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THE SOLUTION BY ITERATION OF NONLINEAR

EQUATIONS IN HILBERT SPACES

§T. MÄRUSTER

Abstract. The weak and strong convergence of the iterates generated by

xk + x = (1 — tk)xk + tkTxk (tk G R) to a fixed point of the mapping T:

C -> C are investigated, where C is a closed convex subset of a real Hubert

space. The basic assumptions are that T has at least one fixed point in C,

and that / — T is demiclosed at 0 and satisfies a certain condition of

monotony. Some applications are given.

Introduction. Let H be a real Hubert space, C a closed convex subset of H

and F a nonlinear mapping of C into C with the nonempty fixed point set F

in C. The mapping F is said to be monotone if <Fx - Ty, x — _y> > 0 for all

x, v G C. According to [2] and [8], the mapping F is said to be demiclosed at

0 in C if [uk] is a sequence in C which converges weakly to m G C, and if

{Tuk} converges strongly to zero, then Tu = 0. In this paper we study the

convergence of the sequence of iterates generated by

(!) **+i = O - h)xk + tkTxk       (x0 G C),

where tk G R, k = 0, I, . . . , under the basic assumptions that I - T satis-

fies a particular condition of monotony and that / — T is demiclosed at 0 in

C.

The main theorems. The mapping F will be said to satisfy condition (A) if F

is nonempty and if there exists a real positive number A such that

(2) <x - Tx,x - i) > X\\x - Fx||2,       Vx G C, £ G F.

It is obvious that (2) is a particular condition of monotony of I — T.

Theorem 1. Let T: C —» C be a nonlinear mapping, where C is a closed

convex subset of H. Suppose that T satisfies condition (A), I — T is demiclosed

at 0 in C and the sequence {xk} generated by (I) with 0<a<tk<b<2X

belongs to C. Then {xk} converges weakly to an element of F.

Proof. From (2) we obtain
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= \\xk - ¿||2- 2tk(xk - Txk, xk-0 + t2k\\xk - Txkf

<||**-f||2-'*(2X-i*)||**- Txkf.

Since 2X- tk> 0, it follows that \\xk + x - ||| < ||xt - ||| and so \\xk - £\\ -»

p£ as k -* oo for all £ E F. From 0<a<,tk<b<2X and from the above

relation, it follows that

||*4 - Txk\\2<(a(2X - b))-\\\xk - |||2 -H*t+1 - l||2) -0    (* - oo).

Since the sequence {xk} is bounded, there exists a subsequence {xk} of {xk}

which converges weakly to an x*; since [xk] c C and C is closed and

convex (hence weakly closed), it follows that x* E C. Moreover, x* is a fixed

point of T, since xk - Txk -> 0 and / - T is demiclosed at 0 (hence x* -

Tx* = 0).

Suppose there are two subsequences of {xk}, say {uk} and {vk}, which

converge weakly to u and v, respectively. As above, we have that u and v are

in F and, hence,

(3) K - "||-*PU.        ||** - »||-»P«,-

Now, consider the sequence

Ek =||"* - Ml|2-||u* - WI|2-|K - üll2+IK - üll2-

Since relations (3) hold for any subsequence of {xk} (in particular, for [uk]

and {vk}), it follows that Ek -» 0 as k —> oo. On the other hand, by a simple

computation, we have

(4) Ek = -2<X - vk,u - v).

This and the weak convergence of {uk} and {vk} to u and v, respectively,

imply that Ek —> -2||w - ü||2 and, hence, J|w - c|| = 0, i.e., u = v. Therefore,

all weakly convergent subsequences of {xk) have the same weak limit, say x*.

It follows that xk -+ x* as k —> oo and the theorem is proved.

Remark. If T is quasi-nonexpansive (i.e. || 7x — ||| < ||x — ||| for all

x E C and | E F) then (2) is satisfied with X = \. In this case we obtain a

result of W. G. Dotson [4], which is, in turn, a generalization of a theorem of

H. Schaefer [9].

A similar condition of monotony was considered by J. B. Diaz and F. T.

Metcalf [3], namely (with our notation): there exists X > 0 such that (x —

Tx, x - |> > (X/2)||jc - Tjc||2 for all x E C and | E F. The above-men-

tioned authors have proved that if F is nonempty and F is a continuous

mapping, then the sequence {xk} given by (1) with tk = X either contains no

strongly convergent subsequence or {xk} is strongly convergent to an element

of F. A similar result can be obtained under the weaker assumption that

/ - F is demiclosed at 0 (F is not necessarily continuous).

From the point of view of applications it is interesting to obtain additional

conditions such that the sequence {xk} converges strongly to an element of F.
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In a recent paper, [10] H. F. Senter and W. G. Dotson considered the

following condition: There is a nondecreasing function/: [0, oo) —»[0, oo)

with /(0) = 0 and f(r) > 0 for r > 0, such that ||x - Fx|| > f(d(x, F)) for

all x G C, where d(x, F) = inf{||x - z||: z G F). In [7], C. Outlaw consid-

ered the more restrictive case, ||x — Fx|| > c • sup{||x — z\\: z G F).

Theorem 2. Let T be as in Theorem 1. //, in addition, there is h G C, h ¥= 0,

such that <(x — Tx, A) < 0 for all x G C, then the sequence {xk} generated by

(1) with 0<a<tk<b<2X and for suitable x0 in C, converges strongly to an

element of F.

Proof. By Theorem 1, it follows that xk ^ x* G F as k -> oo. Suppose that

<x0, h) > <x*, /.>; then there exists e > 0 such that

(x0 - x*, h} > e\\x0 - x*|| .

If we suppose that

(5) (xk-x*,h) > e\\xk - x*f,

then from (2) and from the fact that <x - Tx, h} < 0, it follows that

(xk + x — x*, /.> > ellx^+i — x*||2, that is, (5) holds for every k. Since xt —>■

x* as k -> oo, it follows that \\xk — x*\\ —> 0, which proves the theorem.

Linear equations. As an application of Theorem 2, we obtain the conver-

gence of some iteration scheme for linear equations in Hubert spaces, without

the assumption of compactedness of the mapping. We have

Theorem 3. Let B: H —> H be a continuous linear mapping and f G B(H).

Suppose zero is an eigenvalue of the mapping B and the following condition is

satisfied.

(6) (By,y) > X\\By\\2,    Vy G H,

where A > 0. Then the sequence {xk}, generated by xk + x = xk — tk(Bxk — f)

with 0 < a < tk < b < 2X and for suitable x0 in H, converges strongly to a

solution of the equation Bx — / = 0.

Proof. Apply Theorem 2 with C = H and Tx = x - Bx + f. Since / G

B(H), there exists £ G H such that Bi; -/ = 0 and, hence, x - Tx =

B(x - £). It is easy to see that condition (A) is satisfied (indeed, F ¥= 0 and

if in (6) we put y = x - £ we obtain (2)). Suppose xk -^ x* and Bxk - /^> 0

as k ^ oo ; then ||Äx* - f\\2 = \im(Bxk - f, Bx* - /> = 0 and, hence, Bx*

- / = 0. Therefore, / - T is demiclosed at 0. Finally, since zero is an

eigenvalue of B (hence also of the adjoint B* of B), it follows that there exists

h =h 0 such that B*h = 0. Therefore, (B(x - £), h) = <x - ¿, B*h) = 0 for

all x G H and the theorem is proved.

Remark. J. B. Diaz and F. T. Metcalf [3] proved that if B is compact,

semipositive (i.e., {Bx, x) > 0 for all x G H) and selfadjoint, then (6) is

satisfied with A = 1/A,, where A, is the largest eigenvalue of B.
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The relaxation method for linear inequalities. This method, given by S.

Agmon [1], T. S. Motzkin and I. I. Schoenberg [6], is a nontrivial example for

Theorem 1 in the finite dimensional case.

Let En be the real «-dimensional Euclidean space and let M¡ c En (i =

1, . . . , m) be a family of closed convex subsets of En with nonempty

intersection,   H M¡ ¥= 0. We are interested in determining an element of

Let x E En and ir(x, i) be the projection of x onto Mi (if x E M¡, then

•n(x, i) = x). Let ix be the least index such that

||jc - ir(x, ix)\\ = max ||x - <rr(x, 7')||.

We define the mapping F: En -> En by Tx = m(x, ix). It is clear that x E

H M¡ if and only if Tx = x, hence if and only if x is a fixed point of T.

Theorem 4. The sequence {xk} generated by

(7) **+i = 0 ~ '*)** + '*»(**. Ù)       (*o e E„)>

with 0<a<tk<b<2, converges to an element of fl M¡.

Proof. Apply Theorem 1 with C = En and Tx = ir(x, ix). From the above

remark, F = D M,, # 0. Let x E En and | E F. Since w(x, /x) is the projec-

tion of x onto A/, and £ £ A/^, it follows that <jc - 7r(x, tJ, ir(x, ix) - |> >

0. Therefore we have

<x - Tx,x - £,) = (x - n(x, ix), x - |)

= <* - w(jc, ij, x - Tt(x, Q) + (x - ir(x, ix), 7t(x, ix) - |>

>\\x — tt(x, ix)\\ =\[x - 7x|| ,

hence we obtain relation (2) with X = 1.

It remains to show that I - T is demiclosed at 0. Let {xk) c En be such

that xk -»■ x* and jca — Fx¿ -^ 0 as k —» oo. For each i (1 < / < w) we have

II** - w(**. OH <||** - *(**• Uli =llx* " r**H0'        * -» oo.
Since 7j-(x, 0 is a continuous function for each i and £„ is a finite dimensional

space (hence {xk} converges strongly to x*), it follows that

lim 11^ - ir(xk, i)\\ = \\x* - -n(x*, /)|| = 0,

for each i (1 < / < m). Therefore, x* - Tx* = x* - -n(x*, ix,) - 0 and so

/ - T is demiclosed at 0.

From Theorem 1, the sequence {xk} generated by (7) converges weakly

(and thus strongly) to an element of F = fl M¡. This proves Theorem 4.

Remarks. It is easy to see that Tx = tr(x, ix) is a discontinuous function in

those points x E En where max,||x - ir(x, i)\\ is touched for more than one

value of index i.

Theorem 4 is due to I. I. Eremin [5]. Our method of proof seems to be

simpler.
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Theorem 4 contains, as a special case, a result obtained by S. Agmon [1], T.

S. Motzkin and I. I. Schoenberg [6] for the case when Mt is defined by the

inequalities of the form

n

2 a¡jXj+ 6, > 0,    i = \, . . . , m.
J-l
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