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I. Introduction

THE chief messenger systems between organs and tissues
are the nervous, endocrine, and immune systems,

which must be integrated on all levels to maintain homeosta-
sis. The central hypothesis of this review is that the anabolic
hormones (Fig. 1) GH, PRL, and the insulin-like growth
factors (IGFs) that regulate whole body growth, metabolism,
tissue repair, and cell survival also play an integrating role
(Fig. 2) in the growth, maintenance, repair, and function of
the immune system.

In the 1930s the mastery of hypophysectomy in the rat by
Smith (1) was crucial to the discovery of the pituitary hor-
mones. Smith (1) also found that “after the total ablation of
the anterior hypophysis the thymus began to regress almost
immediately.” This discovery of a pituitary influence on the
thymus caused a search for the causative factors (2, 3). Al-
though there were reports that injections of pituitary extracts
with somatotrophic activity stimulated thymic growth in
rodents (4), this was not a consistent finding (3), possibly
because the somatotrophic preparations used were impure
and were sometimes contaminated with other pituitary hor-
mones. More evidence for immunological activity of the so-
matogenic hormones came from the study of hypophysec-
tomized rats (5), which showed a dramatic and continual
age-related fall in both blood hemoglobin and white cell
count, compared with the stable blood cell counts in normal
animals, and a reduced antibody response to antigen that
could be improved by GH and PRL treatment (6). The im-
munological activity of the pituitary was also revealed in
studies of genetically hypopituitary rodents. The homozy-
gous Snell-Bagg dwarf mouse was found to be deficient in
GH, PRL, and thyroid hormones and to have an associated
poorly developed immune system including a marked hy-
pertrophy of the spleen and thymus, a progressive loss of
small lymphocytes in the thymic cortex, and a decreased
number of peripheral blood lymphocytes (7, 8). It is now
established that the inhibition or stimulation of many hor-
mone systems can affect immune responses (9). Such hor-
mones fall into two classes. In vivo, GH, PRL, and thyroid
hormones increase immune responses whereas ACTH, glu-
cocorticoids, estrogen, progesterone, and androgens depress
immune responses (10–17). This review marshals the evi-
dence that, in addition, the insulin-like growth factors (IGF-1
and IGF-II) have an important role in stimulating lympho-
cyte production and function.
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To dissect the effects of GH, PRL, and IGF-I on the immune
system, it is important to understand the relative importance
of the mediating role of IGF-I generation to the effects of GH
(Fig. 1). This is not a simple exercise. The history of the
mechanism of action of GH is a long one, strewn with many
theories. For example, fragments of GH were once proposed
to mediate all the effects of GH (18). In 1953, Salter and Best
(19) described body growth in hypophysectomized rats
treated with insulin, a result that was not confirmed by others
(20). Such data led to the hypothesis that insulin mediates
many of the growth-promoting effects of GH (21). This hy-
pothesis was proposed almost contemporaneously with the
discovery, in the serum of hypophysectomized rats treated
with GH, of a sulfation factor activity (22) that was different
from insulin (23). The hormones with this activity were later
renamed the somatomedins (24). Purification (25, 26) led to
the finding that somatomedins and nonsuppressible insulin-
like activities (27) were identical and they were then renamed
(25, 26) IGF-I and IGF-II.

The finding that human IGF-I purified from serum caused
significant whole body growth in the rat (28) seemingly
confirmed that many, if not all, of the growth-promoting
effects of GH were mediated via the systemic generation of
IGF-I in the liver: the somatomedin theory of growth regu-
lation (29). It was then discovered, using recombinant human
IGF-I (rhIGF-1) and recombinant human GH (rhGH), that
rhIGF-1 and rhGH have very distinct differential effects on
the size of different body organs in the rat (30, 31). If the
effects of GH were all mediated by IGF-I generation, then this
would not be the case. Earlier it had been proposed (32) that
some of the endocrine effects of GH were a result of its direct
action on tissues (Fig. 1) rather than being indirect via the
generation of IGF-I in the liver. The much greater effect of

rhIGF-1 than of rhGH on the weight of the spleen and thymus
in the rat (30, 31) was one of the first indications that IGF-I
and GH had different growth- promoting activities in vivo.
That IGF-I, GH, and PRL can have different activities on the
lymphoid tissue will be discussed throughout this review.
The review will also focus on the evidence for an autocrine
or paracrine GH/PRL/IGF system in lymphoid tissues that
produce PRL and GH, contain PRL and GH receptors
(GHRs), express IGF-I, contain IGF-I receptors, and secrete
IGF-binding proteins.

This review is timely in that rhIGF-1 is being tested in large
clinical trials in several human diseases (33), and it is possible
that the immunological activities of GH/IGF-I may be found
useful in the treatment of immune-deficient states in humans
(34). For related information not included in this review,
particularly the effects of GH/IGF-I on other hematopoietic
cells, several related recent reviews (9, 35–40) and a mono-
graph (41) are available.

II. Local GH Axis in Lymphoid Tissue

A. Background: extrapituitary production?

Human GH is a protein of 191 amino acids produced and
released by the anterior pituitary gland to circulate as an
endocrine hormone (42). Until the placental GHs were dis-
covered, GH was considered to be an exclusively pituitary
hormone (42). It is now apparent that cells and tissues other
than the pituitary and its somatotrophs also produce GH.
Very recently, normal mammary tissue and mammary tu-
mors, particularly under steroid stimulation, have been
shown to produce surprisingly large amounts of GH (43, 44)
that can be so large as to be detectable in blood.

This recent demonstration of GH production at an extra-
pituitary site may shed new light on the following discussion
of the production of GH by lymphoid tissue. The total pro-
duction of GH by extrapituitary tissues must be low com-
pared with the production by the pituitary because hypoph-
ysectomy has such profound effects on body growth in a
young animal. These findings, i.e. in some tissues GH is

FIG. 1. The GH/IGF-I axis. This figure depicts the sites of production
of GH and IGF-I, the feedback loops regulating their secretion, bind-
ing proteins, and main metabolic actions. The hypothalamic hor-
mones GHRH and somatostatin control GH secretion from the pitu-
itary. GH circulates in the blood, in part bound to a GH-binding
protein (GHBP), to inhibit its own secretion and to stimulate the
production of insulin-like growth factor 1 (IGF-1) in the liver. IGF-I
circulates in the blood bound primarily to IGF-binding protein-3 (IG-
FBP-3), which is in turn complexed to a third protein, the acid-labile
subunit (ALS), but a total of six IGFBPs are known. IGFBP-IGF
complexes are subject to protease attack, which assists the dissoci-
ation of IGF-I. The actions of GH are exerted either directly or indi-
rectly, via the generation of IGF-I.

FIG. 2. Endocrine GH secreted by the pituitary stimulates the pro-
duction of endocrine IGF-I by the liver and local IGF-I in many other
tissues, including the stromal cells of hematopoietic tissues. GH and
PRL also act directly on lymphocytes or their precursors in hemato-
poietic tissues such as bone marrow, spleen, and thymus.
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produced locally and probably acts locally, reinforce the idea
(32) that GH has many actions on tissues that are not me-
diated by endocrine IGF-I.

B. GH expression

The first evidence of GH production by lymphoid cells
came from direct staining using fluorescent-labeled anti-GH
antibodies (45) and showed that about 10% of unstimulated
human peripheral blood mononuclear cells (PBMCs) were
positive for GH, whereas after mitogen stimulation 20% were
positive. This surprising result was then independently con-
firmed (46) and extended to show that GH mRNA is ex-
pressed in lymphocytes (47) and that anti-GH antisense oli-
gonucleotides inhibit lymphocyte proliferation (48). A
plaque assay confirmed that the GH produced by human
PBMCs is biologically active GH (49). Two human cell lines,
the B cell lymphoma line IM-9 (50) and the Burkitt lymphoma
cell line sfRamos (51), have been shown to synthesize and
release human GH (hGH). These results suggest that GH is
synthesized de novo and perhaps continually secreted from
lymphocytes. By in situ hybridization and immunocyto-
chemistry, GH was shown to be expressed in human and rat
bone marrow, spleen, thymus, lymph nodes, and in human
tonsil (41). A recent study (52) of human tissues, using in situ
hybridization and RT-PCR, has also shown GH mRNA in
spleen, lymph node, tonsil, and thymus. The GH mRNA was
present not only in lymphocytes but also in the supporting
structures, e.g. in the thymus GH was expressed by epithelial
cells and reticular cells (52). There are reports that granulo-
cytes, rather than lymphocytes, are the main cell type pro-
ducing GH in peripheral blood (41). In marked contrast,
another study in the rat showed that although GH was ex-
pressed in developing lymphoid tissues, it was not expressed
in adult tissues (53). The consensus of all the literature data,
however, is that GH is expressed locally in lymphoid tissues
(41).

C. GH regulation

The transcription of the GH, PRL, and TSH genes in the
pituitary depends on the activity of the transcription factor
Pit-1 (54). The presence of this transcription factor in lym-
phoid tissues, and its colocalization with GH and PRL,
strongly supports the idea of regulated extrapituitary GH
production in spleen, bone marrow, and thymus (41, 55).

GH production in the pituitary gland is directly regulated
by the hypothalamus, which produces the inhibitory factor
somatostatin and the stimulatory factor GHRH (56). GHRH
peptide and mRNA have been detected in human lympho-
cytes (57). Somatostatin has been identified in lymphoid
tissue (58) as has the somatostatin receptor (59). However,
whether somatostatin and GHRH are involved in the local
production of GH is less clear (60). Physiological concentra-
tions of GHRH and somatostatin have been reported to have
no effect on the secretion of GH from human lymphocytes
(60). The effects of GHRH and somatostatin on the activity
of cultured lymphocytes have produced conflicting data:
various assays have reported stimulation (61), inhibition (61,
62), or no effect (62). It is possible that somatostatin has a

direct effect on IGF-I production because in the liver soma-
tostatin exerts a direct inhibitory effect on IGF-I generation
(63). A recent review suggests that, compared with GHRH,
there is more evidence for somatostatin having an immune-
modulatory role (64). However, there seems to be no pub-
lished data testing for a direct effect in vitro of somatostatin
on IGF-I mRNA or peptide in lymphocytes. The regulation
of local GH may be different from that in the pituitary be-
cause the addition of IGF-I to lymphocyte cultures has been
reported not to affect their secretion of GH (65). The most
convincing evidence of PRL/GH release from both T and B
lymphocytes has been that seen after direct mitogen stimu-
lation in vitro (66). Small amounts of GH (0.2–0.6 pg/well,
measured by RIA) are released by nonstimulated human
PBMCs, but after phytohemagglutinin (PHA, a T cell mito-
gen) or pokeweed mitogen (a B cell mitogen), a dose-related
increase in GH to several picograms per well has been shown
(60). It appears likely that the regulation of GH in the immune
system differs from that in the endocrine system.

D. GHRs

The finding that GH is produced locally by lymphoid
tissues has been given more of a functional significance by
evidence that lymphocytes also express GHRs. GH binding
was first detected on a human B cell lymphoma (IM-9) lym-
phocyte cell line (67) and subsequently identified (68) on
human PBMCs. The development of specific monoclonal
antibodies against the GHR allowed flow cytometry to con-
firm that GHRs are present on human IM-9 cells (69) and in
human PBMC with the highest expression on B cells (70). The
GHR on lymphocytes has been sequenced (71, 72) and found
to be identical to the GHR cloned from liver (73). A more
recent study confirmed that the hGH receptor is present on
more than 90% of B lymphocytes and monocytes, but only
variably present on T lymphocytes. B lymphocytes and
monocytes had approximately 6000 GHRs per cell, and this
number was not affected by a donor being GH-deficient (74).

E. GHR signaling

The purification and cloning of the GHR (73), the discov-
ery of the dimerizing stochiometry of the GH-(GHR)2 com-
plex (75), and the crystallization of this complex (76) have
revolutionized understanding not only of GH but of the new
family of the helix bundle peptide (HBP) cytokine receptors
(40). The placing of the GH and PRL receptors in the family
of hematopoietic cytokines (77), which includes erythropoi-
etin, granulocyte-colony-stimulating factor, granulocyte/
macrophage colony-stimulating factor, and the interleukins,
has provided a theoretical basis to the experimental results
showing that GH and PRL have significant activity as he-
matopoietic cytokines (40).

Like other members of the HBP receptor superfamily, GH
signals through the JAK kinase/STAT cascades. However,
because many of these intracellular signaling mechanisms
appear to share several receptor/ligand systems, it has been
difficult to see how specificity is maintained (78). If signaling
pathways do overlap, then the responses of lymphocytes to
GH/PRL could be viewed as minor epiphenomena, with

April, 1997 IGF-I AND IMMUNE FUNCTION 159

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/18/2/157/2530727 by guest on 21 August 2022



other ligands or receptors mediating the same responses with
more potency and specificity. However, mice with a dis-
rupted STAT1 gene show defects in interferon signaling but
normal responses to other cytokines, including GH (79). Such
specificity was not predicted from in vitro studies and sug-
gests that GH and PRL do have unique effects in lympho-
cytes.

GH action involves the sequential binding of an initial site
on hGH (site 1) to a GHR molecule to form a GH/GHR
monomer complex, followed by the binding of another GHR
molecule to the second site on hGH (site 2), to form a receptor
dimer complex (75). It is this complex that activates the
JAK2/STAT cascades. GH analogs with mutations in the
second binding site, but with an intact site 1, prevent dimer
formation and can act as antagonists (80). Because the affinity
of these mutant GH molecules for GHR remains high, and
can be engineered to increase the affinity for site 1 selectively,
highly potent hGH antagonists have been produced. A GH
antagonist (80) is potentially a useful tool for elucidating the
importance of GH to lymphoid tissues. Unfortunately the
mutant hGH molecules that act as antagonists at the hGH
receptor show no evidence of antagonist activity when ad-
ministered to rats (81). The reason for the species specificity
of hGH antagonists is unclear because native hGH binds the
rat GHR with high affinity and stimulates body growth. A
GH antagonist fully active in the rat is eagerly awaited be-
cause it would help explain the importance of endogenous
GH, the importance of local GH production, and especially
the importance of GH to lymphoid tissues.

III. GH Administration

A. Effects on the thymus

The thymus grows rapidly postnatally in mammals, peaks
in size at around sexual maturity, and then slowly involutes
with age (82). In humans, maximal thymic size is attained at
puberty and then by 45–50 yr of age involutes so that only
5–10% of the cellular mass remains. In mice, maximal size (70
mg) is attained at puberty (6 weeks) while by 9 months of age
the thymus has declined in weight to only 20 mg. Involution
of the thymus with age was recognized (83) well before its
immunological role (84). These changes in thymic structure
and function follow the rising activity of the GH system, with
serum IGF-I levels peaking at puberty and declining grad-
ually with advancing age (85–87) suggestive of a causative
relationship. The age-related decline in immune function is
poorly explained. A portion of this decline could be related
to the lack of activity, or resistance to the actions, of the
anabolic hormones.

The first studies suggesting that treatment with GH could
affect the thymus in nonrodents was a study in hypopituitary
dwarf Weimaraner dogs (88). In follow-up studies, young,
middle-aged, and aged dogs were treated with GH. Thymic
growth was observed in middle-aged, but not in aged, dogs
and the blood level of thymic hormone increased (89). The
thymus glands of the treated dogs were described (90) as
“resembling thymic tissue of young dogs.” In the aged rat,
the implantation of GH3 pituitary cells reversed age-related
thymic atrophy and increased the number and function of T

cells in the thymus (91). The next section discusses in more
detail the effects in rodents of continuous infusions of hGH,
which are very effective at stimulating thymic growth (92).
It should be noted that GH3 cells may produce GH, but little
PRL, in vivo (93), and their release of GH would be contin-
uous, perhaps accounting for the clear effects reported above
(91) on the thymus.

B. Pattern of GH exposure

In several tissues the pattern of GH administration or
exposure can have major quantitative and qualitative tissue-
specific effects (94, 95). For example, different patterns of
endogenous GH exposure, best illustrated by differences in
GH-secretory profiles in male and female rats, cause a num-
ber of sexually dimorphic responses (96). The administration
of GH to rats either by daily injection (male pattern) or by
continuous infusion (female pattern) can replicate these di-
morphic responses, which include influencing hepatic en-
zymes (97), hepatic growth (98), and lipid metabolism (99).
In mice that overexpress bovine GH, there is an enlargement
of the internal organs, particularly of the spleen, which may
be due to both the high levels of GH and the continuous
pattern of GH exposure (100).

As described above, it is likely that GH is produced locally
in lymphoid tissues. The production of this GH is probably
by constitutive expression and release, giving a continuous
pattern of local GH exposure. To explore this idea, GH was
given by injection or infusion, and the effects on different
body tissues were compared (98). It was found that in rats
(Fig. 3A), injections of GH are much less potent than GH
infusions at stimulating lymphoid tissue growth (98). Figure
3A shows that in hypophysectomized rats the spleen more
than doubles in size after GH infusions, whereas the same
doses of GH given by injection elicit no splenic growth. It has
been stated that in mice, 20- to 40-fold higher doses of GH
and PRL are needed by injection, compared with minipump
infusion, to reverse corticosterone-induced suppression of
splenic lymphocyte responses to mitogens (101). Recent data
in young castrate and intact genetically obese pigs also sug-
gest that treatment with porcine GH can affect thymic size
and thymosin concentration in serum (102). When porcine
GH was given by injection or by a slow release depot for-
mulation, there was a greater effect on the thymic parameters
of the slow release formulation (102). A different form of
long-acting GH, i.e. that made by coupling polyethylene gly-
col (PEG) to hGH, has now been described (103). The ad-
ministration by infrequent injection of PEG-rhGH to hy-
pophysectomized rats also induced lymphoid organ
overgrowth compared with daily injections of nonmodified
rhGH. This difference was probably due to the more con-
tinuous pattern of GH exposure caused by the long plasma
half-life of the PEG-rhGH (103).

Some of these differences between injected and infused
GH could be due to continuous GH exposure, via hepatic
stimulation, inducing higher serum IGF-I levels (Fig. 3B)
than injections of GH (94, 99). These findings have been
confirmed in monkeys where a depot form of hGH that
chronically elevated blood GH levels gave higher serum
IGF-I levels than did a comparable dose of GH given by daily
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injections (104). The higher concentrations of endocrine IGF-I
(Fig. 3B) may be the cause of lymphoid tissue growth. There
seems to be no comparative data on the local production of
IGF-I in lymphoid tissues in response to injections or infu-
sions of GH. Alternatively, it is possible that these pattern-
dependent direct effects of GH on lymphoid tissues may not
be mediated by IGF-I.

C. GH and immune function in humans

The strong evidence from studies in animals that the pi-
tuitary (3), GH (35), PRL (16), and IGF-I (36) affect hemato-
poietic and lymphoid tissues is generally accepted. However,
the evidence in humans is perceived by recent reviewers as
being unconvincing (39, 105). The most cited evidence (39,
105) is that GH-deficient children are not clinically immu-
nodeficient and therefore replacement therapy with hGH
would not be expected to have significant effects on immune
function. This perception of a general lack of effect of GH
deficiency or GH replacement treatment on immune function
has been taken as evidence that the GH/IGF axis has a lesser
effect on lymphoid tissues in humans (39). A lesson can be
taken here from animal studies with other HBP cytokines,
such as interleukin-6 (IL-6), which has a range of pleiotropic

actions on T cell and B cell proliferation that it shares with
IL-1, IL-2, IL-4, and IL-5 (106). The overexpression of IL-6 in
mice has only a mild effect on B cells (107). Another example
of the pleiotropic actions of cytokines is that disruption of the
IL-2 gene allowed almost normal hematopoiesis (108). These
cytokines do have important actions on the immune system,
but the presence of multiple cytokines ensures that ho-
meostasis is maintained. Therefore, the apparent lack of ef-
fect of an endocrine GH deficiency in humans should not be
taken as evidence that GH has no effects on immune function
in humans.

Human studies have concentrated on discovering the im-
munological phenotype of patients who lack pituitary GH.
There has been almost no effort toward discovering whether
these patients are deficient in local GH, local IGF peptides,
or receptors or have a changed local IGF-binding protein
(IGFBP) status. Even if pituitary GH is disturbed, it is likely
that in many patients the local paracrine/autocrine axis in
lymphoid tissue is intact. In GH-deficient humans it is pos-
sible that the GH produced locally in the immune system
compensates for the lack of endocrine GH. The much higher
endogenous levels of GH (96) in the rat, about 10-fold higher
than in the human (85), would be expected to cause locally
produced GH to be less important in the rat that in humans.
In addition, rats, particularly female rats, have relatively high
GH-binding protein levels that may act to enhance the ac-
tivity of GH (109). This may help explain why in humans a
deficiency in pituitary GH or endocrine IGF-I appears to
have minor effects on immune function compared with the
effect of such deficiencies in the rat. One group of patients
who may be immunologically impaired are patients with
defective GHR function who were once termed Laron dwarfs
but are now described as having GH insensitivity syndrome
(110). The largest cohort yet described, that localized in Ec-
uador, may have a significantly higher pediatric mortality
(110), perhaps indicating an impaired immune system. A
recent monograph includes a lengthy discussion of the rel-
ative importance of hormones to immunological status in
rodents and humans (41). A proposal by these authors that
should be considered, but for which there is little or no
evidence, is that IGF-I expression is less dependent on GH in
humans than in rodents (41) and that this may account for the
apparent lack of effect on immune function of GH deficiency
in humans. Another reason could be that IGF-II concentra-
tions in adult rodents are very low compared with the con-
centrations in humans. Therefore, a deficiency of GH in ro-
dents, leading to a fall in IGF-I concentrations, has a greater
impact than in GH-deficient humans in whom the main-
tained IGF-II concentrations may preserve blood IGF con-
centrations and activity.

IV. PRL

A. PRL expression in lymphoid tissues

The first cytokines in the HBP family to be identified were
GH and PRL. Because hGH, unlike rat GH, also binds with
high affinity to PRL receptors, it was unclear, until human
PRL was purified by Friesen and colleagues (111), whether
humans had a separate PRL. PRL has always been viewed as

FIG. 3. Spleen weight (A) and serum IGF-I concentrations (B) in
hypophysectomized rats treated with excipient, or three doses of hGH
given by injection or infusion. At these doses, infusions, but not in-
jections of hGH, increased serum IGF-I concentrations, perhaps ex-
plaining the selective effect of hGH infusions on spleen weight. Means
and SDs are shown. [Derived from Ref. 98.]
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having a very broad range of activities (40); therefore the
subsequent demonstration that it had effects on lymphoid
tissue was not surprising. The discovery of PRL expression
in lymphocytes was a surprise. A sensitive bioassay, based
on immunostaining of Nb2 cells, showed PRL-like activity to
be present in the culture fluid from concanavalin A (ConA)-
activated murine splenocytes (112). ConA-stimulated thy-
midine incorporation was reduced by adding an antibody
against PRL, suggesting that a PRL-like molecule was pro-
duced by the splenocytes and was essential for lymphocyte
proliferation (112). Using an enzyme-linked immunoplaque
assay, human PRL secretion was found after ConA or PHA
stimulation of PBMCs, but not in unstimulated PBMCs (113).
Murine and human T- and B cell mitogen proliferation has
been shown to be inhibited by antibodies to PRL, due to a
block in the G1 to GS transition in the cell cycle (114). In situ
hybridization showed the presence of an mRNA in murine
splenocytes that hybridized with a rat PRL cDNA probe
(115). The PRL protein in human lymphocytes appears to be
similar to pituitary PRL, i.e. the multiple forms present in the
pituitary are also present in lymphocytes (116). The PRL gene
is also expressed in rat thymus (117). As described above for
GH, the extrapituitary production of PRL in lymphoid tissue
is not unique; the PRL gene, like the GH gene (43, 44), also
appears to be transcribed in the mammary gland (118).

B. PRL receptors

Lymphocytes not only produce PRL but also possess PRL
receptors. The use of the rat Nb2 T cell line for bioassaying
PRL clearly suggested the presence of PRL receptors on
lymphoid cells (119). PRL binding on normal lymphocytes
was first demonstrated on human T and B lymphocytes (120).
Since then, biotinylated monoclonal antibodies against the
human PRL receptor (121) have been used to show PRL
receptors in the mouse (122), particularly on B cells, and the
presence of receptors throughout human hematopoietic tis-
sues including bone marrow and thymus. B cells were the
most strongly labeled, while T cells showed an increased
labeling upon activation (121). In the mouse and rat, PRL
receptors are present in bone marrow, thymus, spleen,
lymph nodes, and on peripheral blood lymphocytes (122),
with receptor number increasing in a draining lymph node
after foot pad immunization (123) and on T cells after ConA
administration (124). In the thymus, PRL receptor number is
greatest in the cortex and in thymic epithelial cells (125). Two
forms of the PRL receptor, which differ in the length of their
cytoplasmic domains, are present in lymphoid tissues in the
mouse and rat (117). The PRL receptor can be detected by
PRL binding, by antibodies, and by PCR in many lymphoid
cell lines (both T and B cell) and hemopoietic cell lines (41).
The signaling of PRL, especially in Nb2 cells, has been stud-
ied intensively and reviewed recently (40).

C. Administration of PRL, anti-PRL antibodies, or
bromocriptine

Hypophysectomized rats are almost devoid of a primary
antibody response after the injection of sheep red blood cells
(126). Replacement with lactogenic hormones (40 mg/day) at

the time of immunization restored antibody titers to those of
a normal rat (126). After complete hypophysectomy an an-
imal should be completely PRL-deficient if the pituitary were
the only source of PRL. However, Nagy and Berczi (127) used
the Nb2 cell bioassay to show that immediately after hy-
pophysectomy rats have unexpectedly high blood PRL con-
centrations, 10–20% of normal, which then rise to 50% of
normal 8 weeks after hypophysectomy. In normal rats, PRL
had been described as having an effect on hematopoiesis;
however, in the hypophysectomized rat, red cell count, al-
though low, was compatible with life. It was therefore rea-
sonable to conclude that PRL is of marginal importance to red
cell biology. In an important set of experiments Nagy and
Berczi (127) gave anti-PRL antibodies to hypophysectomized
rats to neutralize this residual PRL. After the anti-PRL sera
was given, severe anemia developed and all the animals were
dead within 6 weeks (127). This is very compelling evidence
that significant amounts of PRL are made by extrapituitary
sources and that this local PRL has vital functions, especially
for hematopoietic tissues. Comparable studies using anti-GH
antibodies would be of great interest. The sensitivity of hy-
pophysectomized rats to the lethal effects of estrogens also
needs reevaluating (128).

In humans, the administration of hGH, as it binds to hGH
and human PRL receptors, will activate both GH and PRL
receptors and their signaling pathways. The apparent lack of
effect of hGH administration in humans on immunological
function may be due to a lack of selectivity. The adminis-
tration in humans of hPRL, a specific hPRL receptor ligand,
or V-gene hGH (42), a more specific hGH receptor ligand,
may show different effects than hGH administration. The
prospective availability of a GH antagonist (80, 81) provides
the opportunity to antagonize both local and systemic hGH.
Treatment with a GH antagonist may therefore cause a dif-
ferent immunological phenotype than a deficiency of pitu-
itary GH.

Published data (66) describe the immunological effects of
bromocriptine, a dopamine ergot alkaloid that inhibits the
release of PRL from the pituitary. A bromocriptine-treated
rat has been reported to show a reduced mixed lymphocyte
reaction in vitro and a reduced graft-vs.-host reaction in vivo
(66), presumably due to a suppression of pituitary PRL. This
may not be the case. Bromocriptine appears to have direct
effects in vitro on lymphocyte proliferation in the absence of
added PRL (129, 130). Animal studies in transplantation (131)
and a clinical trial using bromocriptine, in combination with
cyclosporine, as an immunosuppressive regimen, have met
with some success (132). The production of genetically en-
gineered PRL-deficient mice or PRL receptor-deficient mice
may help answer the question of the importance of PRL to
lymphocytes and to immune function.

V. Insulin-Like Growth Factors

A. Background

The chief regulators of the IGF-I levels in blood are GH
status (133) and nutrition (134, 135). GH and IGF-I, acting
together, ensure ordered body growth and therefore are in-
volved in complex interactions with most organ systems,
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tissues, cell types, and also with many growth factors (133,
136). Due to these multiple effects, GH, PRL, and IGF-I can
affect diverse physiological processes, including immune
function, in many ways, both directly and indirectly (133,
136). The GH system regulates and coordinates whole body
growth to ensure that different tissues grow in unison and
are then maintained in an optimal proportion to the rest of
the body. The immune system may be one such tissue. For
example, GH and IGF-I stimulate cartilage growth and
lengthen bones causing statural growth (136). By controlling
the size of the bones in the growing animal, GH and IGF-I
therefore indirectly control the volume of bone marrow and
thus the production of hematopoietic cells (137). Recent ev-
idence shows that IGF-I differs from insulin in that, at phys-
iological concentrations, it also plays a direct and significant
role in regulating hematopoiesis, especially lymphopoiesis
and immune function (36).

B. IGF peptides

IGF-I and IGF-II, peptides of 70 and 67 amino acids, re-
spectively, were named because of the similarity of their
actions to that of insulin (138) and their chemistry to that of
proinsulin (25, 26). A major difference between these hor-
mones and insulin is that the IGF peptides are expressed
almost ubiquitously (139–141). In adult humans, IGF-I and
IGF-II are both present in large amounts in blood, as they are
in fetal rodents, but in adult rodents IGF-II concentrations in
blood are very low (142). It is unclear whether these differ-
ences between IGF-I and IGF-II status result in species-spe-
cific effects on immune function. IGF-I concentrations in
blood are controlled by GH status; IGF-II levels are much
more GH-independent (142). Exons 1 and 2 of the IGF-I gene
contain two distinct promoters that give rise to IGF-I mRNAs
containing either exon 1 or exon 2 (143). Exon 1 mRNA is the
form in fetal tissue, whereas the exon 2 form appears post-
natally when GH responsiveness is acquired (143). These
different forms of IGF-I mRNA perhaps supply either GH-
dependent endocrine IGF-I (exon 2) or local GH-independent
paracrine or autocrine IGF-I (exon 1) (143). In myeloid cells,
IGF-I transcripts have been found to be exclusively initiated
within exon 1, characteristic of extrahepatic IGF-I mRNA
(144). IGF mRNA and peptides are produced by myeloid
cells, particularly by macrophages, in relatively large
amounts (36, 144) and by human peripheral lymphocytes in
small amounts (36, 144, 145). Bone marrow stromal cells also
release IGF-I (146, 147) as do thymic epithelial cells (93),
which can be stimulated by GH in culture (148). Therefore,
there are ample data showing the local production of IGF-I
in lymphoid tissues. However, there is scant evidence de-
scribing the regulation of this locally produced IGF-I or the
relative importance to lymphoid tissues of local or endocrine
IGF-I.

C. Regulation of lymphocyte IGF-I

Considerable amounts of IGF-I are regulated by GH-in-
dependent pathways, as seen by the presence of significant
serum IGF-I levels in GHR-deficient humans (110) and sex-
linked dwarf chickens (149). Treatment with GH increases

IGF-I mRNA in many tissues (140), whereas in other tissues
IGF-I generation is controlled by factors or hormones other
than GH. For example, in the rat uterus IGF-I may be reg-
ulated chiefly by estrogen, rather than by GH (150). Cyto-
kines other than GH affect IGF-I synthesis in lymphoid tis-
sues, e.g. in macrophages tumor necrosis factor-a has been
shown to regulate IGF-I production (151). Tumor necrosis
factor-a and prostaglandin E2 (PGE2) stimulate IGF-I syn-
thesis in macrophages by two separate pathways, with PGE2
stimulating IGF-I synthesis through a cAMP/protein kinase
A pathway (152). The colony-stimulating factors also induce
the expression of IGF-I mRNA in macrophages (153),
whereas the T cell-derived cytokine IFN-g reduces macro-
phage IGF-I mRNA in a time- and dose-dependent manner
(154).

It is therefore likely that lymphocytes are exposed to en-
docrine IGF-I from the circulation, their own autocrine IGF-I,
and perhaps most importantly, in lymphoid organs and bone
marrow, a third source of IGF-I from epithelial cells (148) and
stromal cells (35). The proliferation of thymic epithelial cells
can be stimulated in vitro by both hGH and IGF-I (155) and
the effect of hGH blocked by either an anti-IGF-I or an anti-
IGF-I receptor antibody (93). This effect of hGH may be via
the PRL receptor, rather than the GHR, as rat and bovine GH
(which do not bind to the PRL receptor) appear to be inactive
in this model (156). However, in vivo in the mouse, although
hGH and ovine GH exerted positive effects on thymic de-
velopment, ovine PRL was described as having “the opposite
effect of GH on the thymus” (157). Careful comparisons of
GH and PRL activity using homologous systems are needed
to discover their relative activities on lymphoid tissues. The
effects of GH on the thymus may be due to local IGF-I
generation (148), which would fit with the in vivo data of
IGF-I administration having larger effects than GH on thymic
growth (31). However, it should be remembered that GH and
PRL may have effects, including on lymphoid tissues (158),
that are not mediated via IGF-I generation.

Normal human PBMCs express very low amounts of the
IGF peptides, which can be increased after mitogen stimu-
lation (36, 144, 145). In contrast, macrophages are reported to
produce much more IGF-I especially when they are differ-
entiating to the mature phenotype (36). Human IM-9 lym-
phocytes (B lineage cells) also express IGF-I mRNA, but this
message is not sensitive to treatment with hGH, despite
evidence of GH-induced tyrosine phosphorylation (159). In
contrast, transformed B cells (160) release IGF-I in response
to GH. In human T lymphoblast cell lines, the stimulation of
colony formation produced by GH may be mediated by IGF-I
(161). The growth of T-acute lymphoblastic leukemic (ALL)
cell lines can be slowed by antibodies against either IGF-I or
the Type 1 IGF-I receptor, suggesting autocrine or paracrine
activity of IGF-I in T-ALL cell lines (162).

D. IGF receptors on lymphocytes

The insulin receptor and the Type 1 IGF receptor are both
tyrosine kinase receptors, have similar structures, and both
bind insulin and the IGFs, albeit at lower affinities for the
heterologous ligands (163). The receptors are so similar that
their subunits are believed to be interchangeable so that they
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can naturally form so-called hybrid receptors (163, 164). Both
the IGFs and insulin therefore have similar powerful meta-
bolic effects, but the Type 1 IGF receptor also possesses many
of the differentiating and mitotic effects found for the ligand/
receptor complexes of other tyrosine kinase receptors such as
c-kit/KL and c-fms/colony-stimulating factor-1. Such recep-
tors are important regulators of the differentiation of hema-
topoietic cells (165). As described above, the GH and PRL
receptors are members of another family, the HBP family of
cytokine receptors, which also regulate many processes in
hematopoietic cells (40). As would be predicted from this
discussion, the IGFs and the Type 1 IGF receptor have dif-
ferentiating and mitogenic activities, including in hemato-
poietic cells (35, 133).

A third IGF receptor, termed the IGF-II receptor, is also the
mannose-6-phosphate receptor, whose role in IGF biology is
unclear (166) although it does not appear to transmit a direct
intracellular signal (167). This receptor binds IGF-II with high
affinity but binds IGF-I with about 100-fold less affinity (168).
The IGF-II receptor may act mainly as a functional IGF-II
“antagonist” to regulate local IGF-II cell exposure and may
have tumor suppressor-like properties (167).

Twenty years ago the binding of insulin to resting (169)
and activated (170) lymphocytes was an active area of re-
search. This was followed by the discovery of IGF-I binding
to human leukemic lymphoblasts (171), PBMC, resting and
activated T cells (172, 173), and the cross-linking of IGF-I to
activated T cells (172, 173). This strongly suggested the pres-
ence of IGF-I receptors on lymphocytes. The functional im-
portance of these receptors to lymphocyte activation by mi-
togens was shown by the peak receptor number occurring at
the same time as maximal thymidine incorporation (172). The
use of two-color flow cytometry, staining with antibodies
against the human Type 1 IGF-I receptor, the insulin recep-
tor, and lymphocyte markers, showed that both IGF-I and
insulin receptors are present on most monocytes and B lym-
phocytes, but on only 2% of T lymphocytes (174). Using
similar techniques, IGF-I receptors were found in high num-
bers on monocytes, natural killer cells, and CD41 cells, an
intermediate number on CD81 cells, and a relatively low
number of receptors on B cells (175). Using flow cytometry
and biotinylated des(1–3)IGF-1, IGF-I receptors were de-
tected on rat T cells, B cells, and monocytes with the expres-
sion on resting CD41 cells being greater than on CD81 cells
and increasing severalfold after ConA stimulation (176).
Why there are discrepancies between these studies is unclear.
In another study, T lymphocyte activation, by PHA or the
OKT-3 monoclonal antibody (which binds to the CD-3 an-
tigen of the T-cell receptor), led to peaks in IGF-I receptor
mRNA after 20–60 h and IGF-I receptor content after 48–72
h (177). If the increased IGF receptor number caused by
mitogens is physiologically relevant, the addition of IGF-I
should increase proliferation caused by the mitogens. This
has been shown for human peripheral lymphocytes (178) and
thymocytes (179). Freshly isolated human peripheral lym-
phocytes have been shown to express IGF-I receptors by
RT-PCR (145), and human T lymphoblast cell lines possess
IGF-I receptors (180). Some of the differences between the
data sets for IGF receptors on peripheral lymphocytes could
be methodological, either due to differences between rodents

and humans or to lymphocyte receptors being atypical IGF
receptors. For example, it has been claimed that the majority
of the IGF-I receptors on human IM-9 lymphocytes (B lineage
cells) are atypical IGF-I receptors (150).

IGF-I receptors have also been identified on rodent (181)
and human thymocytes (179, 182). The signal transduction in
normal human thymocytes and T cells appears to be similar
to that in other tissues, e.g. it involves the phosphorylation of
insulin-receptor substrate-1 (IRS-1) (182). In human thymo-
cytes, DNA synthesis can be stimulated directly by IGF-I in
vitro, and DNA synthesis initiated by the mitogen PHA can
be potentiated by adding physiological concentrations of
IGF-I (179).

E. IGFBPs

The IGFs also differ from insulin in that in vivo they are
bound (Fig. 1) to a family of at least six specific, soluble,
high-affinity IGFBPs, termed IGFBPs 1–6, which are unre-
lated structurally to the IGF receptors or the insulin receptor
(133). It is possible that novel IGFBPs remain to be discov-
ered. In fact, mac25 (183) and PSF (184) or ESM-1 (185) show
marked structural similarity to the IGFBPs. The binding pro-
teins differ in their modes of regulation and perform a variety
of functions. For example, the majority of the IGF in blood
is bound to IGFBP-3 (Fig. 1), and this complex is bound by
a third protein, the acid-labile subunit, to form a large stable
150-kDa complex (186). IGFBP-3 and acid-labile subunit are
regulated primarily by GH, have a slow clearance from
blood, and provide an accessible pool and reservoir of IGF
in the blood (133). In contrast, IGFBP-1 concentrations in
blood can change rapidly, are regulated by insulin, and may
serve an acute metabolic role to bind and inactivate unbound
IGF (187).

Many tissues and cell types secrete IGFBPs, including he-
matopoietic cells. By RT-PCR, normal human peripheral
lymphocytes express mRNAs for the IGF-I receptor, the
IGF-II receptor, IGFBP-2 and -3, but not the IGF peptides
(145). After stimulation with PHA they express IGF-I, IGF-II,
and IGFBP-4 and -5, in addition to IGFBP-2 and -3 (145).
Ligand blotting of lymphocyte-conditioned media with la-
beled IGF-I revealed 34-, 43-, and 49-kDa IGFBPs. The ad-
dition of estrogen, progesterone, IGF-I, or GH did not affect
secretion of IGFBPs by lymphocytes (145). IM-9 cell-condi-
tioned medium has also been shown to contain a 30-kDa
IGFBP (141). Murine stromal bone marrow cells, which sup-
port developing hematopoietic cells, not only produce IGF-I
but also secrete IGFBPs (147). By ligand blotting (188), the
most prominent IGFBPs were IGFBP-4 and IGFBP-5
whereas, by RNase protection assay, murine stromal cells
expressed IGFBP-2 to IGFBP-6 mRNAs, with IGFBP-4, IG-
FBP-5, and IGFBP-6 mRNAs being predominant. These au-
thors (188) suggest that IGFBPs 4–6 are released by stromal
cells to modulate the hemopoietic response to IGFs. Sheep
thymus cells also produce IGFBPs in culture, secretion is
increased by mitogen stimulation, and medium from these
cells also degrades recombinant human [125I]IGFBP-3, sug-
gesting IGFBP-3 protease production (189).

IGFBP-2 is the predominant IGFBP during fetal life (as
IGFBP-3 is in the adult) and is expressed in a range of tumor
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cell lines (190). Significantly increased serum levels of IG-
FBP-2 have been detected in the sera from ALL and non-
Hodgkin-lymphoma patients (191). At the time of diagnosis
with leukemia, non-Hodgkin’s lymphoma, or solid tumors
the serum concentrations of IGF-I, IGF-II, and IGFBP-3 are
very low in children (192). Such low concentrations of these
proteins are normally seen only in patients with GH defi-
ciency or during starvation (192). Somewhat surprisingly,
IGFBP-2 levels were elevated (192), and it seems that the
IGFBP-2 is produced by the tumor cells (193). Leukemic T cell
lines, but not B cell lines, produce large amounts of IGFBP-2
and express mRNA for IGFBP-2, confirming data from the
patients with tumors (193). The biological significance of this
discovery is unclear.

Some evidence indicates that the IGFBPs regulate IGF
action in lymphoid tissues. Preliminary data suggest that
mice that are null for the IGFBP-2 gene show no gross phe-
notype except for a reduced spleen size, to 50% of normal
(194). The above evidence, of IGFBP-2 production by T cells
but not B cells, suggests that the distribution of lymphocyte
subsets in these null mice may be altered. Overexpression of
IGFBP-1 in transgenic mice has led to inconsistent effects on
spleen size (195, 196), whereas overexpression of IGFBP-3
causes increased spleen size (197). An intriguing recent paper
(198) shows that activation of the tumor suppressor gene p53,
which induces apoptosis, stimulates IGFBP-3 expression. It
is possible that the IGF system plays a role in the regulation
of apoptosis (Fig. 4) via p53 stimulating IGFBP-3, leading to
a local inhibition of IGF-I action with the induction of apo-
ptosis. This provides a mechanism by which, in lymphoid
tissue, locally produced IGFBPs, by regulating the availabil-
ity of IGF-I, may help control cell division and survival.

VI. Actions of IGF-I

A. Bone marrow

This section will focus on the effects of IGF-I on B cell
development, which is comparatively well characterized

compared with its effects on other hematopoietic lineages.
Hematopoiesis takes place in bone marrow in the intersinu-
soidal spaces of the medullary cavity with multiple cell types
being in close association with the developing lymphocytes.
For example, in long-term culture, the differentiation and
growth of B cells require the presence of fibroblastic bone
marrow stromal cells, which produce many growth factors
(199). These stromal cells, which include macrophages, pro-
duce factors that act in a paracrine manner to regulate B cell
lymphopoiesis (146). Factors affecting B cell development
have been categorized by Dorshkind (199) as belonging to
four categories. First, proliferation factors regulate develop-
ing B lineage cell growth, including IL-3 and IL-7. Second,
proliferation cofactors synergize with cytokines that stimu-
late growth but have little intrinsic activity, including c-kit
ligand and IGF-I. Third, differentiation factors potentiate B
cell maturation and include IGF-I, c-kit ligand (Kl), IL-7, and
ftl3 ligand. Fourth, negative regulators inhibit B cell devel-
opment and include IL-1, IL-3, IL-4, interferons, and estro-
gens.

IGF-I has two of these major effects on B cell development
(Fig. 5); it acts as a differentiation factor to potentiate pro-B
to pre-B cell maturation (200), and it also acts as a B cell
proliferation cofactor to synergize with IL-7 (201). The first
indication that B cell differentiation factors exist came from
clinical studies in infants with cyclic neutropenia in which
the production of erythroid and myeloid cells oscillates. In
the marrow of these children, pre-B cells also oscillate as does
the presence in their urine of a factor that in vitro stimulates
normal human marrow cells to generate pre-B cells (202, 203).
The factor specifically affects differentiation as this occurs in
the absence of proliferation. A bone marrow stromal cell line
was found to release a similar activity. This activity was
identified as IGF-I based on the use of anti-IGF-I antibodies,
antisense to IGF-I, and that recombinant IGF-I could substi-
tute for the activity (200). In the presence of IGF-I, pro-B cells
mature to pre-B cells, as judged by their ability to proliferate
in response to IL-7 (204). As described above, there is evi-
dence that macrophages are a rich source of IGF-I and that
bone marrow stromal cells also produce IGFBPs (147). The
treatment of mice with rhIGF-1 confirmed these observations
(Fig. 6) as it increased the number of pre-B and mature B cells

FIG. 4. Possible mechanism for the antiapoptotic effects of IGF-I and
the apoptotic effects of IGFBP-3. Injury can induce the expression of
the tumor suppression gene p53, which in turn may increase the
expression of IGFBP-3. Because IGF-I is bound by IGFBP-3, this
might prevent the activation of the IGF-I receptor and allow apoptosis
to proceed. In contrast, exogenous IGF-I can allow cell survival.

FIG. 5. The differentiative and proliferative actions of IGF-I during
the stages of B cell development. IGF-I is unique in that by itself it
stimulates the differentiation of Pro-B cells. IGF-I also acts as a
proliferative cofactor throughout B cell development.
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in bone marrow (205). The mature B cell remains sensitive to
IGF-I as immunoglobulin production is also stimulated by
IGF-I in vitro and in vivo (206).

The activity of IGF-I as a cofactor (201) affecting IL-7-
induced B cell proliferation is not unique. IGF-I acts as a
cofactor in many situations. For example, traditional GH-like
responses, such as the growth of the whole body, require
optimal IGF-I levels for GH to produce maximal effects, and
vice versa (99, 207). This has been amply shown in humans,
in whom high dose IGF-I administration suppresses GH,
leading to a loss of IGF-I efficacy unless GH is coadminis-
tered (33). In the periphery, IGF-I enhances the proliferative
response of lymphocytes to mitogens (208). During or after
immune system damage, which is commonly associated with
a catabolic state, systemic and local IGF-I levels are likely to
be low. Therefore, for optimal recovery, supplementing this
co-factor seems logical to stimulate anabolism and immune
reconstitution. There have, as yet, been few animal studies
using IGF-I in combination with other growth factors, except
for studies with IGF-I and GH (207). In the Snell dwarf
mouse, treatment with bovine GH restores many measures
of lymphocyte function, but pre-B cell numbers in bone mar-
row are not restored by bovine GH or ovine PRL (209).
Further studies are needed in Snell mice to explain which
hormones cause this B cell deficiency and thereby discover
the factors that are important to normal B cell development.

The effects of IGF-I on T cell development are not as well
characterized, although thymic T cell progenitors proliferate
in response to IGF-I before they respond to any other known
cytokine (210). It is also clear that thymic epithelial cells
produce IGF-I, functional IGF-I receptors are present on thy-
mocytes (181), and the administration of IGF-I to animals
affects the number of T cells in the thymus (92). There is as
yet no information on the thymic role of IGF-I in processes
of positive or negative selection of thymocytes. It has been
claimed that rhGH can induce significant migration of rest-
ing and activated human T cells (211). These authors spec-
ulate that, by directly altering their adhesive and migratory

capacities, GH may play a role in normal lymphocyte recir-
culation. This finding is as yet unconfirmed and raises the
question of the activity of IGF-I in these assays.

B. Effects on lymphoid organ size

An involvement of the somatomedins (IGFs) in the regu-
lation of lymphoid organ growth was suggested when IGF-I
was administered to hypophysectomized rats because it
caused preferential thymic and splenic growth to a greater
degree than did GH (31). Such studies were then extended
to the mutant dw/dw rat, which showed a similar dispro-
portionate growth of lymphoid tissue (30) whereas in normal
aged 18-month-old rats, IGF-I stimulated thymic growth
(Fig. 7) and increased lymphocyte numbers (212). Figure 8
shows the effect of 28 days treatment with rhIGF-1, rhGH, or
rhIGF-1 plus rhGH on thymic architecture. It is clear (Fig. 7)
that rhIGF-1, and to a lesser extent rhGH, stimulates thymic
growth. Because the rat is not the preferred species for im-
munological studies, the mouse was selected as an experi-
mental animal. At the time, there was very little information
on effective doses or dosing regimens of IGF-I in the mouse
apart from some early anabolic studies using somatomedin
preparations in mutant dwarf mice (213) and isolated more
recent studies with rhIGF-1, also in mutant mice (214). In-
stead of using GH-deficient animals, the effects of IGF-I were
studied in normal, 9-month-old, retired breeder “middle-
aged” male mice (92).

Older animals were chosen with the hope that their rela-
tively impaired immune status could be improved by treat-
ment with rhIGF-1, as had been seen in aged rats where GH3
cell implantation reversed age-related thymic atrophy (91). A
range of doses of rhIGF-1 (0.25, 1, 4 mg/kg/day) were given
by subcutaneous minipump infusion to avoid the need for
the very frequent injections that were shown in growth stud-
ies to be most effective in mice. These doses doubled total
serum IGF-I concentrations, induced a dose-related weight
gain, and had minor effects on blood glucose, yet doubled the
weight of both the thymus and spleen (92). Therefore, the
effects of rhIGF-1 seen in GH-deficient rats could be dupli-
cated in normal mice.

The administration of IGF-I has been shown to increase the
size of lymphoid organs in several species. In rats and mice
numerous studies report increases in lymphoid tissue mass
with IGF-I administration (36). In 1-yr-old sheep, an 8-week
regimen of three daily injections of rhIGF-1 (50 mg/kg) in-
creased spleen weight by 40% (215). In the rabbit, cat, and
dog similar effects of IGF-I have been observed (R. Clark,
unpublished observations). In the rhesus monkey, IGF-I also
expands lymphocyte numbers (216). This finding is dis-
cussed in more detail in Section IX. Lymphoid organ expan-
sion has been reported in children with GH insensitivity who
have been treated long-term with rhIGF-1 (110). This is the
first direct confirmation that the immunological effects of
administering IGF-I to animals are also present in humans.

Mice transgenic for GH or IGF-I have enlarged lymphoid
organs (217). An effect of endogenous IGF-I on lymphoid
tissue growth was presumed in a large study (218) where
lines of mice were selected over many generations on the
basis of high or low serum IGF-I levels. The high IGF-I line

FIG. 6. Treatment with rhIGF-1 (4 mg/kg/day, sc infusion for 2
weeks) more than doubles the number of Pre-B cells (B2201, sIgM2)
in the bone marrow of normal adult mice. Means and SDs are shown.
[Derived from Ref. 205.]
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had spleens 30% heavier than the low IGF-I line. Thymus
weights were also greater in high-line than in the low-line
mice, and developmental patterns of thymus weight closely
paralleled those of circulating IGF-I (218).

Compared with the ample data on the effects of IGF-I, the
effects of IGF-II on lymphopoiesis are not as well studied
(219, 220). IGF-II binds less well to the Type I IGF-receptor;
therefore, higher concentrations are probably needed (al-
though much less than insulin) to mimic the effects of IGF-I.
However, there are reports, based on IGF-II transgenic mice,
that IGF-II also has immune modulator properties (219, 220).
In some situations, in some species, IGF-II may play a role in
lymphoid tissue function. Adult humans, unlike rodents,
have blood concentrations of IGF-II equal to or greater than
those of IGF-I. The regulation of IGF-II production is an
active area of research and has produced surprising findings.
For example, IGF-II production may be controlled by a ra-
pamycin-sensitive pathway (221).

C. Effect of in vivo treatment on lymphocyte number and in
vitro function

In mice treated with rhIGF-1 for 7 or 14 days, analysis of
the lymphocyte subsets showed that a large part of the in-
creased spleen weight was due to a doubling in the number
of both T- and B lymphocytes (92). The increased thymic
mass was also due to a doubling in Thy 1-positive cells (T
lymphocytes) and an increase in peanut agglutinin receptor

binding (a marker for immature thymocytes), but there were
no changes in Thy-1, CD4, or CD8 expression on single or
double positive thymocytes. In the spleen, there was a pref-
erential increase in the number or sIg1 cells (B-lymphocytes)
compared with T lymphocytes (92). For the splenic T lym-
phocytes, the numbers of both CD4- and CD8-positive cells
were increased. Peripheral lymph nodes were also increased
in size and lymphocyte number but in peripheral blood lym-
phocyte number decreased by 20%, whereas neutrophil
number increased. There were no changes in other blood cell
numbers (92).

To test lymphocyte function, cells from spleen and lymph
nodes were incubated in vitro with mitogens (92). After 14
days of treatment with rhIGF-1, the responses to ConA (T
cells), lipopolysaccharide (LPS, B cells), and pokeweed mi-
togen (both T- and B cells) were increased 4-fold in spleen
and doubled in lymph nodes. Cells from rhIGF-1-treated and
control mice showed identical responses in a mixed lym-
phocyte response to allogenic splenocytes, suggesting un-
changed antigen-specific T cell responses. To test B cell func-
tion, mice were immunized with dinitrophenyl-ovalbumin
(DNP2OA) and given a boost 35 days later and treated with
rhIGF-1. When tested in vitro, splenocytes from IGF-treated
mice had a doubling of their basal and antigen-stimulated
immunoglobulin production. Therefore, there was clear ev-
idence that treatment with rhIGF-1 increased both the num-
ber of lymphocytes and their function (92). In comparison,
injections of hGH were much less potent and effective (143).

FIG. 7. Thymic histology in 18-month-
old male rats treated for 4 weeks with
either excipient (panel A), rhIGF-1
(panel B, 1.1 mg/rat/day, sc minipump
infusion), rhGH (panel C, 1 mg/rat/day,
daily sc injection), or rhIGF-1 plus
rhGH (panel D). Formalin-fixed hema-
toxylin-eosin-stained sections. The hor-
mone treatments, particularly rhIGF-1,
caused a dramatic expansion and reju-
venation of the involuted thymus of
aged rats [R. Clark, unpublished data].
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D. Functional effects of IGF-I in vivo: antibody responses

It was clear from the literature (222) and our own studies
that B cells are preferentially responsive to rhIGF-1 and show
an enhanced immunoglobulin production in vitro (92). To
discover whether IGF-I enhanced immune function in vivo,
immunization experiments (Fig. 8) were perfomed in retired
breeder mice using DNP2OA as the antigen (206). In the first
experiments, mice were treated with rhIGF-1 for 14 days,
commencing at the time of an antigen challenge, and showed
a dramatically enhanced primary antibody response, as mea-
sured by the serum anti-DNP IgG concentration assayed by
ELISA. This protocol was then repeated, but a secondary
immunization was given after 21 days to test the effect of
rhIGF-1 on the memory response to DNP2OA (206). The
anti-DNP IgG concentration at the peak of the secondary
response was 4-fold higher in mice treated with rhIGF-1. A
second 14-day course of rhIGF-1 treatment (begun 8 weeks
after the first course), initiated when lymphoid organ cell
numbers had returned to baseline, also increased lymphoid
organ cell number. Lastly (Fig. 8), the ability of rhIGF-1 to
enhance the antibody response to a suboptimal dose of an-
tigen was tested (206). In this study the mice were treated
with rhIGF-1 twice, at the primary immunization and then
after 5 weeks at the secondary immunization. Primary and
secondary responses to a suboptimal dose of antigen were
greatly enhanced, reaching levels similar to those induced by
an optimal antigen dose in excipient treated animals (206). In
diabetic rats, IGF-I treatment did not improve the primary
antibody response to an antigen challenge (223). It is unclear
why this study in rats failed to show the effects on antibody
generation seen in mice. However, the older literature (126)
shows that in hypophysectomized rats, which have very
suppressed antibody responses, there is a dramatic enhance-
ment of antibody generation after treatment with GH.

E. Immune reconstitution

IGF-I treatment increases T and B cell number and im-
proves antibody responses, suggesting that it might have a
normal role in B and T cell function. To address the site(s) of
action of IGF-I, mice were lethally irradiated and then re-
constituted with a transplant of 10 million bone marrow cells
from syngeneic donors (205). The catabolic effects of the
radiation were attenuated by IGF-I with body weight loss
reduced, spleen and thymus weight improved, and splenic
T cell number and function improved 23 days after trans-
plantation. Treatment with rhIGF-1 also doubled thymus
weight, and thymic cell count tripled. In this model IGF-I
increased the rate of peripheral lymphocyte repopulation by
acting directly on bone marrow progenitors and by stimu-
lating the entry of mature peripheral splenic lymphocytes
into S phase of the cell cycle (205). After chemically destroy-
ing lymphoid tissues, similar restorative effects of rhIGF-1
have been shown in rats (224). In mice with severe combined
immune deficiency (SCID), GH has also been shown to im-
prove T cell engraftment after the transfer of human or mu-
rine cells (225). It is unclear whether IGF-I is involved in these
effects of GH, although in our hands GH is much less ef-
fective than IGF-I at promoting immune reconstitution after
bone marrow transplantation.

F. Mechanism of action: apoptosis

Programmed cell death (apoptosis) is fundamental to
many levels of the immune system from the development of
precursor cells in bone marrow, selection in the thymus, to
deletion of mature cells in the periphery (226). How IGF-I
expands B and T cell number is unclear (199); it could act
positively to potentiate differentiation or it could act pas-
sively to enhance survival, e.g. by reducing apoptosis (Fig. 9).
IGF-I has marked anti-apoptotic effects (227) in many tissues
and cell types, which may be important in normal growth
and differentiation, in tumor growth (228), and for the pro-
tection of tissues from damage. IGF-I has been especially
impressive at protecting the kidney (229), heart (230), and
brain (231) from damage after ischemic injury. This protec-

FIG. 8. Antibody production in mice immunized with 0.1 mg DNP2OA
at week 0, then boosted at week 5. In addition, the mice were treated
with either excipient or rhIGF-1 (4 mg/kg/day) for 2 weeks after each
immunization. Treatment with rhIGF-1 enhanced antibody produc-
tion, especially after the secondary immunization. Means and SDs are
shown. [Derived from Ref. 206.]

FIG. 9. A proposed scheme of how the GH/IGF-I axis might modulate
apoptosis. An insult or injury induces GH resistance and IGF resis-
tance, which adrenal steroids exacerbate. The inhibition of the effects
of GH and IGF-I probably enhances the likelihood of damaged cells
dying from apoptosis.
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tion may, in part, involve anti-apoptotic mechanisms. The
bulk of evidence for the identification of IGF-I and the Type
I IGF receptor, as powerful inhibitors of apoptosis and sur-
vival factors for cells, comes from the field of tumor biology
(228). Apoptosis is regulated by a rapidly growing array of
families of signaling molecules; as a consequence, the path-
way(s) affected by IGF-I will be described in the future. For
example, in several interleukin 3 (IL-3)-dependent cell lines,
IGF-I can prevent apoptosis after IL-3 withdrawal (232). In
some cell types, even where it is a poor mitogen, IGF-I is the
key antiapoptotic growth factor (227); therefore, it is reason-
able to assume that IGF-I does signal through apoptotic
pathways in lymphoid cells. There is, as yet, no direct pub-
lished evidence that IGF-I increases lymphoid cell number in
animals by inhibiting apoptosis, but a theoretical framework
for such activity can be postulated, as illustrated in Fig. 9.

VII. IGF-I in Different Physiological States

A. IGF-I in pregnancy

It is well established (233) that the thymus atrophies when
blood concentrations of estrogen rise. Conversely, thymic
involution is delayed by castration. The involution of the
thymus in pregnancy is dramatic. Gross thymic weight falls
from about 40 mg to 10 mg by day 17 of pregnancy in the
mouse, due to both cell death and the specific loss of cortical
CD41 CD81 lymphocytes (234); while the cortex shrinks the
medulla is rearranged. These changes probably contribute to
the immune suppression of the mother to paternal and fetal
antigens. Prevention of lactation causes thymic repopulation,
which takes about 3 weeks (234). Clearly, pregnancy and
lactation are physiological states in which the GH and IGF-I
systems are very active, and these effects of steroids on the
thymus may involve interactions with the GH and IGF sys-
tems. An interesting issue is the apparent immune reconsti-
tution of the weanling Snell-Bagg mice if weaning is delayed
from 21 to 30 days of age (235). Whether this effect is due to
dwarf mice being particularly sensitive to stress at this age
or is due to factors in milk is unknown. The administration
of T4 to Snell-Bagg mice has significant effects on lympho-
poiesis (236), and recent discoveries in animals (237) and
humans (238) show that hormones, e.g. T4, can be absorbed
from milk, suggesting that maternal influences on immune
function persist beyond pregnancy and may also be hor-
monal in nature.

In pregnant mice the number of immature B-lymphocytes
(sIgM1, sIgD2, heat-stable antigen, HSA hi) in bone marrow
and spleen are reduced, but the number of mature B cells in
peripheral sites is not affected. The number of immature B
lymphocytes is also reduced in normal mice by estrogen
treatment (239) while in hypogonadal mice the number of
these cells is greatly elevated (240). Kincade et al. (233) state
that for estrogens to affect B cell precursors stromal cells must
be present, inferring that stromal factors mediate their ef-
fects. IGF-I has been shown to be produced by marrow stro-
mal cells and to stimulate B cell development (200, 201, 205).
In some systems, including bone, estrogens are known to
inhibit the activity of GH (241), while in the uterus estrogens
synergize with the ability of GH to stimulate IGF-I mRNA

(242). In lymphoid tissues steroids may also modify the ac-
tivity of the GH system. The reverse is also true, as GH can
affect estrogen receptor (ER) levels (243). In adult female rats,
hypophysectomy reduced hepatic ER levels 10-fold and
treatment with PRL had no effect, but continuous infusion of
GH to hypophysectomized animals tripled ER and doubled
ER mRNA levels. These authors (243) state that GH is the
most important hormone affecting ER protein levels. The
interactions between the GH system and sex steroids in bone
marrow stromal cells and their influence on B cell develop-
ment may lead to a more general understanding of the mo-
lecular and signaling interactions between steroids and the
GH system.

Therefore, at the level of the marrow, thymus, and spleen,
reproduction and reproductive hormones have profound ef-
fects. It is likely that the GH and IGF-I systems are involved
in these processes, which may help explain the remarkable
inhibition of maternal immunity to fetal antigens and thus
how the embryo escapes damage from the maternal immune
system (233). Knowledge of these natural phenomena may
aid in devising strategies for allogenic transplantation and
also help to explain gender differences in autoimmune dis-
ease.

B. IGF-I in diabetes

The marked thymic atrophy in streptozotocin-diabetic rats
can be reversed by treatment with insulin or IGF-I (223). In
this situation, insulin probably corrects the thymic atrophy
indirectly, by normalizing the metabolic derangements, in-
cluding causing glucose uptake into tissues. However, treat-
ment with IGF-I can restore thymic size without normalizing
blood glucose (223). There is a growing interest in IGF-I as
a glucose-regulatory hormone with a view to its use as a
therapeutic agent in diabetes (138, 244). The use in Type I
diabetes of IGF-I, a potentially immunologically active mol-
ecule that has even been implicated in the development of
this disease (245), should proceed with caution. However, a
recent study (246) shows that the treatment of nonobese
diabetic mice (NOD) with IGF-I has protective, rather than
deleterious, effects. Nondiabetic mice received 7 million ac-
tivated T cells from diabetic NOD mice, and 12 of 21 became
diabetic; only six of 24 mice treated with IGF-I became di-
abetic and the IGF-I-treated mice retained 49% of their islets
intact while in the control mice only 1.6% of the islets were
intact. These authors state (246) that IGF-I has protective
effects in autoimmune diabetes and that this opens new
preventive strategies in human Type I diabetes. Careful rep-
etition of these important experiments is needed as are ex-
periments in animal models of other autoimmune diseases to
discover whether this is a disease-specific effect of IGF-I or
whether IGF-I has therapeutic potential in a range of auto-
immune diseases.

C. IGF-I in gastrointestinal disorders

GH and IGF-I affect the growth and function of the gas-
trointestinal tract in animals (247, 248) and in humans (249).
For example, after 80% gut resection in rats, treatment with
IGF-I can cause the remaining gut to hypertrophy and to
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show an increased function (247). After a 50% burn in rats,
gut mucosal atrophy and increased permeability were asso-
ciated with a 89% incidence of bacterial translocation to mes-
enteric lymph nodes (250). However, if the rats were treated
with IGF-I (3 mg/kg/day, sc, minipump), gut mucosal
weight increased, and the incidence of bacterial translocation
was reduced to 30% (250). These beneficial effects of IGF-I
treatment on gut structure in burned rats have been con-
firmed (251). IGF-I may inhibit bacterial translocation by
affecting both gut integrity and the gut’s immune response.
In a rat model of cecal ligation and sepsis, combined with
total parenteral nutrition, IGF-I (4 mg/kg/day for 3 days)
increased gut metabolism, reduced mucosal atrophy, and
reduced the hepatic portal blood endotoxin concentrations
(252). The authors conclude that IGF-I may play a role in
maintaining gut barrier function in sepsis (252). A recent
report (253) tested the efficacy of GH and IGF-I in a murine
model of sepsis. Normal female mice were pretreated (three
times a day, sc) with rhIGF-1 (2.4 or 24 mg/kg/day), rhGH
(0.48 and 4.8 mg/kg/day), or excipient for 6 days, then
challenged with Escherichia coli (1 3 108 units, ip). IGF-I and
GH significantly prolonged survival, reduced bacterial
counts in the peritoneum, and suppressed cytokine produc-
tion. The authors conclude that GH and IGF-I improve host
defenses via immunomodulation in murine sepsis (253).
However, in another model of septic shock, the opposite
result has been reported (254). Normal rats were pretreated
for 3 days with an infusion of rhGH (192 mg/day, sc,
minipump) or excipient and then given endotoxin LPS (5
mg/kg). The infusion of rhGH in this study (254) potentiated
endotoxinemia, as measured by liver and kidney enzymes
and metabolites in blood 14 h later. Why this study produced
such discordant results is unclear. The evidence therefore
suggests that IGF-I may play a role in maintaining gut struc-
ture and function and that treatment with IGF-I may be
useful therapeutically to improve gut function when it is
compromised.

A reason why IGF-I status may be important in sepsis is
that bacterial endotoxins reduce blood IGF-I levels (255, 256).
The intravenous administration of LPS to rats dramatically
decreases serum IGF-I to 50% of normal in only 4 h due to
a direct effect of LPS on the liver (256). If IGF-I is important
to gut barrier function, such an immediate effect of endotoxin
on blood IGF-I concentrations would further exacerbate gut
failure and allow even more bacterial translocation. There is
much to understand in this promising new area of research,
including the effects of IGF-I on the largest lymphoid system
in the body, that of the gut.

D. IGF-I action in polycythemia vera

It is interesting and instructive to consider recent devel-
opments regarding the effects of IGF-I on erythropoiesis.
Erythroid cell number is primarily regulated by erythropoi-
etin but is impacted by many other growth factors. For ex-
ample, hypophysectomized rats show low blood cell counts
(3) for erythroid, myeloid, and lymphoid cells, and there is
a deep literature showing effects of both GH, PRL, and IGF-I
on all hematopoietic lineages (15, 35, 137, 257–259). However,
mice with disrupted IGF peptides or IGF-receptors have

normal erythropoiesis (260, 261). The significance of IGF-I in
hematopoiesis has also been questioned (262), chiefly on the
basis of IGF receptor-positive bone marrow cells lacking
clonable hematopoietic progenitor cells (262). These authors
(262) also refer to the lack of effect of GH deficiency on blood
morphology. Recent findings (263, 264) in polycythemia vera
(PV) will renew interest in the role of IGF-I in hematopoiesis.
PV is a chronic myeloproliferative disease of a deregulated
clonal expansion of a pluripotent stem cell giving rise to
granulocytosis, thrombocytosis, and erythrocytosis (265),
which is not erythropoietin dependent. Correa et al. (263)
developed a serum-free system culture system for circulating
erythroid progenitors and discovered that PV cells are 100-
fold more sensitive to IGF-I. An antibody against the IGF-I
receptor blocked IGF-I stimulation (263). Why the IGF-I re-
ceptor in PV is supersensitive to ligand is unknown. These
unexpected findings should be seen as instructive in terms
of the role of IGF-I in lymphopoiesis and disease. It is likely
that diseases or deficiencies of the immune system will be
found that are caused by aberrations in the local GH, PRL,
and IGF axes in hematopoietic cells. What is recognized by
the endocrinologist as systemic GH, PRL, or IGF deficiency
or excess may be of little importance to the hematologist to
whom the paracrine or autocrine mechanisms regulating the
same molecules or their receptors may be more relevant.

VIII. GH/IGF-I as Antistress Hormones

For efficient homeostatic regulation, most physiological
systems are regulated by inhibitors and stimulators. This
section will explore the hypothesis that, physiologically, the
adrenal steroids are the major immunosuppressive hor-
mones while the somatogenic hormones are a major coun-
terbalancing immunostimulatory system (266). It is also pro-
posed (Fig. 9) that, in situations of extreme stress or where
the immune system is damaged, the somatogenic hormones
also have a repair function.

As described above, IGF-I is “insulin-like” in that it is
sensitive to nutritional status. During the lifespan in most
species, and certainly in most of mankind, periods of star-
vation are common, and so hormonal systems have evolved
to manage this state. Some of the effects of undernutrition
may be mediated by IGF-I (135). In nutritional stress or injury
(Fig. 9) the hypothalamic-pituitary-adrenal axis is activated
so that glucocorticoid production rises leading to many
changes in the GH/IGF axis. A GH resistant state is induced
so that local and systemic concentrations of IGF-I fall, which
is exacerbated by a fall in systemic IGFBP-3 because of re-
duced production and increased protease activity (Fig. 1).
The amount of IGFBP-1 and IGFBP-2 in the circulation rises
(133), and the induction of p53 may increase local BP-3 con-
centrations so that local IGF resistance also occurs. This com-
bination of GH and IGF resistance is associated with anab-
olism being suppressed and subsequently bone marrow
depletion and perhaps immune function being compro-
mised. It is unknown whether IGF-I can be used to assist in
the protection of the immune system during undernutrition.
Replacement of IGF-I during undernutrition can, at best, only
partly protect against these deleterious effects. However, the
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anabolic hormones have a clear role in recovery from stress
and undernutrition and in reconstituting the immune sys-
tem, as shown by studies in radiated mice (205). It is unclear
whether pretreatment with IGF-I would protect lymphoid
tissues from the damage caused by radiation or other
stresses, as it does in other damaged tissues such as kidney
(229), heart (230), and brain (231).

There are animal studies suggesting that anabolic hor-
mones can counteract some of the anticatabolic and immu-
nosuppressive effects of administered glucocorticoids. There
is evidence that GH, either given by injection or endog-
enously elevated by stress, can in the rat partly reverse the
leukopenia (267) and the reduced antibody levels (268)
caused by steroids. More recent studies (101) in mice have
shown that rhGH, ovine PRL, or bovine GH (24 mg/day, sc
osmotic pump) all reversed corticosterone (50 mg/day)-in-
duced suppression of spleen lymphocyte responses to T cell
mitogens. In contrast, the thymic atrophy caused by corti-
costerone was not reversed by rhGH. These authors (101)
also show a suppression of liver PRL receptor levels by
corticosterone, their recovery by the lactogenic hormones,
and a relationship with the immune responses observed.
They propose a similar effect of corticosterone on lympho-
cyte PRL receptors. In a more recent study in C57/Bl/6J mice,
the coadministration of rhGH (0.8, 4, 8 IU/kg/day) with
prednisolone (10 mg/kg/day, ip, for 10 days) was found to
prevent the reduction in thymic and splenic weight and cell
number caused by the steroid (269). Whether this is a prac-
tical treatment must be balanced against the diabetogenic
effects of high-dose GH exacerbating the metabolic risks
(insulin resistance, hyperglycemia, hypertriglyceridemia) of
glucocorticoid treatment (270). On the other hand, IGF-I
treatment in humans, because it suppresses GH production
(271) and has insulin-like rather than diabetogenic effects
when given in combination with prednisone (272), should
have fewer adverse metabolic effects.

In the rat, the whole body weight loss caused by dexa-
methasone (20 mg/rat/day, by sc minipump) was partly
inhibited by cotreatment with IGF-I for 7 days (247). In these
studies, IGF-I could restore spleen weight almost back to
normal, but the thymus did not regrow on a gross weight
basis (247). These reports of differences between GH and
IGF-I in their ability to reduce thymic involution in rodents
are worthy of further investigation.

Lymphopoiesis may be regulated normally by local IGF-I,
whereas for the task of repopulating marrow after damage
it may be necessary to access the larger pool of IGF-I present
in blood. Systemic IGF-I may be required in a damaged
marrow or thymus as the supporting stromal cells, which
produce IGF-I locally, will be damaged reducing the supply
of locally produced IGF-I. Therefore, in different situations
either endocrine or local IGF-I production may have differing
contributions to lymphopoiesis. Studies using transgenic and
IGF-I and IGF receptor null mice (260, 261, 273) will help shed
light on the relative contribution of locally produced IGF-I
and endocrine IGF-I in the regulation of immune function.
Mice with tissue-specific expression of IGF-I crossed on to an
IGF-I null background may help establish the relative im-
portance of IGF-I of local and endocrine origins not only for
lymphopoiesis but for its effects in general.

IX. Therapeutic Potential

A recent study (216) suggests that the immunological ef-
fects of GH or IGF-I treatment in rodents may also be present
in primates. In aged (16- to 20-yr-old) rhesus macaque mon-
keys, infusions of rhGH and rhIGF-1 for 7 weeks affected the
phenotype of lymphocytes in blood, spleen, and lymph
nodes as measured by flow cytometry (Fig. 10). Quite dif-
ferent effects of treatment were seen in the blood compared
with the peripheral lymphoid organs. In blood, the percent
CD4 cell count and the CD4/CD8 ratio fell with rhIGF-1
treatment but were normalized by rhGH plus rhIGF-1. In the
spleen (Fig. 10) combination treatment almost tripled the
percent CD4 cells and more than doubled the CD4/CD8 ratio
(216). This paradox of differential effects on lymphocyte pop-
ulations in different body compartments may be due to the
anabolic hormones affecting lymphocyte trafficking as rhGH
and rhIGF-1 appear to cause lymphocytes to accumulate in
lymphoid organs at the expense of lymphocyte numbers in
the circulation (92, 205). One implication of this effect is that
in humans, where it is only practical to sample blood lym-
phocytes, the activities of rhGH and rhIGF-1 may be difficult
to detect. These observations in primates make it more likely
that rhIGF-1 will prove useful in humans to improve immune
function, especially after damage to the immune system or
in immune senescence in the elderly. Growth factors are used
in humans to restore hematopoietic cells after radiation, che-
motherapy, or bone marrow transplantation. At present, no
growth factor therapy is available that would speed the slow
and incomplete recovery of lymphopoiesis. As a conse-
quence, infections remain a major long-term problem even
after the most successful bone marrow transplantation reg-
imens have been used (274).

The importance of the effects of IGF-I on the thymus has
assumed a more interesting dimension with the recent pub-
lications by Gress et al. (275, 276). There is an increased
incidence of opportunistic infections after intensive cancer
chemotherapy; therefore, immune incompetence may be a
dose-limiting toxicity for high dose chemotherapy (275). In

FIG. 10. CD41 T lymphocytes in the spleen of adult rhesus macaques
treated by sc minipump infusion with excipient, rhIGF-1 (120 mg/kg/
day), hGH (100 mg/kg/day), or rhIGF-1 plus hGH for 7 weeks. The
combination of rhIGF-1 and hGH almost tripled the percentage of
splenic cells that were CD4 positive. Means and SEs are shown.
[Derived from Ref. 216.]
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children, the recovery of CD41 T cells, after treatment with
chemotherapeutic agents, occurs primarily by a thymus-de-
pendent pathway (276). With advancing age, the contribu-
tion of this pathway declines rapidly. The degree of immune
reconstitution after damage is directly related to the age of
the patient and, more importantly, the amount of residual
thymic function (276). Therefore it is possible that if thymic
growth and function could be stimulated by growth factors,
such as rhIGF-1 or rhGH, then lymphocyte function might be
more rapidly restored after chemotherapy, especially in
adults. In the setting of combined chemotherapy and bone
marrow transplantation, treatment with growth factors may
be doubly valuable. The effect of such growth factors on
tumor growth needs to be addressed, although initial short-
term studies with IGF-I suggest that tumor growth is not
enhanced (277).

GH is being tested as an anabolic treatment for patients
with AIDS-associated wasting (278). In other experiments,
testing IGF-I and the combination of IGF-I and GH as a
therapy for AIDS wasting, there was some evidence of a
beneficial effect on body composition (279). These studies
have been relatively short-term; appropriate dosing regi-
mens or dose levels in humans are not established; and
measures of lymphocyte number and function, if made at all,
have been based on blood cell counts. As stated above, the
idea that peripheral blood lymphocyte numbers and ratios
provide useful information about immune status has been
questioned (280) as only a few percent of the lymphocytes in
the body are circulating in blood, with the majority of the
cells being in the lymphoid organs. This problem is inherent
to the use of anabolic hormones that can double lymphoid
organ size while having minor effects on blood cell counts.
Measuring the immunological effects of IGF-I in human
studies will be difficult. In rodent or monkey studies, lym-
phocyte number and function can be measured directly in
lymphoid organs removed when the animals are killed; mea-
suring potential benefits solely by studying effects on the
number or function of the lymphocytes in the peripheral
blood is more difficult.

Much is to be learned in this fascinating area of IGF re-
search. For example, data from animal studies suggest that
GH and IGF-I can protect against bacterial infections (252,
253). Although GH has been reported to augment human
immunodeficiency virus growth (281), an intriguing recent
paper indicates that IGF-I may directly inhibit human im-
munodeficiency virus replication in vitro (282). Mice given
the antiviral drug azidothymidine (AZT) showed significant
myelotoxic effects, which treatment with rhIGF-1 reversed as
measured by splenic and bone marrow progenitor cell con-
tent and blood cell counts (283). The thymic atrophy caused
by AZT in mice can also be reversed by treatment with
rhIGF-1 (284). Similar effects of GH have been reported when
it is given with AZT (285). The use of IGF-I in some human
diseases with an immunological component is also bought
into question by its immunological activities. For example,
the hypomyelination in the IGF-I null mouse (286) and the
re-myelination in damaged tissue in animal models of mul-
tiple sclerosis (287) suggest that IGF-I might be useful for the
treatment for multiple sclerosis. However, the possible ben-
efits of IGF-I on oligodendrocytes must be balanced against

the possible adverse effects of IGF-I enhancing immune func-
tion and so stimulating the underlying immunological dis-
ease.

X. Conclusions

Aging, stress, and nutrition affect blood concentrations of
the anabolic hormones GH, PRL, and IGF-I, which in turn
modulate immune function. Recent studies show that IGF-I
plays an important role in the maturation of lymphocytes in
bone marrow and assists their function in the periphery. In
rodents, treatment with IGF-I can restore age-related thymic
involution, increase lymphocyte number and activity and
improve the reduced antibody response to an antigen chal-
lenge, and accelerate lymphoid reconstitution after radiation
and bone marrow transplantation. IGF-I may act on lym-
phoid tissues via its potent anti-apoptotic effects. Perhaps the
anabolic hormones have a dual role in regulating lympho-
poiesis. First, in the well-fed, nonstressed state, normal bone
marrow may utilize the IGFs as cofactors for ongoing lym-
phopoiesis. Second, during stress, IGF may be protective
from tissue damage, but if damage occurs it may also help
restore a damaged immune system. For these latter effects
there may be a requirement for endocrine IGF-I. These results
imply that IGF-I may be useful as a therapeutic in immu-
nodeficient states.
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