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In this paper, the homotopy analysis method is applied to solve linear fractional problems. Based
on this method, a scheme is developed to obtain approximation solution of fractional wave, Burgers,
Korteweg-de Vries (KdV), KdV-Burgers, and Klein-Gordon equations with initial conditions, which
are introduced by replacing some integer-order time derivatives by fractional derivatives. The frac-
tional derivatives are described in the Caputo sense. So the homotopy analysis method for partial
differential equations of integer order is directly extended to derive explicit and numerical solutions
of the fractional partial differential equations. The solutions are calculated in the form of convergent
series with easily computable components. The results of applying this procedure to the studied cases
show the high accuracy and efficiency of the new technique.
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1. Introduction

In recent years, considerable interest in fractional
partial differential equations (FPDEs) has been stim-
ulated due to their numerous applications in the ar-
eas of physics and engineering [1]. Many impor-
tant phenomena in electromagnetics, acoustics, vis-
coelasticity, electrochemistry, and material science are
well described by fractional partial differential equa-
tions [2 – 4]. Also, fractional partial differential equa-
tions have been found to be effective to describe
some physical phenomena such as damping laws, rhe-
ology, diffusion processes, and so on. In general,
there exists no method that yields an exact solu-
tion for a fractional partial differential equation. Since
most of the nonlinear fractional partial differential
equations cannot be solved exactly, thus approximate
and numerical methods must be used. Author of [5]
found an approximate solution of a nonlinear equa-
tion with Riemann-Liouville’s fractional derivatives
by He’s variational iterational method. Several meth-
ods have been used to solve fractional partial differ-
ential equations, such as Adomian’s decomposition
method (ADM) [6, 7], Fourier transform method [8],
Laplace transform method [2, 3, 9], and so on. Some
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fundamental works on various aspects of the fractional
calculus are given by Abbasbandy [5], Al-Khaled
and Momani [10], Caputo [11], Debnath [12], Di-
ethelm et al. [13], Jafari and Seifi [14, 15], Hayat et
al. [16], Khan and Hayat [17], Kilbas and Trujillo [18],
Kiryakova [19], Oldham and Spanier [20], Ray and
Bera [21], Shawagfeh [22], Song and Zhang [23, 24],
Xu and Jie [25], Momani and his co-authors [26 –
28], etc. The interested reader can see [29 – 36] for
more application of the method. Moreover, there are
some recent attempts to applications of fractional cal-
culus [37 – 43].

The homotopy analysis method (HAM), initially
proposed by Liao in his Ph. D. thesis [44], is a powerful
method to solve nonlinear problems [34 – 36, 44 – 49].
The validity of the HAM is independent of whether
or not there exist small parameters in the consid-
ered equation. The method yields a very rapid con-
vergence of the solution series in most cases, usu-
ally only a few iterations lead to very accurate solu-
tions. Here HAM is used to solve linear partial dif-
ferential equations with fractional order. This method
has been successfully applied to solve many types
of nonlinear problems by several authors [14, 15, 23 –
25, 44, 49 – 59]. Abbasbandy [51] has investigated an
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approximate solution for the nonlinear model of diffu-
sion and reaction in porous catalysts by using HAM.
Nonlinear fin-type problems have been studied by
Chowdhury et al. [51]. This method is used to de-
termine the fin efficiency of convective straight fins
with temperature-dependent thermal conductivity [52].
Domairry et al. [53] have compared HAM and HPM
using the nonlinear heat transfer equation. Also, a
comparison of HAM and HPM methods was inves-
tigated by [54] for solving the nonlinear heat con-
duction and convection equations. Approximate ex-
plicit solutions of nonlinear Benjamin-Bona-Mahony-
Burgers (BBMB) equations were found by [55]. In [56]
Hayat and Sajid have studied magnetohydrodynamic
(MHD) boundary layer flow of an upper-convected
Maxwell fluid by using HAM. Linear and nonlinear
fractional diffusion-wave equations have been used
by [14], also Jafari et al. [15] have investigated a sys-
tem of nonlinear fractional partial differential equa-
tions by using HAM. By using homotopy analysis
method, Sajid and Hayat [57] have studied thin film
flows of a third-order fluid. Also Song et al. [23] have
used the homotopy analysis method for the fractional
BBMB equation. Fractional KdV-Burgers-Kuramoto
equation has been investigated by [24] where the ho-
motopy analysis method was used. Authors of [58]
have studied the nonlinear fractional partial differen-
tial equations. Finally, Xu and Jie [25] have investi-
gated analysis of a time fractional wave-like equation
and employed the homotopy analysis method. There-
fore, the HAM can overcome the foregoing restric-
tions and limitations of perturbation techniques so that
it provides us with a possibility to analyze strongly
nonlinear problems. More important, the above pro-
cedure is just an algebraic algorithm and can be ap-
plied in a symbolic computation system so the well-
known symbolic software Maple can be used. For
some other analytical approaches we refer the inter-
ested reader to [61 – 63] for the homotopy perturba-
tion method, to [64, 65] for the variational iteration
method, and to [66 – 70] for the Adomian decompo-
sition method.

The current paper is organized as follows: In Sec-
tion 2, we describe the fractional calculus. In Sec-
tion 3, the homotopy analysis method will be intro-
duced briefly and this technique will be applied to frac-
tional partial differential equations. Section 4 contains
several test problems to show the efficiency and accu-
racy of the new method, and a conclusion is given in
Section 5.

2. Fractional Calculus

Several definitions of fractional calculus have been
proposed in the last two centuries. Here, we give some
basic definitions and properties of the fractional calcu-
lus theory which are used further in this paper.

Definition 1. The Riemann-Liouville fractional in-
tegral operator of order α ≥ 0 on the usual Lebesgue
space L1[a,b] is given by [3]

Jα
a f (x) = D−α

a f (x)

=
1

Γ (α)

∫ x

a
(x− τ)α−1 f (τ)dτ, (α > 0),

(1)

J0
a f (x) = f (x). (2)

It has the following properties: (i) Jα
a exists for any x ∈

[a,b], (ii) Jα
a Jβ

a = Jα+β
a , (iii) Jα

a Jβ
a = Jβ

a Jα
a , (iv) Jα

a (x−
a)γ = Γ (γ+1)

Γ (α+γ+1) (x−a)α+γ , where f ∈L1[a,b], α,β ≥ 0
and γ >−1.

It is worth mentioning that the Riemann-Liouville
derivative has certain disadvantages for describing
some natural phenomena with fractional differential
equations. Thus, we introduce Caputo’s definition [11]
of fractal derivative operator Dα , which is a modifica-
tion of the Riemann-Liouville definition.

Definition 2. The Caputo definition [11] of frac-
tional derivative operator is given by

Dα
a f (x) = Jn−α

a Dn
a f (x)

=
1

Γ (n−α)

∫ x

0
(x− τ)n−α−1 f (n)(τ)dτ,

(α > 0),

(3)

for n−1<α ≤ n, n∈N, x> 0. It has the following two
basic properties for n−1<α ≤ n and f ∈ L1[a,b] [11]:

Dα
a Jα

a f (x) = f (x),

DJα
a Dα

a f (x) = f (x)−∑n−1
k=0 f k(0+) (x−a)k

k! , x > 0.
(4)

For more mathematical properties of fractional deriva-
tives and integrals, we refer the interested reader to the
related references in this subject [2 – 4, 9, 12, 20].

Definition 3. For n being the smallest integer that
exceeds α , the Caputo time-fractional derivative oper-
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ator of order α > 0 is defined as [3]

Dα
t u(x, t) =

∂ α u(x, t)
∂ tα

=




1
Γ (n−α)

∫ t

0
(t − τ)n−α−1 ∂ nu(x,τ)

∂τn dτ,

if n− 1 < α < n,
∂ nu(x, t)

∂ tn , if α = n ∈N.

(5)

For more information on the mathematical properties
of fractional derivatives and integrals one can con-
sult [3, 11].

3. Analysis of the Homotopy Analysis Method

In this paper, we apply the homotopy analysis
method [49] to solve the linear fractional partial dif-
ferential equations. This method was proposed by the
Chinese mathematician J. S. Liao [44]. We extend
Liao’s basic ideas to the fractional partial differential
equations. Let us consider the fractional partial differ-
ential equation

FD(u(x, t)) = 0, (6)

where FD is a fractional partial differential operator,
x and t denote independent variables, and u(x, t) is an
unknown function. For simplicity, we ignore all bound-
ary or initial conditions, which can be treated in the
same way. Based on the constructed zero-order defor-
mation equation by Liao [49], we give the following
zero-order deformation equation in the similar way:

(1− q)L[v(x, t;q)− u0(x, t)] = qhFD(v(x, t;q)), (7)

where q ∈ [0,1] is the embedding parameter, h is a
nonzero auxiliary parameter, L is an auxiliary linear
non-integer order operator which possesses the prop-
erty L(C) = 0, u0(x, t) is an initial guess of u(x, t), and
v(x, t;q) is an unknown function on independent vari-
ables x, t,q. It is important to note that one has great
freedom to choose the auxiliary parameter h in HAM.
If q = 0 and q = 1, then we have

v(x, t;0) = u0(x, t), v(x, t;1) = u(x, t), (8)

respectively. Thus as q increases from 0 to 1, the so-
lution v(x, t;q) varies from the initial guess u0(x, t) to
the solution u(x, t). Expanding v(x, t;q) in Taylor series

with respect to q, one has

v(x, t;q) = u0(x, t)+
∞

∑
m=1

um(x, t)qm, (9)

where

um(x, t) =
∂ mv(x, t;q)

∂qm

∣∣∣∣
q=0

. (10)

If the auxiliary linear non-integer order operator, the
initial guess, and the auxiliary parameter h are so prop-
erly chosen, the series (9) converges at q = 1. Hence,
we have

u(x, t) = u0(x, t)+
∞

∑
m=1

um(x, t), (11)

which must be one of the solution of the original non-
linear equation as proved by [49]. As h =−1, (7) be-
comes

(1− q)L[v(x, t;q)− u0(x, t)]+ qFDv(x, t;q) = 0, (12)

which is used mostly in the homotopy perturbation
method (HPM). Thus, HPM is a special case of HAM.
The comparison between HAM and HPM can be found
in [51, 53]. According to (9), the governing equation
can be deduced from the zero-order deformation (7).
Define the vector

un(x, t) = {u0(x, t),u1(x, t),u2(x, t),

u3(x, t), . . . ,un(x, t)}.
(13)

Differentiating (7) m times with respect to the embed-
ding parameter q, then setting q = 0, and finally divid-
ing them by m!, we have the so-called mth-order defor-
mation equation

L[um(x, t)− χmum−1(x, t)] = hFR(um−1(x, t)), (14)

where

FR(um−1(x, t))=
1

(m−1)!
∂ m−1FR(v(x, t;q))

∂qm−1

∣∣∣∣
q=0

(15)

and

χm =

{
0, m ≤ 1,

1, m > 1.
(16)

Finally, for the purpose of computation, we will ap-
proximate the HAM solution (11) by the following
truncated series:

φm =
m−1

∑
k=0

uk(x, t). (17)
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The mth-order deformation Equation (14), is linear and
thus can be easily solved.

The convergence of a series is important. A series
is often of no use if it is convergent in a rather re-
stricted region. It is clear that the convergence of the
series (11) depends upon the auxiliary parameter h,
the initial guess u0(x, t), and the auxiliary linear op-
erator L. Fortunately, the homotopy analysis method
provides us with great freedom to choose all of them.
A complete review for the convergence discussion is
available in [49].

4. Test Problems

In this section, we shall present several test prob-
lems to illustrate the applicability of HAM to linear
fractional partial differential equations.

Example 1. First, we consider the following
non-homogeneous fractional partial differential equa-
tion [9]:

∂ α u
∂ tα + c

∂u
∂x

= g(x, t), t > 0, 0 < α ≤ 1, (18)

where c is a constant and g(x, t), the source term, is a
function of x and t. Assume that the initial and bound-
ary conditions are

u(x,0) = f (x), x ∈ R,

Du(x, t)−→ 0 as |x| −→ ∞, t > 0.
(19)

Now, we use HAM to solve the general non-
homogeneous linear equation. To demonstrate the ef-
fectiveness of the method, we consider (18) with the
initial condition

u(x,0) = f (x), c = 1. (20)

We choose the linear non-integer order operator

L[v(x, t;q)] = Dα
t v(x, t;q). (21)

Furthermore, (18) suggests to define the linear frac-
tional partial differential operator

NFD[v(x, t;q)] = Dα
t v(x, t;q)+ vx(x, t;q)− g(x, t).

(22)

Using the above definitions, we construct the zeroth-
order deformation equation

(1− q)L[v(x, t;q)− u0(x, t)] = qhNFDv(x, t;q). (23)

Obviously, when q = 0 and q = 1, we can write

v(x, t;0)= u0(x, t) = u(x,0), v(x, t;1)= u(x, t). (24)

According to (14) – (16), we gain the mth-order defor-
mation equation

L[um(x, t)− χmum−1(x, t)] = hFR(um−1(x, t)), (25)

where

FR(um−1(x, t)) = Dα
t u(m−1) + u(m−1)x

− (1− χm)g(x, t).
(26)

Now, the solution of (25), for m ≥ 1 becomes

um(x, t) = χmum−1(x, t)+ hL−1NFR(um−1(x, t)). (27)

From (19), (24), and (27), we now successively obtain

u0(x, t) = u(x,0) = f (x), (28)

u1(x, t) = hD−α
t (Dα

t u0 + u0x − g(x, t))

= hD−α
t (Dα

t f (x)+ fx − g(x, t))

= hD−α
t ( fx − g),

(29)

u2(x, t) = u1(x, t)+ hD−α
t (Dα

t u1 + u1x). (30)

With

Dα
t u1(x, t) = hDα

t D−α
t ( fx − g)

and u1x = hD−α
t ( fxx − gx),

(31)

u2(x, t) = hD−α
t ( fx − g)

+ hD−α
t (h( fx − g)+ hD−α

t ( fxx − gx)).
(32)

Then we have

u2(x, t) = h(h+ 1)D−α
t ( fx − g)

+ h2(D−α
t )2( fxx − gx),

(33)

u3(x, t) = u2(x, t)+ hD−α
t (Dα

t u2 + u2x) (34)

u3(x, t) = h3(D−α
t )3( fxxx − gxx)

+ h2(h+ 1)(D−α
t )2( fxx − gx)

+ h(h+ 1)2D−α
t ( fx − g)

+ h(h+ 1)D−α
t ( fxx − gx),

(35)

u4(x, t) = h4(D−α
t )4( fxxxx − gxxx)

+ 2h3(h+ 1)(D−α
t )3( fxxx − gxx)

+ 2h2(h+ 1)2(D−α
t )2( fxx − gx)

+ h2(h+ 1)(D−α
t )2( fxxx − gxx)

+ h(h+ 1)2D−α
t ( fxx − gx)

+ h(h+ 1)3D−α
t ( fx − g),

(36)
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and so on. If we substitute h =−1 in the above
terms the dominant terms will be remaining and the
rest terms vanish because they include the factor
hm(h+ 1)n, m,n ∈ N. Define A(x, t) = fx(x)− g(x, t),
then we have

u0(x, t) = f (x),

u1(x, t) =−D−α
t (A),

u2(x, t) = (D−α
t )2(Ax),

u3(x, t) =−(D−α
t )3(Axx),

u4(x, t) = (D−α
t )4(Axxx),

(37)

and so on. By using (11), we have

u(x, t) = f (x)−D−α
t (A)+ (D−α

t )2(Ax)

− (D−α
t )3(Axx)+ (D−α

t )4(Axxx)− . . .
(38)

or

u(x, t) = f (x)−
∞

∑
k=1

(−1)k(D−α
t )k(Dk−1

x A). (39)

Now, we put g(x, t) = exp(−x− t) then (18) yields

Dα
t u(x, t)+ ux(x, t) = exp(−x− t),

u(x,0) = exp(−x),

u(x, t)→ 0 as |x| → ∞, t > 0.
(40)

Starting with the initial condition u(x,0) = f (x) =
exp(−x), the source term g(x, t) = exp(−x−t), and the
auxiliary operator Lu(x, t) = Dα

t u(x, t). Thus, we have

A = fx − g =−(exp(−x)+ exp(−x− t)),

Ax = exp(−x)+ exp(−x− t),

Axx = A = fx − g =−(exp(−x)+ exp(−x− t)),

D−α
t (A) = D−α

t (−(exp(−x)+ exp(−x− t)))

=− exp(−x)
Γ (α + 1)

tα + exp(−x)D−α
t exp(−t),

(D−α
t )2(Ax) = D−2α

t (exp(−x)+ exp(−x− t))

=
exp(−x)

Γ (2α + 1)
t2α + exp(−x)D−2α

t exp(−t),

(D−α
t )3(Axx) = D−3α

t (−(exp(−x)+ exp(−x− t)))

=− exp(−x)
Γ (3α + 1)

t3α − exp(−x)D−3α
t exp(−t).

(41)

To solve D−α
t exp(−t), the Laplace transform can be

used:

LD−α
t exp(−t) =

1
sα (s+ 1)

, (42)

and with the use of the inverse Laplace transform we
have [9]

D−α
t exp(−t) = L−1

(
1

sα+1

(
1− 1

s+ 1

))

=
tα

Γ (α + 1)
−E(t,α + 1,−1),

D−2α
t exp(−t) = L−1

(
1

s2α+1

(
1− 1

s+ 1

))

=
t2α

Γ (2α + 1)
−E(t,2α + 1,−1),

D−3α
t exp(−t) = L−1

(
1

s3α+1

(
1− 1

s+ 1

))

=
t3α

Γ (3α + 1)
−E(t,3α + 1,−1),

(43)

where E(t,α,a) is as follows:

E(t,α,a) =
1

Γ (α)

∫ t

0
τα−1 exp(a(t −τ))dτ. (44)

With the use of the above formula the solution u(x, t)
can be obtained; hence, we have

u(x, t) = exp(−x)

+ 2exp(−x)
{

tα

Γ (α + 1)
+

t2α

Γ (2α + 1)
+ . . .

}
−exp(−x){E(t,α + 1,−1)+E(t,2α+ 1,−1)

+E(t,3α + 1,−1)+ . . .}.

(45)

Thus, we get

u(x, t) = exp(−x)+ 2exp(−x)
∞

∑
k=1

tkα

Γ (kα + 1)

− exp(−x)
∞

∑
k=1

E(t,kα + 1,−1),
(46)

where for α = 1 we have

E(t,k+ 1,−1) =
1

Γ (k+ 1)

∫ t

0
τk exp(−(t − τ))dτ

=
exp(−t)
Γ (k+ 1)

∫ t

0
τk exp(τ)dτ.

(47)

Finally, the exact solution will be

u(x, t) = exp(−x)(exp(t)+ sinh(t)). (48)
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Example 2. Consider the following linear non-
homogeneous fractional Burgers equation [9]:

Dα
t u(x, t)+ c

∂u
∂x

(x, t)− b
∂ 2u
∂x2 (x, t) = g(x, t),

x ∈R, t > 0,
(49)

where c is a constant, 0 < α ≤ 1, b is cinematic and
g(x, t), the source term, is a function of x and t. We use
the initial and boundary conditions as

u(x,0) = f (x), x ∈ R,

u(x, t)−→ 0 as |x| −→ ∞, t > 0.
(50)

By defining the linear non-integer order operator we
get

L[v(x, t;q)] = Dα
t v(x, t;q). (51)

Furthermore, (49) suggests to define the linear frac-
tional partial differential operator

NFD[v(x, t;q)] = Dα
t v(x, t;q)+ cvx(x, t;q)

− bvxx(x, t;q)− g(x, t).
(52)

By manipulating the procedure presented in Exam-
ple 1, we gain the mth-order fractional equation

NFR(um−1(x, t)) = Dα
t u(m−1) + cu(m−1)x

− bu(m−1)xx−(1−χm)g(x, t).
(53)

Now, for m ≥ 1 we have

um(x, t) = χmum−1(x, t)+hL−1NFR(um−1(x, t)). (54)

From (53) and (54), we now successively obtain

u0(x, t) = u(x,0) = f (x), (55)

u1(x, t) = hD−α
t (c fx(x)−b fxx(x)−g(x, t)). (56)

Define A(x, t) = c fx(x)− b fxx(x)− g(x, t), then u2, u3,
u4, . . . will be obtained as follows:

u2(x, t) = h2(D−α
t )2(cAx − bAxx)+ h(h+ 1)D−α

t (A),

u3(x, t) = h3(D−α
t )3(c2Axx − 2cbAxxx+ b2Axxxx)

+ 2h2(h+ 1)(D−α
t )2(cAx − bAxx)

+ h(h+ 1)2D−α
t (A),

u4(x, t) = u3 + hD−α
t (Dα

t u3 + cu3x− bu3xx) =

h4(D−α
t )4(c3Axxx − 3c2bAxxxx

+ 3cb2Axxxxx − b3Axxxxxx)

+ 3h3(h+ 1)(D−α
t )3(c2Axx − 2cbAxxx + b2Axxxx)

+ 3h2(h+ 1)2(D−α
t )2(cAx − bAxx)

+ h(h+ 1)3D−α
t (A),

(57)

and so on. Define

K0 = A(x, t), K1 = cAx − bAxx,

K2 = c2Axx − 2bcAxxx + b2Axxxx,
(58)

Km(x, t) =
m

∑
r=0

(−1)rbrcm−r
(

m
r

)
dm+r

dxm+r K0(x, t), (59)

Tm(x, t) =
tmα

Γ (mα + 1)
Km−1(x, t), (60)

thus, the exact solution is as follows:

um(x, t) =
m−1

∑
k=0

(
m− 1

k

)
hk+1(h+ 1)m−1−kTm(x, t),

m �= 0,
(61)

u(x, t) = u0(x, t)+
∞

∑
m=1

um(x, t). (62)

Consider h =−1 and using (11), we have

u(x, t) = f (x)−D−α
t (A)+ (D−α

t )2(cAx − bAxx)

− (D−α
t )3(c2Axx − 2cbAxxx + b2Axxxx)

+ (D−α
t )4(c3Axxx − 2c2bAxxxx

+ 3cb2Axxxxx − b3Axxxxxx)− . . . ,

(63)

where the solution of the problem is as follows:

u(x, t) =
∞

∑
n=0

(−1)n(D−α
t )nKn(x, t). (64)

Now, if g(x, t) = 0 and c = b = 1 in (49), then we have:

Dα
t u(x, t)+ ux(x, t)− uxx(x, t) = 0,

u(x,0) = exp(−x),

u(x, t)→ 0 as |x| → ∞, t > 0.

(65)

Starting with the initial condition u(x,0) = f (x) =
exp(−x), the source term g(x, t) = 0, and the auxiliary
operator Lu(x, t) = Dα

t u(x, t), we have

f (x) = exp(−x), g(x, t) = 0,

A =−2exp(−x), Ax = 2exp(−x), . . . ,

A(n)
x =−2(−1)n exp(−x).

(66)

Note that A(n)
x indicates the derivative of order n with

respect to x. Thus, we obtain

u0 = exp(−x),

u1 =−D−α
t (−2exp(−x)) =

2
Γ (α + 1)

exp(−x)tα ,

u2 = (D−α
t )2(4exp(−x)) =

4
Γ (2α + 1)

exp(−x)t2α ,
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(a) (b)

Fig. 1. 22nd-order approximation solution of u to (65) when h =−1 (a) α = 0.8, (b) α = 1.

(c) (d)

Fig. 2. 22nd-order approximation and exact solution of u to (65) when h =−1 (c) α = 0.99, (d) exact (α = 1).
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Table 1. Approximate solution of (65) for some values of h using the 11-term HAM approximation φ11 with α = 1.

(x,t) h =−0.62 h =−0.75 h =−1 h =−1.5 h =−1.75 exact
(0.1,0.1) 1.105126652 1.105169444 1.105170918 1.105202558 1.106418985 1.105170918
(0.1,0.2) 1.349622203 1.349846929 1.349858808 1.349852637 1.352130933 1.349858808
(0.1,0.3) 1.647926973 1.648667790 1.648721270 1.648639165 1.645898502 1.648721271
(0.1,0.4) 2.011627299 2.013572229 2.013752705 2.013736080 2.007466736 2.013752707
(0.1,0.5) 2.454660538 2.459094031 2.459603085 2.459751366 2.456874977 2.459603111

Fig. 3. 4th-order approximation solution of u to (82) with c = 1, f (x) = exp(−x), g(x, t) = exp(−x− t), and α = 1.

u3 =−(D−α
t )3(−8exp(−x))

=
8

Γ (3α + 1)
exp(−x)t3α , (67)

and so on. Therefore, we get

u(x, t) = exp(−x)+
2

Γ (α + 1)
exp(−x)tα

+
4

Γ (2α + 1)
exp(−x)t2α

+
8

Γ (3α + 1)
exp(−x)t3α + . . .

= exp(−x)
∞

∑
n=0

2ntnα

Γ (nα + 1)
,

(68)

where for α = 1, we have

u(x, t) = exp(2t − x). (69)

Example 3. Consider the linear non-homogeneous
fractional KdV equation [9] as follows:

Dα
t u(x, t)+ c

∂u
∂x

(x, t)+ b
∂ 3u
∂x3 (x, t) = g(x, t),

x ∈ R, t > 0,
(70)

where b and c are constants, 0 < α ≤ 1, and g(x, t), the
source term, is a function of x and t. We assume that
the initial and boundary conditions are

u(x,0) = f (x), x ∈ R,

u(x, t)→ 0 as |x| → ∞, t > 0.
(71)

By manipulating the procedure introduced in Exam-
ple 1, we define the linear operators as

L[v(x, t;q)] = Dα
t v(x, t;q), (72)
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Fig. 4. 5th-order approximation
solution of u to (83) with α = 1.

Fig. 5. 5th-order approximation
solution of u to (86) with α = 1.

NFD[v(x, t;q)] = Dα
t v(x, t;q)+ cvx(x, t;q)

+ bvxxx(x, t;q)− g(x, t).
(73)

Using the above definition, we gain the mth-order lin-
ear fractional operator as follows:

NFR(um−1(x, t)) = Dα
t u(m−1) + cu(m−1)x

+ bu(m−1)xxx − (1− χm)g(x, t).
(74)

Consequently, the first few terms of the HAM series
solution are given in the following:

u0(x, t) = u(x,0) = f (x), (75)
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Table 2. Approximate solution of (83) for some values of h using the 11-term HAM approximation φ11 with α = 1.
(x,t) h =−0.5 h =−0.62 h =−0.75 h =−1 h =−1.5 exact

(0.1,0.1) 0.9093631655 0.9093652684 0.9093653754 0.9093653765 0.9093675874 0.9093653765
(0.1,0.2) 0.9229857039 0.9229941365 0.9229945654 0.9229945697 0.9230034355 0.9229945697
(0.1,0.3) 0.9458413707 0.9458604232 0.9458613922 0.9458614019 0.9458814332 0.9458614019
(0.1,0.4) 0.9781589148 0.9781929836 0.9781947162 0.9781947338 0.9782305528 0.9781947338
(0.1,0.5) 1.020261780 1.020315412 1.020318139 1.020318167 1.020374554 1.020318167

Table 3. Approximate solution of (86) for some values of h using the 11-term HAM approximation φ11 with α = 1.
(x,t) h =−0.5 h =−0.62 h =−0.75 h =−1 h =−1.5 exact

(0.1,0.1) 0.9954277863 0.9954698791 0.9954720198 0.9954720414 0.9955162966 0.9954720414
(0.1,0.2) 1.086924813 1.087009420 1.087013723 1.087013767 1.087102720 1.087013766
(0.1,0.3) 0.9089255515 1.180372200 1.180378708 1.180378774 1.180513316 1.180378774
(0.1,0.4) 1.276320015 1.276492625 1.276501403 1.276501492 1.276682968 1.276501492
(0.1,0.5) 1.376113721 1.376332700 1.376343836 1.376343949 1.376574176 1.376343949

Table 4. Absolute error |u−φ11| for the (65) with h =−1 and α = 1.
ti/xi 0.1 0.2 0.3 0.4 0.5
0.1 4.721×10−16 9.834×10−13 8.655×10−11 2.085×10−9 2.471×10−8

0.2 4.271×10−16 8.898×10−13 7.831×10−11 1.887×10−9 2.236×10−8

0.3 3.865×10−16 8.052×10−13 7.076×10−11 1.707×10−9 2.023×10−8

0.4 3.497×10−16 7.285×10−13 6.412×10−11 1.545×10−9 1.831×10−8

0.5 3.165×10−16 6.592×10−13 5.802×10−11 1.398×10−9 1.657×10−8

u1(x, t) = hD−α
t (c fx(x)+b fxxx(x)−g(x, t)). (76)

Define A(x, t) = c fx(x)+ b fxxx(x)− g(x, t),

K0 = f (x), K1 = A, K2 = cAx + bAxxx,

Ki = c
∂Ki−1

∂x
+ b

∂Ki−1

∂x3 for i = 3,4,5, . . . ,
(77)

then u2, u3, u4, . . . will be obtained in the following
form:

u0 = K0,

u1 = hD−α
t (K1),

u2 = h2(D−α
t )2(K2)+ h(h+ 1)D−α

t (K1),

u3 = h3(D−α
t )3(K3)+ 2h2(h+ 1)(D−α

t )2(K2)

+ h(h+ 1)2D−α
t (K1),

(78)

u4 = u3 + hD−α
t (Dα

t u3 + cu3x+ bu3xxx)

= (h+ 1)u3+ hD−α
t (cu3x + bu3xxx),

(79)

and we note that

hD−α
t u3x = h4(D−α

t )4(K3x)+ 2h3(h+ 1)(D−α
t )3(K2x)

+ h2(h+ 1)2(D−α
t )2(K1x),

u4 = h4(D−α
t )4(K4)+ 3h3(h+ 1)(D−α

t )3(K3)

+ 3h2(h+ 1)2(D−α
t )2(K2)+ h(h+ 1)3D−α

t (K1),

(80)

and so on. Thus the solution of the KdV equation is as
follows:

u(x, t) = K0 + hD−α
t (K1)+ h2(D−α

t )2(K2)

+ h(h+ 1)D−α
t (K1)+ h3(D−α

t )3(K3)

+ 2h2(h+ 1)(D−α
t )2(K2)

+ h(h+ 1)2D−α
t (K1).

(81)

Consider h =−1, then we obtain

u(x, t) = K0 −D−α
t (K1)+ (D−α

t )2(K2)

− (D−α
t )3(K3)+ . . .

=
∞

∑
n=0

(−1)n(D−α
t )nKn.

(82)

Now, if g(x, t) = exp(−x)sinh(t), c = 1, and b = −1
in (70), then we have

Dα
t u(x, t)+ ux(x, t)− uxxx(x, t) = exp(−x)sinh(t),

u(x,0) = exp(−x),

u(x, t)→ 0 as |x| → ∞, t > 0.
(83)

Starting with the initial condition u(x,0) = f (x) =
exp(−x), the source term g(x, t) = exp(−x)sinh(t),
and the auxiliary operatorLu(x, t) = Dα

t u(x, t), and us-
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ing (77), we have

K0 = f (x) = exp(−x),

K1 = fx − fxxx − exp(−x)sinh(t) =−exp(−x)sinh(t),

K2 = K3 = . . .= 0. (84)

Thus, u(x, t) is as follows:

u(x, t) = exp(−x)+ exp(−x)D−α
t sinh(t)

= exp(−x)+
1
2

exp(−x){E(t,α + 1,1)

+E(t,α + 1,−1)}
= exp(−x)

{
1+

1
Γ (α + 1)

∫ t

0
τα cosh(t − τ)dτ

}
.

(85)

From (85) and α = 1, hence, we obtain

u(x, t) = exp(−x)cosh(t). (86)

Also, if we put g(x, t) = exp(−x)cosh(t), c = 1, and
b =−1 in (70), then we have:

f (x) = exp(−x), g(x, t) = exp(−x)cosh(t),

K0 = f (x) = exp(−x),

K1 = A = fx − fxxx − g =−exp(−x)cosh(t),

K2 = K3 = . . .= 0.

(87)

Note that

D−α
t cosh(t) =

tα

Γ (α + 1)
+

1
Γ (α + 1)

∫ t

0
τα sinh(t − τ)dτ,

u0 = exp(−x),

u1 =

(
tα

Γ (α + 1)

+
1

Γ (α + 1)

∫ t

0
τα sinh(t − τ)dτ

)
exp(−x), . . .

(88)

Thus, u(x, t) is as follows:

u(x, t) = exp(−x)+ exp(−x)
{

tα

Γ (α + 1)

+
1

Γ (α + 1)

∫ t

0
τα sinh(t − τ)dτ

}
,

(89)

where for α = 1 the following solution will be ob-
tained:

u(x, t) = exp(−x)(1+ sinh(t)). (90)

Example 4. Consider the linear fractional non-
homogeneous KdV-Burgers equation [9] which is
given in the following:

Dα
t u(x, t)+ c

∂u
∂x

(x, t)− d
∂ 2u
∂x2 (x, t)+ b

∂ 3u
∂x3 (x, t)

= g(x, t), x ∈ R, t > 0,
(91)

where b, c, and d are the constants, 0 < α ≤ 1, and
g(x, t), the source term, is a function of x and t. Assume
that the initial and boundary conditions are

u(x,0) = f (x), x ∈ R,

u(x, t)→ 0 as |x| → ∞, t > 0.
(92)

By manipulating the procedure mentioned in Exam-
ple 1, we define the linear operators as:

L[v(x, t;q)] = Dα
t v(x, t;q). (93)

NFD[v(x, t;q)] = Dα
t v(x, t;q)+ cvx(x, t;q)

−dvxx(x, t;q)+ bvxxx(x, t;q)− g(x, t).
(94)

Using the above definition, we gain the mth-order lin-
ear fractional operator as follows:

NFR(um−1(x, t)) = Dα
t u(m−1) + cu(m−1)x

−du(m−1)xx + bu(m−1)xxx − (1− χm)g(x, t).
(95)

Consequently, the first few terms of the HAM series
solution are as follows:

u0(x, t) = u(x,0) = f (x), (96)

u1(x, t) = hD−α
t

[
Dα

t f (x)+ c fx(x)− d fxx(x)

+ b fxxx(x)− g(x, t)
]
.

(97)

Define

K0(x, t) = f (x),

K1(x, t) = c fx(x)− d fxx(x)+ b fxxx(x)− g(x, t),

Ki(x, t) = cK(i−1)x(x, t)− dK(i−1)xx(x, t)

+ bK(i−1)xxx(x, t),

(98)

then

u2(x, t) = h2(D−α
t )2K2 + h(h+ 1)D−α

t K1,

u3(x, t) = h3(D−α
t )3K3 + 2h2(h+ 1)(D−α

t )2K2

+ h(h+ 1)2D−α
t K1,

(99)

and so on. Thus, for h =−1, the solution is as follows:

u(x, t) =
∞

∑
n=0

(−1)n(D−α
t )nKn. (100)
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Table 5. Absolute error |u−φ16| for (101) with h =−1 and α = 1.
ti/xi 0.1 0.2 0.3 0.4 0.5
0.1 2.527×10−22 1.686×10−17 1.128×10−14 1.147×10−12 4.152×10−11

0.2 2.286×10−22 1.526×10−17 1.021×10−14 1.038×10−12 3.757×10−11

0.3 2.069×10−22 1.381×10−17 9.235×10−15 9.388×10−13 3.399×10−11

0.4 1.872×10−22 1.249×10−17 8.357×10−15 8.495×10−13 3.056×10−11

0.5 1.694×10−22 1.131×10−17 7.561×10−15 7.686×10−13 2.783×10−11

Table 6. Approximate solution of (117) for some values of h using the 11-term HAM approximation φ11 with α = 2.
(x,t) h =−0.5 h =−0.62 h =−0.75 h =−1 h =−1.5 exact

(0.1,0.1) 0.9049882260 0.9049882960 0.9049882996 0.9049882996 0.9049883733 0.9049882996
(0.1,0.2) 0.9060456928 0.9060462542 0.9060462828 0.9060462831 0.9060468733 0.9060462826
(0.1,0.3) 0.9089255515 0.9089274510 0.9089275476 0.9089275486 0.9089295457 0.9089275482
(0.1,0.4) 0.9145617742 0.9145662926 0.9145665224 0.9145665247 0.9145712753 0.9145665249
(0.1,0.5) 0.9239159195 0.9239247844 0.9239252352 0.9239252398 0.9239345600 0.9239252402

(a) (b)

Fig. 6. 14th-order approximation solution of u to (101) with h =−1 (a) α = 0.99, (b) exact (α = 1).

Now, consider the following example:

Dα
t u(x, t)+

∂u
∂x

(x, t)− ∂ 2u
∂x2 (x, t)+

∂ 3u
∂x3 (x, t)

= exp(−x), x ∈ R, t > 0,

u(x,0) = exp(−x),

u(x, t)→ 0 as |x| → ∞, t > 0.

(101)

We use the initial condition u(x,0) = f (x) = exp(−x),
the source term g(x, t) = exp(−x), and the auxiliary

operator Lu(x, t) = Dα
t u(x, t). Using (98), we have

K0 = f (x) = exp(−x),

K1 = fx − fxx + fxxx − g =−4exp(−x),

K2 = 12exp(−x),K3 =−36exp(−x), . . . .

(102)

Applying the above procedure yields

u(x, t) =
1
3

exp(−x)

{
4

∞

∑
n=0

3ntnα

Γ (nα + 1)
− 1

}
, (103)
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where for α = 1 it is

u(x, t) =
1
3

exp(−x)(4exp(3t)− 1), (104)

which is the exact solution.

Example 5. As the last example, we consider the
following linear non-homogeneous fractional Klein-
Gordon equation [9]:

Dα
t u(x, t)− c2 ∂ 2u

∂x2 (x, t)+ d2u(x, t) = g(x, t),

x ∈ R, t > 0,
(105)

where c and d are constant, 1 < α ≤ 2, and g(x, t), the
source term, is a function of x and t. We assume that
the initial and boundary conditions are as follows:

u(x,0) = f (x),
∂u
∂ t

(x,0) = h(x), x ∈R,

u(x, t)→ 0 as |x| → ∞, t > 0.
(106)

By manipulating the above procedure we define the lin-
ear operators as follows:

L[v(x, t;q)] = Dα
t v(x, t;q). (107)

NFD[v(x, t;q)] = Dα
t v(x, t;q)− c2vxx(x, t;q)

+ d2v(x, t;q)− g(x, t).
(108)

Using the above definition, we gain the mth-order lin-
ear fractional operator as follows:

NFR(um−1(x, t)) = Dα
t u(m−1)− c2u(m−1)xx

+ d2u(m−1)− (1− χm)g(x, t).
(109)

Consequently, the first few terms of the HAM series
solution are as follows:

u0(x, t) = u(x,0) = f (x), (110)

u1(x, t) = hD−α
t (Dα

t f (x)− c2 fxx(x)

+ d2 f (x)− g(x, t)).
(111)

Define

K0(x, t) = f (x),

K1(x, t) =−c2 fxx(x)+ d2 f (x)− g(x, t),

Ki(x, t) =−c2K(i−1)xx(x, t)+ d2Ki−1(x, t),

(112)

then

u2(x, t) = h2(D−α
t )2K2 + h(h+ 1)D−α

t K1,

u3(x, t) = h3(D−α
t )3K3 + 2h2(h+ 1)(D−α

t )2K2

+ h(h+ 1)2D−α
t K1,

(113)

and so on. Thus, for h =−1, the solution is as follows:

u(x, t) =
∞

∑
n=0

(−1)n(D−α
t )nKn. (114)

We use the initial condition u(x,0) = f (x) = exp(−x),
the source term g(x, t) = exp(−x)sinh(t), and the
auxiliary operator Lu(x, t) = Dα

t u(x, t). Notice that
in (105), c = d = 1, h =−1. Thus, we have

K0 = f (x) = exp(−x),

K1 =− fxx + f − g =−exp(−x)sinh(t),

K2 = K3 = K4 = . . .= 0.

(115)

Applying the above procedure, yields

u(x, t) =

exp(−x)
{

1+
1

Γ (α + 1)

∫ t

0
τα cosh(t − τ)dτ

}
,

(116)

where for α = 2 we habe

u(x, t) = exp(−x)(sinh(t)− t + 1) , (117)

which is the exact solution. The parameter h deter-
mines the convergence region and rate of the approxi-
mation for HAM which is shown in Tables 1 – 3 and 6.
If we take h =−1, we obtain the exact results which
are presented in these tables. Tables 1 – 3 and 6 show
the 11-term HAM approximate solutions φ11 of (65),
(83), (86), and (117) for different values of h. Tables 4
and 5 show the approximate errors of (65) and (101),
respectively, with h =−1 and α = 1. It is clear that
when we take h =−1, we obtain the best results for
the case α = 1 which has an exact solution. In Fig-
ures 1, 2, and 6 we plot the approximate solutions for
various α and h =−1. In Figures 3, 4, and 5 we plot
the approximate solutions for various h and α = 1.

5. Conclusion

In this paper, fractional wave, Burgers, KdV, KdV-
Burgers, and Klein-Gordon equations, were investi-
gated and by using the homotopy analysis method the
exact solutions were obtained. The fractional deriva-
tive operator in (7) is a linear operator. Based on the ho-
motopy analysis method (HAM), a new analytic tech-
nique is proposed to solve the linear fractional partial
differential equations. It provides us with a simple way
to adjust and control the convergence region of solu-
tion series by introducing an auxiliary parameter h.
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This is an obvious advantage of the homotopy analy-
sis method. This work illustrates the validity and great
potential of the homotopy analysis method for linear
fractional partial differential equations. In this way, we
obtained solutions in power series. However, it is well
known that a power series often has a small conver-
gence radius. It should be emphasized that, in the frame
of the homotopy analysis method, we have great free-
dom to choose the initial guess and the auxiliary linear

operator. This work shows that the homotopy analysis
method is a very efficient and powerful tool for solv-
ing the linear fractional partial differential equations of
various types.
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