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Abstract

In this paper we consider a completely ergodic Markov decision process with

finite state and decision spaces using the average return per unit time

criterion. An algorithm is derived which approximates the optimal solution.

It will be shown that this algorithm is finite and supplies upper and lower

bounds for the maximal average return and a near optimal policy with

average return between these bounds.

I. Introduction and notations

We will consider a system which at any time t = 1,2, ••• is in one of the

states 1,2, ••• ,N. In each state i there is a finite set K. of actions which
].

may be chosen. If in state i action u. E K. is selected we receive the
]. ].

expected immediate return q(ui ). For each j E S := {1,2, ••• ,N} [p(ui)]j

is the probability of making a transition to state j if i is the current

state and action u. has been chosen. With p(u.) we denote the row-vector
]. ].

([P(ui)]I"',[P(ui)]N)' A vector u E K := Klx •• x~ will be called a

policy. A policy prescribes for each state which action will have to be

selected. If u = (uI""'~) then q(u) denotes the column-vector
T

(q(UI)f"'fq(~» and P(u) is the transition probability matrix with

[P(u)] .. = [p(u.)] .•
].J ]. J

We assume that for each u ~ K P(u) is completely ergodic (i.e. the Markov

chain associated to u has a single aperiodic recurrent class and no

transient states).

Moreover g(u) and v(u) will be the gain (average return per unit time) and

the vector of relative values (with N-th component zero) belonging to policy

u (see R.A. HOWARD [2]). If p E ]RN we will write:

[p]. for the j-th component of p f
J

P f· p for the largest respectively smallest component of p f and

IIp for the difference p- ~ .
In section 2 we will derive our algorithm from the "policy iteration" algo­

rithm of R.A. HOWARD. We will prove that our algorithm produces upper and

lower bounds for the maximal gain and near optimal policies.

In section 3 we demonstrate that it might be possible to prove the same for

the ergodic case (i.e. the Markov chain associated to u has a single aperiodic

recurrent class and might have one or more transient states).
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2. The algorithm

Since our algorithm has been derived from the "Policy Iteration Algorithm"

of R.A. HOWARD [2J we rewrite his algorithm below in our notation:

Policy Iteration Algorithm

STEP 0 Select an initial policy u = (u1' ••• ,uN);

STEP 1 (Value-Determination Operation)

Solve the system

{

g.e + v = q(u) + P(u)v

[vJ
N

= 0

STEP 2

STOP

(Policy-Improvement Routine)

Find for all i E S an action w. E K. which maximizes q (w.) + p (w.)v.
~ ~ ~ ~

If for some i E S q(w.) + p(w.)v # q(u.) + p(u.)v then for all i E S
~ 1 ~ ~

u. := w. and go to STEP I.
~ . ~

The policy u is optimal and g is the maximal average return per

unit time.

We will change this algorithm in the following way.

Instead of solving the system in STEP 1 we will approximate the values of

v and g. A.R. ODONI [4J computes after any execution of the "Policy­

Improvement Routine" a new value v but he does not try to improve this

approximation. However, before running through the Policy Improvement

Routine once more, we improve the approximation of v until we know the gain

fairly accurate.

A similar procedure has been suggested by SPREMANN and GESS~~R [5J. Their

algorithm however, does not produce upper and lower bounds. These authors

suggest an other modification which we use as well. During the first

iterations we will not look for a better action if in a state the limit

probability is small, does not exceed O.
1As suggested in [5J we take for 6j the sequence "2' N' 0, 0, •••• Applying

these modifications we produce the following algorithm:



STEP 0

STEP

STEP 2

STEP 3

STEP 4

STOP
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Select an initial policy u, select a > 0 and a monotone non­

increasing sequence EO,E 1, ••• with E. > 0 for all j and
1 J 1

lim E. = O. For i E: S [nJ. := N' [vJ. := 0; 0 := 2; j := 0;
j -l-<Xl J ~ ~

eps := EO'

T Tn := P (u)n; n := P (u)n.

While ~(q(u) + P(u)v-v) > eps do

v := q(u) + P(u)v - [q(u) + P(u)vJN e

Find for all i E S for which [nJ. ~ 0 an action w. E: K. which
~ ~ ~

maximizes q(w.) + p(w.)v.
~ ~

If 0 = 0 and for all i E: S

q(w.) + p(w.)v < q(u.) + p(u.)v + a go to STOP else
~ ~ ~ ~

if [nJ. ~ 0 then u. := w.; j := j+l; eps := E:.
~ ~ ~ J

1 1If 0 = 2 and N > 2 0 := N; go to STEP I

else 0 := 0 go to STEP 2

*u is near optimal. Let u be optimal then we have:

(i) *g(u ) ~ g(u) + a + eps

(ii) q(u) + P(u)v-v ~ s(u) ~ q(u) + P(u)v-v + eps

(iii) q(u) + P(u)v-v ~ g(u*) ~ q(u) + P(u)v-v + 2 eps + a.

Remark. The introduction of a a > 0 is necessary to prevent cycling if there

exists more than one optimal policy.

To prove the finiteness of our algorithm and the correctness of the estima­

tions at STOP, we will show first that the number of successive iterations

within STEP 2 is finite and that the value of v in STEP 2 converges to the

vector of relative values for the actual policy.

Suppose we arrive at STEP 2 with a policy u and and initial approximation

vO(u) of v(u).

Now define:
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(i=I,2, ••• )

(2) g .(u) = q(u) + P(u)v. I(u) - v. I(u)
~ ~-~-

(i=I,2, ••• )

Obviously v.(u) is the approximation of v(u) that would be found after
~

improving the approximation vO(u) i times within STEP 2.

The test for transition from STEP 2 to STEP 3 is the examination whether

or not

(3) ~g.(u) ~ eps holds.
~

Substitution of (I) in (2) yields gi+l(u) =

Hence

P(u)g. (u),
~

i = I ,2,. •• •

(4) t = 0,1, ••••

00 • r
Since P (u) := l~m P (u) exists and has identical rows there exists a

r-+oo

*number g (u) so that

(5) *lim g. (u) = g (u)'e •
i-+oo ~

For any policy u E K there exist band p (0 ~ p < I) such that (see [IJ)

v II' 00 I I'(6) j,kES [P (u) - P (u)J jk ~ bp •

Hence we have for all j,k E S and x E RN

Now we can formulate:

Lemma I. For any u E K and for any initial approximation vO(u) of v(u)

STEP 2 is finite.

Proof. From (7) we have

r I'
~ 2bNp ~gl(u) = 2bNp ~(q(u) + P(u)vO(u) - vO(u» •
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Repeated application of (I) yields

( 8) v. (u) = {I + P(u)
~

+ ••• +
i-I iP (u)}q(u) + P (u)vo(u) +

i-I i
- [{I + P(u) + ••• + P (u)}q(u) + P (u)vO(u)]Noe •

By arranging the terms ~n (8) in pairs. q(u) and [q(u)]N'e and so on, and

using (7) J/,+I times we get (since [v. n(u) - v.(u)]N = 0) :1+", ~

(9) I I i i+1 i+J/,-l
[v.+n(u)-v.(u)]. ~2bN {lIq(u)(p +p + ••• +p ) +

1 '" 1 J

i i+j/,
+ lIV

O
(U) (p + p )}.

Now (9) implies that the sequence vO(u),vI(u), ••• converges.
*( ) . kLet v u := 11m vj/,(u ) then we can formulate

J/,-loOO

Lemma 2. The limits v*(u) and g*(u) are just the vector of relative values

v(u) and the gain g(u) belonging to u.

* *Proof. v (u), g (u) and v(u). g(u) both solve the system

1
9oe + v = q(u) + P(u)v

[v]N = 0

which possesses a unique solution.

Let now uO.u
I
•••• be the succession of policies determined by

u
O

the selected initial policy, and the approximation in STEP

with initial value vO(uk) , require n
k

iterations.

Now define

our algorithm.
k2 of v(u ),

(IO)

a
vo(u ) = 0

k (uk-I),vO(u ) = v k = I .2 •••• and
~-I

k k
v.(u ). g.(u ), i = 1.2, ••• ; k = 0,1 •••• according to (I) and (2).

1 1
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If the algorithm did not terminate after completing STEP 3, while we have
k . k+1

already 5 = 0, then a policy u has just been improved to a pol1cy u

We have

k k k+l
= q(u ) + P(u )vO(u ) + dk+1 '

where

Hence

( k+l)8 1 u =

which implies

00

Let S be the smallest element of all P (u), u E K. Since all P(u) are

completely ergodic we have S > o. Defining y := as we have

k k
g~+I(u ) + Y ~ g(u ) + y - Ek •

Now we have

Lemma 3. If k sufficiently large (so that E
k

< y) then a once improved

policy uk cannot be found again.

Lemma 4. If for each u E K the Markov chain with matrix P(u) is completely

ergodic then the algorithm is finite.

Proof. From Lemma I, Lemma 3 and the existence of only a finite number of

policies.

If u* is the optimal policy and the algorithm terminates with a policy uk

then we have
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and

(12)
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+ a'e,

So we have

k *Lemma 5. If the algorithm terminates with a policy u , while u is an

optimal policy, then

(ii) k k
g~+I(u ) ~ g(u )

k
~ gI\.+1 (u ) + E:

k

Proof. From (11) and (12) with

k k
g(u ) ~ gn +I(u )

k

k
~ g (u).
~

Theorem 1. If for all u E K the Markov chain with matrix P~) is completely

ergodic then the algorithm is finite. For the approximation uk for u* the

following estimates hold:

(i) * kg(u ) - g(u ) < a + E:k

(ii) k k k
g~+1 (u ) ~ g(u ) ~ gn +1 (u ) + E:

kk

k * k
(iii) g~+1 (u ) ~ g(u ) ~ g~+1 (u ) + 2E:k + a.

Proof. The finiteness follows by Lemma 4; (i), (ii) by Lemma 5, (i) and (ii)

imply (iii).

Remark 2. It is possible to prevent termination of the algorithm while E:k is

still large, e.g. E:k > a.
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3. The ergodic case

In the foregoing we proved our algorithm to be finite for completely ergodic

decision processes. We believe that the algorithm is also finite if for each

policy in the transition probability matrix P(u) is ergodic (which means that

for each policy u the set of states is divided into a set of transient states

and one aperiodic recurrent class). It might however be necessary to modify

STEP 3 of the algorithm, i.e. to put

"if ['If]. 2: 0 then if q(w.) + p(w.)v 2: q(u.) + p(u.)v + ex. , u. := w."
1 1 1 1 1 1 1

instead of

"if [lfJ. 2: 0 then u. := w."
1 1 1

This modification enabled us to prove finiteness in the case that for each

policy the recurrent class consists of the same N-I states.

Lemma 6. If P(u) is ergodic then the system

+ v = P(u)v + q(u)

= 0

possesses a unique solution (in g and v).

Proof. The rank of I - P(u) is N-I (see [3J) and if v,g solve (I-P(u»v =

= q(u) - g.e then v + a.e, g as well. So the rank of the system in N.

Let for all u E K P(u) be ergodic and the rec~rrent :class consist of the

same N-I states then we have the following lemma's.

Lemma 7. If k is sufficiently large and the policy uk is improved in one of

the recurrent states then the algorithm will not generate uk once more.

Proof. It is obvious that the modification of STEP 3 does not influence any

of the proofs in the preceding section. Now let j be the transient state and

S* := S\{j}. Analogously to section 2 we have

g(uk+ l ) 2: mln

. *lES
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00

with y' = as' where 8' is the smallest element of all P (u) not belonging

to the j-th row or column. Again we have y' > 0 so if k sufficiently large

we have g(up) > g(uk ) for all p > k.

Lemma 8. A policy u E K can be improved but a finite number of times in suc­

cession in the transient state only.

Proof. Let state j (j # N) be the only transient state. From (I) and (2) we

have

k
gi+ I (u ) =

and therefore

k k k k
gi+1 (u ) - [gi+1 (u )IN·e = vi+l(u ) - vi (u ) •

kIf now a > £k and u is improved in the transient state only we have

Hence according to (*)

k+1
While ~gi (u ) > £k we have

Hence

k+1 k+1
[v.(u )J. - [v. I(u )J. > o.

~ J ~- J

k+l
Let R, be the last integer for which ~gR, (u ) ~ £k then we have
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k+ I k+ IThe approximation of g(u ) and v(u )
ilemma 1 we have 6gt +i (u) ~ 2bNp 6gt (u).

So these iterations result in a decrease

d ·1 Ag(uk + l ) :5procee s unt~ u

k+lof [v.(u )J. of at most
~ J

E:k+ I. From

So we have

~ a. -

if k sufficiently large, say k ~ k
O

•
kSince v(u) is uniformly bounded for u E K a policy u , k ~ k

O
' can be improv-

ed but a finite number of times in the transient state only.

If N is the transient state and k ~ kO then each improvement in state N only
kresults in a decrease of at least A for the components [v(u )J., j E S\{N}.

J

From Lemma's 6, 7 and 8 we now conclude:

Theorem 2. If for each policy u the Markov chain with matrix P(u) is ergodic

and the ergodic class consists of the same N-l states then the modified algo­

rithm is finite.
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