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Abstract

In this paper, we consider the existence and non-existence of non-trivial solutions to quasilinear
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on the explicit form of the extremal function, we will obtain some existence results.
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1. Introduction

In this paper, we consider the existence and non-existence of non-trivial solutions to the
following quasilinear Brezis–Nirenberg-type problems with singular weights:{−div (|x|−ap|Du|p−2Du)= |x|−bq |u|q−2u+ �|x|−(a+1)p+c|u|p−2u in �

u= 0 on��,
(1.1)

where� ⊂ Rn is an open bounded domain withC1 boundary and 0∈ �, 1<p<n,

−∞<a<
n−p
p

, a�b�a + 1, q = p∗(a, b)= np
n−dp , d = 1+ a − b ∈ [0, 1], c >0.

The starting point of the variational approach to these problems is the following weighted
Sobolev–Hardy inequality due to Caffarelli et al.[5], which is called the Caffarelli–Kohn–
Nirenberg inequality. Let 1<p<n. For allu ∈ C∞0 (Rn), there is a constantCa,b >0 such
that (∫

Rn
|x|−bq |u|q dx

)p/q

�Ca,b

∫
Rn
|x|−ap|Du|p dx, (1.2)

where

−∞<a<
n− p

p
, a�b�a+1, q=p∗(a, b)= np

n−dp , d=1+ a−b. (1.3)

LetD1,p
a (�) be the completion ofC∞0 (Rn), with respect to the norm‖ · ‖ defined by

‖u‖ =
(∫

�
|x|−ap|Du|p dx

)1/p
.

From the boundedness of� and the standard approximation arguments, it is easy to see that
(1.2) holds for anyu ∈ D1,p

a (�) in the sense:(∫
�
|x|−�|u|r dx

)p/r

�C

∫
�
|x|−ap|Du|p dx (1.4)

for 1�r� np
n−p ,

�
r
�(1+ a)+n(1

r
− 1

p
), that is, the imbeddingD1,p

a (�) ↪→ Lr(�, |x|−�)

is continuous, whereLr(�, |x|−�) is the weightedLr space with norm:

‖u‖r, � := ‖u‖Lr(�, |x|−�) =
(∫

�
|x|−�|u|r dx

)1/r
.

OnD1,p
a (�), we can define the energy functional

E�(u)= 1

p

∫
�
|x|−ap|Du|p dx − 1

q

∫
�
|x|−bq |u|q dx

− �
p

∫
�
|x|−(a+1)p+c|u|p dx. (1.5)

From (1.4),E� is well-defined inD1,p
a (�), andE� ∈ C1(D

1,p
a (�),R). Furthermore, the

critical points ofE� are weak solutions of problem (1.1).
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We note that forp = 2, a = b = 0 andc = 2, problem (1.1) becomes{−�u= |u|q−2u+ �u in �,

u= 0 on��,
(1.6)

whereq=2∗=2n/n−2 is the critical Sobolev exponent. Problem (1.6) has been studied in a
more general context in the famous paper by Brezis and Nirenberg[3]. Since the imbedding
H 1
0 (�) ↪→ Lq(�) is not compact forq = 2n/n − 2, the corresponding energy functional

does not satisfy the (PS) condition globally, which caused a serious difficulty when trying
to find critical points by standard variational methods. By carefully analyzing the energy
level of a cut-off function related to the extremal function of the Sobolev inequality inRn,
Brezis and Nirenberg obtained that the energy functional does satisfy the (PS)c for some
energy levelc < 1

n
Sn/2, whereS is the best constant of the Sobolev inequality.

Brezis–Nirenberg type problems have been generalized tomany situations (see[8–11,13,
16,18,23,24]and references therein). In[10,11,24], the results of[3] had been extended to
thep-Laplace case;[18,23]extended the results of[3] to polyharmonic operators; Jannelli
and Solomini[13] considered the case with singular potentials wherep = 2, a = 0, c =
2, b ∈ [0,1]; while [8] considered the weighted case wherep = 2, a <n − 2/2, b ∈
[a, a + 1], c >0, and[16] considered the case wherep = 2, a = 0 and� is a ball.
All the above references are based on the fact that the extremal functions are symmetric

and have explicit forms. In[7], based on a generalization of the moving plane method,
Chou and Chu considered the symmetry of the extremal functions fora�0, p = 2; In
[12], Horiuchi successfully treated the symmetry properties of the extremal functions for
the more general casep>1, a�0 by a clever reduction to the casea= 0 (where Schwarz
symmetrization gives the symmetry of the extremal functions); On the contrary, there are
some symmetry breaking results (cf.[6,4]) for a <0. We define

S(a, b)= inf
u∈D1,p

a (Rn)\{0}
Ea,b(u), (1.7)

to be the best embedding constants, where

Ea,b(u)=
∫

Rn |x|−ap|Du|p dx(∫
Rn |x|−bq |u|q dx)p/q (1.8)

and

SR(a, b)= inf
u∈D1,p

a,R(R
n)\{0}

Ea,b(u),

whereD1,p
a,R(R

n)= {u ∈ D1,p
a (Rn) |u is radial}. It is well known that fora <n− p/p and

b − a <1, SR(a, b) is always achieved and the extremal functions are given by

Ua,b(r)= c0

(
n− p − pa

1+ r
dp(n−p−pa)
(p−1)(n−dp)

)n−dp/dp
, (1.9)
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where

c0 =
(

n

(p − 1)p−1(n− dp)

)n−dp/dp2
. (1.10)

Under some condition on parametersa, b, n, p [6,4] obtain thatS(a, b)<SR(a, b) for
a <0. In this case, it is very difficult to verify that the corresponding energy functional
satisfies the (PS)c condition.
In Section 2, based on the Caffarelli–Kohn–Nirenberg inequality and the classical

Rellich–Kondrachov compactness theorem, we will first deduce a compact imbedding the-
orem and then study the corresponding eigenvalue problem:{−div (|x|−ap|Du|p−2Du)= �|x|−(a+1)p+c|u|p−2u in �,

u= 0 on��.
(1.11)

In Section 3, based on a Pohozaev-type identity, we obtained a non-existence result for
problem (1.1) with��0. In Section 4, based on a generalized concentration compactness
principle, we shall give some abstract conditions when the functional satisfies the (PS)c

condition. In Section 5, based on the explicit form of the extremal function, we will obtain
some existence results to problem (1.1).

2. Eigenvalue problem in general domain

In this section, we first deduce a compact imbedding theorem which is an extension of
the classical Rellich–Kondrachov compactness theorem.

Theorem 2.1(Compact imbedding theorem). Suppose that� ⊂ Rn is an open bounded
domain withC1 boundary and0 ∈ �, 1<p<n, −∞<a< (n − p)/p. The imbedding
D

1,p
a (�) ↪→ Lr(�, |x|−�) is compact if1�r <np/(n− p), �<(1+ a)r + n(1− r

p
).

Proof. The continuity of the imbedding is a direct consequence of the Caffarelli–Kohn–
Nirenberg inequality (1.2) or (1.4). To prove the compactness, let{um} be a bounded se-
quence inD1,p

a (�). For any�>0, letB�(0) ⊂ � be a ball centered at the origin with radius
�, it is easy to see that{um} ⊂ W1,p(�\B�(0)). Then the classical Rellich–Kondrachov
compactness theorem guarantees the existence of a convergent subsequence of{um} in
Lr(�\B�(0)). By taking a diagonal sequence, we can assume, without loss of generality,
that{um} converges inLr(�\B�(0)) for any�>0.
On the other hand, for any 1�r <np/n − p, there exists ab ∈ (a, a + 1] such that

r < q=p∗(a, b)=np/n−dp, d=1+a−b ∈ [0, 1). From theCaffarelli–Kohn–Nirenberg
inequality (1.2) or (1.4),{um} is also bounded inLq(�, |x|−bq). By the Hölder inequality,
for any�>0, it follows that∫

|x|<�
|x|−�|um − uj |r dx

�
(∫
|x|<�

|x|−(�−br)q/(q−r) dx
)1−(r/q)(∫

�
|x|−bq |um − uj |q dx

)r/q
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�C

(∫ �

0
rn−1−(�−br)q/(q−r) dr

)1−(r/q)

= C�[n−(�−br)q/(q−r)](1−r/q), (2.1)

whereC >0 is a constant independent ofm. Since�<(1+ a)r + n(1− (r/p)), it follows
thatn− (�− br)q/(q − r)>0. Therefore, for a given�>0, we first fix�>0 such that∫

|x|<�
|x|−�|um − uj |r dx� �

2
∀ m, j ∈ N.

Then we chooseN ∈ N such that∫
�\B�(0)

|x|−�|um − uj |r dx�C�

∫
�\B�(0)

|um − uj |r dx� �
2
∀ m, j�N ,

whereC� = �−� if ��0 andC� = (diam(�))−� if �<0. Thus∫
�
|x|−�|um − uj |r dx�� ∀ m, j�N ,

that is,{um} is a Cauchy sequence inLr(�, |x|−�). �

Remark 2.2. Chou and Chu[7] had obtained Theorem 2.1 for the casep = 2.

In order to study the eigenvalue problem (1.11), let us introduce the following functionals
inD

1,p
a (�):

�(u) :=
∫
�
|x|−ap|Du|p dx and J (u) :=

∫
�
|x|−(a+1)p+c|u|p dx.

For c >0, J is well-defined. Furthermore,�, J ∈ C1(D
1,p
a (�),R), and a real value� is

an eigenvalue of problem (1.11) if and only if there existsu ∈ D
1,p
a (�)\{0} such that

�′(u)= �J ′(u). At this point let us introduce set

M := {u ∈ D1,p
a (�) : J (u)= 1}.

ThenM �= ∅ andM is aC1 manifold inD1,p
a (�). It follows from the standard variational

arguments that eigenvalues of (1.11) correspond to critical values of�|M. From Theorem
2.1,� satisfies the (PS) condition onM. Thus a sequence of critical values of�|M comes
from the Ljusternik–Schnirelman critical point theory onC1 manifolds. Let�(A) denote
the Krasnoselski’s genus onD1,p

a (�) and for anyk ∈ N, set

	k := {A ⊂M : A is compact, symmetric and�(A)�k}.
Then values

�k := inf
A∈	k

max
u∈A �(u) (2.2)

are critical values and thence are eigenvalues of problem (1.11). Moreover,�1��2� · · ·
��k� · · · → +∞.
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From the Caffarelli–Kohn–Nirenberg inequality (1.2) or (1.4), it is easy to see that

�1= inf {�(u) : u ∈ D1,p
a (�), J (u)= 1}>0

and the corresponding eigenfunctione1�0.

3. Pohozaev identity and non-existence result

In this section,wededuceaPohozaev-type identity andobtain somenon-existence results.
First let us recall the following Pohozaev integral identity due to Pucci and Serrin[17]:

Lemma 3.1(Pohozaev-type identity). Letu ∈ C2(�)∩C1(�̄) be a solution of the Euler–
Lagrange equation{

div {Fp(x, u,Du)} =Fu(x, u,Du) in �,

u= 0 on ��,
(3.1)

wherep = (p1, . . . , pn) = Du = (�u/�x1, . . . , �u/�xn) andFu = �F/�u. Let A and h
be, respectively, scalar and vector-value function of classC1(�) ∩ C(�̄). Then it follows
that ∮

��

[
F(x,0,Du)− �u

�xi
Fpi (x,0,Du)

]
(h · 
)ds

=
∫
�

{
F(x, u,Du)divh+ hiFxi (x, u,Du)

−
[

�u
�xj

�hj
�xi
+ u

�A
�xi

]
Fpi (x, u,Du)

−A
[

�u
�xi

Fpi (x, u,Du)+ uFu(x, u,Du)

]}
dx, (3.2)

where repeated indices i and j are understood to be summed from1 to n.

Let us consider the following problem:{−div (|x|−ap|Du|p−2Du)= g(x, u) in �,

u= 0 on��,
(3.3)

wheregsatisfiesg(x,0)=0. Suppose thatF(x, u,Du)= 1
p
|x|−ap|Du|p−G(x, u), where

G(x, u)=∫ u0 g(x, t)dt is theprimitiveofg(x, u). Ifwechooseh(x)=x, A=(n/p)−(1+a),
then (3.2) becomes(

1− 1

p

)∮
��
(x · 
)

∣∣∣∣ �u
�


∣∣∣∣
p

ds

=
∫
�

[
nG(x, u)+ (x,Gx)+

(
1+ a − n

p

)
ug(x, u)

]
dx. (3.4)
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As to problem (1.1), suppose thatG(x, u) = (1/q)|x|−bq |u|q + (�/p)|x|−p(1+a)+c|u|p,
then (3.2) or (3.4) becomes(

1− 1

p

)∮
��

(x · 
)
∣∣∣∣�u�


∣∣∣∣
p

ds = c�
p

∫
�
|x|−(a+1)p+c|u|p dx. (3.5)

Thus we obtain the following non-existence result:

Theorem 3.2(Non-existence theorem). There is no solution to problem(1.1)when��0
and� is a (smooth) star-shaped domain with respect to the origin.

Proof. The above deduction is formal. In fact, the solution to problem (1.1) may not be of
classC2(�)∩C1(�̄). We need the approximation arguments in[11,8] (cf. Appendix). �

4. (PS)c condition

In this section, we first give a concentration compactness principle which is a weighted
version of the Concentration Compactness Principle II due to Lions[14,15].

Theorem 4.1(Concentration compactness principle). Let 1<p<n, −∞<a<

(n − p)/p, a�b�a + 1, q = p∗(a, b) = np/(n − dp), d = 1+ a − b ∈ [0, 1], and
M(Rn) be the space of bounded measures onRn. Suppose that{um} ⊂ D

1,p
a (Rn) be a

sequence such that:

um ⇀ u in D
1,p
a (Rn),

�m := ||x|aDum||p dx ⇀ � in M(Rn),


m := ||x|bum||q dx ⇀ 
 in M(Rn),

um→ u a.e. on Rn.

Then there are the following statements:

(1) There exists some at most countable set J, a family{x(j) : j ∈ J } of distinct points in
Rn, and a family{
(j) : j ∈ J } of positive numbers such that


= ||x|−bu||q dx +
∑
j∈J


(j)�x(j) , (4.1)

where�x is the Dirac-mass of mass1 concentrated atx ∈ Rn.
(2) The following inequality holds

�� ||x|−aDu||p dx +
∑
j∈J

�(j)�x(j) (4.2)

for some family{�(j) >0 : j ∈ J } satisfying

S(a, b)(
(j))p/q ��(j) for all j ∈ J . (4.3)

In particular,
∑

j∈J (
(j))p/q <∞.
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Proof. The proof is similar to that of the concentration compactness principle II (see also
[20]). �

Theorem 4.2((PS)c condition in general domain). Let1<p<n, −∞<a< (n−p)/p,
a�b<a+1, q=p∗(a, b)=np/(n−dp), d=1+a−b ∈ (0, 1], c >0and0< �< �1.
Then functionalE� defined in(1.5)satisfies the(PS)c condition inD1,p

a (�) at the energy

levelM< d
n
S(a, b)

n
dp .

Proof. (1) The boundedness of (PS)c sequence.
Suppose that{um} ⊂ D

1,p
a (�) is a (PS)c sequence of functionalE�, that is,

E�(um)→ M and E′�(um)→ 0 in (D1,p
a (�))′.

Then asm→∞, it follows that

M + o(1)= E�(um)

= 1

p

∫
�
|x|−ap|Dum|p dx − 1

q

∫
�
|x|−bq |um|q dx

− �
p

∫
�
|x|−(a+1)p+c|um|p dx (4.4)

and

o(1)‖�‖ = (E�(um),�)

=
∫
�
|x|−ap|Dum|p−2Dum ·D�dx −

∫
�
|x|−bq |um|q−2um�dx

− �
∫
�
|x|−(a+1)p+c|um|p−2um�dx (4.5)

for any� ∈ D1,p
a (�), whereo(1) denotes any quantity that tends to zero asm→∞. From

(4.4) and (4.5), asm→∞, it follows that

qM + o(1)+ o(1)‖um‖ = qE�(um)− (E�(um), v)

=
(
q

p
− 1

)∫
�
|x|−ap|Dum|p dx

− �
(
q

p
− 1

)∫
�
|x|−(a+1)p+c|um|p−2umv dx

=
(
q

p
− 1

)(
1− �

�1

)
‖um‖p, (4.6)

that is,{um} is bounded inD1,p
a (�), sinceq >p, �< �1. Thus up to a subsequence, we

have the following convergence:

um ⇀ u inD
1,p
a (�),

um ⇀ u in Lq(�, |x|−bq),
um→ u in Lr(�, |x|−�), ∀ 1�r <

np
n−p ,

�
r
< (1+ a)+ n(1

r
− 1

p
)

um→ u a.e. on�.
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From theconcentration compactnessprinciple—Theorem4.1, thereexist non-negativemea-
sures�, 
 and a countable family{xj } ⊂ �̄ such that

|x|−b|um|q dx ⇀ 
= ||x|−bu||q dx +
∑
j∈J


(j)�x(j) ,

||x|−aDum||p dx ⇀ �� ||x|−aDu||p dx + S(a, b)
∑
j∈J

(
(j))
p/q

�x(j) .

(2) Up to a subsequence,um→ u in Lq(�, |x|−bq).
Since{um} is bounded inD1,p

a (�), wemay suppose, without loss of generality, that there
existsT ∈ (Lp′(�, |x|−ap))n such that

|Dum|p−2Dum ⇀ T in (Lp′(�, |x|−ap))n.
On the other hand,|um|q−2um is also bounded inLq ′(�, |x|−bq) and
|um|q−2um ⇀ |u|q−2u in Lq ′(�, |x|−bq).

Takingm→∞ in (4.5), we have∫
�
|x|−apT ·D�dx=

∫
�
|x|−bq |u|q−2u�dx+�

∫
�
|x|−(a+1)p+c|u|p−2u�dx (4.7)

for any� ∈ D1,p
a (�).

Let�= 
um in (4.5), where
 ∈ C(�̄), then it follows that∫
�
|x|−ap|Dum|p−2Dum ·D�dx =

∫
�
|x|−bq |um|q−2um�dx

+ �
∫
�
|x|−(a+1)p+c|um|p−2um�+o(1). (4.8)

Takingm→∞ in (4.8), we have∫
�


d�+
∫
�
|x|−apuT ·D
dx =

∫
�


d
+ �
∫
�
|x|−(a+1)p+c|u|p
dx. (4.9)

Let�= 
u in (4.7), then it follows that∫
�
|x|−apuT ·D
dx +

∫
�
|x|−ap
T ·Dudx

=
∫
�
|x|−bq |u|q
dx + �

∫
�
|x|−(a+1)p+c|u|p
dx. (4.10)

Thus (4.9)–(4.10) implies that∫
�


d�=
∑
j∈J


j
(xj )+
∫
�
|x|−ap
T ·Dudx, (4.11)



712 B. Xuan / Nonlinear Analysis 62 (2005) 703–725

which implies that

S(a, b)(
(j))p/q ��(xj )= 
j .

Thence
j �S(a, b)n/dp if 
j �= 0.
On the other hand, from (4.4), (4.7) and (4.11), it follows that

M = 1

p

∫
�
d�− 1

q

∫
�
d
− �

p

∫
�
|x|−(a+1)p+c|u|p dx

= 1

p

∑
j∈J


j + 1

p

∫
�
|x|−apT ·Dudx − 1

q

∑
j∈J


j − 1

q

∫
�
|x|−bq |u|q dx

− �
p

∫
�
|x|−(a+1)p+c|u|p dx

=
(
1

p
− 1

q

)∑
j∈J


j +
(
1

p
− 1

q

)∫
�
|x|−bq |u|q dx

�
(
1

p
− 1

q

)∑
j∈J


j = d

n

∑
j∈J


j . (4.12)

Since it hasbeenshown that
j �S(a, b)n/dp if 
j �= 0, the conditionM<(d/n)S(a, b)n/dp

implies that
j = 0 for all j ∈ J . Hence we have
∫
�
|x|−bq |um|q dx →

∫
�
|x|−bq |u|q dx.

Thus the Brezis–Lieb Lemma[2] implies thatum→ u in Lq(�, |x|−bq).
(3) Existence of convergent subsequence.
To show thatum→ u inD

1,p
a (�), from the Brezis–Lieb Lemma[2], it suffices to show

thatDum→ Du a.e. in� and‖um‖ → ‖u‖.
To show thatDum→ Du a.e. in�, first note that

|x|−ap(|Dum|p−2Dum − |Du|p−2Du) · (Dum −Du)�0, (4.13)

the equality holds if and only ifDum =Du.
Secondly, let� = um and� = u in (4.5) and then letm → ∞, respectively, it follows

that

‖um‖p =
∫
�
|x|−ap|Dum|p dx

=
∫
�
|x|−bq |um|q dx − �

∫
�
|x|−(a+1)p+c|um|p dx + o(1)‖um‖

→
∫
�
|x|−bq |u|q dx − �

∫
�
|x|−(a+1)p+c|u|p dx (4.14)
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and ∫
�
|x|−ap|Dum|p−2Dum ·Dudx

=
∫
�
|x|−bq |um|q−2umudx − �

∫
�
|x|−(a+1)p+c|um|p−2umudx + o(1)‖u‖

→
∫
�
|x|−bq |u|q dx − �

∫
�
|x|−(a+1)p+c|u|p dx. (4.15)

From (4.14) and (4.15), it follows that∫
�
|x|−ap(|Dum|p−2Dum − |Du|p−2Du) · (Dum −Du)dx

=
∫
�
|x|−ap|Dum|p dx −

∫
�
|x|−ap|Dum|p−2Dum ·Dudx

−
∫
�
|x|−ap|Du|p−2Du · (Dum −Du)dx

→ 0. (4.16)

Eqs. (4.13) and (4.16) imply thatDum → Du a.e. in�, henceT = |Du|p−2Du, that is,
|Dum|p−2Dum ⇀ |Du|p−2Du in (Lp′(�, |x|−ap))n.
To show that‖um‖ → ‖u‖, from (4.14) and (4.15), we have

‖u‖p ←
∫
�
|x|−ap|Dum|p−2Dum ·Dudx

=
∫
�
|x|−bq |um|q−2umudx − �

∫
�
|x|−(a+1)p+c|um|p−2umudx

→
∫
�
|x|−bq |u|q dx − �

∫
�
|x|−(a+1)p+c|u|p dx,

thus,‖um‖p → ‖u‖p. �

As indicated in the introduction, fora <0, S(a, b)<SR(a, b) and there is no explicit
form of the minimizers ofS(a, b), so it is difficult to show that there exists a minimax value
M<(d/n)S(a, b)n/dp. But there does exist an explicit form of the extremal functions
of SR(a, b), the method in[3] can be used to show that there exists a minimax value
M<(d/n)SR(a, b)

n/dp. Next theorem shows that in the space of radial functions, the
functionalE� defined in (1.5) satisfies the (PS)c condition inD

1,p
a,R(�) at the energy level

M<(d/n)SR(a, b)
n/dp in the casep = 2.

Theorem 4.3((PS)c condition in ball). Let� = B1(0) be the unit ball inRn, p = 2<n,

−∞<a< (n − 2)/2, a�b�a + 1, q = 2∗(a, b) = 2n/(n − 2d), d = 1 + a − b ∈
[0, 1], c >0 and0< �< �1. Then functionalE� defined in(1.5)satisfies the(PS)c con-
dition inD1,2

a,R(�) at the energy levelM<(d/n)SR(a, b)
n/2d .
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Proof. (1)As in the proof of Theorem 4.2, any (PS)c sequence is bounded inD
1,2
a,R(�), and

up to a subsequence, we have

um ⇀ u inD1,2
a,R(�),

um ⇀ u in Lq(�, |x|−bq),
um→ u in Lr(�, |x|−�), ∀ 1�r <2n/(n− 2), �

r
< (1+ a)+ n(1

r
− 1

2)

um→ u a.e. on�.

Thenceu satisfies the following equation in weak sense:{−div (|x|−2aDu)= |x|−bq |u|q−2u+ �|x|−2(a+1)+cu in �
u= 0 on��.

(4.17)

Thus it follows that

E�(u)= 1

2

∫
�
|x|−2a|Du|2 dx − 1

q

∫
�
|x|−bq |u|q dx − �

2

∫
�
|x|−2(a+1)+cu2 dx

=
(
1

2
− 1

q

)(∫
�
|x|−2a|Du|2 dx − �

∫
�
|x|−2(a+1)+cu2 dx

)
�0. (4.18)

(2) Letvm := um − u, the Brezis–Lieb Lemma[2] leads to∫
�
|x|−bq |um|q dx =

∫
�
|x|−bq |u|q dx +

∫
�
|x|−bq |vm|q dx + o(1).

FromE�(um)→ M and(E′�(um), um)→ 0, we have

E�(um)= E�(u)+ 1

2

∫
�
|x|−2a|Dvm|2 dx

− 1

q

∫
�
|x|−bq |vm|q dx − �

2

∫
�
|x|−2(a+1)+cv2m dx

→ M (4.19)

and ∫
�
|x|−2a|Dvm|2 dx −

∫
�
|x|−bq |vm|q dx − �

∫
�
|x|−2(a+1)+cv2m dx

→
∫
�
|x|−bq |u|q dx + �

∫
�
|x|−2(a+1)+cu2 dx −

∫
�
|x|−2a|Du|2 dx

=−(E′�(u), u)= 0. (4.20)

Up to a subsequence, we may assume that∫
�
|x|−2a|Dvm|2 dx − �

∫
�
|x|−2(a+1)+cv2m dx → b,

∫
�
|x|−bq |vm|q dx → b

for someb�0. From Theorem 2.1,vm→ 0 inL2(�, |x|−2(a+1)+c), then∫
�
|x|−2a|Dvm|2 dx → b.
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On the other hand, we have∫
�
|x|−2a|Dvm|2 dx�SR(a, b)

(∫
�
|x|−bq |vm|q dx

)2/q
.

Thus it follows thatb�SR(a, b)b
2/q , eitherb�SR(a, b)

n/2d or b = 0. If b = 0, the proof
is complete. Assume thatb�SR(a, b)

n/2d , from (4.18) and (4.19), it follows that

d

n
SR(a, b)

n/2d �
(
1

2
− 1

q

)
b�M<

d

n
SR(a, b)

n/2d

a contradiction. �

5. Existence results

In this section, by verifying that there exists a minimax valueM such thatM<(d/n)

S(a, b)n/dp orM<(d/n)SR(a, b)
n/dp, we obtain some existence results to (1.1). We need

some asymptotic estimates on the truncation function of the extremal function ofSR(a, b).
Let

U�(x)= 1

(�+ |x|dp(n−p−pa)/(p−1)(n−dp))n−dp/dp ,

k(�)= c0(�(n− p − ap))n−dp/dp

andc0 is defined by (1.9). Theny�(x) := k(�)U�(x) is the extremal function ofSR(a, b).
Furthermore, we have

‖Dy�‖pLp(Rn,|x|−ap) = SR(a, b)
q/q−p = k(�)p‖DU �‖pLp(Rn,|x|−ap) (5.1)

and

‖y�‖qLq(Rn,|x|−bq ) = SR(a, b)
q/(q−p) = k(�)q‖U�‖qLq(Rn,|x|−bq ). (5.2)

Let � ⊂ Rn be an open bounded domain withC1 boundary and 0∈ �, R>0 such that
B2R ⊂ �. Denoteu�(x) = 
(x)U�(x) where
(x) ≡ 1 for |x|<R and
(x) ≡ 0 for
|x|�2R. As �→ 0, the behavior ofu� has to be the same as that ofU�.

Lemma 5.1. Assume1<p<n, −∞<a< (n − p)/p, a�b�a + 1, q = p∗(a, b) =
np/(n− dp), d = 1+ a − b ∈ [0, 1], c >0.Let

v�(x)= u�(x)

‖u�‖Lq(�,|x|−bq )
.

Then‖v�‖qLq(�,|x|−bq ) = 1.Furthermore, we have

1. ‖Dv�‖pLp(�,|x|−ap) = SR(a, b)+O(�(n−dp)/d);
2. ‖Dv�‖�L�(�,|x|−ap) =O(��(n−dp)/dp) for �= 1,2, p − 2, p − 1;
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3. ‖v�‖pLp(�,|x|−(a+1)p+c) =



O(�(n−dp)/d) if c > (n− p − ap)/(p − 1),

O(�(n−dp)/d | log�|) if c = (n− p − ap)/(p − 1),

O(�(p−1)(n−dp)(n+c−(a+1)p)/dp(n−p−ap))
if c < (n− p − ap)/(p − 1).

The proof of Lemma 5.1 is given in the Appendix.
In the case wherea�0,1<p<n, the results in[12] and[7] show that the minimizers of

S(a, b) are symmetric and given by (1.9). Combining Theorem 4.2 and Lemma 5.1, there
is the following existence result:

Theorem 5.2(Existence Theorem in general domain). Let � ⊂ Rn be an open bounded
domain withC1 boundary and0 ∈ �, 1<p<n, 0�a < (n− p)/p, a�b�a + 1, q =
p∗(a, b)=np/(n−dp), d=1+a−b ∈ (0, 1], c�(n−p−ap)/(p−1),and0< �< �1.
Then there exists a non-trivial solutionu ∈ D1,p

a (�) to problem(1.1).

Proof. It is trivial that functional

E�(u)= 1

p

∫
�
|x|−ap|Du|p dx − 1

q

∫
�
|x|−bq |u|q dx − �

p

∫
�
|x|−(a+1)p+c|u|p dx

satisfies the geometric condition of the mountain pass lemma without (PS) condition due
toAmbrosetti and Rabinowitz[1]. From Theorem 4.2, it suffices to show that there exists a
minimax valueM<(d/n)S(a, b)n/dp. In fact, we will show that maxt �0E�(tv�)< (d/n)

S(a, b)n/dp for � small enough. Let

g(t)= E�(tv�)

= tp

p

∫
�
|x|−ap|Dv�|p dx − tq

q

∫
�
|x|−bq |v�|q dx

− �tp

p

∫
�
|x|−(a+1)p+c|v�|p dx

= tp

p

∫
�
|x|−ap|Dv�|p dx − tq

q
− �tp

p

∫
�
|x|−(a+1)p+c|v�|p dx.

Since 0< �< �1, it follows thatg(t)>0 whent is close to 0, and limt→∞ g(t) = −∞ if
d = 1+ a − b ∈ (0, 1], q = p∗(a, b)= np/(n− dp)>p. Thusg(t) attains its maximum
at somet� >0. From

g′(t)= tp−1
(∫

�
|x|−ap|Dv�|p dx − tq−p − �

∫
�
|x|−(a+1)p+c|v�|p dx

)
= 0,

it follows that

t� =
(∫

�
|x|−ap|Dv�|p dx − �

∫
�
|x|−(a+1)p+c|v�|p dx

)1/(q−2)
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and

g(t�)=
(
1

p
− 1

q

)(∫
�
|x|−ap|Dv�|p dx − �

∫
�
|x|−(a+1)p+c|v�|p dx

)q/(q−2)

=




d

n
S(a, b)n/dp +O(�(n−dp)/d)

−O(�
(p−1)(n−dp)(n−(a+1)p+c)

dp(n−p−ap) ) if c <
n− p − ap

p − 1
d

n
S(a, b)n/dp +O(�(n−dp)/d)

−O(�(n−dp)/d | log�|) if c = n− p − ap

p − 1
.

Note that for c < (n − p − ap)/(p − 1), we have(n − dp)/d > (p − 1)(n − dp)

(n− (a+1)p+ c)/dp(n−p− ap). Thus for� small enough, it follows thatg(t�)< (d/n)

S(a, b)n/dp. �

In the case wherep= 2, combining Theorem 4.3 and Lemma 5.1, there is the following
existence result:

Theorem 5.3(Existence of radial solution in ball). Let� = B1(0) is the unit ball inRn,
−∞<a< (n − 2)/2, a�b�a + 1, q = 2∗(a, b) = 2n/(n − 2d), d = 1 + a − b ∈
(0, 1], c�n− 2− 2a, and0< �< �1. Then there exists a nontrivial radial solutionu ∈
D1,2

a,R(�) to problem(1.1).

Proof. It is trivial that functional

E�(u)= 1

2

∫
�
|x|−2a|Du|2 dx − 1

q

∫
�
|x|−bq |u|q dx − �

2

∫
�
|x|−2(a+1)+c|u|2 dx

satisfies the geometric condition of the mountain pass lemma without (PS) condition due
to Ambrosetti and Rabinowitz[1]. From Theorem 4.3, it suffices to show that there exist a
minimax valuec < (d/n)SR(a, b)

n/2d . In fact, the same process in Theorem 5.2 shows that
maxt �0E�(tv�)< (d/n)SR(a, b)

n/2d for � small enough forc�n− 2− 2a. �

From the result in[7], that is,S(a, b)= SR(a, b) for p = 2, a�0, Theorem 4.2 and the
proofs of Lemma 5.1 and Theorem 5.2 imply that

Corollary 5.4. Let � ⊂ Rn be an open bounded domain withC1 boundary and0 ∈
�, 0�a < (n − 2)/2, a�b�a + 1, q = 2∗(a, b) = 2n/(n − 2d), d = 1 + a − b ∈
(0, 1], c�n−2−2a, and0< �< �1.Then there exists a nontrivial solutionu ∈ D1,2

a (�)

to problem(1.1).

Remark 5.5. The results for the case wherea�0, p=2 had been obtained in[8] and[16]
for a = 0, p = 2. But the results for the cases wherea <0 orp �= 2 had not been covered
there.
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Appendix

Proof of Theorem 3.2. Let {g�} be a sequence ofC2(�̄\{0}) functions converging to
g(·, u) as� goes to 0+ andu� the solution of

{−div (|x|−ap(�+ |Du�|2)(p−2)/2Du�)= g� in �,

u� = 0 on��.
(A.1)

Then from the standard regularity results in[21], u� is of classC3(�̄\{0}) and converges to
u in C1,�(�̄\{0}), for some� ∈ (0,1). For problem (A.1), we apply the Pohozaev integral
identity–Lemma 3.1 in�� =�\B�(0),0< �<dist(0, ��), noting thatu� may not vanish
on the boundary�B�(0)={x ∈ Rn : |x| = �}, or deduce directly by multiplying (A.1) by
(Au� − h ·Du�) with A= (n/p)− (1+ a), h= x, we have

−
∫
��

div (|x|−ap(�+ |Du�|2)(p−2)/2Du�)(Au� − x ·Du�)dx

=
∫
��

g�(Au� − x ·Du�)dx. (A.2)

Integrating by parts over��, we get

LHS= −
∫
���

|x|−ap(�+ |Du�|2)(p−2)/2(Au� − x ·Du�)(Du� · 
)d�

+
∫
��

|x|−ap(�+ |Du�|2)(p−2)/2Du� ·D(Au� − x ·Du�)dx

= − A

∫
|x|=�
|x|−ap(�+ |Du�|2)(p−2)/2u�(Du� · 
)d�

+
∫
��
|x|−ap(�+ |Du�|2)(p−2)/2|Du�|2(x · 
)d�

+
∫
|x|=�
|x|−ap(�+ |Du�|2)(p−2)/2|Du�|2(x · 
)d�

+ A

∫
��

|x|−ap(�+ |Du�|2)(p−2)/2|Du�|2 dx

−
∫
��

|x|−ap(�+ |Du�|2)(p−2)/2Du� ·D(x ·Du�)dx. (A.3)
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SinceDu� ·D(x ·Du�)= |Du�|2+ 1
2(x ·D(|Du�|2)), from (A.1), it follows that

∫
��

|x|−ap(�+ |Du�|2)(p−2)/2|Du�|2 dx

=
∫
��

g�u� dx +
∫
|x|=�
|x|−ap(�+ |Du�|2)(p−2)/2u�(Du� · 
)d� (A.4)

and

1

2

∫
��

|x|−ap(�+ |Du�|2)(p−2)/2(x ·D(|Du�|2))dx

= 1

p

∫
��

|x|−apx ·D((�+ |Du�|2)p/2)dx

= 1

p

∫
��
|x|−ap(�+ |Du�|2)p/2(x · 
)d�

+ 1

p

∫
|x|=�
|x|−ap(�+ |Du�|2)p/2(x · 
)d�

− 1

p
(n− ap)

∫
��

|x|−ap(�+ |Du�|2)p/2 dx, (A.5)

where
 is the unit outer normal vector. Substituting (A.4) and (A.5) into (A.3) implies that

LHS=
∫
��
|x|−ap(�+ |Du�|2)(p−2)/2|Du�|2(x · 
)d�

+
∫
|x|=�
|x|−ap(�+ |Du�|2)(p−2)/2|Du�|2(x · 
)d�

− 1

p

∫
��
|x|−ap(�+ |Du�|2)p/2(x · 
)d�

− 1

p

∫
|x|=�
|x|−ap(�+ |Du�|2)p/2(x · 
)d�

+ (A− 1)
∫
��

g�u� dx

+ 1

p
(n− ap)

∫
��

|x|−ap(�+ |Du�|2)p/2 dx. (A.6)

On the other hand, we have

RHS= A

∫
��

g�u� dx −
∫
��

g�x ·Du� dx. (A.7)
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Letting �→ 0+, we get

LHS=
(
1− 1

p

)∫
��
|x|−ap|Du|p(x · 
)d�

+
(
1− 1

p

)∫
|x|=�
|x|−ap|Du|p(x · 
)d�

+ (A− 1)
∫
��

gudx + 1

p
(n− ap)

∫
��

|x|−ap|Du|p dx (A.8)

and

RHS= A

∫
��

gudx −
∫
��

gx ·Dudx

=A

∫
��

gudx −
∫
���

G(x, u)(x · 
)d�

+
∫
��

(x ·Gx)dx + n

∫
��

G(x, u)dx. (A.9)

From (A.8) and (A.9), noting thatG(x, u)= (1/q)|x|−bq |u|q + (�/p)|x|−p(1+a)+c|u|p, it
follows that

(
1− 1

p

)∫
��
|x|−ap|Du|p(x · 
)d�+

(
1− 1

p

)∫
|x|=�
|x|−ap|Du|p(x · 
)d�

+ 1

p
(n− ap)

∫
��

|x|−ap|Du|p dx

=
∫
��

gudx − 1

q

∫
|x|=�
|x|−bq |u|q(x · 
)d�

− �
p

∫
|x|=�
|x|−p(1+a)+c|u|p(x · 
)d�

+
(
n

q
− b

)∫
��
|x|−bq |u|q dx + �

n− p(1+ a)+ c

p

×
∫
��
|x|−p(1+a)+c|u|p dx. (A.10)

Next, we need to get rid of the boundary integrals along|x| = � in (A.10). In fact, letu
be a solution of (1.1), from the Caffarelli–Kohn–Nirenberg inequality (1.2) or (1.4), and
Theorem 2.1, we know that

∫
�
|x|−ap|Du|p dx,

∫
�
|x|−bq |u|q dx and

∫
�
|x|−p(1+a)+c|u|p dx
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are finite. Therefore, by the mean-value theorem there exists a sequence{�m}, �m → 0+
such that integrals

∫
|x|=�
|x|−ap|Du|p(x · 
)d�,

∫
|x|=�
|x|−bq |u|q(x · 
)d�,

∫
|x|=�
|x|−p(1+a)+c|u|p(x · 
)d�→ 0

asm→∞. Thus, lettingm→∞ and noting (A.2), we obtain (3.5) from (A.10).�

Proof of Lemma 5.1. (1) It is easy to see that

Du�(x)=


DU �(x) if |x|<R,

U�(x)D
(x)+ 
(x)DU �(x) if R� |x|<2R

0 if |x|�2R

=




−n− p − ap

p − 1
x

(�+|x|dp(n−p−pa)/(p−1)(n−dp))n/dp |x|2−(dp(n−p−ap)/(p−1)(n−dp)) if |x|<R,

U�(x)D
(x)+ 
(x)DU �(x) if R� |x|<2R

0 if |x|�2R,

∫
�

|Du�|p
|x|ap dx =O(1)+

∫
|x|<R

|DU �|p
|x|ap dx

=O(1)+
∫

Rn

|DU �|p
|x|ap dx

=O(1)+ SR(a, b)
q

q−p k(�)−p

and

∫
�

|u�|q
|x|bq dx =O(1)+ SR(a, b)

q/(q−p)k(�)−q .

Thus, it follows that

‖Dv�‖pLp(�,|x|−ap) =
‖Du�‖pLp(�,|x|−ap)
‖u�‖pLq(�,|x|−bq )

= O(1)+ SR(a, b)
q/(q−p)k(�)−p

O(1)+ SR(a, b)
p/(q−p)k(�)−p

= SR(a, b)+O(k(�)p)= SR(a, b)+O(�(n−dp)/d).
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(2) A direct computation shows that

∫
�

|Du�|�
|x|ap dx

=O(1)+
∫
|x|<R

|DU �|�
|x|ap dx

=O(1)+
∫
|x|<R

(
n− p − ap

p − 1

)�

× |x|�−ap
(�+ |x|dp(n−p−pa)/(p−1)(n−dp))�n/dp|x|�(2−(dp(n−p−ap)/(p−1)(n−dp))) dx

=O(1)+ �n

∫ R

0

(
n− p − ap

p − 1

)�

× r�−ap+n−1−�(2−(dp(n−p−ap)/(p−1)(n−dp)))

(�+ rdp(n−p−pa)/(p−1)(n−dp))�n/dp
dr

�O(1)+ �n

(
n− p − ap

p − 1

)�

×
∫ R

0
r�−ap+n−1−�(2−(dp(n−p−ap)/(p−1)(n−dp)))−(�(n−p−ap)/(p−1)(n−dp)) dr

and the order ofr in the integrand is

�− ap + n− 1− �
(
2− dp(n− p − ap)

(p − 1)(n− dp)

)
− �(n− p − ap)

(p − 1)(n− dp)

= np − n+ �− �n− ap2+ ap + �ap
p − 1

− 1>− 1

for �= 1,2, p − 2, p − 1. Thus

∫
�

|Du�|�
|x|ap dx =O(1)

and

‖Dv�‖�L�(�,|x|−ap) =
‖Du�‖�L�(�,|x|−ap)
‖u�‖�Lq(�,|x|−bq )

= O(1)

O(1)+ SR(a, b)
�/(q−p)k(�)−�

=O(k(�)�)=O(��(n−dp)/dp).
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(3) If c = (n− p − ap)/(p − 1), then we have∫
�
|x|−(a+1)p+c|u�|p dx

=O(1)+
∫
|x|<R

1

(�+ |x|dp(n−p−pa)/(p−1)(n−dp))(n−dp)/d |x|(a+1)p−c dx

=O(1)+ �n

∫ R

0

rn−1−(a+1)p+c

(�+ rdp(n−p−pa)/(p−1)(n−dp))(n−dp)/d
dr

=O(1)+�n

∫ R�−(p−1)(n−dp)/dp(n−p−pa)

0

rn−1−(a+1)p+c

(1+ rdp(n−p−pa)/(p−1)(n−dp))(n−dp)/d
dr

�O(1)+ �n

∫ R�−(p−1)(n−dp)/dp(n−p−pa)

0

1

r
dr

=O(1)+O(| log�|).
Then it follows that

‖v�‖pLp(�,|x|−(a+1)p+c) =
‖u�‖pLp(�,|x|−(a+1)p+c)
‖u�‖pLq(�,|x|−bq )

= O(1)+O(| log�|)
O(1)+ SR(a, b)

p/(q−p)k(�)−p

=O(k(�)p| log�|)=O(�(n−dp)/d | log�|).
If c > (n− p − ap)/(p − 1), then we have∫

�
|x|−(a+1)p+c|u�|p dx

=O(1)+
∫
|x|<R

1

(�+ |x|dp(n−p−pa)/(p−1)(n−dp))(n−dp)/d |x|(a+1)p−c dx

=O(1)+ �n

∫ R

0

rn−1−(a+1)p+c

(�+ rdp(n−p−pa)/(p−1)(n−dp))(n−dp)/d
dr

�O(1)+ �n

∫ R

0
rn−1−(a+1)p+c−(p(n−p−ap))/p−1) dr

=O(1),

the last equality is due to thatn − 1− (a + 1)p + c − p(n − p − ap)/(p − 1)> − 1 if
c > (n− p − ap)/(p − 1). Thus it follows that

‖v�‖pLp(�,|x|−(a+1)p+c) =
‖u�‖pLp(�,|x|−(a+1)p+c)
‖u�‖pLq(�,|x|−bq )

= O(1)

O(1)+ SR(a, b)
p/(q−p)k(�)−p

=O(k(�)p)=O(�(n−dp)/d).
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If c < (n − p − ap)/(p − 1), then−(n − dp)/d + (n − (a + 1)p + c)(p − 1)(n −
dp)/dp(n− p − ap)<0 andn− 1− (a + 1)p + c− p(n− p − ap)/(p − 1)<− 1, we
have ∫

�
|x|−(a+1)p+c|u�|p dx

=O(1)+
∫
|x|<R

1

(�+ |x|dp(n−p−pa)/(p−1)(n−dp))(n−dp)/d |x|(a+1)p−c dx
=O(1)+�n�−(n−dp)/d+(n−(a+1)p+c)((p−1)(n−dp)/dp(n−p−ap))

×
∫ ∞
1

rn−1−(a+1)p+c

(1+ rdp(n−p−pa)/(p−1)(n−dp))(n−dp)/d
dr

=O(�−(n−dp)/d+(n−(a+1)p+c)((p−1)(n−dp)/dp(n−p−ap)))

and

‖v�‖pLp(�,|x|−(a+1)p+c) =
‖u�‖pLp(�,|x|−(a+1)p+c)
‖u�‖pLq(�,|x|−bq )

= O(�−(n−dp)/d+(n−(a+1)p+c)(p−1)(n−dp)/dp(n−p−ap))
O(1)+ SR(a, b)

p/(q−p)k(�)−p

=O(�(p−1)(n−dp)(n−(a+1)p+c)/dp(n−p−ap)). �
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