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Abstract

In this paper we analyze the set of scalar algebraic Riccati equations (ARE)

that play an important role in finding feedback Nash equilibria of the scalar

N -player linear-quadratic differential game. We show that in general there

exist at most 2N − 1 solutions of the (ARE) that give rise to a Nash equi-

librium. In particular we analyze the number of equilibria as a function of

the autonomous growth parameter and present both necessary and sufficient

conditions for the existence of a unique solution of the ARE.

Keywords: Differential games, Linear-quadratic control, Feedback Nash

equilibrium, Algebraic Riccati equations



1 Introduction

During the last decade there has been an increasing interest in studying sev-

eral problems in economics using a dynamic game theoretical setting. In

particular in the area of environmental economics and macro-economic pol-

icy coordination this is a very natural framework for modeling problems (see

e.g. Engwerda et al. [2] for references). In, e.g., policy coordination prob-

lems usually two basic questions arise: first, are policies coordinated and,

second, which information do the participating parties have. Usually both

these points are rather unclear and, therefore, strategies for different possible

scenarios are calculated and compared with each other. One of these scenar-

ios is the so-called feedback Nash scenario (see Başar and Olsder [1] for a

precise definition and survey of the relevant literature).

Since according to this scenario the participating parties can react to each

other’s policies, its relevance is in economics usually larger than that of the

open-loop Nash scenario. In particular the feedback Nash scenario is very

popular in studying problems where the underlying model can be described

by a (set of) linear differential equation(s) and the individual objectives pur-

sued by the parties can be approximated by functions which quadratically

penalize deviations from some (equilibrium) targets. Under the assumption

that the parties have a finite planning horizon, this problem was first ana-

lyzed by Starr and Ho in [6] (see also Lukes [4] for a result on uniqueness

within the class of affine memoryless strategies).

In this paper we study the infinite planning horizon case and concentrate

on solving the algebraic Riccati equations associated with this problem. In

2



Weeren et al. [7] it was shown that in the two-player scalar case the num-

ber of solutions to these equations can vary between one and three (see also

Engwerda [3] for a detailed study under which conditions on the system pa-

rameters these different situations occur). In this paper we study the general

N -player scalar case. We show that for any number N of players there exists

a positive number such that if the autonomous growth parameter is larger

than this number, there exist (in general) 2N − 1 solutions for the (ARE)

equations yielding a Nash equilibrium. Furthermore, we give both necessary

and sufficient conditions under which there is exactly one solution for the

(ARE) equations.

The outline of the paper is as follows. In section two we start by stating

the problem analyzed in this paper. Section three analyzes the solutions of

the algebraic Riccati equations. These results are used in section four to find

necessary and sufficient conditions for the existence of a unique solution. The

paper ends with some concluding remarks.

2 Problem statement

In this paper we consider the problem in which N parties (henceforth called

players) aim at minimization of their individual quadratic performance cri-

teria. Each player controls a different set of inputs to a single system. The

system is described by the following differential equation

ẋ = ax +
N

∑

i=1

biui, x(0) = x0. (1)

Here x is the state of the system, ui is a (control) variable player i can

manipulate, x0 is the arbitrarily chosen initial state of the system, a (the
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”autonomous growth” parameter) and bi, i ∈ N := {1, .., N}, are constant

system parameters, and ẋ denotes the time derivative of x.

The performance criterion player i ∈ N aims to minimize is:

Ji(u1, · · · , uN) :=
1

2

∫ ∞

0

{qix
2(t) + riu

2
i (t)}dt.

We assume that both qi and ri are positive and bi differs from zero.

We consider the existence of limiting stationary feedback Nash equilibria of

this differential game.

To that end we study the following set of coupled algebraic Riccati equations

(ARE):

2(a −
N

∑

j=1

kjsj)ki + qi + sik
2
i = 0, i ∈ N (2)

where si := r−1
i b2

i .

Since both qi and ri are positive it is obvious that Ji > 0, whenever x0 6= 0.

Therefore, we immediately deduce from Başar and Olsder [1, proposition 6.8]

that:

Theorem 1: Let k̄i > 0 solve the set of Riccati equations (2).

Then the stationary feedback policies

ui = −r−1
i bik̄ix, i ∈ N, (3)

provide a Nash equilibrium, yielding the cost Ji(u1, · · · , uN) := k̄ix
2
0, for

player i. Moreover, the resulting system dynamics described by ẋ = aclx,

with acl := a −
∑N

i=1 sik̄i, is asymptotically stable. �

In fact we conclude from Weeren et al. [7, corollary 3.1] that, when the
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players are restricted at the outset to memoryless strategies (cf. Lukes [4]),

existence of a positive solution to the above scalar Riccati equations is both

a necessary and a sufficient condition for existence of a feedback Nash equi-

librium.

A natural question which arises is: how many solutions does the above set

of algebraic Riccati equations (ARE) have. To analyze this question we in-

troduce (for notational convenience) the following variables:

σi := siqi; κi := siki, i ∈ N; and κN+1 := −acl.

Using this notation, (2) can be rewritten as

κ2
i − 2κN+1κi + σi = 0, i ∈ N, (4)

where

κN+1 = −a +
N

∑

j=1

κj (5)

So our problem can be reformulated as follows.

Problem statement 2: Assume σi > 0. Find conditions under which the

N quadratic equations (4) under the equality constraint (5) have a positive

solution κi, i ∈ N + 1. �

In the next section we will study this problem in detail.

3 The solution set

From Bézout’s theorem (see e.g. Shafarevich [5]) we know that the number

of intersection points of a set of N quadratic polynomial equations will not

5



exceed the product of the degrees of the equations (if things are appropriately

defined). Consequently, our equations will have at most 2N real solutions.

We will show in theorems 6 and 9 that the number of positive solutions may

range from 1 up to 2N − 1. We will see that this implies that there also

exists always at least one negative solution to (ARE). If N = 2, a = −1
2
, and

σ1 = σ2 = 1
2
, easy calculations show that (ARE) has two real solutions. This

shows that in general the number of real solutions of (ARE) can be strictly

smaller than 2N − 1.

To simplify the analysis below we will assume, without loss of generality,

that the σi’s satisfy σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σN . Lemma 3 reformulates our

problem statement 2 in terms of just one unknown scalar variable κN+1.

Lemma 3: Problem 2 has a solution if and only if there exist ti ∈ {−1, 1},

i ∈ N, such that the equation

(N − 1)κN+1 + t1

√

κ2
N+1 − σ1 + · · · + tN

√

κ2
N+1 − σN = a. (6)

has a solution κN+1 ≥
√

σ1.

Proof: ” ⇒ ” Consider (4). Obviously,
√

σ1 ≤ κN+1 must hold. Fur-

thermore, we conclude that (4) has two positive solutions: κi = κN+1 +
√

κ2
N+1 − σi and κi = κN+1 −

√

κ2
N+1 − σi, i ∈ N. Substitution into (5)

proves the claim.

” ⇐ ” Let κN+1 ≥
√

σ1 solve (6). Define κi by κN+1 + ti

√

κ2
N+1 − σi, where

ti is as in (6). Then it is straightforward to verify that κ1 > 0, · · · , κN > 0

satisfy (4,5). �.
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To study the number of solutions κN+1 >
√

σ1 of (6), we define recursively

the following functions for n ∈ N − 1:

fn+1
i (x) := fn

i (x) + x −
√

x2 − σn+1, i ∈ 2n (7)

fn+1
i+2n(x) := fn

i (x) + x +
√

x2 − σn+1, i ∈ 2n (8)

with

f 1
1 (x) := −

√

x2 − σ1 and f 1
2 (x) :=

√

x2 − σ1. (9)

As a result of this construction, the functions fN
i satisfy the monotonicity

property

fN
i (

√
σ1) ≤ fN

i+1(
√

σ1), i ∈ 2N − 1. (10)

In particular, the following three functions will play an important role in

the subsequent analysis:

fN
1 (x) = (N − 1)x −

N
∑

i=1

√

x2 − σi (11)

fN
2 (x) = (N − 1)x +

√

x2 − σ1 −
N

∑

i=2

√

x2 − σi (12)

and

fN
3 (x) = (N − 1)x −

√

x2 − σ1 +
√

x2 − σ2 −
N

∑

i=3

√

x2 − σi. (13)

Now, each function fN
i , i ∈ 2N − 1, corresponds to a function obtained

from the left hand side of (6) by making a specific choice of tj , j ∈ N, and

substituting x for κN+1.

From lemma 3 it is obvious then that problem 2 has a solution if and only if

fN
i = a has a solution x ≥ √

σ1 for some i ∈ 2N. Consequently, the number of
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positive solutions of (ARE) coincides with the number of solutions x ≥ √
σ1

of the equation

Π2N

i=1(f
N
i − a) = 0. (14)

We will denote the function on the left hand side of this equation, Π2N

i=1(f
N
i −

a), by f(x) and show below that it is a polynomial of degree 2N . To that end,

we concentrate for the moment on the 2-player case. Introducing a0 := x−a

and ai :=
√

x2 − σi, i = 1, 2, it is easily verified that f(x) has the following

algebraic structure

f(a0, a1, a2) := (a0 − a1 − a2)(a0 + a1 − a2)(a0 − a1 + a2)(a0 + a1 + a2). (15)

The structure of f for the general N -player case is similar and is omitted in

order to avoid unnecessary cumbersome notation. Using this structure we

show next that all entries ai in f appear quadratically.

Lemma 4: f(a0, · · · , aN) is a sum of terms, in which each term can be

written as ΠN
i=0a

2ki
i for some nonnegative integers ki satisfying

∑N
i=0 2ki = 2N .

Proof: It is easily verified that f(−a0, a1, · · · , aN ) = (−1)2N
f(a0, · · · , aN) =

f(a0, · · · , aN) and, also, f(a0, · · · ,−ai, · · · , aN) = f(a0, · · · , ai, · · · , aN), for

any i ∈ N.

Now, assume that f has a term in which, e.g., a0 has an odd exponent. Then

collect all terms of f containing odd exponents in a0. As a consequence

f = a0g(a0, · · · , aN)+h(a0, · · · , aN), where a0 appears with an even exponent

in all terms of both g and h. Since f(−a0, a1, · · · , aN ) = f(a0, a1, · · · , aN) we

conclude immediately from this that g must be zero. The rest of the proof
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follows in a straightforward manner. �

Corollary 5: f(x) is a polynomial of degree 2N .

Proof: Let a0 := (N − 1)x − a and ai :=
√

x2 − σi. With this notation,

f(x) coincides with (15). The result follows directly from lemma 4. �

Using this corollary we can easily derive the following result on the num-

ber of solutions to the (ARE) equations

Theorem 6: (ARE) has at least one and at most 2N −1 positive solutions.

Proof: Using the notation of corollary 5, we show that the polynomial

f(x) has at most 2N − 1 roots larger than
√

σ1. To this end we rewrite f as

f = Π2N−2

i=1 (a0 − (a1 + gi))(a0 +(a1 + gi))(a0 − (a1 − gi))(a0 +(a1 − gi)), (16)

where gi is a linear combination (with coefficients +1 or −1) of a2, · · · , aN .

From (16) we immediately have that f = Π2N−2

i=1 (a2
0−(a1+gi)

2)(a2
0−(a1−gi)

2).

Now at x =
√

σ1, a1 = 0. Therefore we conclude that at x =
√

σ1,

f = Π2N−2

i=1 (a2
0 − (gi)

2)2 > 0. Furthermore, it is easily verified that except

for the term a0−
∑N

i=1 ai, all terms a0±a1±gi in (16) are positive if x → ∞.

Therefore, the leading term x2N
of the polynomial has a negative sign. So, we

conclude that the polynomial always has a root located at the left hand side

of
√

σ1; or, stated differently, (ARE) has at most 2N − 1 positive solutions.

To see that (ARE) always has at least one positive solution, we study the
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equations fN
1 (x) = a and fN

2 (x) = a (see (11,12)). Obviously, fN
1 (

√
σ1) =

fN
2 (

√
σ1). Since both functions are continuous with limx→∞ fN

1 (x) = −∞

and limx→∞ fN
2 (x) = ∞, it is clear that either the equation fN

1 (x) = a or

fN
2 (x) = a has a solution x ≥ √

σ1, which completes the proof. �

Remark 7: By substituting κi = −τi into (4,5) it is readily verified that

(ARE) has a negative solution if and only if the set of equations

τ 2
i − 2τN+1τi + σi = 0, i ∈ N, τN+1 = a +

N
∑

j=1

τj

has a positive solution. So, from the previous theorem we immediately con-

clude that (ARE) will always have at least one negative solution. �

Next, we analyze how the number of solutions of (ARE) varies with the

autonomous growth parameter a. To get an impression of this relationship,

we show for the three player case the curves f 3
i for two different parameter

choices in figure 1.

From the first plot we see, by counting the number of points of the different

curves f 3
i which have level a, that the number of solutions of (ARE) increases

monotonically from 1 to 7 as a function of a. That this monotonicity does

not always hold is illustrated by the second plot, where we illustrated for

different parameter values f 3
2 and f 3

3 . Since f 3
1 is a monotonically decreasing

function and f 3
i (x) ≥ f 3

3 (x) for i > 3 (as we will show later on (see lemma

11)), we see from this second plot that the number of solutions first increases

from 1 to 3 and then drops back to 1 before it increases again. In particular
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Figure 1: The curves f 3
i , i = 1, · · · , 8 for σ1 = 9; σ2 = 8; σ3 = 5, with

f 3
i (3.01) < f 3

i+1(3.01) i = 1, · · · , 7 and f 3
2 (lower graph), f 3

3 (upper graph) for
σ1 = 9; σ2 = 8.7; σ3 = 8.65.

note from these examples that an even number of solutions occurs only for

isolated values of a, whereas an odd number of solutions occurs for values of

a in certain ranges. We will not elaborate this subject further here, but it

seems that this property holds in general.

Next, we show that the graphs of the functions fN
i (x) do not intersect if x

becomes large. To prove this property we first concentrate on the case that

all σi differ. So, we assume from now on that σ1 > σ2 > · · · > σN .

The next lemma is a preliminary result and will be used in the proof of the-

orem 9.

Lemma 8: Assume that all σi differ. Then, there exists a constant x1

such that the functions fN
i (x), i = 2, · · · , 2N do not intersect on the interval

(x1,∞).

Proof: We show that any two functions fN
i and fN

j only have a finite
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number of intersection points, from which the conclusion is obvious.

So, assume fN
i (x) = fN

j (x). Since all σi’s differ, the equation fN
i − fN

j = 0

can be rewritten as

2 ∗ (t1
√

x2 − σ1 + · · ·+ tN
√

x2 − σN) = 0, (17)

where ti ∈ {−1, 0, 1} and not all ti are simultaneously zero. Now, denote

ti
√

x2 − σi by ai(x). Then the question whether (17) has a finite number

of zeros can be rephrased as whether
∑N

i=1 ai(x) = 0 has a finite number of

zeros. We will prove this property for N = 3. The general case can be proved

similarly.

So, we have to prove that a1 + a2 + a3 = 0 has only a finite number of zeros.

As in (15) we consider the following function

f(a1, a2, a3) := (a1 − a2 − a3)(a1 + a2 − a3)(a1 − a2 + a3)(a1 + a2 + a3).

Obviously, a1 + a2 + a3 = 0 has a finite number of zeros, if f has a finite

number of zeros. However, using lemma 4, it is easily seen that f is a poly-

nomial whose degree is at most 8. So, f has at most 8 zeros, which proves

the claim. �

The next theorem states, roughly speaking, that if the uncontrolled sys-

tem is very unstable then there will be 2N − 1 equilibria.

Theorem 9: Assume that the σi differ. Then, there exists a positive num-

ber â such that for every autonomous growth parameter a ≥ â the set of

algebraic Riccati equations (2) has 2N − 1 positive solutions.
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Proof: By differentiating fN
2 (x) it is easily verified that fN

2 (x) is mono-

tonically increasing for all x ≥ x∗
1 for some number x∗

1 >
√

σ1. Furthermore,

since limx→∞ fN
2 (x) = ∞ and fN

2 (x) is bounded from above on the interval

(
√

σ1, x
∗
1), it follows that there exists a positive number a∗∗

1 such that for all

a ≥ a∗∗
1 the equation fN

2 (x) = a has exactly one solution. A similar reason-

ing holds for all other fN
i (x), i ∈ 2N (see also figure 1 for a rendering in

case N = 3). Next, take the maximum over all a∗∗
i . According to lemma 8,

for a fixed a the solutions for fN
i (x) = a differ for all i if a is chosen suffi-

ciently large. Therefore it is easily verified that the corresponding solutions

(κ1, · · · ., κN) to (4,5) will also differ. �

Remark 10:

In case the σi do not differ, it is easily verified from the above analysis that

a similar conclusion holds. That is, there exists a number â such that for all

a > â the number of solutions to (ARE) remains constant. This constant

equals the number of distinct (ultimately) monotonically increasing functions

fN
i . Without providing a formal proof we note that, if one denotes by s the

number of σi’s that coincide, careful counting shows that the number of

solutions is

2N − 2N−s
s−1
∑

i=1

(

s

s − i

)

+ (s − 1)2N−s − 1,

for N > s. Here the term 2N − 2N−s
∑s−1

i=1

(

s

s − i

)

counts the number of

solutions that do not coincide with any other solution; (s − 1)2N−s counts

the number of solutions that occur with multiplicity > 1 and −1 comes from

the number of monotonically decreasing functions. Furthermore, it is easily
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verified that, if N = s, the number of solutions equals bN
2
c + 1. Here bN

2
c

denotes the largest integer smaller than N
2

(e.g. b3
2
c = 1). So, e.g. if N = 5

and σ1 = σ2 = σ3 > σ4 > σ5, s = 3 and the maximum number of solutions

will be 15. �

4 Uniqueness conditions

In this section we will give in theorem 13 both necessary and sufficient con-

ditions under which (ARE) has a unique positive solution. To solve this

problem, we study the functions fN
i as defined in (7,8) in some more detail.

First we note that the functions fN
1 , fN

2 and fN
3 satisfy a monotonicity prop-

erty.

Lemma 11: For every N ≥ 2 the following inequalities hold: fN
1 ≤ fN

2 ≤

fN
3 ≤ fN

i for any i ≥ 4.

Proof: The proof is by induction.

For N = 2, f 2
1 (x) = x −

√
x2 − σ1 −

√
x2 − σ2, f 2

2 (x) = x +
√

x2 − σ1 −
√

x2 − σ2, f 2
3 (x) = x −

√
x2 − σ1 +

√
x2 − σ2 and f 2

4 (x) = x +
√

x2 − σ1 +

√
x2 − σ2. Since by assumption σ1 ≥ σ2, the correctness of all inequalities

follows by straightforward verification.

Now, assume the inequalities hold for N = k. Then, by definition, for

i = 1, 2, 3 we have fk+1
i (x) = fk

i (x) + x −
√

x2 − σk+1 ≤ fk
i+1(x) + x −

√

x2 − σk+1 = fk+1
i+1 (x). In a similar way we have for i = 5, · · · , 2k that

fk+1
i (x) = fk

i (x) + x −
√

x2 − σk+1 ≥ fk
4 (x) + x −

√

x2 − σk+1 = fk+1
4 (x),
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and for i = 2k + 1, · · · , 2k+1 fk+1
i+2k(x) = fk

i (x) + x +
√

x2 − σk+1 ≤ fk
4 (x) +

x −
√

x2 − σk+1 = fk+1
4 (x). �

Next, we introduce a convention w.r.t. local versus global extrema. By a

local extremum we mean an extremum which occurs somewhere on the open

interval (
√

σ1,∞); whereas for the definition of a global extremum we take

the whole domain of definition [
√

σ1,∞).

The following technical results will be used in the proof of theorem 13.

Lemma 12:

i) For all i = 2, · · · , 2N , there exists an xi such that fN
i (x) is strictly

monotonically increasing for all x ≥ xi. fN
1 (x) is strictly monotonically

decreasing.

ii) If σ1 > σ2, fN
3 (x) has exactly one local minimum.

iii) fN
2 (x) has at most two local extrema.

iv) If fN
2 (x) assumes a local minimum at x0, then x0 ≤ arg min fN

3 (x).

Proof: i) This is verified by straightforward differentiation of fN
i (x).

ii) The first derivative of fN
3 (x) (see (13)) is N − 1−∑N

i6=2
x√

x2−σi

+ x√
x2−σ2

.

So, if σ1 > σ2, limx↓√σ1
fN ′

3 (x) = −∞ and limx→∞ fN ′

3 (x) = 1. Furthermore,

the second derivative fN”
3 (x) =

∑N
i6=2

σi

(x2−σi)3/2
− σ2

(x2−σ2)3/2
. Since σ1 ≥ σ2 it

is clear that fN”
3 (x) > 0. So, fN ′

3 (x) has exactly one zero, from which the
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conclusion is obvious.

iii) Differentiation of fN
2 (x) (see (12)) yields fN ′

2 (x) = N−1−
∑N

i6=1
x√

x2−σi

+

x√
x2−σ1

and fN”
2 (x) =

∑N
i6=1

σi

(x2−σi)3/2
− σ1

(x2−σ1)3/2
. Now, assume fN”

2 (x) has

a zero at p. Some rewriting of fN”
2 (p) = 0 shows then that σ1 = (p2 −

σ1)
3/2

∑N
i6=1

σi

(p2−σi)3/2
. Substitution of this expression into fN”

2 (x) yields:

fN”
2 (x) =

N
∑

i6=1

σi

(x2 − σi)3/2
− (p2 − σ1)

3/2

(x2 − σ1)3/2

N
∑

i6=1

σi

(p2 − σi)3/2

=
N

∑

i6=1

(
σi

(x2 − σi)3/2
− (p2 − σ1)

3/2

(x2 − σ1)3/2

σi

(p2 − σi)3/2
)

=

N
∑

i6=1

σi(
(x2 − σ1)

3/2(p2 − σi)
3/2 − (x2 − σi)

3/2(p2 − σ1)
3/2

(x2 − σ1)3/2(p2 − σi)3/2(x2 − σi)3/2
).

Now,
√

(x2 − σ1)(p2 − σi)−
√

(x2 − σi)(p2 − σ1) = (x2−σ1)(p2−σi)−(x2−σi)(p
2−σ1)√

(x2−σ1)(p2−σi)+
√

(x2−σi)(p2−σ1)
=

(σ1−σi)(x2−p2)√
(x2−σ1)(p2−σi)+

√
(x2−σi)(p2−σ1)

> 0, if and only if x > p. From this it follows

easily that fN”
2 (x) has only one root and that fN ′

2 (x) has a local minimum

at p. The stated result follows directly.

iv) Assume fN
3 (x) has a local minimum at p, so fN ′

3 (p) = 0. From this we

have that N − 1 =
∑N

i6=2
p√

p2−σi

− p√
p2−σ2

. Substitution of this expression

into fN ′

2 (p + δ) yields for positive δ

fN ′

2 (p + δ) = N − 1 −
N

∑

i6=1

p + δ
√

(p + δ)2 − σi

+
p + δ

√

(p + δ)2 − σ1

=
N

∑

i6=2

p
√

p2 − σi

− p
√

p2 − σ2

−
N

∑

i6=1

p + δ
√

(p + δ)2 − σi

+
p + δ

√

(p + δ)2 − σ1

=
p + δ

√

(p + δ)2 − σ1

− p + δ
√

(p + δ)2 − σ2

+
p

√

p2 − σ1

− p
√

p2 − σ2

+

N
∑

i6=3

(
p

√

p2 − σi

− p + δ
√

(p + δ)2 − σi

)

> 0,
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where the last inequality follows from the facts that σ1 ≥ σ2 and, accord-

ing to the mean value theorem, p√
p2−σi

− p+δ√
(p+δ)2−σi

= δ σi

(ξ2−σi)3/2
, for some

p < ξ < p + δ.

So, the derivative of fN ′

2 (x) is always positive at the right hand side of the

local minimum of fN ′

2 (x), which proves the claim. �

Theorem 13: Assume that σ1 > σ2. Then, (ARE) has exactly one positive

solution if and only if either one of the following conditions is satisfied:

i) fN
2 is monotonically increasing and a < min fN

3 ;

ii) fN
2 is not monotonically increasing and a satisfies either I. a < local min-

imum fN
2 (x) or II. local maximum fN

2 (x) < a < min fN
3 (x).

Proof:

First consider the case that fN
2 (x) is monotonically increasing. From the facts

that fN
1 (x) is strictly monotonically decreasing (lemma 12.i), fN

1 (
√

σ1) =

fN
2 (

√
σ1) and fN

i (x) ≥ fN
3 (x), i = 4, · · · , 2N (lemma 11) it is obvious that for

a fixed a there will be only one intersection point with the functions fN
i (x)

if and only if a is smaller than the global minimum of fN
3 (x) (see also figure

1).

Next, consider the case that fN
2 (x) is not monotonically increasing. Accord-

ing to lemma 12.iii, fN
2 (x) has then a local maximum and a local minimum.

Furthermore (lemma 12.ii and iv), this local minimum is located at the left

hand side of the local minimum of fN
3 (x) (see the second plot of figure 1 for

an illustration of this situation). Since fN
3 (x) ≥ fN

2 (x) it is clear that for
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all a smaller than the local minimum of fN
2 (x), there is only one intersec-

tion point with the different fN
i . Obviously, when a is located between the

local minimum and the local maximum of fN
2 (x) there are three solutions.

In case the local minimum of fN
3 (x) is larger than the local maximum value

of fN
2 (x), the number of solutions drops, again, to 1. If a is larger than this

local minimum of fN
3 (x), there will always be at least one intersection point

with fN
2 (x) and one with fN

3 (x), which concludes the proof. �

Remark 14: In case σ1 = σ2, fN
2 (x) and fN

3 (x) coincide. Moreover, at

√
σ1, fN

i (x), i = 1, · · · , 4 coincide. From this it is easily seen that there will

be exactly one intersection point of a with all these functions if and only if

a is smaller than the global minimum of fN
2 (x). In fact this inequality has

to be strict in case fN
2 (x) has a local minimum, which is then also the global

one. �

In figure 2 below we illustrate, for fixed σi, the two possibilities that can

occur for the set of parameters a for which there is a unique equilibrium.

0 a1 a2 a
1 1 3 → m m # eq.

0 a1 a2 a3 a4 a
1 1 3 1 3 → m m # eq.

Figure 2: Structure of sets where (ARE) has a unique positive solution.

Here m ≤ 2N − 1 denotes the maximum number of solutions.
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We conclude this section with three related issues.

First we mention that under the condition that σ1 ≥ σ2 + · · · + σN the set

of a-parameters for which (ARE) has a unique positive solution is given by

a halfline.

This result follows directly from the following lemma which is proved in the

appendix

Lemma 15: If σ1 ≥ σ2 + · · ·+σN then fN
2 (x) is monotonically increasing.

�

A second related issue is that for all a <
√

σ1−
√

σ1 − σ2 there will always

be a unique positive solution too. To show this, first note from theorem 13

that, whenever a < minimum fN
2 , (ARE) has a unique positive solution. It is

easily verified that f 2
2 is monotonically increasing and therefore its minimum

is given by f 2
2 (
√

σ1) =
√

σ1 −
√

σ1 − σ2. Since fN
2 (x) ≤ fN+1

2 (x), the rest of

the argument follows by induction.

Finally, the third issue we like to address is the following. In Engwerda [2000]

it was shown, for the two-player case, that the additional requirement that

amongst all (ARE) solutions we look for a solution that minimizes aggregate

performance always gives rise to a unique solution. This property does not

hold for the general case, as we can see from the first plot of figure 1. In

this figure we see that the curves f 3
4 and f 3

5 intersect at some point (κ∗
4, a

∗)

(approximately (3.2,6.5)). From (5) we therefore conclude that at this point
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for both solutions we have κ1+κ2+κ3 = κ∗
4+a∗. Now, choose the parameters

bi and ri such that s1 = s2 = s3 = 1 (and consequently, q1 = 9; q2 = 8

and q3 = 5). Then ki = κi and consequently the cost player i has at this

equilibrium is x2
0κi. So, the aggregate cost is x2

0(κ1 +κ2 +κ3). Consequently,

at a = a∗ two different solutions yield the same aggregate cost, which is

obviously (see figure 1 again) also the minimum attainable aggregate cost in

this case.

5 Concluding remarks

In this paper we have studied the positive solutions of the algebraic Riccati

equations that play an important role in the study of limiting stationary

feedback Nash equilibria in the N -player linear quadratic scalar differential

game. We showed that this set of equations always has a finite number of

different positive solutions and that this number is bounded by 2N − 1. In

particular we analyzed the set of autonomous growth parameters for which

(ARE) has a unique positive solution. Fixing all other system parameters,

we saw that this set is either a halfline or the union of a halfline and an

open (bounded) interval. We showed how this set can be determined from

the analysis of two scalar functions. It has turned out that for all stable

systems there is a unique solution to the (ARE) equations. In this respect it

is interesting to recall from the two-player case (see Engwerda [2000]) that

whenever the system is not stable, there always exist combinations of the

remaining system parameters such that (ARE) has more than one positive

solution.
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On the other hand we have shown that there is a threshold such that if the

autonomous growth parameter exceeds this threshold (assuming all other

system parameters are fixed), the number of positive solutions does not in-

crease. In general this number of positive solutions is 2N − 1.

In between these two limiting cases, the number of solutions gradually builds

up from 1 to the maximum number if the autonomous growth parameter

increases. However, this growth is (in general) not monotonic. So, roughly

speaking, the conclusion is that the larger the instability of the system is,

the more positive solutions the (ARE) equations will have.

The above outcomes raise a couple of new questions. One of them is whether

aggregate efficiency can be used as an additional constraint to determine a

unique equilibrium amongst all solutions of the (ARE). We showed in an

example that this is not the case. The main remaining topic is of course how

things generalize for the multivariable case. In view of the above analysis

presented for the scalar case it seems a good idea to treat first the case of

a system with a multivariable state and scalar controls. We hope that the

obtained above results may be helpful in analyzing this problem.

Appendix

Proof of Lemma 15: This can be shown by a direct evaluation of its derivative.

We have

fN ′

2 (x) = N − 1 +
x√

x2 − σ1

−
N

∑

i=2

x√
x2 − σi

=
x√

x2 − σ1

−
N

∑

i=2

σi√
x2 − σi(x +

√
x2 − σi)
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≥ 1√
x2 − σ1

(x −
N

∑

i=2

σi

x +
√

x2 − σi

)

=
1√

x2 − σ1

1

x +
√

x2 − σ2

(x2 + x
√

x2 − σ2 − σ2 −
N

∑

i=3

σi
x +

√
x2 − σ2

x +
√

x2 − σi

)

≥ 1√
x2 − σ1

1

x +
√

x2 − σ2

(x2 + x
√

x2 − σ2 −
N

∑

i=2

σi)

≥ 1√
x2 − σ1

1

x +
√

x2 − σ2

(σ1 + x
√

x2 − σ2 −
N

∑

i=2

σi) > 0.

�
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