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Abstract

In this paper, we first consider the inverse eigenvalue problem as follows: Find
a matrix A with specified eigen-pairs, where A is a Hermitian and generalized skew-
Hamiltonian matrix. The sufficient and necessary conditions are obtained, and a general
representation of such a matrix is presented. We denote the set of such matrices by LS .
Then the best approximation problem for the inverse eigenproblem is discussed. That
is: Given an arbitrary Ã, find a matrix A∗ ∈ LS which is nearest to Ã in the Frobenius
norm. We show that the best approximation is unique and provide an expression for
this nearest matrix.
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1 Introduction

Let J ∈ Rn×n be an orthogonal skew-symmetric matrix, i.e. J ∈ Rn×n satisfies that JT J =
JJT = In, JT = −J . Then we have J2 = −In and n = 2k, k ∈ N . In the following, we
give the definitions of generalized Hamiltonian and generalized skew-Hamiltonian matrices.
Here, we denote the set of all n-by-m complex matrices by Cn×m.

Definition 1 Given an orthogonal skew-symmetric matrix J.

(1) A matrix H ∈ Cn×n is called generalized Hamiltonian if (HJ)H = HJ . The set of all
n-by-n generalized Hamiltonian matrices is denoted by GHn×n.

(2) A matrix H ∈ Cn×n is called generalized skew-Hamiltonian if (HJ)H = −HJ . The
set of all n-by-n generalized skew-Hamiltonian matrices is denoted by GSHn×n.

We observe that the sets GHn×n and GSHn×n depend on the choice of the matrix J . If

J =
[

0 Ik

−Ik 0

]
, then the sets GHn×n and GSHn×n are the well-known sets of Hamiltonian

and skew-Hamiltonian matrices.

Definition 2 Given an orthogonal skew-symmetric matrix J.
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(1) A matrix A ∈ Cn×n is said to be a Hermitian and generalized Hamiltonian matrix
if AH = A and (AJ)H = AJ . The set of all n-by-n Hermitian and generalized
Hamiltonian matrices is denoted by HHn×n.

(2) A matrix A ∈ Cn×n is said to be a Hermitian and generalized skew-Hamiltonian matrix
if AH = A and (AJ)H = −AJ . The set of all n-by-n Hermitian and generalized skew-
Hamiltonian matrices is denoted by HSHn×n.

Hamiltonian and skew-Hamiltonian matrices play an important role in engineering, such
as in linear-quadratic optimal control [13, 17], H∞ optimization [24], and the related prob-
lem of solving algebraic Riccati equations [11].

In this paper, we will study two problems related to Hermitian and generalized skew-
Hamiltonian matrices. The first problem is a kind of inverse eigenvalue problems. For
decades, structured inverse eigenvalue problems have been of great value for many applica-
tions, see for instance the expository papers [7, 22]. There are also different types of inverse
eigenproblem, for instances multiplicative type and additive type [22, Chapter 4]. In what
follows, we consider the following type of inverse eigenproblem which appeared in the design
of Hopfield neural networks [6, 12].

Problem I. Given X = [x1,x2, . . . ,xm] ∈ Cn×m and Λ = diag(λ1, . . . , λm) ∈ Cm×m, find
a Hermitian and generalized skew-Hamiltonian matrix A in HSHn×n such that AX = XΛ.

We note from the above definition that the eigenvalues of a Hermitian and generalized
skew-Hamiltonian matrix are real numbers. Hence we have Λ = diag(λ1, . . . , λm) ∈ Rm×m.

The second problem we consider in this paper is the problem of best approximation:

Problem II. Let LS be the solution set of Problem I. Given a matrix Ã ∈ Cn×n, find
A∗ ∈ LS such that

‖Ã−A∗‖ = min
A∈LS

‖Ã−A‖,

where ‖ · ‖ is the Frobenius norm.

The best approximation problem occurs frequently in experimental design, see for in-
stance [14, p.123]. Here the matrix Ã may be a matrix obtained from experiments, but it
may not satisfy the structural requirement (Hermitian and generalized skew-Hamiltonian)
and/or spectral requirement (having eigenpairs X and Λ). The best estimate A∗ is the
matrix that satisfies both restrictions and is the best approximation of Ã in the Frobenius
norm, see for instance [2, 3, 10].

Problems I and II have been solved for different classes of structured matrices, see for
instance [21, 23]. In this paper, we extend the results in [23] to the class of Hermitian and
generalized skew-Hamiltonian matrices. We first give a solvability condition for Problem I
and also the form of its general solution. Then in the case when Problem I is solvable, we
show that Problem II has a unique solution and give a formula for the minimizer A∗.

In this paper, the notations are as follows. Let U(n) be the set of all n-by-n unitary ma-
trices, and Hn×n denote the set of all n-by-n Hermitian matrices. We denote the transpose,
conjugate transpose and the Moore-Penrose generalized inverse of a matrix A by AT , AH

and A+ respectively, and the identity matrix of order n by In. We define the inner product
in space Cn×m by

(A,B) = tr(AHB), ∀A,B ∈ Cn×m.
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Then Cn×m is a Hilbert inner product space. The norm of a matrix generated by the inner
product space is the Frobenius norm.

This paper is outlined as follows. In §2 we first discuss the structure of the set HSHn×n,
and then present the solvability conditions and provide the general solution formula for
Problem I. In §3 we first show the existence and uniqueness of the solution for Problem II,
and then derive an expression of the solution when the solution set LS is nonempty, and
finally propose an algorithm to compute the solution to Problem II. In §4 we give some
illustrative numerical examples.

2 Solvability Conditions of Problem I

We first discuss the structure of HSHn×n. In what follows, we always assume that n =
2k, k ∈ N . By the definition of HSHn×n, we have the following statement.

Lemma 1 Let A ∈ Cn×n, then A ∈ HSHn×n if and only if AH = A, AJ − JA = 0.

Since J is orthogonal skew-symmetric, J is normal and skew-symmetric and then has
only two multiple eigenvalues i and −i with multiplicity k respectively, where i denotes the
the imaginary unit, i.e. i2 = −1. Thus we can easily show the following lemma.

Lemma 2 Let J ∈ Rn×n be orthogonal skew-symmetric, then there exists a matrix U ∈
U(n) such that

J = U

[
i · Ik 0

0 −i · Ik

]
UH . (1)

By the above two lemmas, we have the following result for the structure of HSHn×n.

Theorem 1 Let A ∈ Cn×n and the spectral decomposition of J be given as (1). Then
A ∈ HSHn×n if and only if

A = U

[
A11 0
0 A22

]
UH , A11, A22 ∈ Hk×k. (2)

Proof: If A ∈ HSHn×n, then by Lemma 1 and (1), we obtain

UHAU

[
i · Ik 0

0 −i · In−k

]
+

[
i · Ik 0

0 −i · In−k

]
UHAU = 0. (3)

Since AH = A, then UHAU ∈ Hn×n. Let

A = U

[
A11 A12

AH
12 A22

]
UH , A11 ∈ Hk×k, A22 ∈ Hk×k.

Substituting it into (3) yields (2).
On the other hand, if A can be expressed as (2), then, obviously, AH = A, AJ−JA = 0.

By Lemma 1, A ∈ HSHn×n.

We now investigate the solvability of Problem I. We need the following lemma, see for
instance [19].
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Lemma 3 [19, Lemma 1.4] Let B,C ∈ Cn×m be given. Then HB = C has a solution in
Hn×n if and only if

C = CB+B and (BB+CB+)H = BB+CB+.

In this case the general solution can be expressed by

Y = CB+ + (B+)HCH − (B+)HCHBB+ + (I −BB+)Z(I −BB+),

where Z ∈ Hn×n is arbitrary.

Then we can establish the solvability of Problem I as follows.

Theorem 2 Given X ∈ Cn×m, Λ = diag(λ1, . . . , λm) ∈ Rm×m. Let

UHX =
[

X̃1

X̃2

]
, X̃1, X̃2 ∈ Ck×m. (4)

Then there exists A ∈ HSHn×n such that AX = XΛ if and only if

X̃1ΛX̃+
1 X̃1 = X̃1Λ, (X̃+

1 )HΛ(X̃+
1 )H = X̃1ΛX̃+

1 , (5)

and
X̃2ΛX̃+

2 X̃2 = X̃2Λ, (X̃+
2 )HΛ(X̃+

2 )H = X̃2ΛX̃+
2 . (6)

In this case the general solution is given by

A = A0 + U

[
(Ik − X̃1X̃

+
1 )Z1(Ik − X̃1X̃

+
1 ) 0

0 (Ik − X̃2X̃
+
2 )Z2(Ik − X̃2X̃

+
2 )

]
UH , (7)

where Z1, Z2 ∈ Hk×k are arbitrary and

A0 = U

[
X̃1ΛX̃+

1 0
0 X̃2ΛX̃+

2

]
UH . (8)

Proof: We assume that A is a solution to Problem I. By Theorem 1, there is a solution to
Problem I if and only if there exist A11, A22 ∈ Hk×k such that

A = U

[
A11 0
0 A22

]
UH , AX = XΛ,

i.e.

U

[
A11 0
0 A22

]
UHX = XΛ. (9)

(9) is equivalent to
A11X̃1 = X̃1Λ and A22X̃2 = X̃2Λ. (10)

By Lemma 3, (10) have solutions in Hn×n if and only if

X̃1ΛX̃+
1 X̃1 = X̃1Λ, (X̃1X̃

+
1 X̃1ΛX̃+

1 )H = X̃1X̃
+
1 X̃1ΛX̃+

1 , (11)

and
X̃2ΛX̃+

2 X̃2 = X̃2Λ, (X̃2X̃
+
2 X̃2ΛX̃+

2 )H = X̃2X̃
+
2 X̃2ΛX̃+

2 . (12)
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Since X̃1X̃
+
1 X̃1 = X̃1 and X̃2X̃

+
2 X̃2 = X̃2, (11) and (12) are equivalent to (5) and (6)

respectively. Moreover in this case, the general solutions to (10) is given by

A11 = X̃1ΛX̃+
1 + (X̃+

1 )HΛX̃H
1 − (X̃+

1 )HΛX̃H
1 X̃1X̃

+
1 + (Ik − X̃1X̃

+
1 )Z1(Ik − X̃1X̃

+
1 )

= X̃1ΛX̃+
1 + (Ik − X̃1X̃

+
1 )Z1(Ik − X̃1X̃

+
1 ), (13)

A22 = X̃2ΛX̃+
2 + (X̃+

2 )HΛX̃H
2 − (X̃+

2 )HΛX̃H
2 X̃2X̃

+
2 + (Ik − X̃2X̃

+
2 )Z2(Ik − X̃2X̃

+
2 )

= X̃2ΛX̃+
2 + (Ik − X̃2X̃

+
2 )Z2(Ik − X̃2X̃

+
2 ), (14)

where Z1, Z2 ∈ Hk×k is arbitrary. Let

A0 = U

[
X̃1ΛX̃+

1 0
0 X̃2ΛX̃+

2

]
UH .

Substituting (13) into (2) gives rise to (7).

3 The Solution to Problem II

In this section, we solve Problem II over LS when LS is nonempty. We first recall the
following statement.

Lemma 4 [8, Theorem 2] Let E, H ∈ Cn×n. If H ∈ Hn×n, then

‖E − E + EH

2
‖ ≤ ‖E −H‖.

Then we have the following theorem for the solution to Problem II over LS .

Theorem 3 Given Ã ∈ Cn×n, X ∈ Cn×m, and the notation of X, Λ and conditions are the
same as in Theorem 2. Let

UHÃU =
[

Ã11 Ã12

Ã21 Ã22

]
, Ã11, Ã22 ∈ Ck×k. (15)

If LS is nonempty, then Problem II has a unique solution A∗ and A∗ can be represented as

A∗ = A0 + U

[
P ( Ã11+ÃH

11
2 )P 0

0 Q( Ã22+ÃH
22

2 )Q

]
UH , (16)

where A0 is given by (8) and

P = Ik − X̃1X̃
+
1 , Q = Ik − X̃2X̃

+
2 . (17)

Proof: When LS is nonempty, it is easy to verify from (7) that LS is a closed convex set.
Since Cn×n is a uniformly convex Banach space under the Frobenius norm, there exists a
unique solution for Problem II [5, p. 22]. Because the Frobenius norm is unitary invariant,
Problem II is equivalent to

min
A∈LS

‖UHÃU − UHAU‖2. (18)

By Theorem 2, we have

‖UHÃU − UHAU‖2 =
∥∥∥∥
[

Ã11 − X̃1ΛX̃+
1 Ã12

Ã21 Ã22 − X̃2ΛX̃+
2

]
−

[
PZ1P 0

0 QZ2Q

]∥∥∥∥
2
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Thus (18) is equivalent to

min
Z1∈Hk×k

‖Ã11 − X̃1ΛX̃+
1 − PZ1P‖2 + min

Z2∈Hk×k
‖Ã22 − X̃2ΛX̃+

2 −QZ2Q‖2.

By Lemma 4, the solution is given by Z∗1 and Z∗2 such that

PZ∗1P =
Ã11 + ÃH

11

2
− X̃1ΛX̃+

1 ,

QZ∗2Q =
Ã22 + ÃH

22

2
− X̃2ΛX̃+

2 .

Notice from (17) that P and Q are projection matrices, i.e. P 2 = P and Q2 = Q. Therefore

PZ∗1P = P ( Ã11+ÃH
11

2 −X̃1ΛX̃+
1 )P and QZ∗2Q = Q( Ã22+ÃH

22
2 −X̃2ΛX̃+

2 )Q. Let G11 = Ã11+ÃH
11

2 .
Notice further that because X̃+

1 X̃1X̃
+
1 = X̃+

1 , we have

P (G11 − X̃1ΛX̃+
1 )P = P (G11 −G11X̃1X̃

+
1 − X̃1ΛX̃+

1 + X̃1ΛX̃+
1 X̃1X̃

+
1 )

= P (G11 −G11X̃1X̃
+
1 ) = PG11P.

That is, PZ∗1P = P ( Ã11+ÃH
11

2 )P . Similarly, QZ∗2Q = Q( Ã22+ÃH
22

2 )Q. Hence the unique
solution for Problem II is given by (16).

Based on Theorem 3, we propose the following algorithm for solving Problem II over
LS .

Algorithm I

(1) Compute X̃1 and X̃2 by (4).

(2) Compute X̃+
1 and X̃+

2 .

(3) If X̃1ΛX̃+
1 X̃1 = X̃1Λ, (X̃+

1 )HΛ(X̃1)H = X̃1ΛX̃+
1 , X̃2ΛX̃+

2 X̃2 = X̃2Λ, (X̃+
2 )HΛ(X̃2)H

= X̃2ΛX̃+
2 , then the solution set LS to Problem I is nonempty and we continue.

Otherwise we stop.

(4) Compute Ã11 and Ã22 by (15).

(5) Compute G11 = Ã11+ÃH
11

2 and G22 = Ã22+ÃH
22

2 .

(6) Compute

M11 = X̃1ΛX̃+
1 + G11 −G11X̃1X̃

+
1 − X̃1X̃

+
1 G11 − X̃1X̃

+
1 G11X̃1X̃

+
1 ,

M22 = X̃2ΛX̃+
2 + G22 −G22X̃2X̃

+
2 − X̃2X̃

+
2 G22 + X̃2X̃

+
2 G22X̃2X̃

+
2 .

(7) Compute A∗ = U

[
M11 0
0 M22

]
UH .

Now, we consider the computational complexity of our algorithm. We observe from
Lemma 2 that, for different choice of J , the structure of U ∈ U(n) may be varied. Thus the
total computational complexity may be changed.
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We first consider the case when given a fixed J with U ∈ U(n) dense. For Step (1),
since U is dense, it requires O(n2m) operations to compute X̃1 and X̃2. For Step (2), using
singular value decomposition to compute X̃+

1 and X̃+
2 requires O(n2m + m3) operations.

Step (3) obviously requires O(n2m) operations. For Step(4), because of the density of U ,
the operations required is O(n3). Step(5) requires O(n) operations only. For Step(6), if
we compute GiiX̃iX̃

+
i as [(GiiX̃i)X̃+

i ], X̃iX̃
+
i Gii as [X̃i(X̃+

i Gii)], and X̃iX̃
+
i GiiX̃iX̃

+
i as

{X̃i[(X̃+
i (GiiX̃i))X̃+

i ]} , then the cost will only be of O(n2m) operations. Finally, because
of the density of U again, Step (7) requires O(n3) operations. Thus the total cost of the
algorithm is O(n3 + n2m + m3).

In particular, if we choose that J =
[

0 Ik

−Ik 0

]
with U = 1√

2

[
Ik Ik

i · Ik −i · Ik

]
∈ U(n).

Then, because of the sparsity of U , Steps (1), (4) and (7) will require O(nm), O(n2) and
O(n2) respectively. Therefore the total complexity of the algorithm is O(n2m + m3).

Finally, we remark that in practice, m ¿ n. In addition, it is easy to verify that our
algorithm is stable.

4 Numerical Experiments

In this section, we will give some numerical examples to illustrate our results. All the tests
are performed by MATLAB which has a machine precision around 10−16. In the following,

we let n = 2k, k ∈ N and J =
[

0 Ik

−Ik 0

]
. Then it is clear that the spectral decomposition

of J is given by

J = U

[
i · Ik 0

0 −i · Ik

]
UH ,

where U = 1√
2

[
Ik Ik

i · Ik −i · Ik

]
, UHU = UUH = In.

Example 1. We choose a random matrix A in HSHn×n:

A =




1.9157 -0.5359 + 5.5308i 0 + 0.0596i 4.2447 + 0.1557i
-0.5359 - 5.5308i -0.5504 -4.2447 + 0.1557i 0 + 0.8957i

0 - 0.0596i -4.2447 - 0.1557i 1.9157 -0.5359 + 5.5308i
4.2447 - 0.1557i 0 - 0.8957i -0.5359 - 5.5308i -0.5504


 .

Then the eigenvalues of A are −9.7331,−0.4090, 2.7296, 10.1431. We let {x1,x2,x3,x4}
denote the eigenvectors of A associated with −9.7331,−0.4090, 2.7296, 10.1431 respectively.
Now we take X = [x1,x2,x3,x4], i.e.

X =




-0.4554 - 0.0322i 0.3324 + 0.0983i 0.5910 + 0.1747i 0.5386 + 0.0381i
0.0000 - 0.5399i -0.0000 + 0.6163i -0.0000 - 0.3466i 0.0000 - 0.4566i
0.0322 - 0.4554i 0.0983 - 0.3324i 0.1747 - 0.5910i -0.0381 + 0.5386i

0.5399 0.6163 -0.3466 0.4566




and

Λ =




-9.7331 0 0 0
0 -0.4090 0 0
0 0 2.7296 0
0 0 0 10.1431


 .
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Figure 1: log10 ‖Ã(ε)−A∗(ε)‖ (“+”) and log10 ‖A−A∗(ε)‖ (“∗”) versus log10 ε for Example 1.

Given such X and Λ, it is easy to see that there exists a solution for Problem I, i.e. A.
Thus LS is nonempty. If we perturb A to obtain a matrix Ã(ε) = A + ε · C 6∈ HSHn×n,
where

C =




0.2476 + 0.7668i 0.3006 + 0.8790i 0.8569 + 0.4963i 0.2968 + 0.3608i
0.4358 + 0.5740i 0.2659 + 0.9058i 0.2429 + 0.3921i 0.3903 + 0.3135i
0.9776 + 0.7098i 0.1334 + 0.0886i 0.1949 + 0.5583i 0.1873 + 0.7436i
0.8600 + 0.8126i 0.7425 + 0.3055i 0.3908 + 0.6318i 0.8957 + 0.2838i


 ,

then the conditions in Theorem 2 and Theorem 3 are satisfied. Using Algorithm I in §3,
we get the solution A∗(ε) of Theorem 3 corresponding to Ã(ε). In Figure 1, we plot the
following two quantities for ε from 10−10 to 1010: log10 ‖Ã(ε) − A∗(ε)‖ (marked by “+”)
and log10 ‖A − A∗(ε)‖ (marked by “∗”). We observe from Figure 1 that A∗(ε) approaches
gradually Ã(ε) as ε goes to zero. While for any ε between 10−10 and 1010, A∗(ε) = A almost
up to the machine precision.

Example 2. We solve Problems I and II with multiple eigenvalues. The following is
one of various eigenpairs we have tested:

X =




0.0553 + 0.2344i 0.1528 + 0.6470i 0.2859 + 0.3281i 0.3662 + 0.4202i
-0.6648 0.2408 -0.5573 0.4352

-0.2344 + 0.0553i -0.6470 + 0.1528i 0.3281 - 0.2859 0.4202 - 0.3662i
0 - 0.6648i 0 + 0.2408i 0 + 0.5573i 0 - 0.4352i




and

Λ =




-1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2


 .

Given such X and Λ, it is easy to verify that there exists a solution for Problem I, i.e.

A =




1.1946 0.2329 + 0.4945i 0 + 0.4266i 0.1288 + 0.0858i
0.2329 - 0.4945i 0.3054 -0.1288 + 0.0858i 0 + 1.0734i

0 - 0.4266i -0.1288 - 0.0858i 1.1946 0.2329 + 0.4945i
0.1288 - 0.0858i 0 - 1.0734i 0.2329 - 0.4945i 0.3054


 .
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Figure 2: log10 ‖Ã(ε)−A∗(ε)‖ (“+”) and log10 ‖A−A∗(ε)‖ (“∗”) versus log10 ε for Example 2.

Thus LS is nonempty. We now perturb A to obtain a matrix Ã(ε) = A + ε · F 6∈ HSHn×n,
where

F =




0.8408 + 0.4910i 0.7168 + 0.5550i 0.9106 + 0.6066i 0.8739 + 0.6959i
0.6463 + 0.9427i 0.8112 + 0.5147i 0.2761 + 0.3202i 0.7105 + 0.7889i
0.0559 + 0.5107i 0.1534 + 0.7272i 0.9571 + 0.4688i 0.9746 + 0.9407i
0.2057 + 0.3490i 0.0864 + 0.1896i 0.7400 + 0.7850i 0.1543 + 0.6763i


 .

Then the conditions in Theorem 2 and Theorem 3 are satisfied. Using Algorithm I in
§3, we get the solution A∗(ε) of Theorem 3 corresponding to Ã(ε). In Figure 2, we plot the
following two quantities for ε from 10−10 to 1010: log10 ‖Ã(ε) − A∗(ε)‖ (marked by “+”)
and log10 ‖A−A∗(ε)‖ (marked by “∗”). We can see from Figure 2 that A∗(ε) approximates
to Ã(ε) as ε goes to zero. However, for any ε between 10−10 and 1010, A∗(ε) = A almost up
to the machine precision.

Example 3. Let T (1 : n) denote a n-by-n Hermitian Toeplitz matrix whose first row
is (1, 2 + 2 · i, . . . , n + n · i), and T (1 : 1/n) be a n-by-n Hermitian Toeplitz matrix whose
first row is (1, 1/2 + 1/2 · i, . . . , 1/n + 1/n · i). For example

T (1 : 4) =




1 2 + 2i 3 + 3i 4 + 4i
2− 2i 1 2 + 2i 3 + 3i
3− 3i 2− 2i 1 2 + 2i
4− 4i 3− 3i 2− 2i 1


 ,

and

T (1 : 1/4) =




1 1/2 + 1/2i 1/3 + 1/3i 1/4 + 1/4i
1/2− 1/2i 1 1/2 + 1/2i 1/3 + 1/3i
1/3− 1/3i 1/2− 1/2i 1 1/2 + 1/2i
1/4− 1/4i 1/3− 1/3i 1/2− 1/2i 1


 .

By Theorem 1, if

A = U

[
A11 0
0 A22

]
UH , A11, A22 ∈ Hn×n,

then A ∈ HSHn×n. We assume that λj ,xj are eigenpairs of A. Now we take X =
[x1, . . . ,xn], Λ = diag(λ1, . . . , λn). Let Ã = A + ∆A, ∆A = 10−3 ·C, where C is a complex
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k A11 A22 ‖∆A‖ = ‖Ã−A∗‖ Time (s)
25 T(1:25) T(1:1/25) 0.2930 0.1300
50 T(1:50) T(1:1/50) 0.8226 0.6500
100 T(1:100) T(1:1/100) 2.3181 4.3300
150 T(1:150) T(1:1/150) 4.2532 13.6500
200 T(1:200) T(1:1/200) 6.5442 31.2800

Table 1: Numerical results for Example 3.

matrix of order n whose first column is (1, 2, . . . , n)T and whose first row is (1, 2 · i, . . . , n · i)
and the other entries are zeros. Then the Frobenius norm of ∆A becomes larger as n in-
creases. We can theoretically show that A∗ approaches to A as the rank of X is greater. In
particular, when the rank of X is n, it is clear that A∗ = A. We take A11 = T (1 : k) and
A22 = T (1 : 1/k). We test Algorithm I in §3 using MATLAB 6.1.

In Table 1, we list our numerical results, where ‘Time’ is the CPU timings.
The above three examples and many other examples we have tested by MATLAB confirm

our theoretical results in this paper. We also note from the numerical experiments that as
Ã approximates a solution of Problem I, Ã becomes closer to the unique solution A∗ of
Problem II. This also agrees with our prediction.

Acknowledgment: We thank the referees for their helpful and valuable comments.
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