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Introduction

Perhaps the most important factorization of a given m Xn matrix A
(m>n) is its singular value decomposition (SVD):

A=UzVT, (1)

where the matrices U (m Xm) and V (nXn) are orthogonal, and the matrix
¥ (m X n) is nonnegative diagonal. For details on applications of the SVD see
Golub and Luk! and Golub and Van Loan®. The best sequential SVD algorithm
( due to Golub ) is coded in LINPACK®. Recently, there has been much interest
in computing the SVD using systolic arrays, principally due to the needs of real
time signal processing ( Bromley and Speiser* ). SVD arrays are presented in
Brent and Luk® Brent, Luk and Van Loan® Finn, Luk and Pottle’, Heller and
Ipsen8, Luk®, and Schreiber!®,

The fastest SVD algorithms ( effectively linear time ) are the Jacobi pro-
cedures of Brent et al.® and Luk®. Jacobi-type methods are natural for matrix
computations using processor arrays: they have been proposed for the symmetric
eigenvalue decomposition by Brent and Luk®, for the QR-decomposition by
Luk!!, and for the Schur decomposition by Stewart!?. In addition, the methods
used for finding eigenvalues and singular values on the first parallel computer, the
ILLIAC IV, were also of the Jacobi type ( Luk!® and Sameh!? ). Unfortunately,
Jacobi-SVD algorithms are applicable only to square matrices. For an m Xn
matrix A, an obvious strategy is to first compute its QR-decomposition (QRD):

a=2 o), ®

where the matrix @ (m X m) is orthogonal and the matrix R (n X n) is upper tri-
angular, and then apply an SVD procedure to R. This approach is particularly
suitable for the case where m>>n ( cf. Chan!® ). QRD-arrays have been
thoroughly studied; see Ahmed, Delosme and Morf!®, Bojanczyk, Brent and
Kung'?, Gentleman and Kung'®, Heller and Ipsen!®, Johnsson?, Luk!!' and
Sameh?!. However, the interfacing of QRD and SVD arrays can be a difficult
problem. In fact, the QRD algorithm in Luk!! is the only algorithm implement-
able on the square SVD array of Brent et al.5. Recently, Luk® presents the only
triangular processor array that can compute both the QRD and the SVD.

The purpose of this paper is to survey the two linear-time SVD methods®®
and their associated processor arrays.

igenvalue deco sitio

The classical method of Jacobi uses a sequence of plane rotations to
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diagonalize a symmetric matrix A. Let us denote a Jacobi rotation of an angle 6
in the (¢,5) plane by J(¢,5,0) = J, where  <j. The matrix J is the same as the
identity matrix except for four strategic elements:

J;‘-=C,J,-J-=8, (3)
Ji=-8,Jj=c¢c,

where ¢ = cosfl and 8 = sinf. Setting B = JTAJ, we get

by by i

W S i z

If we choose the cosine-sine pair (¢,8) such that
bij = by = a;;(c*-8%) + (a5-aj;)cs =0, (5)

. then B becomes ‘‘more diagonal”’ than A in the sense that
of { (B) = of [(A) - 24}, (6)
where

of [(C)= Y el for C =((c,) - (7)

p¥q

Jacobi methods for the symmetric eigenproblem are of interest because they
lend themselves to parallel computations. Brent and Luk® have developed a
square processor that can diagonalize an n Xn symmetric matrix in effectively
O(n) time. It may seem that software (or hardware) for the symmetric eigen-
value problem can be used to solve the SVD problem. For example, we may
compute the eigenvalue decomposition

VI(ATA)V = diag(of, - - - 02), (8)
where V = (vq, - - *,v,) is orthogonal and the o; satisfy
012 " 20,>0,="""=0,=0, (9)
with r = rank(A ). We next calculate the vectors
y = (1/0;)Ay;  (i=1,---,r), (10)
and determine the others: {u., ,---,4,} so that the matrix
U= (uy, - ",u,)is orthogonal. The factorlzatlon UTAV = diagloy, - - - ,0,)

gives an SVD of A. Thus, one can theoretically compute an SVD of A v1a an
eigenvalue decomposition of A TA. Unfortunately, well—known numerical
difficulties are associated with the explicit formation of AT A.

A way round this difficulty is to apply the Jacobi method implicitly. This is
the gist of the “one-sided” Hestenes?? approach in which the matrix V is deter-
mined so that the columns of AV are mutually orthogonal. Implementations
are discussed in Luk!® and in Brent and Luk®. In the latter reference a systolic
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array is developed that is tailored to the method. However, inner products of
m-vectors are required for each (c¢,s) computation. Because of this, the speed of
their parallel algorithm is effectively O(mn) for a linear array of O(n) proces-
sors, and O(nlogm) for a two-dimensional array of O(mn) processors with some
special interconnection patterns for inner-product computations. Another draw-
back of the one-sided Jacobi method is that it also does not directly generate the
vectors #,,y, ' ' ,U,. This is an inconvenience in the systolic array setting
since one would need a special architecture to carry out the matrix-vector multi-
plications in (10).

Another approach to the SVD problem is to compute an eigenvalue decom-
position of the (m+ n)X(m+ n) symmetric matrix

c=|7r 3] (1)

2 o)l =< L), 12

then ATAv = o%v and AATu = o%u. Thus, the eigenvectors of C are
“made up’’ of the singular vectors of A . It can also be shown that the spec-
trum of C is given by

MNC)={+0y, ", +0,,0, - -,0}. (13)

Note that if

The disadvantages of this approach are that C has expanded dimension and
that recovering the singular vectors may be a difficult numerical task. In addi-
tion, the case of rank(A )<n requires extra work to generate v, ,, - - - ,v,.

To summarize, it is preferable from several different points of view not to
approach the SVD problem as a symmetric eigenvalue problem.

Two-by-two SVD

The basic tool in a Jacobi-SVD method is the 2 X2 plane rotation

[ cosf sinf|

J(0) = -sinf cosf) ’

(14)

as the basic problem concerns the diagonalization of a 2X2 matrix by the rota-
tions J(6) and K(¢):
(v dy 0
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A two-stage procedure is adopted. First, find a rotation S(¢) to symmetrize B:
w z pq
T _
5(¥) Iy z] - [q rl ) (16)

If z=y we choose =0, otherwise we compute

w+ 2

p=——= ctny ,

sinp = -Sglo) (17)

1+ p?

cosy) = p siny .

Second, diagonalize the result:
d, 0

P g 1

ko[ Jrw =1y o). s

Suppose ¢7#0 ( else choose either ¢=0 or ¢==/2 ). It is well known that
t = tang satisfies the quadratic equation:

t2+ 2pt-1=0, (19)

where

p= '2‘;’ = ctn2¢ . (20)

The two solutions to (19) are

" sign(p)

lp |+ V1+ p?
1

COS¢ = m‘ ’ (21)

sing = t cos¢

and

t = -sign(p) [ lp|+ V1+ %],

1
COSPp == ———, (22)
V14 t2
sing = t cos¢ .

The angle ¢ associated with (21) is the smaller of the two possibilities; it satisfies
0< |¢p| < n/4, whereas the one associated with (22) satisfies
/4 < |#| < 7/2. We refer to a rotation through the smaller angle as an “inner
rotation” and one through the larger angle as an ‘‘outer rotation’”. The ‘‘inner
rotation’ is chosen in Brent et al.® and the “outer rotation” in Luk®. If the given
matrix is diagonal ( z=y=0) then an ‘‘inner rotation’’ means ¢=0 and an
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“outer rotation’’ implies ¢=m/2. In the former case the matrix stays unchanged,
whereas in the latter case the singular values are interchanged:

B [P B B e 2

Finally, J(6) is given by .
JO)T = K(@)TsW)7T, (24)

ie,0=¢+ 9.

By solving an appropriate sequence of 2X2 SVD problems, we compute an
.SVD of a general n X n matrix A. The Jacobi transformation is

T;‘ T A~ J.JTA Kt’j , (25)

" where J;j and K;; are rotations in the (¢,5) plane chosen to annihilate the (1,5)
and (4,f) elements of A. As in the symmetric case, the transformation T;; will
produce a matrix B satisfying

off(B)y=of f(A)-r}-rZ, (26)

i.e., the matrix B is more ‘‘diagonal” than A. The value of (f,5) is determined
according to some ordering, to be determined such that all the off-diagonal ele-
ments will be annihilated once in any group of n(n-1)/2 rotations ( called a
“sweep” ). A well known example is the cyclic-by-rows ordering, illustrated here
in the n =4 case:

(1,5) = (1,2),(1,3),(1,4),(2,3),(2,4),(3,). (27)
A Jacobi-SVD algorithm for A is simply

Algorithm SVD.

do until convergence
for each (#,7) according to some preferred ordering

By convergence we mean that the parameter of f (A) has fallen below some pre-
selected tolerance. However, it is difficult to monitor of f(A) in the settings of
parallel computations. Since convergence is fast ( ultimately quadratic ) it is a
usual practice to stop iterations after a sufficiently large number ( say ten ) of
sweeps.

Square array

A ‘“‘parallel” ordering that allows ln/ 2] simultaneous rotations was intro-
duced by Brent and Luk®. Their new ordering is amply illustrated by the n — 8



case:

(P,Q) = (112) ’ (3’4) ’ (516
(1,4),(2,8), (3,8
(1,6), (4,8), (2,7
(L8),(6,7), (4,5
(L7),(8,5), (63
(1,5),(7,3) , (8,2
(1,3), (5,2), (7,4

N v e o e s “eaa”

Rotation pairs associated with each ‘“‘row’” of the above ordering can be calcu-
lated concurrently. Brent et al.® propose a square array of O(n2) processors
implementing a parallel SVD algorithm for an n X n matrix A:

Algorithm SVD1.

do until convergence
for each (1,7) according to the “parallel” ordering

{ “inner rotations’ are used } O

Details on the processor array are given in Brent et al.>%. Important points

worth emphasizing are that only nearest neighbor connections are required, that
broadcasting can be avoided through a staggering of computations, and that one
‘sweep of the algorithm is implementable in time O(n).

Numerical experiments were performed on a VAX-11/780 at Cornell Univer-
sity. Double floating data types were used: each number is binary normalized,
with an 8-bit signed exponent and a 57-bit signed fraction whose most significant
bit is not represented. The accuracy is thus approximately 17 decimal digits.
The results are presented in Table 1. We started with random n Xn matrices
whose elements came from a uniform distribution in the interval (-1,1); we
stopped when the parameter of f (A) had been reduced to 107!2 times its original
value. The rate of convergence was quadratic, confirming theoretical predictions,
and only eight or fewer sweeps were required for n <200. The SVD of an n Xn
matrix is thus computable in effectively O(n) time.



-8-

Table 1. Average Number of Sweeps
Required by Algorithm SVD1

n trials | ##sweeps
10 | 1000 4.55
20 100 5.54
30 100 6.09
40 100 6.40
50 100 6.72
80 30 7.30
100 10 7.56

150 . 3 7.73
200 1 8.10
Iriangular array

Luk® proposes a triangular processor array that directly computes an SVD of
a rectangular matrix. The associated SVD algorithm has two stages. First, a QR-
decomposition is computed of A as it is fed into the array. This procedure is
quite similar to that of Gentleman-Kung!8. A major difference is that Luk per-
forms 2X2 QRDs, whereas Gentleman and Kung annihilate individual elements.
Second, a Jacobi-SVD algorithm is applied to the resultant triangular matrix.
The pivot block is restricted to contiguous diagonal elements, so as to preserve
the triangular structure of the matrix. “‘Outer rotations’ are required to ensure

that all off-diagonal elements will be annihilated. Details on the array are

presented in Luk®. Again the important points concern the nearest neighbor con-
nections, the avoidance of broadcast, and the completion of a sweep in O(n)
time. We present here the associated SVD algorithm for an n X n upper triangu-
lar matrix A:

Algorithm SVD2.
do until convergence
begin
{ “‘outer rotations’’ are required }
fori =1,3,---(f odd) do
A+~ Jiﬁ'+1 A Ki,i+1;
fori =2,4,--- (1 even)do
A Ja‘,Ts'+1 A Ki,i+1
end. a

Simulation experiments were performed under the same conditions as reported in
the previous section. However, we started with upper triangular matrices and
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scaled them so that initially of f(A) = 1. The parameter € represents the
machine precision and approximately equals 1.4X 1017, The ultimate quadratic
convergence rate of a Jacobi algorithm is nicely exhibited in Table 2.

Table 2. Of f (A) After Each Sweep
of Algorithm SVD2

Sweep
1 2 3 4 5
4 | 1e-01 | 1e-03 | 2e-09 < €
6 | 3e-02 | 4e-05 | le-11 <e€
8 | 1e-01 | 4e-04 | 1e-09 <€
10 | 1e-01 | 1e-02 | 3e-07 <€
12 | 2e-02 | 2e-03 | 5e-05 | le-11 <€
14 | 5e-02 | 2¢-03 | 2e-05 | le-10 < €
16 | 3e-02 | 1e-03 | 6e-06 | 3e-11 <e
18 | 1e-01 | 1e-03 | 4e-06 | 2e-10 <€
20 | 9e-02 | 5e-03 | 2e-04 | 2e-07 | le-13

issize oble

We conclude with some remarks about the handling of SVD problems whose
dimensions differ from the effective dimension of the processor array. To fix the
discussion, suppose that A is an n X n matrix whose SVD we want and that our
array can handle SVD problems with maximum dimension N.

If n <N, it is natural to have the array compute the SVD of

R A0
A= 0 0)° (28)
so that
UTAV = diag(oy, - - - ,0,,0, -+ ,0) . (29)
Brent et al.® show how one may take the precaution to ensure o
A Uo R Vo

whence UTAV = diag(oy, .. .,0,). Let us point out that an SVD procedure
needs not produce matrices U and V with the above block structure in the case

.‘ \ 11
‘rank(A ) = rank(A) < n. For example, if N =3 and A = [1 1
the infinitely many SVDs of A is

, then one of
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pp2 110 p \/'oo
p -p? ] 000 (31)
0 -p —pp 000

where p=1/ V2. Further computations are thus necessary before an SVD of A
can be obtained. .

Next, let us examine how oversized SVD problems may be handled. Partition
the matrix A so that

A=|- --- -, (32)

where each A;; is N/2XN/2. ( Assume that N, the dimension of the systolic
array, is even so that n=kN /2. ) One way to compute an SVD of A is a
“block” Jacobi scheme®. In this scheme we repeatedly pick (f,5) satisfying
1<i<j<k and use an SVD array to solve the N X N problem:

Uit’ Au Au Vu Dt' 0
ol W it | A BT )

s ii ]
We then construct an n X n orthogonal matrix U so that it is equal to the iden-
tity matrix except for the four strategic blocks in the (¢,s), (¢,5), (5,¢) and (5,5)
positions. Those blocks assume the values as given by (33). An n Xn ortho; onal

matrix V is constructed in an identical manner. Then the matrix B = U‘ A
will have the property that

of f (B) = of f(A) - ||A; 1|1 - Az
- of[(Ay) - of f(Ay;) . (34)

The indices (¢,7) may be chosen according to either Algorithm SVD1 or SVD2.
We can exploit a block systolic array, where the diagonal arrays perform SVDs
and the off-diagonal arrays matrix-matrix multiplications. The blocks A;; will
move around an array of arrays in exactly the same fashion as the elements q;;
do in an array of processors. This ‘‘block” Jacobi technique will be studied in a
future report.
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