transformation and may be thought of as determining the normalization at A= co.
In particular, if we choose the canonical gauge:

U(o0)=U(e0)=0,  V(c0)=¥(0)=0, (3.5)
then f is uniquely determined (up to a constant) as

f=aly(s™ )]t (3.6)

In general, we shall consider a finite group {f,,0,,5,},-, ., of such transfor-
mations, which means that the gauge transformations

f=flo,s) (3.7)

must satisfy the composition rule:

S04, 04 85,5,) = [(04,55)0,f(0,55,) 5 (3.8)
and the poles {o,} and {f,} must each be the union of a set of orbits of the finite
subgroup {s,} CSL(2,C) in CP'.

We now consider the solutions of (1.1) which are invariant under the
transformations (3.1) for all elements of this group. The invariance conditions

w(s(A) = fop(4), (3.92)
Ust) = fo [JUMISf 4+ fof L, (3.9b)
Vis)=fo VIS~ 1+ f,1 71, (3.9¢)

imply in particular that f is not arbitrary but determined by evaluating (3.9a) at
one point, which we choose as 4= oo, giving

—_—

f=w(o0)al(s™ (o). (3.10)

The composition rule (3.8) for various {o,s,} is implied by the invariance
condition (3.9a). Conditions (3.9b) and (3.9¢c) are equivalent to the following
relations for the matrix functions {4}, B{}, defining the reduced system

o (A)=(c3, +d)* T (quttr) ' e, AT S (3.11a)
o B =B+ Y L e vaps By Gt

=0 q't!
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These relations are most easily derived by evaluating {A4$, Bi} by the contour
integrals:

Al= —1— (A—o, ) TUA)dA, (3.12a)
2mi
1 -1
Bi=— ¢ (A=B,)" 'V (A)d2, (3.12b)
27l By

applied to both sides of (3.9b) and (3.9¢). No further relation on A,, B, is implied
since the A— oo limit of (3.9b) and (3.9¢) is already satisfied by the choice (3.10)
for f.

If we now require that under the transformation (1.9), both the old and new
solutions {U, V,p}, {U, V, {} satisfy constraints of the type (3.9), we deduce that the
dressing matrix y and its inverse must satisfy:

o[ xM1= 1~ s S (3.13)

where f is determined in terms of { by a relation of the same form as (3.6). This
requires in particular that the set of poles {4, 1.} be invariant under s : A—s(4) with
the sets {4,} and {y,} separately invariant for automorphisms of type ¢, and o,
and mapped into each other for those of type o, and o,. The following theorem
gives the constraints on the soliton correlation matrix which assure that the new
solution {U,V,{} determined by Theorem 2.2 satisfies the constraints (3.9),

provided {U, ¥, v} does.

Theorem 3.1. Suppose {U,V,p} is a solution of (1.1) satisfying the invariance
conditions (3.9) for an automorphism (o, s) with gauge transformation f. The new
solution {U,V, 9} determined by the multi-Bicklund transformation (1.9) with
dressing matrix y given by Theorem 2.2 and Egs. (1.6), (2.2) satisfies the correspond-
ing invariance conditions (3.9) with gauge transformation f if and only if the
M-matrix satisfies one of the following set of constraints:

(1) If ois of type o,

_ Sty
stiys( = m . (3.14a)
(2) If o is of type a,,
(oM (f)!
s@sh = m (3.14b)
(3) If ais of type o,
M)
M s = (et dcht+d) (3.14¢)
(4) If g is of type o,
SIMTD) (3.14d)

Moo=
OO (o, + d) (e, + d)
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where
1 v (u)y( )
g = it 3.15
s(1)s(J) (27'Ei)2 S(i H S(f ) ( a)
Jor ¢, and ¢,, and
Hwx(A)
M = d/l_— (3.15b)
(s — (2 )2 s(./l) S(EE‘ h— 1

for 6, and o,.

Proof. This is a direct generalization of Theorem 5.1 of [8] which is proved there
in detail, therefore we only give an outline here. From the meromorphic structure
of x{(A) and y~ Yw) and their behaviour as A,u—o0, the constraint (3.13) is
equivalent to:

! u)x( 01 _ ~Us(E)(s(A))

Consider case (1). Since ¢ is now linear, we have, by the definition (2.1) of M,

1 ol NN
du § di————F——.
(2mi)? f $ dA )
Changing variables to p'=s(u), A'=s(1) and integrating around s(g,), s(4,) gives the
relation (3.14a). A similar substitution taking complex conjugation into account
yields (3.14b) for case (2). For case (3), o is not linear, but defining the linear anti-

U(Mij)z

automorphism 6(g)=0{g” )=1tg7t 1, we have
o oL (W3]
e L idl o
(1))(( )]

s L 4§
_1§ 1§ di 1(S(/i))x(s(#))

4 H—A

1
~ (2ni)? ! /-

Now changing variables to ' =s(1), 2’ = s(1) and integrating around s(4 ;) and s(w,)
gives the relation (3.14c¢) and a similar computation with complex conjugates gives
(3.144).

The constraints (3.14a)}-(3.14d) all have a natural interpretation in terms of the
Grassmannian bundles R? x G, (C*"¥), and this interpretation can be used to
prove the consistency of these constraints with Egs. (2.72) and (2.7b). Define first
four k-dimensional representations R, R, Q, and Q of the group {s,} CSL(2, €) with
matrix elements

o,
R.{s)= i,5()) , _ ls(j)
=gty R=gl

Qij(s) = 5:’, s(j)(cj'j +d), Qij(s) = oi, s CAJ' +d).

(3.16)
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In terms of these matrices, the four conditions (3.14a)-(3.14d) may be expressed:

(1) For ¢ of type o,
(RO fOM=M(Q® ft). (3.17a)

(2) For o of type 0,,
(R®fOM=MQ®f1). (3.17b)

(3) For o of type o3,
R HM +MT(QR(f1)" "1 =0. (3.17¢)

(4) For o of type g,

RO~ HM +M'(O®(f0)'~ ) =0, (3.17d)

i

where in each case f= f(o,s) and r is the GL(n, €) element appearing in the
definition (3.4) of o. These conditions are interpreted geometrically by defining for
each f the four cases (1)-(4), a function on IR? with values, respectively, in the space
of linear maps, anti-linear maps, bilinear and sesquilinear forms on €3"*:

1) For g, the linear map L(&,#): €C*"®—>C*"¥ with matrix representation,

R 0
IX= X . 3.18
? HEY (18)
2) For a,, the anti-linear map L(&,7) : €2"K—C?"K with matrix representation,
- (R O _
= ~ X . 3.18b
LX ( 0 Q) & ft ( )

3) For o, the bilinear form B y):C**xC**->C with matrix
representation,

_yr[0 €@
B(X, Y)—XT(R o

4) For o,, the sesquilinear form: S(&,7n): €™ x C***>C*"* with matrix
representation,

) ®(ft)' Y. (3.18¢)

S(X, Y)=X" (1% %) Q(fe) 1Y, (3.18d)

The maps L and L act naturally on the Grassmann manifold G, (C?*%), and at
each point (&,#) the constraints (3.17a) and (3.17b) are the expressions in affine
coordinates of the fact that the corresponding point in G, (C*"¥) is fixed under

them:
LU s15m

J = m (3.19b)
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denotes the equivalence class of all 2nK x 2nK dimensional rectangular

where [

1
. MG . . .
matrices ( G ), GeGLmK,C) with columns spanning the corresponding nK-
plane. Similarly, the constraints (3.17¢) and (3.17d) express the fact that for all
M . C . .
(&, n), [ 11] determines an nK-plane which is totally isotropic under B or S,

respectively:

[MT 1] B m =0, (3.19¢)

[M' 1] S

M
ﬂ} =0. (3.19d)

These constraints may be restated in terms of the Grassmannian bundle
R? x G, (C*") of which M(¢,n) determines a covariant constant section. The
quantities L, L, B, and § may at each (£, n) be regarded as tensors on the fibre of the
trivial vector bundle R? x €*"¥ over that point. Thus L, i, B, and S define sections
of the corresponding tensorial bundles associated to the principal buadle
R2 x G(2nK, €) by the group actions:

G L~9LG 1, (3.20a)
G [-%L9 ", (3.20b)
% .B-%T 1Bg !, (3.20c)
4. S->4T"1sg 1, (3.20d)

(In fact, the sections L, L associated to the various group elements {g,, s,} define a
representation of the reduction group.) The constraints (3.17a)-(3.17d) define
reductions of the Grassmannian bundle R? x G, ((C*"%) to sub-bundles consisting
of fixed points under L or L or isotropic subspaces under B or S, respectively.
Since the section determined by M(&, ) is covariant constant, the consistency of
the constraints (3.17a)-(3.17d) with Egs. (2.7a) and (2.7b) follows provided the
sections determined by L, L, B, and S are themselves covariant constant. This is
the constant of the next theorem.

Theorem 3.2. The functions L, ]:, B, and S satisfy the covariant constancy
conditions

1) dL+[w, L]=0, (3.21a)
2) dL+wlL—Ld=0, (3.21b)
3) dB—w*B—Bw=0, (3.21¢)
4) dS—w'S—Sw=0, (3.21d)

where @ is defined by Eq. (2.14), and therefore the constraints (3.17a)-(3.17d) are
consistent with Egs. (2.7a) and (2.7b) determining M.
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Proof. The ¢ component of Eq. (3.21a) is

o ool o oo}

where p™, 7", and s* are defined in Eq. (2.8). From the definition (3.10) of R and Q,
0 0 .. (R 0 .
it follows that the lower triangular block (r . O) commutes with ( 0 Q>’ while

the diagonal blocks are of the form: R, [ fit — Uw) ft+ ftU(u))], Q;Lfit— U(A) ft
+ ftU(4;)]. Since R;; and Q,; vanish unless i=s(j), these terms are all proportional
to fyt— U(s(A) ft+ ftU(J) for A={u;, 4;}, which vanishes by virtue of the invariance
condition (3.9b). The same proof applies to the # derivative in (3.21a). The other
cases (b)-(d) are proved in a similar manner.

Finally, we shall give an alternate formulation of the constraints defining the
reduction in terms of the parametrization given in Theorem (2.3) for the residues
0, and R,. This result is a direct generalization of Theorem 5.3 of [8], and since the
proof follows along identical lines, it will be omitted here.

Theorem 3.3. The constraints (3.14a)<(3.14d) defining the reduction of the
M-matrix are equivalent to the following in the notation of Theorem 2.3 :

1y If o is of type 6,
H,=ftH,,
Fap=(f0""'F,, (3.22a)
Loy =Tifch +d)ep;+ d).
2) If o is of type 7,,

Hs(f):ftHh
F=(D"" 'F,, (3.22b)
Liaen = l:ij(c/: +d)(cfi;+4d).
3) If o is of type o,
Hs(i):ftFD
Fy=(f0)""'H;, (3.22¢)

s = —Ti e+ d)eu;+ d).
4) If o is of type o,

H g =ftF;,

Foo=(f) 'H,, (3.22d)
s = — e+ d)(ci;+ d).

S

The relations between the rectangular matrices H,, F; should be interpreted as
relating the spaces spanned by their columns, and hence may be modified by
multiplication on the right by arbitrary nonsingular matrices, with I';; modified
accordingly, consistently with Egs. (2.29a) and (2.29b). Such a modification
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generally does not alter the residues Q,, R;, which are determined according to
Theorem 2.3 by solving the linear system (2.28). However, in some cases, the
constraints have no nontrivial solutions unless such a modification is made. The
constraints on the I}; matrices are mostly redundant, since if there are no
degeneracies, they follow from the definition (2.29a) and the constraints on F,
and H,. However, those diagonal terms with 1, =y, are determined from Eq. (2.29b)
and involve the arbitrary matrix c¢(}) of Eq. (2.22), hence the corresponding
diagonal constraints are independent of those for F; and H, Furthermore,
although these constraints are expressed for arbitrary (&%), it follows from
Theorem 3.2 that it is sufficient that they be satisfied for the input data { f;, h,, c(4,)}
determining the value at one point, since the equations determining the M-matrix,
and hence {F;, H;, I';} then imply they are satisfied for all (&, ).

4. Examples of Reduced Systems

To illustrate the results of the preceding sections, we shall obtain the multi-soliton
solutions for two types of integrable systems by the reduction procedure: (i) the
SL(n,IR)/SO(n) sigma model, and (ii) Mikhailov’s two-dimensional non-abelian
Toda lattice [11].

(i) The SL(n,IR)/SO(n) Sigma Model

This example is contained in the list of classical Riemannian symmetric spaces
studied in [87; we include it here as illustration of the general method. We start
with the principal sigma model equations:

A, +B,=0, (4.1)
7 4

where

A:ggg—la B:gr’gkla

gl&;meSL(n, @),  A(Sn), BE nesln, C),
which are the integrability conditions for the ZMS system:
A

@.2)

B
The reality conditions
g=§, A=A, B=B, (4.4)

together with the involutive invariance
9"=g, (4.5)
define the SL{n,R)/SO (1) model through the Cartan immersion [8, 12]
i:SL(n,R)/SO{n)—SL(n,IR)CSL(n,C),
i:hSOm)—~h"h=yg.
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The immersion i may be locally inverted by choosing a parametrization of
SL(n,R)/SO(n) by e.g. lower triangular matrices i with deth=1. The reduction
group leading to conditions (4.4) and (4.5) is generated by the two
transformations:

W(A)=p(4) 4.7
and
w)—gp"H(1/A), (4.8)
where
g=v(0), wy(x0)=1. (4.9)

The dressing matrix must generally include complex conjugate pairs of poles
{2, A} in x(4) and {1/4,1/2} in ¥~ (%), which we parametrize

SN %
=1+ 2, LI-/L- ! i"vj’ (4.10)
1 R: R: .
-1 =1 I ! —-}.
W= D YT

The reduction conditions following from invariance under (4.7) and (4.8) are:

1A)y= x4, (4.11)
KM =g 1/ )g, (4.12)

where §=17(0) is the new solution to the system (4.1), (4.2). According to Theorem
3.1, the first relation (4.11) is equivalent to the following constraints on the
M-matrix :

M?fj_:ijs MI?JTZM?]-, (413)
which, ordering the poles as {A;, ..., 2p A1 - di)s A1/ Ay o0 1Ay U2y, 1/2) s
equivalent to invariance of the space determined by M under the antilinear map
defined by the matrix

P9 TR ‘ (4.14)

In terms of the residues

=X.F}! =X Fi
Ql 1F1T7 Ql [ } (415)
Ri=HK! , Rsy=H:K{,
this is equivalent, according to Theorem 3.3, to the conditions
=H; F:=F,,
e L—’A} (4.16)
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Similarly, the relation (4.12) requires the M-matrix to satisfy:

;t T —1
M = ~gMig ",
J

_ /1 T —1
Mj‘i_}“gMUg >
K (4.17)

Mji_ gMUg 17

; _
M___ TngIJ‘—g 1>

which is equivalent to the condition of total isotropy of the space determined by M
under the quadratic form with matrix representation:

Beil-cooomro X ®g1. (4.18)

According to Theorem 3.3, this reduces to the relations

H;=gF,, H;=gF;,
(4.19)

A A
T e T
I'ji= it u )v Fﬁ FU j'
Thus, the solution is determined by Theorem 2.3 in terms of one rectangular
matrix f, with F,=y'"}2)f, F,, H; and H; determined by (4.16) and (4.19) and
X, X+ solutions to the linear system (2.28). The multi-soliton solutions may be
constructed by using as input the “vacuum” solution

g=exp{A4,¢+Byn}, w=exp{1‘4ii + IB j”)} (4.20)
with A,, B, real, diagonal traceless matrices.
(ii) Non-Abelian Two-Dimensional Toda Lattice [11]
The ZMS system is:
p:=(Uy+ U Ay, (4.21a)
v, =4 Dy, (4.21b)

Uy U,V eglinN,C).
Following Mikhailov, the reduction group Z, is generated by the transformation

pA)—1p(ghyr™ ', (4.22)
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where
q=e*"N, (4.23)
and
q1, |
2
e 4% . , (4.29)
q"1,
giving rise to the reduced form:
W, 0 U, 0
U,= . U, = Uy,
W, U, 0
(4.25)
0 v,
VZ . X
V, = o , W,U,VeC”" a=1,..,N.
0 Vv o0

The integrability conditions for (4.21) imply in particular that the U, are
independent of », and the residual gauge group may be used, provided all U, are
non-singular, to make them all equal:

U,=U(¢) Va. (4.26)
The remaining integrability conditions are:
w, ,+UV,..,—V,U=0, (4.27a)
Vet VW, —W,V,=0, a=1..,N (modN). (4.27b)
The general solution of (4.27b) is of the form:
V, =g,k Mg, (4.28)
where ¢,(&, n) satisfies
Gur = Wel (4.29)

and the k (n) are arbitrary. Assuming all ¥, non-singular we may, by redefinition
ofg,,

9= Gulo(11) (4.30)
arrange that all k (i) be equal:
k(m=V() Ve, (4.31)
and the remaining Eq. (4.27) becomes:

Gaedn Dy + U, Vg, ' —g,Ving, UE)=0, (4.32)
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where, without loss of generality, [because of the remaining gauge invariance and
the transformations (4.30)] we may assume U(¢), V(y) to be in Jordan normal form.
Here U(&), V(n)e GL(n, C) are arbitrary nonsingular matrix functions.

The non-abelian two-dimensional Toda lattice of Mikhailov is given by the
choice

u)=vmn=1, (4.33)
giving the reduced form:
» 0 1 \
glégl. ’ .
Uy= . , U;= < ,
’ L ' 1
Inen 1 0,
' . (4.34)
0 919w
-1
V= 9291 ,
.gNg]; 4 0
with integrability condition:
Gaefs Dyt das19s " — a1 =0. (4.35)

For the abelian case n=1, the choice (4.33) may be obtained from the general
system by a conformal transformation. For arbitrary n, this seems like a further
reduction, but in fact, provided the dressing matrix y(4) is such that y(wo)
=y Yoo)=1, this condition is preserved under the multi-Bickiund
transformation,

The only reduction condition that need be imposed is thus:

AT =g, (4.36)
which implies that x(1), (1) are of the form

! N Qa

A)=1+ s (4.37a)
i;1 zle )»—“)uiq

. i N R%
1 A)=1+ . (4.37b
i:Z1 agl A= g )

where the various residues {Q7}, {R}} corresponding to a given orbit {4,4°}, {1,4%}
are related by

0=t "0,
Ri=g*t"*R", (4.38)
0=0'. R=R).
In particular, Eq. (4.36) implies that y(0) is block diagonal,
£0)=diag{z(0)},  7(0.&neGL(T), (4.39)
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and the new solution {g,, ..., Jy} is determined from the old one {g,,....gy} by:

9. %09, =3, - (4.40)

Labelling the nN x nN blocks of the M- matrix corresponding to the pair of poles
{u,q", jqp } as M‘;‘f, the necessary and sufficient conditions that the new solution be
of the correct reduced form is, according to Theorem 3.1,

ML =T Mg (4.41)
The representations R and Q of Eq. (3.16) are of the form
Rf=06,6,, 10 ' 0F=6,0,, 19", (4.42)
which can be expressed as a tensor product
R=q""?2®1, Q=4¢"*z®1, (4.43)
where
0 10
n= . ) eV N (4.44)
\1 0

is the cyclic permutation matrix. The reduction condition (4.41) is thus equivalent
to invariance of the InN-plane determined by M

M M
= 4.45
e[ =15) (445)
under the linear map with matrix representation
12 ‘
q "*n®1, . )
=" I~ = m === . 4.4
L ( '@, wr (440

According to Theorem 3.3, this may be expressed equivalently in terms of the

o

rectangular matrices X7, F;, HY, determining the residues

Q:=XiF[", (4.47)

I

where

Fi=y" Mg f,  Hi=ypghi, (4.48)

and {X}} are solutions to the linear system

%X?F?‘/’ =HY, (4.49)

it

tapgh
o= LA

et Mt (4.50)
T~ ud
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The reduction conditions become:

F=7t"°F,, H'=t"H, (' '=1), (4.51)

13 1

where
F=FY, H,=HY, 4.52)
from which it follows that:
Xi=q"X;,, X, =XV, (4.53)
and the linear system (4.49) reduces to
D gt "X FI*H, _
ia Aq"— j

The rectangular matrices X,, F,, H, may without loss of generality be taken as
vectors, provided degenerate eigenvalues {4}, {;} are allowed. Labelling com-
ponents corresponding to the tensor product C*V=C"QC" as X, F*, HY,
a=1,...,N,a=1,...,n Eq. (4.54) becomes:

H.. (4.54)

J

ZXf“Wij/lf’ =Hi"ul, (4.55)
where
NFPHP(u /2)
Wo=—) L2l 4.56)
= 2 N (A (
The matrices x,(0) in Eq. (4.40) are then given by:
1 thaFo_cb
10),=1-N ¥, = (4.57)
i=1 “i

To obtain multi-soliton solutions, we identify the “vacuum” as the trivial
solution

g1=9,=...=gy=1. (4.58)

Solving the corresponding ZMS system:
0 1

we=1 . '. ®1y°, (4.59a)

po=2"t ®1yp°, (4.59b)
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we have, as in the abelian case [11]

5N o
wfa,gﬁﬁ’k; g Prexp{Agié+2" g "y}, (4.60)

Substituting in Eq. (4.48) to obtain F, H; and solving the linear system (4.48)
for X7¢, the I-soliton solution {g,, ..., gy} is given by the matrices {x,(0),..., x5(0)}
of Eq. (4.57).
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